Chapter 2
Energy-Efficient Digital Processing
for Neural Action Potentials

Vaibhav Karkare, Sarah Gibson, and Dejan Markovi¢

Abstract This chapter discusses algorithm, architecture, and circuit techniques for
efficient implementation of neural signal processing circuits. In particular, the focus
is on spike sorting and compressive sampling for action potentials. The chapter
begins with an introduction to spike sorting and compressive sampling, and the
need for their implementation in modern-day neural recording systems. We then
illustrate, through examples, some useful methods for algorithm selection and
optimization. Digital design techniques that are beneficial in power and area
reduction for neural signal processing DSPs are also discussed. Finally, we discuss
the challenges and future directions in the area of biosignal processing.

2.1 Introduction

Spike sorting and compressive sampling (CS) are popular processing techniques to
provide reduction in the output data rates for neural recording systems. Spike
sorting, being a lossy compression technique, is suitable for real-time applications
like brain—machine interfaces (BMI). On the other hand, CS is suited for neurosci-
entific applications that require access to raw recorded data at all times. In order to
address data-rate reduction requirements (the need for data-rate reduction would be
explained soon) for both these applications, we discuss the implementation of spike
sorting and compressed sensing for neural recording systems.
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Fig. 2.1 Each electrode in an implanted electrode array records signals from multiple neurons.
For many applications, it is required to classify these recorded signals according to their source
neurons. This process of classifying the recorded action potentials according to their source
neurons is called spike sorting

2.1.1 Spike Sorting

It is well known that neurons communicate with each other using electrical signals
known as “action potentials” or “spikes.” In the recent past, significant progress has
been made in our understanding of the brain, owed largely to the analysis of
electrical signals recorded from the brain. In modern neuroscientific studies and
clinical procedures, neural signals are recorded from the brain using implanted
electrode arrays. Modern electrode arrays [1] consist of hundreds of electrodes.
Each electrode in these electrode arrays records signals from multiple neurons
(Fig. 2.1).

While analyzing the collective signal of a group of neurons (multi-unit record-
ing) is interesting for some studies, many neuroscientific analyses require knowl-
edge of single-neuron, or single-unit, activity. For instance, correlations between an
applied stimulus and the activity of an individual neuron or the correlation between
the activity of different individual neurons can only be observed from single-unit
neural recordings. Further, single-unit neural recordings are shown to significantly
enhance the performance of brain—machine interfaces [2]. Therefore, it is important
to classify the multi-unit action potentials recorded by a single electrode based on
their source neurons. This process of classifying the recorded action potentials
according to the neurons from which they originate is called spike sorting. Before
we delve into the implementation details of spike sorting hardware, we would first
present a brief review of the steps involved in spike sorting and the need for
designing energy-efficient spike sorting hardware.

Recorded neural data contains action potentials and local field potentials (com-
monly referred to as LFPs). LFPs have a higher amplitude (of around 2—6 mV)
compared to that of action potentials, which have amplitudes ranging from 10 pV to
1 mV. LFPs occupy a frequency band of 0.5-250 Hz, while action potentials
typically occupy a range of 300 Hz to 3 kHz. Raw neural data recorded from the
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Fig. 2.2 Spike-sorting process

brain is amplified, digitized, and high-pass filtered to remove the LFP.' These
operations are grouped under the “analog front end” module in Fig. 2.2. Spike
sorting is performed on this filtered and digitized neural data.

Spike sorting can be divided into three major steps (Fig. 2.2): (1) detection and
alignment, (2) feature extraction (FE), and (3) clustering.

The first spike-sorting step is spike detection. As the name indicates, the objective
of this step is to search for action potentials in the raw neural data. This is typically
done by placing a threshold on the raw data or on a signal derived from the raw data.
Several detection methods are used in the neuroscience community which differ from
each other in the signal transformation applied and the thresholding method used.
After detection, the recorded spikes are aligned to a common reference such as the
maximum spike amplitude or maximum spike derivative in order to avoid mis-aligned
spikes from the same neuron being classified into different groups. The second major
spike-sorting step is called feature extraction (FE). FE is the process of transforming
the recorded action potentials into a domain that better separates them from each other,
making classification easier. FE also reduces the number of samples that needs to be
processed per spike, thus reducing the computational complexity of the processing
that follows. Principal component analysis [3], discrete derivatives [4], discrete
wavelet transform [5], and the integral transform [6] are some examples of the trans-
formations used for feature extraction. The extracted features of the recorded action
potentials are finally passed through the clustering step, where the input spike features
are grouped into clusters. Most clustering methods require storage of all the data to be
classified, in order to map each spike to its class. The popular K-means and fuzzy
c-means are examples of such clustering methods. Most of these clustering methods
also require a user input for the number of clusters present in the data. Since the precise
number of neurons is not known, the user often has to guess the number of clusters
present in the data, which makes the entire clustering process susceptible to human
errors. In order to avoid these limitations, unsupervised clustering algorithms like
super-paramagnetic clustering [7] and online clustering [8] can be used.

