Chapter 2
Peridynamic Theory

2.1 Basics

At any instant of time, every point in the material denotes the location of a material
particle, and these infinitely many material points (particles) constitute the contin-
uum. In an undeformed state of the body, each material point is identified by its
coordinates, Xy with (k=1,2,...,00), and is associated with an incremental
volume, V;), and a mass density of p(x(y)). Each material point can be subjected to
prescribed body loads, displacement, or velocity, resulting in motion and deforma-
tion. With respect to a Cartesian coordinate system, the material point X
experiences displacement, u), and its location is described by the position vector
Yo in the deformed state. The displacement and body load vectors at material point
X(t) are represented by ug) (X, ) and b (X(), ), respectively. The motion of a
material point conforms to the Lagrangian description.

According to the peridynamic (PD) theory introduced by Silling (2000), the
motion of a body is analyzed by considering the interaction of a material point, X ),
with the other, possibly infinitely many, material points, x(;, with (j = 1,2,..,00),
in the body. Therefore, an infinite number of interactions may exist between the
material point at location Xy and other material points. However, the influence of
the material points interacting with Xy, is assumed to vanish beyond a local region
(horizon), denoted by Hy,, , shown in Fig. 2.1. Similarly, material point X ;) interacts
with material points in its own family, me.

In other words, the PD theory is concerned with the physics of a material body at
a point that interacts with all points within its range, as shown in Fig. 2.1. The range
of material point X, is defined by &, referred to as the “horizon.” Also, the material
points within a distance 6 of x4 are called the family of x4), H, . The interaction of
material points is prescribed through a micropotential that depends on the deforma-
tion and constitutive properties of the material. The locality of interactions depends
on the horizon, and the interactions become more local with a decreasing horizon, 6.
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Fig. 2.1 Infinitely many
PD material points

and interaction of points at
X(k) and X(/-)

Viy Vy

Hence, the classical theory of elasticity can be considered a limiting case of the
peridynamic theory as the horizon approaches zero (Silling and Lehoucq 2008).

2.2 Deformation

As shown in Fig. 2.2, material point X, interacts with its family of material points,
Hy, , and it is influenced by the collective deformation of all these material points.
Similarly, material point X is influenced by deformation of the material points,
Hy,, inits own family. In the deformed configuration, the material points x) and
X(j experience displacements, u) and u), respectively, as shown in Fig. 2.2. Their
initial relative position vector (X(; — X)) prior to deformation becomes (y ;) — ¥ ;)

after deformation. The stretch between material points X(;) and X;) is defined as

(‘ym - Y(k)’ —|xg) - X<k>|)
IX() = X(v)| '

S(k)(/) = (21)

Associated with material point X, all of the relative position vectors in the
deformed configuration, (y(; —y)) with (j=1,2,..,00), can be stored in an
infinite-dimensional array, or a deformation vector state, Y:
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Fig. 2.2 Kinematics of PD material points

Y(xp),t) = : . (2.2)
(y(oo) - Y<k))

The definitions and mathematical properties of vector states are presented by
Silling et al. (2007). Their properties in relation to the derivation of PD equations
are summarized in the Appendix.

2.3 Force Density

As illustrated in Fig. 2.3, the material point X;) interacts with its family of material

points, Hy, , and it is influenced by the collective deformation of all these material

k)’
points, thliS resulting in a force density vector, t()(;), acting at material point X). It
can be viewed as the force exerted by material point X;). Similarly, material point
X(j) is influenced by deformation of the material points, HX(;)’ in its own family, and
the corresponding force density vector is t(;) at material pointx;) and is exerted on
by material point X(). These forces are determined jointly by the collective

deformation of Hx(k) and me through the material model.



