
Chapter 2

Energy-Efficient Digital Processing

for Neural Action Potentials

Vaibhav Karkare, Sarah Gibson, and Dejan Marković

Abstract This chapter discusses algorithm, architecture, and circuit techniques for

efficient implementation of neural signal processing circuits. In particular, the focus

is on spike sorting and compressive sampling for action potentials. The chapter

begins with an introduction to spike sorting and compressive sampling, and the

need for their implementation in modern-day neural recording systems. We then

illustrate, through examples, some useful methods for algorithm selection and

optimization. Digital design techniques that are beneficial in power and area

reduction for neural signal processing DSPs are also discussed. Finally, we discuss

the challenges and future directions in the area of biosignal processing.

2.1 Introduction

Spike sorting and compressive sampling (CS) are popular processing techniques to

provide reduction in the output data rates for neural recording systems. Spike

sorting, being a lossy compression technique, is suitable for real-time applications

like brain–machine interfaces (BMI). On the other hand, CS is suited for neurosci-

entific applications that require access to raw recorded data at all times. In order to

address data-rate reduction requirements (the need for data-rate reduction would be

explained soon) for both these applications, we discuss the implementation of spike

sorting and compressed sensing for neural recording systems.
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2.1.1 Spike Sorting

It is well known that neurons communicate with each other using electrical signals

known as “action potentials” or “spikes.” In the recent past, significant progress has

been made in our understanding of the brain, owed largely to the analysis of

electrical signals recorded from the brain. In modern neuroscientific studies and

clinical procedures, neural signals are recorded from the brain using implanted

electrode arrays. Modern electrode arrays [1] consist of hundreds of electrodes.

Each electrode in these electrode arrays records signals from multiple neurons

(Fig. 2.1).

While analyzing the collective signal of a group of neurons (multi-unit record-

ing) is interesting for some studies, many neuroscientific analyses require knowl-

edge of single-neuron, or single-unit, activity. For instance, correlations between an

applied stimulus and the activity of an individual neuron or the correlation between

the activity of different individual neurons can only be observed from single-unit

neural recordings. Further, single-unit neural recordings are shown to significantly

enhance the performance of brain–machine interfaces [2]. Therefore, it is important

to classify the multi-unit action potentials recorded by a single electrode based on

their source neurons. This process of classifying the recorded action potentials

according to the neurons from which they originate is called spike sorting. Before
we delve into the implementation details of spike sorting hardware, we would first

present a brief review of the steps involved in spike sorting and the need for

designing energy-efficient spike sorting hardware.

Recorded neural data contains action potentials and local field potentials (com-

monly referred to as LFPs). LFPs have a higher amplitude (of around 2–6 mV)

compared to that of action potentials, which have amplitudes ranging from 10 μV to

1 mV. LFPs occupy a frequency band of 0.5–250 Hz, while action potentials

typically occupy a range of 300 Hz to 3 kHz. Raw neural data recorded from the
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Fig. 2.1 Each electrode in an implanted electrode array records signals from multiple neurons.

For many applications, it is required to classify these recorded signals according to their source

neurons. This process of classifying the recorded action potentials according to their source

neurons is called spike sorting
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brain is amplified, digitized, and high-pass filtered to remove the LFP.1 These

operations are grouped under the “analog front end” module in Fig. 2.2. Spike

sorting is performed on this filtered and digitized neural data.

Spike sorting can be divided into three major steps (Fig. 2.2): (1) detection and

alignment, (2) feature extraction (FE), and (3) clustering.

The first spike-sorting step is spike detection. As the name indicates, the objective

of this step is to search for action potentials in the raw neural data. This is typically

done by placing a threshold on the raw data or on a signal derived from the raw data.

Several detection methods are used in the neuroscience community which differ from

each other in the signal transformation applied and the thresholding method used.