'Local field potentials (LFPs) are of interest to clinicians for several studies like diagnosis of
epileptic patients. However, the focus of this chapter is spike sorting. Hence, we assume LFP to be
filtered immediately after the signal is recorded.
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The process of neural recording, followed by spike sorting, is currently
performed using a rudimentary setup. In the traditional neural recording setup,
the recorded signals are carried outside the body by transcutaneous wires to bulky
amplifiers and ADCs, mounted on shelves. Signal processing, including spike
sorting, is performed off-line, in software. This setup for neural recording has
several disadvantages. The wires limit the freedom of movement of the subject
and increase the risk of injury and infection. The signal quality is also degraded due
to increased motion artifacts. Implantable, integrated wireless neural recording
systems can solve these problems. The goal for the development of an implanted
wireless recording system is to integrate all the system components on a chip that
can be fabricated at the base of the implanted electrode array. Such implanted
electronic devices have to meet stringent power density constraints. The power
density needs to be much less than 800 pW/mm?, the power density known to
damage brain cells [9]. The area should also be minimized to allow for integration
with the implanted electrode arrays. Although the system is subject to stringent
power constraints, it also needs to transmit exorbitantly high data rates if raw data is
transmitted for all the channels. For instance, a data rate of 11 Mbps is required to
transmit raw data for a 64-channel system. Transmission of such high data rates is
not feasible while meeting the power constraints imposed on implantable devices.
Therefore, the data must be processed on-chip to reduce the output data rate.

The process of spike sorting, which is primarily a functional requirement has an
added advantage: It can reduce the output data rate by more than 200 times.” By
transmitting the sorting results instead of raw data, the output data rate for a
64-channel system, for example, can be reduced from 11 Mbps to a manageable
50 kbps. It is, therefore, desirable to perform on-chip spike sorting not only to meet
the functional requirement of real-time processing but also to reduce the output data
rates required for transmission. If transmission of spike IDs (the final output of
spike sorting) is not acceptable, a data-rate reduction of about 10 times can still be
obtained by transmitting only the detected spikes rather than all the recorded data.
Inclusion of on-site or on-chip spike sorting thus reduces the output data rates and
hence the system power consumption. This makes it feasible to support a high-
channel-count wireless neural recording and telemetry system.

2.1.2 Compressive Sampling

As we discussed in the previous section, spike sorting can be used to reduce the data
rate. Transmitting the output of a spike-sorting chip, the spike features or IDs,
would potentially reduce the data rate by two orders of magnitude compared to

2The data-rate reduction numbers correspond to a 64-channel system with a sampling rate of
24 kSa/s. The typical action potential spans 48 samples and the spike firing rate is assumed to be
100 spikes/second.
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transmitting raw data, but it would mean that the full action potential waveforms
would not be available for analysis. This may not be acceptable in various studies
that require the spike morphologies of the recorded action potentials in addition to
the spike classification results. For instance, the individual spike waveforms can be
used to characterize the type of neuron and possibly to distinguish between princi-
pal (primarily excitatory) and non-principal (largely inhibitory) cells for epilepsy
studies. Other studies require spike widths (with varying definitions of widths),
ratios of ascending to descending slopes of the spikes [10], etc. Neuroscientists
often revisit previously recorded data to test new hypotheses, and thus may require
different features to be extracted from the recorded spikes. Therefore, there is a
need to reduce the transmitted data rate while allowing access to the recorded neural
action potentials.

Compressive sensing (CS) is a recently developed theory that enables signal
reconstruction from a small number of non-adaptively acquired sample measure-
ments corresponding to the information content of the signal rather than to its
bandwidth [11]. Information content or sparsity is quantified by estimating the
number of the significant coefficients when the signal is projected into a space that
accentuates its principal components. Therefore, if action potentials are sparse,
compressive sensing would allow us to reduce communication costs and bandwidth
compared to transmitting raw action potentials acquired at the Nyquist rate.