22 2 Peridynamic Theory

Fig. 2.3 PD vector states: (a) deformation, Y, and (b) force, T
Associated with material point X, all of the force density vectors, t((;) with

(j=1,2,..,00), can be stored in an infinite-dimensional array, or a force vector
state, T:

T(xp), 1) = : . (2.3)
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2.4 Peridynamic States

The PD theory mainly concerns the deformation state, Y, and the force state, T.
As described in Fig. 2.3a, the relative position vector (ym —y(k)) can be

obtained by operating the deformation state, Y, on the relative position vector
(X(/) — X(k)) as

(¥ = Y) = Y (X, () — X@))- 2.4)

Similarly, the force density vector, t () shown in Fig. 2.3b, that the material
point at location X;) exerts on the material point at location X;) can be expressed as

too) (WG — s Xg) — X, 1) = T(x@), (X() — X))- (2.5)

The difference between the force state and the deformation state is that the force
state is dependent on the deformation state while the deformation state is indepen-
dent. Therefore, the force state for material point X, depends on the relative
displacements between this material point and the other material points within its
horizon. Hence, the force state can also be written as

I(X(k)7 t) = I(X (X(k)a t)) . (26)

2.5 Strain Energy Density

Due to the interaction between material points X(k) and X(j), @ scalar-valued
micropotential, w;, develops; it depends on the material properties as well as
the stretch between point X and all other material points in its family. Note that
the micropotential w(j)x) 7 W(x)(;)» because w(; ) depends on the state of material
points within the family of material point x(; . These micropotentials can be
expressed as

Wk = Wk)o) (Y(M) Yy Yoo — Y ) (2.72)
and

W(ik) = W) (k) (y(lf) Yo Yoy — Yoy ')7 (2.7v)
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where Y is the position vector of point X;) in the deformed configuration and Y
is the position vector of the first material point that interacts with point X).
Similarly, y is the position vector of point x;) in the deformed configuration
andy ;) is the position vector of the first material point that interacts with point x.

The strain energy density, W, of material point X can be expressed as a
summation of micropotentials, W) () arising from the interaction of material point
X(k) and the other material points, X(j)» within its horizon in the form

li ( k)(/( 1)~ Yy y<2k>—y<k>v“')

= (2.8)
won (Yo = Y Yo = Yor-) Vo

—_—

+

in which w ;) = 0 for k = j.

2.6 Equations of Motion

The PD equations of motion at material point X can be derived by applying the
principle of virtual work, i.e.,

5J (T —U)di =0, (2.9)

where T and U represent the total kinetic and potential energies in the body. This
principle is satisfied by solving for the Lagrange’s equation

d ( OL OL
i =0, 2.10
(8u(k>> Bu(k) ( )

where the Lagrangian L is defined as
L=T-U. (2.11)

The total kinetic and potential energies in the body can be obtained by summa-
tion of kinetic and potential energies of all material points, respectively,

=1
= 5760 %) 1o V) (2.12a)
i=1
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and

U= Wi Vo= (bo up) V- (2.12b)

i=1 i=1

Substituting for the strain energy density, W/;, of material point x;) from Eq. 2.8,
the potential energy can be rewritten as

o | g Wmm(Yw)—Y@an)—me'>
U=> 1523 Viy—(be @) oViy-

i=l =1 W) (Y(lf) =Y Yo — Yy )
(2.13)

By using Eq. 2.11, the Lagrangian can be written in an expanded form by
showing only the terms associated with the material point xz):

L=...45pp 0w B Ve +
1 (1
=3 2015 o (Yo Y ey e )
j=1
+ W)k (Y(m Yo Yoy ~ Y ')}VU?}VW o (2.142)
1 (1
---—52{5 o (Y = ¥or Yoo Yo )
i=1
+W<k><z><y<m—y(k>» Yo = ¥w )}W)}V(k)

or
1
L=+ 3p0 b e Vi +
1 o0
_EZ{ ( ~ Yy Y(zk)_Y(k)7~-.)Vu)V(k)}...
=) (2.14b)