After detection, the recorded spikes are aligned to a common reference such as the

maximum spike amplitude ormaximum spike derivative in order to avoidmis-aligned

spikes from the same neuron being classified into different groups. The second major

spike-sorting step is called feature extraction (FE). FE is the process of transforming

the recorded action potentials into a domain that better separates them fromeach other,

making classification easier. FE also reduces the number of samples that needs to be

processed per spike, thus reducing the computational complexity of the processing

that follows. Principal component analysis [3], discrete derivatives [4], discrete

wavelet transform [5], and the integral transform [6] are some examples of the trans-

formations used for feature extraction. The extracted features of the recorded action

potentials are finally passed through the clustering step, where the input spike features

are grouped into clusters. Most clustering methods require storage of all the data to be

classified, in order to map each spike to its class. The popular K-means and fuzzy

c-means are examples of such clustering methods. Most of these clustering methods

also require a user input for the number of clusters present in the data. Since the precise

number of neurons is not known, the user often has to guess the number of clusters

present in the data, which makes the entire clustering process susceptible to human

errors. In order to avoid these limitations, unsupervised clustering algorithms like

super-paramagnetic clustering [7] and online clustering [8] can be used.
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Fig. 2.2 Spike-sorting process

1 Local field potentials (LFPs) are of interest to clinicians for several studies like diagnosis of

epileptic patients. However, the focus of this chapter is spike sorting. Hence, we assume LFP to be

filtered immediately after the signal is recorded.
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The process of neural recording, followed by spike sorting, is currently

performed using a rudimentary setup. In the traditional neural recording setup,

the recorded signals are carried outside the body by transcutaneous wires to bulky

amplifiers and ADCs, mounted on shelves. Signal processing, including spike

sorting, is performed off-line, in software. This setup for neural recording has

several disadvantages. The wires limit the freedom of movement of the subject

and increase the risk of injury and infection. The signal quality is also degraded due

to increased motion artifacts. Implantable, integrated wireless neural recording

systems can solve these problems. The goal for the development of an implanted

wireless recording system is to integrate all the system components on a chip that

can be fabricated at the base of the implanted electrode array. Such implanted

electronic devices have to meet stringent power density constraints. The power

density needs to be much less than 800 μW/mm2, the power density known to

damage brain cells [9]. The area should also be minimized to allow for integration

with the implanted electrode arrays. Although the system is subject to stringent

power constraints, it also needs to transmit exorbitantly high data rates if raw data is

transmitted for all the channels. For instance, a data rate of 11 Mbps is required to

transmit raw data for a 64-channel system. Transmission of such high data rates is

not feasible while meeting the power constraints imposed on implantable devices.

Therefore, the data must be processed on-chip to reduce the output data rate.

The process of spike sorting, which is primarily a functional requirement has an

added advantage: It can reduce the output data rate by more than 200 times.2 By

transmitting the sorting results instead of raw data, the output data rate for a

64-channel system, for example, can be reduced from 11 Mbps to a manageable

50 kbps. It is, therefore, desirable to perform on-chip spike sorting not only to meet

the functional requirement of real-time processing but also to reduce the output data

rates required for transmission. If transmission of spike IDs (the final output of

spike sorting) is not acceptable, a data-rate reduction of about 10 times can still be

obtained by transmitting only the detected spikes rather than all the recorded data.

Inclusion of on-site or on-chip spike sorting thus reduces the output data rates and

hence the system power consumption. This makes it feasible to support a high-

channel-count wireless neural recording and telemetry system.

2.1.2 Compressive Sampling

As we discussed in the previous section, spike sorting can be used to reduce the data

rate. Transmitting the output of a spike-sorting chip, the spike features or IDs,

would potentially reduce the data rate by two orders of magnitude compared to

2 The data-rate reduction numbers correspond to a 64-channel system with a sampling rate of

24 kSa/s. The typical action potential spans 48 samples and the spike firing rate is assumed to be

100 spikes/second.
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transmitting raw data, but it would mean that the full action potential waveforms

would not be available for analysis. This may not be acceptable in various studies

that require the spike morphologies of the recorded action potentials in addition to

the spike classification results. For instance, the individual spike waveforms can be

used to characterize the type of neuron and possibly to distinguish between princi-

pal (primarily excitatory) and non-principal (largely inhibitory) cells for epilepsy

studies. Other studies require spike widths (with varying definitions of widths),

ratios of ascending to descending slopes of the spikes [10], etc. Neuroscientists

often revisit previously recorded data to test new hypotheses, and thus may require

different features to be extracted from the recorded spikes. Therefore, there is a

need to reduce the transmitted data rate while allowing access to the recorded neural

action potentials.