For the specific case of action potentials, we can modify the conventional data
recovery procedure in CS to be able to obtain higher reductions in output data rate.
We will describe these modifications in the following section. Before we proceed to
the modifications, we will first provide a brief introduction to compressive
sampling.

Let the signal corresponding to an aligned spike waveform be x € R", where
n is the length of the window within which the spike is completely contained. We
apply “soft compressive sensing™ to this signal window to generate a set of
m measurements for each spike y = ®x, where m < n and ® € R"" is a
sampling matrix that performs an arbitrary linear projection. The objective of our
wireless neural recording system is to recover the stream of spikes from these
compressed measurements transmitted over a low-power radio. For this recovery,
we require the spike waveforms to be sparse or compressible in some domain. We
found [12] that the discrete wavelet transform (DWT) with Daubechies filters to be
suitable for compressing neural action potentials.

The spike is compressible in the DWT domain such that z = WYx has few
significant coefficients, where ¥ € R™" corresponds to the DWT operation.
Significant coefficients are those that account for most of the signal energy.

*We refer to the process of applying random linear projections to a signal after sampling at the
Nyquist rate as soft(-ware) CS to distinguish it from hard(-ware) CS, where the projections or their
equivalent are performed in the analog or physical domain before sampling or digitization.
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In particular, we locate the smallest set of DWT values that retains 99 % of the

£»-norm of the spike. We term this set of DWT coefficients as the spike’s “support.”
That is, we find the smallest set T such that:

supp(z) =T [|zr[l2 = C|z[l2 (2.1)

where z7 is an approximation of z with only the terms in the set T and C = 0. 99.
We can now formulate our recovery procedure as the basis pursuit denoising
(BPDN) [13] problem:

2:argm;in%Hyfd)‘PfliHi+/1||E||1 (2.2)

where A sets the significance of the sparsity with respect to the first noise tolerance
term. It has been shown that when the ensemble matrix ®¥ ' satisfies a condition
known as the restricted isometry property (RIP) [14], the error in the solution to the
above problem will be stable and bounded with overwhelming probability.

In [15], Lu and Vaswani introduced an approach to BPDN when additional
knowledge is available. Specifically, they show that if the support of the spike
waveform (or a part thereof) was known a priori, the error in the solution to
Eq. (2.2) admits a lower bound. Their BPDN approach is given by:

2:argm;in%Hy—CD‘I’_lEHi—&-/IHETL . (2.3)

where T is the complement of the known support and Z 7 denotes the elements in z
that are not included within 7. The bound on the ¢, norm of the solution error
depends on not only 4 and 7 but also A—the part of the support that is unknown and
A —the part of known support that is incorrect. If the true support of the signal can
be denoted by N, the relationship between these sets of supports is N = T U A\ A,.
Lu [15] demonstrated that as the size of A reduces, the solution error decreases
dramatically, especially at high compression ratios (i.e., n/m > 1). An intuitive
way of looking at modified BPDN is that it searches for a solution that sparsifies the
nonsignificant coefficients of the signal since these would have lower energy than
all the coefficients considered together.

Having introduced spike sorting and compressive sampling, let us now discuss
the design techniques that would allow us to build efficient spike-sorting DSPs.

2.2 Algorithm Selection and Optimization

In this section, we will first discuss the algorithm-level optimizations for spike
sorting followed by optimizations for compressed sensing.
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2.2.1 Spike-Sorting Algorithms

The first step to an efficient DSP implementation is to select the algorithms that
are most suited for hardware implementation, while meeting the required perfor-
mance criterion. As mentioned earlier, there are several algorithms in literature [16]
for the various spike-sorting steps illustrated in Fig. 2.2. In [17], we evaluated the
complexity—performance tradeoffs for these algorithms using the probability of
detection, probability of false alarm, and classification accuracy as metrics for
algorithm performance. The complexity of each algorithm was evaluated in terms
of the number of equivalent additions required for the algorithm and the estimated
memory requirement. Since the “ground truth” for actual recordings is never
known, such an analysis has to be validated using simulated neural data sets across
a wide range of spike shapes and SNRs. As an illustration of this analysis, Fig. 2.3
shows the median classification accuracy (for over 1,600 data sets of simulated
neural data over an SNR range of —15-20 dB) versus computational complexity
for four different feature-extraction algorithms: principal component analysis
(PCA) [3], discrete derivatives (DD) [4], discrete wavelet transform (DWT), [5]
and integral transform (IT) [6].