1 o0
—EZ{ ( ) — () Y(zf)_Y(j)a"'>V(/’)V(k)}"‘

<.
Il
—_
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Substituting from Eq. 2.14b into Eq. 2.10 results in the Lagrange’s equation of
the material point X as

o 1 [ W) a(}’(/)_Y(k))
Pl o+ 5 Vi
Ol ;2 ;3<YU)—Y(1<)> Gug
=1 M) oy ~¥0)
+ — Vi —b Vi =0
;2 ; . (Y<k>—yo>) () Jun w | Ve
(2.152)
or
il ZOO: Mwn _il i Maw__y ) b
Pk) 2o\ &gy L A= 1A (
= i=1 (ym y<k)) j=1 i=1 (Y(k) y(/))
(2.15b)

in which it is assumed that the interactions not involving material point X() do not
have any effect on material point x(;). Based on the dimensional analysis of this

equation, it is apparent that 3 V(5 Ow(x);)/O(y ;) — ¥ 1)) represents the force density
izl

that material point x; exerts on material point Xy and Z Vi Owiiw /(¥ w — ¥))
=1
represents the force density that material point X ;) exerts on material point x ;). With

this interpretation, Eq. 2.15b can be rewritten as

o0
Paliw) = [twe (ug — uw,Xg) — Xw),1)

; (2.16)

=t () — g), Xy — X(), 1) ] Vi) + by,
where

1 o0
t) (g) — U, Xg) — X, 1) = 5 Vo >, Vi (2.17a)
=1 a(y(l> — y )

and

to)i (W — ug), X — X(),1) = Viy| - (2.17b)

| =

s
Yo Zla(()‘%))
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By utilizing the state concept, the force densities t)(;) and t(;)() can be stored in
force vector states that belong to material points X and X;), respectively, as

T (%@, 1) = twg ¢ and T(xg).1) =4 e - (2.18a,b)

The force densities t ;) and t(;( stored in vector states T (x), ) and T(x(;, ?)
can be extracted again by operatlng the force states on the corresponding initial
relative position vectors

twe = T(Xw, 1) (X —Xw)) (2.192)

and

tiw = T(xq), 1) (X — X())- (2.19b)

By using Egs. 2.19a and 2.19b, Lagrange’s equation of the material pointx ;) can
be recast as

= (T (xw 1) (Xg) — X)) — T(x(), 1) (X = X)) Vi + by (2:20)
Jj=1

Because the volume of each material point V; is infinitesimally small, for the
limiting case of V(;) — 0, the infinite summation can be expressed as integration
while considering only the material points within the horizon,

Z () Vi — J av' — J( )dH. (2.21)
/=1 v H
With this replacement, Eq. 2.20 can be written in integral equation form as
p(X)ii(x, f) = J (T(x, )X —x) = T, )(x —x))dH +b(x,1)  (2.22a)
H

or

p(x)(x, 1) = J(t(u —u,X —x,7) —t'(u—u',x —x',1))dH + b(x,7) . (2.22b)
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2.7 Initial and Constraint Conditions

The resulting PD equation of motion is a nonlinear integro-differential equation in
time and space and is free of kinematic linearization, thus it is suitable for
geometrically nonlinear analyses. It contains differentiation with respect to time
and integration in the spatial domain. It does not contain any spatial derivatives of
displacements. Thus, the PD equation of motion is valid everywhere whether or not
displacement discontinuities exist in the material. Construction of its solution
involves time and spatial integrations while being subject to constraints and/or
loading conditions on the boundary, B, of the material region, R, and initial
conditions on the displacement and velocity fields.

2.7.1 Initial Conditions

Time integration requires the application of initial displacement and velocity values
at each material point in R, and they can be specified as

u(x,r=0) =u*(x) (2.23a)

and
u(x,r=0) = v*(x). (2.23b)
In addition to these required initial conditions, the initial conditions may also be

necessary on the displacement and velocity gradients, H"(x) and L*(x), respec-
tively. They can be specified as

i 70 . ..
H(x,r=0) = H (x) ~ %, with (i,j,k) = 1,2,3, (2.24a)
Xj
and
1; (X, 0 o
L(x,t =0) =L*(x) ~ M, with (i,j,k) = 1,2,3 . (2.24b)

Ox;

The corresponding displacement and velocity fields are superimposed on the
initial displacement and velocity fields as

u(x, 7 =0) = u"(x) + H (x) (x — Xf) (2.252)

and
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Fig. 2.4 Boundary regions
for constraint and external
load introduction

R,

u(x,r=0) = v*(x) + L*(X) (X — Xer); (2.25b)

where X, is a reference point (Silling 2004).