Compressive sensing (CS) is a recently developed theory that enables signal

reconstruction from a small number of non-adaptively acquired sample measure-

ments corresponding to the information content of the signal rather than to its

bandwidth [11]. Information content or sparsity is quantified by estimating the

number of the significant coefficients when the signal is projected into a space that

accentuates its principal components. Therefore, if action potentials are sparse,

compressive sensing would allow us to reduce communication costs and bandwidth

compared to transmitting raw action potentials acquired at the Nyquist rate.

For the specific case of action potentials, we can modify the conventional data

recovery procedure in CS to be able to obtain higher reductions in output data rate.

We will describe these modifications in the following section. Before we proceed to

the modifications, we will first provide a brief introduction to compressive

sampling.

Let the signal corresponding to an aligned spike waveform be x ∈ ℝn, where

n is the length of the window within which the spike is completely contained. We

apply “soft compressive sensing”3 to this signal window to generate a set of

m measurements for each spike y ¼ Φx, where m < n and Φ ∈ ℝm�n is a

sampling matrix that performs an arbitrary linear projection. The objective of our

wireless neural recording system is to recover the stream of spikes from these

compressed measurements transmitted over a low-power radio. For this recovery,

we require the spike waveforms to be sparse or compressible in some domain. We

found [12] that the discrete wavelet transform (DWT) with Daubechies filters to be

suitable for compressing neural action potentials.

The spike is compressible in the DWT domain such that z ¼ Ψx has few

significant coefficients, where Ψ ∈ ℝn�n corresponds to the DWT operation.

Significant coefficients are those that account for most of the signal energy.

3We refer to the process of applying random linear projections to a signal after sampling at the

Nyquist rate as soft(-ware) CS to distinguish it from hard(-ware) CS, where the projections or their

equivalent are performed in the analog or physical domain before sampling or digitization.
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In particular, we locate the smallest set of DWT values that retains 99 % of the

‘2-norm of the spike. We term this set of DWT coefficients as the spike’s “support.”

That is, we find the smallest set T such that:

supp zð Þ ¼ T kzTk2 � Ckzk2 ð2:1Þ

where zT is an approximation of z with only the terms in the set T and C ¼ 0. 99.

We can now formulate our recovery procedure as the basis pursuit denoising

(BPDN) [13] problem:

ẑ ¼ argmin
~z

1

2

��y�ΦΨ�1~z
��2
2
þ λ ~zk k1 ð2:2Þ

where λ sets the significance of the sparsity with respect to the first noise tolerance

term. It has been shown that when the ensemble matrix ΦΨ�1 satisfies a condition

known as the restricted isometry property (RIP) [14], the error in the solution to the

above problem will be stable and bounded with overwhelming probability.

In [15], Lu and Vaswani introduced an approach to BPDN when additional

knowledge is available. Specifically, they show that if the support of the spike

waveform (or a part thereof) was known a priori, the error in the solution to

Eq. (2.2) admits a lower bound. Their BPDN approach is given by:

ẑ ¼ argmin
~z

1

2
y�ΦΨ�1~z

�� ��2
2
þ λ ~zTck k1 ð2:3Þ

where Tc is the complement of the known support and~z Tc denotes the elements in~z
that are not included within T. The bound on the ‘2 norm of the solution error

depends on not only λ and T but alsoΔ—the part of the support that is unknown and

Δe—the part of known support that is incorrect. If the true support of the signal can

be denoted by N, the relationship between these sets of supports is N ¼ T [ Δ∖Δe.

Lu [15] demonstrated that as the size of Δ reduces, the solution error decreases

dramatically, especially at high compression ratios (i.e., n/m � 1). An intuitive

way of looking at modified BPDN is that it searches for a solution that sparsifies the

nonsignificant coefficients of the signal since these would have lower energy than

all the coefficients considered together.

Having introduced spike sorting and compressive sampling, let us now discuss

the design techniques that would allow us to build efficient spike-sorting DSPs.