The normalized computational complexity is defined to be the sum of area
normalized to the maximum area and operations per second (OPS) normalized to
the maximum OPS among the algorithms considered. An operation was defined to
be an eight-bit addition for this analysis. The expression for the normalized
complexity is as follows:

OPS n Area
max(OPS)  max(Area)

Normalized Complexity = (2.4)

Once a plot for complexity-performance tradeoffs is generated, the algorithm at
the knee point of the curve can be identified as the complexity—accuracy-optimal
algorithm, for example. Thus, from Fig. 2.3, we would choose the discrete-
derivatives algorithm as our feature-extraction method. Based on a similar analysis,



30 V. Karkare et al.

160
150 ¢

40

S T

Raw Det. Spike IDs Spike IDs
Data Spikes [8] [15]

Estimated Power/
Channel (uW/ch.)

B AFE I DSP [] Radio

Fig. 2.4 The total system power increases with the implementation of online clustering [8]. How-
ever, appropriate modifications to online clustering for a multi-channel implementation [20]
allowed us to reduce the total system power by 2x. Following values are assumed for this plot:
AFE and ADC: 10 pW/channel, Spike Detection: 2 pW/channel, Online Clustering Implementa-
tion: 23.5 pW/channel, Transmitter: 6 nJ/byte

we recommended [17] using the nonlinear energy operator (NEO) [18] for detection
and maximum derivative for alignment [19].

While the above analysis works well for detection and feature extraction, in
the domain of clustering algorithms there is a dearth of algorithms that can
be implemented in real-time hardware. This is because most clustering algorithms
[7, 16], designed primarily for software implementations, require storage of all the
data to be clustered. An exception to this general trend is the online clustering
algorithm [8], which uses an on-the-fly, iterative process to handle real-time data
streams. This algorithm allows us to meet the functional requirement of
implementing real-time clustering hardware. However, it does not meet the require-
ment of reducing the system power consumption to support a higher channel count
[20]. As shown in Fig. 2.4, the total system power increases with an implementation
of the online clustering algorithm when compared to transmission of the detected
spikes. Although the reduction in data rates after clustering reduces the power
consumption in the radio, the high power consumed in the DSP increases the total
system power. In [20] we showed how the online clustering algorithm can be
suitably modified for a multi-channel implementation to reduce the DSP power by
5 times, thus lowering the total system power by 2 times compared to implementing
the original algorithm.

The online clustering algorithm [8] relies on the computation of Euclidean distance
between an incoming spike and the existing cluster means. The computed Euclidean
distance is compared to a threshold (that is derived from the noise variance of the data).
If the distance between the incoming spike and the existing cluster mean is greater than
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the threshold, the new spike forms a new cluster. However, if the distance is less than
the threshold, the spike is assigned into an existing cluster and the mean is updated to
be the weighted average of the incoming spike and the spikes already present in the
cluster. The algorithm starts off with a large number (approximately 50) of clusters
being formed which then get assimilated into, typically, less than six clusters.
The power consumed by an implementation of the algorithm is dominated by the
memory required to save the large number of transient clusters. In order to save the
total memory in a multi-channel implementation, the algorithm can be split into two
phases, as shown in Fig. 2.5. In the first, training phase, the channels are sequentially
processed and the converged means on each channel are identified and saved in the
memory. In the second, mapping phase, the incoming spikes are assigned to one of the
cluster means that were identified in the first step. Splitting the clustering algorithm
into two phases means that the large transient memory is required only for a single
channel at a time. This reduces the total memory required by a factor of 6 in a
16-channel implementation.

Further simplifications to the algorithm can also be made based on its transient
behavior. For example, during the training phase the cluster means are updated as the
weighted average of the incoming spike and the existing cluster means. As more
spikes get assigned to a given cluster, the cluster mean is not perturbed by a significant
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amount and can be assumed to be a constant. Empirically, the cluster mean of a
particular cluster can be considered to be a constant after about 30 spikes have been
assigned to the cluster. The cluster mean convergence also determines the limit on the
total number of spikes that need to be processed during the training phase.