2.7.2 Constraint Conditions

The PD equation of motion does not contain any spatial derivatives; therefore,
constraint conditions are, in general, not necessary for the solution of an integro-
differential equation. However, such conditions can be imposed by prescribing
constraints on displacement and velocity fields in a “fictitious material layer”
along the boundary of a nonzero volume. Based on numerical experiments,
Macek and Silling (2007) suggested that the extent of the fictitious boundary
layer be equal to the horizon, J, in order to ensure that the imposed prescribed
constraints are sufficiently reflected on the actual material region. Therefore, a
fictitious boundary layer, R, with depth 9§, is introduced along the boundary of the
actual material region, R, as shown in Fig. 2.4.

2.7.2.1 Displacement Constraints

The prescribed displacement vector Uy can be imposed through the material points
in R, as

u(x,t) = Uy, for x € R,. (2.26)

Also, in order to avoid abrupt constraint introduction, it can be applied as

t

Up— for 0<t<

u(x, 1) = { 07, O Pstsh (2.27)
Uy for 1p <t ,
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where 7y represents the time at which the prescribed displacement is reached. The
velocity of each material point, u(x, ), can be calculated through differentiation.

2.7.2.2 Velocity Constraints

The prescribed velocity vector V(¢) can be imposed through the material points in
R. as

u(x,r) =V(), for x € R.. (2.28)
Their displacement, u(x, 7), can be obtained from

u(x, ) = JV(r’)dt’. (2.29)
0

If V(¢) = VoH(r), with V; containing constant constraint values, then u(x,?)
= V)t for all material points in R.. The Heaviside step function is represented by
H(1). Also, in order to avoid abrupt velocity introduction, it can be applied as

t
V(I){VO5 for 0<t< 1 030
Vo for tp <t ,

where #) represents the time at which the prescribed velocity is reached.

2.7.3 External Loads

Boundary traction does not directly appear in the PD equation of motion. Therefore,
the application of external loads is also different from that of the classical contin-
uum theory. The difference can be illustrated by considering a region, €, that is
subjected to external loads. If this region is fictitiously divided into two domains,
Q~ and Q" as shown in Fig. 2.5a, there must be a net force, FT, that is exerted to
domain Q" by domain Q~ so that force equilibrium is satisfied (Kilic 2008).

According to classical continuum mechanics, force F* can be determined by
integrating surface tractions over the cross-sectional area, €, of domains Q™ and
QF as

Ft = J TdA, 2.31)

oQ

in which T is the surface tractions (Fig. 2.5b).
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Fig. 2.5 Boundary conditions: (a) domain of interest, (b) tractions in classical continuum
mechanics, (¢) interaction of a material point in domain Q1 with other material points in domain
Q" (d) force densities acting on domain Q" due to domain Q~

In the case of the PD theory, the material points located in domain Q7 interact
with the other material points in domain Q~ (Fig. 2.5¢). Thus, the force Ft can
be computed by volume integration of the force densities (Fig. 2.5d) over domain
Qf as

F J L(x)dV, (2.32a)
Q+

in which L, acting on a material point in domain Q7, is determined by
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L(x) = J [t —u,x' —x,) —t'(u—vu',x—x,1)]dV. (2.32b)

o

Note that if the volume Q™ is void, the volume integration in Eq. 2.32b vanishes.
Hence, the tractions or point forces cannot be applied as boundary conditions since
their volume integrations result in a zero value. Therefore, the external loads can be
applied as body force density in a “real material layer” along the boundary of a
nonzero volume. Based on numerical experiments, the extent of the boundary layer
should be as close to the boundary as possible. Therefore, a boundary layer for
external load application, R, with depth A, is introduced along the boundary of the
material region R, as shown in Fig. 2.4.