2.2 Algorithm Selection and Optimization

In this section, we will first discuss the algorithm-level optimizations for spike

sorting followed by optimizations for compressed sensing.
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2.2.1 Spike-Sorting Algorithms

The first step to an efficient DSP implementation is to select the algorithms that

are most suited for hardware implementation, while meeting the required perfor-

mance criterion. As mentioned earlier, there are several algorithms in literature [16]

for the various spike-sorting steps illustrated in Fig. 2.2. In [17], we evaluated the

complexity–performance tradeoffs for these algorithms using the probability of

detection, probability of false alarm, and classification accuracy as metrics for

algorithm performance. The complexity of each algorithm was evaluated in terms

of the number of equivalent additions required for the algorithm and the estimated

memory requirement. Since the “ground truth” for actual recordings is never

known, such an analysis has to be validated using simulated neural data sets across

a wide range of spike shapes and SNRs. As an illustration of this analysis, Fig. 2.3

shows the median classification accuracy (for over 1,600 data sets of simulated

neural data over an SNR range of �15–20 dB) versus computational complexity

for four different feature-extraction algorithms: principal component analysis

(PCA) [3], discrete derivatives (DD) [4], discrete wavelet transform (DWT), [5]

and integral transform (IT) [6].

The normalized computational complexity is defined to be the sum of area

normalized to the maximum area and operations per second (OPS) normalized to

the maximum OPS among the algorithms considered. An operation was defined to

be an eight-bit addition for this analysis. The expression for the normalized

complexity is as follows:

Normalized Complexity ¼ OPS

maxðOPSÞ þ
Area

maxðAreaÞ : ð2:4Þ

Once a plot for complexity-performance tradeoffs is generated, the algorithm at

the knee point of the curve can be identified as the complexity–accuracy-optimal

algorithm, for example. Thus, from Fig. 2.3, we would choose the discrete-

derivatives algorithm as our feature-extraction method. Based on a similar analysis,
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we recommended [17] using the nonlinear energy operator (NEO) [18] for detection

and maximum derivative for alignment [19].

While the above analysis works well for detection and feature extraction, in

the domain of clustering algorithms there is a dearth of algorithms that can

be implemented in real-time hardware. This is because most clustering algorithms

[7, 16], designed primarily for software implementations, require storage of all the

data to be clustered. An exception to this general trend is the online clustering

algorithm [8], which uses an on-the-fly, iterative process to handle real-time data

streams. This algorithm allows us to meet the functional requirement of

implementing real-time clustering hardware. However, it does not meet the require-

ment of reducing the system power consumption to support a higher channel count

[20]. As shown in Fig. 2.4, the total system power increases with an implementation

of the online clustering algorithm when compared to transmission of the detected

spikes. Although the reduction in data rates after clustering reduces the power

consumption in the radio, the high power consumed in the DSP increases the total

system power. In [20] we showed how the online clustering algorithm can be

suitably modified for a multi-channel implementation to reduce the DSP power by

5 times, thus lowering the total system power by 2 times compared to implementing

the original algorithm.

The online clustering algorithm [8] relies on the computation of Euclidean distance

between an incoming spike and the existing cluster means. The computed Euclidean

distance is compared to a threshold (that is derived from the noise variance of the data).

If the distance between the incoming spike and the existing clustermean is greater than
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the threshold, the new spike forms a new cluster. However, if the distance is less than

the threshold, the spike is assigned into an existing cluster and the mean is updated to

be the weighted average of the incoming spike and the spikes already present in the

cluster. The algorithm starts off with a large number (approximately 50) of clusters

being formed which then get assimilated into, typically, less than six clusters.

The power consumed by an implementation of the algorithm is dominated by the

memory required to save the large number of transient clusters. In order to save the

total memory in a multi-channel implementation, the algorithm can be split into two

phases, as shown in Fig. 2.5. In the first, training phase, the channels are sequentially

processed and the converged means on each channel are identified and saved in the

memory. In the second, mapping phase, the incoming spikes are assigned to one of the

cluster means that were identified in the first step. Splitting the clustering algorithm

into two phases means that the large transient memory is required only for a single

channel at a time. This reduces the total memory required by a factor of 6 in a

16-channel implementation.

Further simplifications to the algorithm can also be made based on its transient

behavior. For example, during the training phase the cluster means are updated as the

weighted average of the incoming spike and the existing cluster means. As more

spikes get assigned to a given cluster, the cluster mean is not perturbed by a significant
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amount and can be assumed to be a constant. Empirically, the cluster mean of a

particular cluster can be considered to be a constant after about 30 spikes have been

assigned to the cluster. The cluster mean convergence also determines the limit on the

total number of spikes that need to be processed during the training phase.