2.2.2 Compressed Sensing Algorithms

In Sect. 2.1.2, we introduced compressed sensing as a method for reducing the
output data rate for neural recording systems. However, in the particular case of
action potentials the basis pursuit (BP) method of signal reconstruction can be
modified in order to provide higher data-rate reduction. In conventional BP, the
reconstruction method needs to find the support for the algorithm in a “blind”
fashion. However, while recording neural action potentials, we know that the
signals are being recorded from a finite population of neurons that remains rela-
tively stable over time. This knowledge can be used to prefer solutions whose
support (defined in Sect. 2.1.2) matches the support of pre-identified spikes. Thus,
in [12] we proposed a recovery technique based on the learned union of supports
that allowed us to reduce the output data rates by using the pre-identified supports.

Ideally, we would have liked to learn the support of each unique morphology
discovered at an electrode and switch supports to the one being recovered. This would
ensure that even if there are multiple models of the signal being recovered, the correct
model would be used during reconstruction. While learning the different supports over
time is quite feasible, knowing which spike support to use would require computa-
tionally expensive encoder involvement. Instead, we propose performing a set union
over the learned supports and furnishing Eq. (2.3) with this set as T. The learning is
continuous as the support of any newly recovered spikes is added to the union.

The procedure for union of supports recovery is outlined as follows: The decoder
is initialized with an empty union set, 7' = @. When measurements for the first
spike are received, the decoder uses Eq. (2.3) to recover it. With an empty 7, this is
equivalent to using conventional BPDN Eq. (2.2). After recovery, the support from
this first reconstructed spike becomes the updated union set, T(") = supp((V)).
When measurements for the second spike are received, the decoder performs
modified BPDN using Eq. (2.3) with the newly formed support set. Afterward,
the support for this second reconstructed spike is computed and added to the union
set, T =1y supp(2<2)). This process is repeated for subsequent spike mea-
surements. Further details on the justification of using the learned union of supports
can be found in [12].

In order to demonstrate the accuracy of CS reconstruction, we computed the
median SNDR over more than 600,000 spikes from human electrophysiological
recordings. The SNDR versus the number of CS measurements for different
reconstruction methods is shown in Fig. 2.6. This plot shows that the signal
recovered using the union of supports method has an SNDR that is on average
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Fig. 2.6 Performance comparison of spike recovery using conventional basis pursuit, support
from preceding spike, and learned union of supports. Points represent median SNDR and dashed
lines represent the first and the third quartiles

5.4 dB greater (maximum 7.8 dB greater) than the SNDR of the signal recovered
using the conventional basis pursuit recovery for the same number of CS measure-
ments. We can also see that a signal reconstruction with 20-dB SNDR is possible
with only 24 CS measurements per spike (where each spike originally had 48 sam-
ples). This implies that the data rate is 2 times lower than that required for
transmission of detected action potentials.

Besides SNDR, it is also important to evaluate the performance of reconstruction
in terms of classification accuracy (CA) of the acquired action potentials. Towards
this purpose, we clustered the action potentials using the Osort spike-sorting
software package. The clustering process was repeated for the signals reconstructed
from a different number of CS measurements, ranging from 4 to 48, using each of
the three reconstruction methods. The classification accuracy of the reconstructed
spikes was computed by comparing the clustering results for each case with the
clustering results of the original action potential waveforms. Figure 2.7 shows
the median classification accuracy over the entire set of spikes analyzed for each
of the three reconstruction methods. We find that the union of supports provides a
higher classification accuracy than conventional basis pursuit and modified CS
recovery. The classification accuracy for union of supports reconstruction reaches
80 % at 12 CS measurements, after which the classification accuracy increases very
slowly with the number of measurements. This relationship between the CA and the
number of measurements follows from the behavior of CS reconstruction, which is
grossly inaccurate until it reaches a factor proportional to the signal sparsity.
Beyond this point, the reconstruction is accurate and improves only slightly with
an increased number of measurements. For 24 CS measurements, a median classi-
fication accuracy of more than 90 % is achieved.
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Fig. 2.7 Median classification accuracy versus number of CS measurements for basis pursuit,
modified CS, and union of supports reconstruction

The purpose of the above example is to illustrate the kind of algorithm-level
modifications that can be made to a spike-sorting algorithms and reconstruction
techniques for CS to reduce the hardware cost. This example emphasizes the
importance of being conscious of the final digital hardware at the algorithm design
stage. In the following section, we will focus on the architecture- and circuit-level
techniques that can be used to optimize the DSP.