In the case of distributed pressure, p(x, ), or a point force, P(¢), over the surface
Sy of the boundary layer Ry, the body force density vector can be expressed as

b(x,7) = —%p( )n (2.33a)
or
1

If p(x,t) = po(x)H(¢) and P(¢) = PoH (), with po(x) and Py representing the
distributed pressure and constant point force, in order to avoid abrupt constraint
introduction, they can be applied as

1 t 1 t
b(x,t) = —Xpo(x)n P or b(x,7) = &TPOE for 0 <r <1 (2.34a)

and

1
b(x,1) = —Kpo(x)n or b(x,t) = for 1o <, (2.34b)

1
—P,,
Sa’
where f#; represents the time at which the prescribed external load is reached.

The displacement and velocity of all points in the boundary layer R, are calculated
based on the equation of motion.

2.8 Balance Laws

The PD equation of motion must be further governed by the balance of linear
momentum, angular momentum, and energy. These balance laws are viewed as
having a primitive status in mechanics. The balance of linear momentum and
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energy are automatically satisfied, as the principle of virtual work, Eq. 2.9,
represents their weak forms. However, the balance of angular momentum must be
assured.

The linear momentum, L, and angular momentum (about the coordinate origin),
H), of a fixed set of particles at time ¢ in volume V are given by

L= Jp(x) u(x, 1)dv (2.35a)
v
and
H, = Jy(x7 1) x p(x)u(x,r)dvV, (2.35b)
14

while the total force, F, and torque, I, about the origin are given by
F= Jb(x, Hdv + J JI(X, 1){(x' — x) dHdV — JJI(X', 1)(x —x')dHdV (2.35¢)
Vv VH VH

and

HOZJy(x,t)xbxth—i—JJy 1) x T(x,t)(x" — x) dHdV

(2.35d)
—JJ ) x T(x',t)(x —x') dHdV .

Thus, the balance of linear momentum, L= F, and angular momentum, Ho
= Iy, results in

Jp(x)ﬁ(x,t)d\/: b(x,1)dV

< —

+ | | T(x,0)(x' — x) dHaV (2.362)

T(x',t)(x — x') dHdV

<h < —
m% T —

and
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Jy( 1) x p(x)i(x,t) dV :Jy(x, 1) x b(x,)dV
Vv Vv

y(x, 1) x T(x,2)(x' — x) dHdV (2.36b)

Jy(& ) x T(X,t)(x —x') dHAV .

Because T(x,#)(x’ —x) = T(x/,7){(x — x') = 0 for X' ¢ H, these equations can
be rewritten to include all of the material points in volume V as

Jp(x)ﬁ(x, ndv = Jb(x7 ndv

\4 \4

I(X7 l) <X/ — X> av'dv (2.372)

I
- lll(x', 1)(x —x')dv'dv
and
[ (s < piwitx. ) av = Jy(x 1) % b(x, 0dV
+

y X T X l‘) <X/ — X> av'av (237b)

y(x,0) x T(X, ) {(x — x') dV'dV .

<e— <

[l
A

If the parameters x and X’ in the third integrals on the right-hand side of
Egs. 2.37a, b are exchanged, the third integrals become

JJI(X/, H{x—x)dV'dv = JJI(X, 0H{(x' —x)avav’ (2.38a)

vv Vv

and
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< —

J (y(x, ) x T(x',)(x — X)) dV' aV

(2.38b)
= Jj(y(x’,t) x T(x,1)(x' —x))dvVdV' .
8%
Therefore, Eqs. 2.37a, b can be rewritten as
J(p(x)ii(x7 1) —b(x,1))dV =0 (2.39a)

Vv

and
J(y(x, 1) x p(x)i(x, 1)) dV = Jy(x7 1) X b(x,t)dV
v v

—4[«ﬂx0—y@n>xnxmy_@ywuu
(2.39b)

Hence, the balance of linear momentum, Eq. 2.39a, is automatically satisfied for
arbitrary force density vectors T(x,7)(x' — x) and T(x,r)(x — x').