2.2.2 Compressed Sensing Algorithms

In Sect. 2.1.2, we introduced compressed sensing as a method for reducing the

output data rate for neural recording systems. However, in the particular case of

action potentials the basis pursuit (BP) method of signal reconstruction can be

modified in order to provide higher data-rate reduction. In conventional BP, the

reconstruction method needs to find the support for the algorithm in a “blind”

fashion. However, while recording neural action potentials, we know that the

signals are being recorded from a finite population of neurons that remains rela-

tively stable over time. This knowledge can be used to prefer solutions whose

support (defined in Sect. 2.1.2) matches the support of pre-identified spikes. Thus,

in [12] we proposed a recovery technique based on the learned union of supports

that allowed us to reduce the output data rates by using the pre-identified supports.

Ideally, we would have liked to learn the support of each unique morphology

discovered at an electrode and switch supports to the one being recovered. This would

ensure that even if there are multiple models of the signal being recovered, the correct

modelwould be used during reconstruction.While learning the different supports over

time is quite feasible, knowing which spike support to use would require computa-

tionally expensive encoder involvement. Instead, we propose performing a set union

over the learned supports and furnishing Eq. (2.3) with this set as T. The learning is

continuous as the support of any newly recovered spikes is added to the union.

The procedure for union of supports recovery is outlined as follows: The decoder

is initialized with an empty union set, T(0) ¼ Ø. When measurements for the first

spike are received, the decoder uses Eq. (2.3) to recover it. With an empty T, this is
equivalent to using conventional BPDN Eq. (2.2). After recovery, the support from

this first reconstructed spike becomes the updated union set, Tð1Þ ¼ supp ẑð1Þ
� �

.

When measurements for the second spike are received, the decoder performs

modified BPDN using Eq. (2.3) with the newly formed support set. Afterward,

the support for this second reconstructed spike is computed and added to the union

set, Tð2Þ ¼ Tð1Þ [ suppðẑð2ÞÞ. This process is repeated for subsequent spike mea-

surements. Further details on the justification of using the learned union of supports

can be found in [12].

In order to demonstrate the accuracy of CS reconstruction, we computed the

median SNDR over more than 600,000 spikes from human electrophysiological

recordings. The SNDR versus the number of CS measurements for different

reconstruction methods is shown in Fig. 2.6. This plot shows that the signal

recovered using the union of supports method has an SNDR that is on average
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5.4 dB greater (maximum 7.8 dB greater) than the SNDR of the signal recovered

using the conventional basis pursuit recovery for the same number of CS measure-

ments. We can also see that a signal reconstruction with 20-dB SNDR is possible

with only 24 CS measurements per spike (where each spike originally had 48 sam-

ples). This implies that the data rate is 2 times lower than that required for

transmission of detected action potentials.

Besides SNDR, it is also important to evaluate the performance of reconstruction

in terms of classification accuracy (CA) of the acquired action potentials. Towards

this purpose, we clustered the action potentials using the Osort spike-sorting

software package. The clustering process was repeated for the signals reconstructed

from a different number of CS measurements, ranging from 4 to 48, using each of

the three reconstruction methods. The classification accuracy of the reconstructed

spikes was computed by comparing the clustering results for each case with the

clustering results of the original action potential waveforms. Figure 2.7 shows

the median classification accuracy over the entire set of spikes analyzed for each

of the three reconstruction methods. We find that the union of supports provides a

higher classification accuracy than conventional basis pursuit and modified CS

recovery. The classification accuracy for union of supports reconstruction reaches

80 % at 12 CS measurements, after which the classification accuracy increases very

slowly with the number of measurements. This relationship between the CA and the

number of measurements follows from the behavior of CS reconstruction, which is

grossly inaccurate until it reaches a factor proportional to the signal sparsity.

Beyond this point, the reconstruction is accurate and improves only slightly with

an increased number of measurements. For 24 CS measurements, a median classi-

fication accuracy of more than 90 % is achieved.
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The purpose of the above example is to illustrate the kind of algorithm-level

modifications that can be made to a spike-sorting algorithms and reconstruction

techniques for CS to reduce the hardware cost. This example emphasizes the

importance of being conscious of the final digital hardware at the algorithm design

stage. In the following section, we will focus on the architecture- and circuit-level

techniques that can be used to optimize the DSP.

2.3 Digital Design Techniques for Spike-Sorting DSPs

Spike-sorting DSPs receive input data at the rate of a tens of kHz per channel. The

modern-day CMOS process, on the other hand, is capable of operating at GHz rates.