2.3 Digital Design Techniques for Spike-Sorting DSPs

Spike-sorting DSPs receive input data at the rate of a tens of kHz per channel. The
modern-day CMOS process, on the other hand, is capable of operating at GHz rates.
Most spike-sorting DSPs are memory intensive, as opposed to the logic-intensive
conventional DSPs. The slow data rates and register-dominated nature of spike-
sorting DSPs introduce design tradeoffs that are not common to conventional signal
processing chips.

Figure 2.8 shows the normalized energy per channel versus the normalized delay
for the spike-sorting DSP core published in [22]. This DSP has a critical-path delay
of 20 ns at the nominal supply voltage. This implies that the design at the minimum
delay point (MDP) is 2,000 x faster than the sampling-rate requirement. The energy—
delay curve shown in Fig. 2.8 is plotted assuming that the DSP is operated at
the maximum possible frequency at each voltage. Because the application delay is
fixed, however, there is no reward for early computation, as the circuit continues to
leak for the remainder of the clock cycle. Operating the DSP at the nominal supply
voltage of 1.2 V puts the design at a high-energy point at which the DSP is heavily
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leakage-dominated. In order to reduce the energy consumed, supply-voltage scaling
can be used to bring the design from the high-energy point at 1.2 V to a much lower
energy at 0.3 V. However, mere supply voltage scaling for a single-channel DSP
places the design at a sub-optimal point, at which both the energy and the delay are
greater than they are at the minimum-energy point (MEP) for the design. The
sub-optimal region is indicated by a dotted line in Fig. 2.8. To bring the DSP to a
desirable operating point between the minimum-delay and minimum-energy points,
the designer can interleave the single-channel architecture. This method is, in fact,
beneficial not only for spike sorting but also for most digital biosignal processing
circuits. Since the input sample rates for these circuits are not high, it is advisable to
scale the supply voltage aggressively and interleave multiple channels to minimize
the penalty in leakage power.

Looking at the E-D tradeoff curve in Fig. 2.8, it might be tempting for a designer
to interleave all the channels in the recording system into a single core. However,
the maximum number of channels that one can interleave is limited due to the
register-dominated nature of spike-sorting DSPs. Figure 2.9a shows the single-
channel implementation of the NEO detection operation [18] and the accumulation
of ¥(n) (the metric for energy in a spike x(n)). When this circuit is interleaved to
support two channels as in Fig. 2.9b, interleaving registers are needed to ensure that
the functionality is retained when an upsampled, interleaved stream of data is fed to
the input. It can be seen from this figure that the total combinational logic hardware
reduces by a factor of 2 in the interleaved implementation. However, the total
number of registers in the design remains unchanged. In a fully parallel design,
these registers only expend energy to shift data for a given channel. On the other
hand, in an interleaved design, the same number of registers have to expend energy
for data-shifting for all channels interleaved in a single core. In addition, interleav-
ing also increases the switching activity, since it breaks the correlation between the
data channels. Therefore, beyond 16-channel interleaving, the energy per channel
actually starts to increase due to an increase in register switching energy. The
energy-per-channel for the DSP, therefore, reaches a minimum at 8-16 channel
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interleaving. Thus, a good rule of thumb for spike-sorting DSP design is to
interleave about 16 channels in the DSP core.

In addition to interleaving, logic restructuring and wordlength optimization can
also be used to provide further power reduction. Attention should be paid to avoid
redundant signal switching [23]. For example, consider the circuit shown in
Fig. 2.10. This circuit is an accumulator, typically required for threshold calcula-
tion in various spike-sorting steps. To avoid redundant switching, the output of the
accumulation node (X¥(n)) is gated such that the division for averaging happens
only once, at the end of the training period, which is determined by the control
signal End. This avoids redundant switching as W(n) is being accumulated. This
strategy should be extended to the block level to ensure that the inputs to any given
block switch only at the correct clock cycle. Using this method the switching
activity of blocks that follow spike detection can be reduced by about 5x as the
inputs to these blocks toggle only upon a spike detection event. Wordlength
optimization can be performed using automated tools [24]. Iteratively relaxed
(increasing MSE) constraints need to be specified on the mean squared error
(MSE) at the signal of interest until detection or classification errors occur for a
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set of the input test vectors. Wordlength optimization can offer an area reduction of
up to 15 % compared to a fixed MSE design [22].