The difference between the locations of material points at X and x' in the
deformed configuration can be written by using the state notation as

y(x',0) —y(x,t) = (y —y) = ¥(x,))(x' = x), (2.40)

wherey = y(x',f) = x' + v’andy = y(x, ) = x + u. Considering only the material
points within the horizon, substituting from Eq. 2.40 into Eq. 2.39b results in

ij0x@@m@m—bwomv

v 2.41)

=- J J (Y(x,0)(x' —x) x T(x,£)(x' —x))dH dV .
Vi

While invoking the requirement of a balance of linear momentum, Eq. 2.39a, in
order to satisfy the balance of angular momentum, the integral on the right-hand
side of Eq. 2.41 must be forced to vanish, i.e.,

J(X(X, (X —x) x T(x,){(x' —x))dH =0 (2.42a)

H
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or

J ((y —y) x T(x,0)(xX —x))dH =0 . (2.42b)

H

It is apparent that this requirement is automatically satisfied if the force vectors
tlw' —u,x' —x,1) =T(x,)(x —x) and t'(u —v',x — x',7) = T(x,#)(x — X') are
aligned with the relative position vector of the material points in the deformed state,
(y' — y). However, their general form that satisfies the requirement of Eq. 2.42b can
also be derived in terms of the deformation gradient and stress tensors of classical
continuum mechanics.

2.9 Bond-Based Peridynamics

As a special case, the force density vectors can also be equal in magnitude as well as
being parallel to the relative position vector in the deformed state, shown in
Fig. 2.6, in order to satisfy the requirement for balance of angular momentum.
Thus, they can be expressed in the form

1 h—
t(u’—u,x’—x,t):I(x7z‘)<x’—x>:EC y/ y
[y =yl (2.43a)

1
= Ef(u' —u,x —x,1)

and

1 _y—y 1, , (2.43b)
=—=f(u —ux —x,¢
2y =y~ 2" :

t'(u—u',x—x,1) =T, 1) (x—x)

where C is an unknown auxiliary parameter that depends on the engineering
material constants, pairwise stretch between X' and X, and the horizon. This
particular form of the force vectors is referred to as “bond-based” peridynamics,
as introduced by Silling (2000). As shown in Fig. 2.6, the bond-based peridynamic
theory is concerned with pairwise interactions of material points.

Their substitution into Eq. 2.22b results in the bond-based PD equation of
motion of the material point x

p(x)u(x, 1) = Jf(u’ —u,x' —x,t)dH + b(x, 1) (2.44)
H
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Fig. 2.6 Deformation of
PD material points x and X/,
and developing equal and ’
opposite pairwise force e .. 7
densities 5 ™

’

Deformed state

Ny

Undeformed state

in which the force density vector, f(u’ —u,x’ — x) is referred to as the pairwise
response function by Silling and Askari (2005). It is defined as the force vector per
unit volume squared that the material point atx’ exerts on the material point atx. The
force density vector can be assumed linearly dependent on the stretch between these
material points in the form

/

y—-y

flu' —u,x' —x) = [e1s(0 —u, X' — x) — 7] Iy’—:yl’ (2.45)

where the mean value of the temperatures at material points x” and x relative to the
ambient temperature is denoted by T. The stretch s(u’ — u, x’ — x) can be interpreted
as the strain in the classical continuum theory, and it is defined as

Y =yl = X' —x]

s(u —u,xX' —x) = P

(2.46)

For an isotropic material, the peridynamic material parameters ¢; and ¢, in
Eq. 2.45 can be determined by considering an infinite homogeneous body under
isotropic expansion, as suggested by Silling and Askari (2005). The body is also
subjected to uniform temperature change, 7. Equating the energy densities of
peridynamic and classical continuum theory leads to the determination of ¢; and
¢y as

cp=c= & and c¢; = ca, (2.47a, b)
st

in which « is the bulk modulus and « is the coefficient of thermal expansion of the
material. The PD material parameter c is referred to as the bond-constant. In this
case, the PD theory limits the number of independent material constants to one for
isotropic materials with a constraint on the Poisson’s ratio. It permits only total
deformation without distinguishing the distortional and volumetric deformations.
Furthermore, it does not allow plastic incompressibility.
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2.10 Ordinary State-Based Peridynamics