Most spike-sorting DSPs are memory intensive, as opposed to the logic-intensive

conventional DSPs. The slow data rates and register-dominated nature of spike-

sorting DSPs introduce design tradeoffs that are not common to conventional signal

processing chips.

Figure 2.8 shows the normalized energy per channel versus the normalized delay

for the spike-sorting DSP core published in [22]. This DSP has a critical-path delay

of 20 ns at the nominal supply voltage. This implies that the design at the minimum

delay point (MDP) is 2,000� faster than the sampling-rate requirement. The energy–

delay curve shown in Fig. 2.8 is plotted assuming that the DSP is operated at

the maximum possible frequency at each voltage. Because the application delay is

fixed, however, there is no reward for early computation, as the circuit continues to

leak for the remainder of the clock cycle. Operating the DSP at the nominal supply

voltage of 1.2 V puts the design at a high-energy point at which the DSP is heavily

0 5 10 15 20 25 30 35 40 45
0

10

20

30

40

50

60

70

80

90

100

Number of Measurements / Spike

C
la

ss
ifi

ca
tio

n 
A

cc
ur

ac
y 

(%
)

Conventional Basis Pursuit
Modified CS
Learned Union of Supports

Fig. 2.7 Median classification accuracy versus number of CS measurements for basis pursuit,

modified CS, and union of supports reconstruction

34 V. Karkare et al.



leakage-dominated. In order to reduce the energy consumed, supply-voltage scaling

can be used to bring the design from the high-energy point at 1.2 V to a much lower

energy at 0.3 V. However, mere supply voltage scaling for a single-channel DSP

places the design at a sub-optimal point, at which both the energy and the delay are

greater than they are at the minimum-energy point (MEP) for the design. The

sub-optimal region is indicated by a dotted line in Fig. 2.8. To bring the DSP to a

desirable operating point between the minimum-delay and minimum-energy points,

the designer can interleave the single-channel architecture. This method is, in fact,

beneficial not only for spike sorting but also for most digital biosignal processing

circuits. Since the input sample rates for these circuits are not high, it is advisable to

scale the supply voltage aggressively and interleave multiple channels to minimize

the penalty in leakage power.

Looking at the E-D tradeoff curve in Fig. 2.8, it might be tempting for a designer

to interleave all the channels in the recording system into a single core. However,

the maximum number of channels that one can interleave is limited due to the

register-dominated nature of spike-sorting DSPs. Figure 2.9a shows the single-

channel implementation of the NEO detection operation [18] and the accumulation

of Ψ (n) (the metric for energy in a spike x(n)). When this circuit is interleaved to

support two channels as in Fig. 2.9b, interleaving registers are needed to ensure that

the functionality is retained when an upsampled, interleaved stream of data is fed to

the input. It can be seen from this figure that the total combinational logic hardware

reduces by a factor of 2 in the interleaved implementation. However, the total

number of registers in the design remains unchanged. In a fully parallel design,

these registers only expend energy to shift data for a given channel. On the other

hand, in an interleaved design, the same number of registers have to expend energy

for data-shifting for all channels interleaved in a single core. In addition, interleav-

ing also increases the switching activity, since it breaks the correlation between the

data channels. Therefore, beyond 16-channel interleaving, the energy per channel

actually starts to increase due to an increase in register switching energy. The

energy-per-channel for the DSP, therefore, reaches a minimum at 8–16 channel
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interleaving. Thus, a good rule of thumb for spike-sorting DSP design is to

interleave about 16 channels in the DSP core.

In addition to interleaving, logic restructuring and wordlength optimization can

also be used to provide further power reduction. Attention should be paid to avoid

redundant signal switching [23]. For example, consider the circuit shown in

Fig. 2.10. This circuit is an accumulator, typically required for threshold calcula-

tion in various spike-sorting steps. To avoid redundant switching, the output of the

accumulation node (ΣΨ(n)) is gated such that the division for averaging happens

only once, at the end of the training period, which is determined by the control

signal End. This avoids redundant switching as Ψ(n) is being accumulated. This

strategy should be extended to the block level to ensure that the inputs to any given

block switch only at the correct clock cycle. Using this method the switching

activity of blocks that follow spike detection can be reduced by about 5� as the

inputs to these blocks toggle only upon a spike detection event. Wordlength

optimization can be performed using automated tools [24]. Iteratively relaxed

(increasing MSE) constraints need to be specified on the mean squared error

(MSE) at the signal of interest until detection or classification errors occur for a
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set of the input test vectors. Wordlength optimization can offer an area reduction of

up to 15 % compared to a fixed MSE design [22].