Memory architecture deserves special attention in spike-sorting DSP designs
since memories often dominate their power consumption. The supply voltage for
compiled commercial SRAMs cannot be scaled to below 700 mV due to their
limited read noise margin. The supply voltage for register-bank memories, on the
other hand, can reliably be scaled to subthreshold voltages to reduce their leakage
power. Figure 2.11 compares the power consumption of register bank and SRAM
memories for various memory sizes. For typical memory sizes of about 50 kb
[20, 22] required for spike-sorting DSPs, the power consumption of register-bank
memories is around 2 times lower than the power consumed by an equivalent
SRAM. Thus, register-bank memories provide a more power-efficient alternative
over conventional SRAMs. However, register-bank memories have significantly
higher area compared to SRAMs. To overcome this limitation, specially designed
subthreshold SRAM cells [25] could be used in spike-sorting DSPs.

Spike-sorting DSPs do not need random access to individual spike samples, as the
algorithms perform operations on an entire spike waveform. Hence, the memories in
spike-sorting DSPs can be organized as spike registers, as shown in Fig. 2.12. Each
spike register is used to save a single spike waveform that is Ny samples long. By
organizing the memory as spike registers, the power consumed by the decoder is
reduced by N, times. Each spike register module consists of 8-bit registers to save
the spike waveforms and a delay line for clock gating. To select the spike from a
particular spike register (Spike Reg. j), the decoder enables the clock to the spike
register (C [ key;) for one clock cycle. This enables the clock to access the first sample
(S(1)) of the spike waveform. In the next clock cycle, the clock enable signal is
shifted in position through the delay line to enable access to the second sample (S(2))
of the spike waveform. This process is repeated until all the samples of the spike
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waveform have been accessed. In this architecture, only 1-bit D-flip-flops have an
active clock, not the 8-bit registers. This delay-line-based clock-gating scheme,
hence, reduces the power consumed in the redundant clock transitions by 8 times.

We have demonstrated the use of the above techniques to implement multi-
channel spike-sorting DSPs with a power consumption of less than 5 pW/channel in
[22] and [20].

2.4 Future Directions in Spike-Sorting DSP Design

This chapter serves as an introduction to spike sorting and compressed sensing for
neural recording. We summarized some important algorithm-, architecture-, and
circuit-level techniques that can be used for an efficient implementation of neural
signal processing DSPs. Both spike sorting and CS provide output data-rate reduc-
tion that serves to reduce the total system power. Table 2.1 lists the typical data-rate
reductions from spike sorting and compressive sampling. It should be noted that
compressive sampling provides similar data-rate reduction as that provided by
extracted features, but allows for accurate signal reconstruction at the receiver.
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Table 2.1 Data-rate

; B Output data Data-rate reduction
reduction for various output Soike 11
options pike features X
Compressed samples 9.6x
Cluster IDs 240x

In addition to spike sorting, applications like brain—machine interfaces require
robust decoding algorithms, whose implementation also needs to be investigated.
Similar to spike-sorting DSPs, implementations of most biosignal processing algo-
rithms are memory dominated. This raises the need for research on low-voltage,
low-power memories for biosignal processors. While implementing a fixed set of
algorithms may work well for clinical applications, flexibility in choosing the
processing algorithms is a key requirement for neuroscientific applications.
To this end, an exciting area of research is the development of Bio-FPGAs,
i.,e. FPGA implementations specifically tailored to suit the need of biosignal
processing algorithms. All such developmental work needs to happen in a close,
interdisciplinary collaboration with neuroscientists and clinicians.

Real-time processing of data is a key requirement for applications like brain—
machine interfaces. However, many applications in neuroscience research do not
require real-time processing. This being said, the recorded data easily occupies
several terabytes of storage per day. Hence, data-rate reduction is a key requirement
even for systems with off-line processing. The processing of this large volume of
data in software is very time consuming and limits the productivity of research.
Hardware accelerators for spike-sorting algorithms are required to speed up the
processing of recorded data. Implementation of these accelerators would use highly
parallelized architectures as opposed to the serialized architecture used for online
spike sorting. Overall, the successful pursuit of such opportunities in the area of
biosignal DSP design requires a significant contribution from the modern-day
digital circuit designer.
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