Memory architecture deserves special attention in spike-sorting DSP designs

since memories often dominate their power consumption. The supply voltage for

compiled commercial SRAMs cannot be scaled to below 700 mV due to their

limited read noise margin. The supply voltage for register-bank memories, on the

other hand, can reliably be scaled to subthreshold voltages to reduce their leakage

power. Figure 2.11 compares the power consumption of register bank and SRAM

memories for various memory sizes. For typical memory sizes of about 50 kb

[20, 22] required for spike-sorting DSPs, the power consumption of register-bank

memories is around 2 times lower than the power consumed by an equivalent

SRAM. Thus, register-bank memories provide a more power-efficient alternative

over conventional SRAMs. However, register-bank memories have significantly

higher area compared to SRAMs. To overcome this limitation, specially designed

subthreshold SRAM cells [25] could be used in spike-sorting DSPs.

Spike-sorting DSPs do not need random access to individual spike samples, as the

algorithms perform operations on an entire spike waveform. Hence, the memories in

spike-sorting DSPs can be organized as spike registers, as shown in Fig. 2.12. Each

spike register is used to save a single spike waveform that is Nspk samples long. By

organizing the memory as spike registers, the power consumed by the decoder is

reduced by Nspk times. Each spike register module consists of 8-bit registers to save

the spike waveforms and a delay line for clock gating. To select the spike from a

particular spike register (Spike Reg. j), the decoder enables the clock to the spike

register (C l kenj) for one clock cycle. This enables the clock to access the first sample

(S(1)) of the spike waveform. In the next clock cycle, the clock enable signal is

shifted in position through the delay line to enable access to the second sample (S(2))
of the spike waveform. This process is repeated until all the samples of the spike
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waveform have been accessed. In this architecture, only 1-bit D-flip-flops have an

active clock, not the 8-bit registers. This delay-line-based clock-gating scheme,

hence, reduces the power consumed in the redundant clock transitions by 8 times.

We have demonstrated the use of the above techniques to implement multi-

channel spike-sorting DSPs with a power consumption of less than 5 μW/channel in

[22] and [20].

2.4 Future Directions in Spike-Sorting DSP Design

This chapter serves as an introduction to spike sorting and compressed sensing for

neural recording. We summarized some important algorithm-, architecture-, and

circuit-level techniques that can be used for an efficient implementation of neural

signal processing DSPs. Both spike sorting and CS provide output data-rate reduc-

tion that serves to reduce the total system power. Table 2.1 lists the typical data-rate

reductions from spike sorting and compressive sampling. It should be noted that

compressive sampling provides similar data-rate reduction as that provided by

extracted features, but allows for accurate signal reconstruction at the receiver.
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In addition to spike sorting, applications like brain–machine interfaces require

robust decoding algorithms, whose implementation also needs to be investigated.

Similar to spike-sorting DSPs, implementations of most biosignal processing algo-

rithms are memory dominated. This raises the need for research on low-voltage,

low-power memories for biosignal processors. While implementing a fixed set of

algorithms may work well for clinical applications, flexibility in choosing the

processing algorithms is a key requirement for neuroscientific applications.

To this end, an exciting area of research is the development of Bio-FPGAs,

i.e. FPGA implementations specifically tailored to suit the need of biosignal

processing algorithms. All such developmental work needs to happen in a close,

interdisciplinary collaboration with neuroscientists and clinicians.

Real-time processing of data is a key requirement for applications like brain–

machine interfaces. However, many applications in neuroscience research do not

require real-time processing. This being said, the recorded data easily occupies

several terabytes of storage per day. Hence, data-rate reduction is a key requirement

even for systems with off-line processing. The processing of this large volume of

data in software is very time consuming and limits the productivity of research.

Hardware accelerators for spike-sorting algorithms are required to speed up the

processing of recorded data. Implementation of these accelerators would use highly

parallelized architectures as opposed to the serialized architecture used for online

spike sorting. Overall, the successful pursuit of such opportunities in the area of

biosignal DSP design requires a significant contribution from the modern-day

digital circuit designer.
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