As shown in Fig. 2.7, the force density vectors having unequal magnitudes while
being parallel to the relative position vector in the deformed state also satisfy the
requirement for balance of angular momentum, Eq. 2.42b. Thus, they can be
defined in the form

/ / / 1 yl -y
tln' —u,x' —x,7) = T(x,0){(x' —x) = EA v =yl (2.48a)
and
Clu—t,x—x,0) = T, ) (x —x) = — g L =¥ (2.48b)
’ T 20y =yl

where A and B are auxiliary parameters that are dependent on engineering material
constants, deformation field, and the horizon. As coined by Silling et al. (2007), the
choice of the force density vectors in this form is referred to as “ordinary
state-based” peridynamics. It permits decoupled distortional and volumetric
deformations. Also, it enables the enforcement of plastic incompressibility.

In light of the definition of the strain energy density function, Eq. 2.8, and the
expressions for force density vectors in terms of micropotentials, Egs. 2.17a, b,
while considering the requirement on their direction, Eqs. 2.48a, b, the force density
vectors can be related to the strain energy density function, W, as

IW(x) y -y

tlu' —u, X' —x,1) ~ , (2.49a)

oly' —yl) Iy —y|

Fig. 2.7 Deformation of
PD material points x and X/,
and developing unequal
pairwise force densities Undeformed state

Deformed state
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or

W) y -y
(ly=yD Iy -y

t(u—u',x—x,1) ~ 3 (2.49b)

These relations permit the determination of the auxiliary parameters A and B in
Eq. 2.48, and thus the peridynamic constitutive parameters that describe the mate-
rial behavior. The explicit forms of the expressions for these parameters are derived
in Chap. 4 for isotropic and in Chap. 5 for fiber-reinforced composite materials.

2.11 Nonordinary State-Based Peridynamics

As shown in Fig. 2.8, a general form of a force density vector that satisfies the
requirement of Eq. 2.42b necessary for balance of angular momentum can be
derived by applying the principle of virtual displacements to Eq. 2.22a as

p(x)(x,?) - Au = J (T(x,0){x" —x) .50,

~T(X,)(x —x')) - AudH + b(x,?) - Au,

where Au represents the virtual displacement vector applied to the PD material
point at x. This equation can also be written in matrix notation as

P (1) 8w = [ (T(x,) X~ x) 5
H 2.51)

—T(x,0)(x — X)) AudH + b" (x,1)Au .

Fig. 2.8 Deformation of
PD material points x and X/,
and developing force

densities in arbitrary
directions Undeformed state

Deformed state

N
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Noting that T(x,7)(x' —x) = T(x,#)(x —x') =0 for X' ¢ H and integrating
Eq. 2.51 throughout the body result in

J (P()iE” (x, 1) — b7 (x, 1)) Au dV = ”(I(X, X — x)) AudV'dv

v (2.52)

_ J J (T, 1) (x — X)) AudV'aV.

Exchanging the parameters x and X’ in the second integral on the right-hand side
of Eq. 2.52 leads to

” (T(X, 1) (x — X)) AudV'aV = “ (T(x,)(x' —x)) A’ avaV' . (2.53)

Vv

This relationship permits the right-hand side of Eq. 2.52 to be rewritten as

” (T(x,0)(x' —x)) Auav'av — JJ(I(X/7 1)(x — x))  Audv'av
vv 8%
= ” (T(x,7)(x' — x))" (Au — Au') dV'aV.

\4

\4

(2.54)

The difference in virtual displacements of material points at locations x and x’ can
be written in state form as

Au' — Au = AY(x,7)(x' — x). (2.55)

Therefore, Eq. 2.54 can be rewritten as

” (T(x,1)(x' — x))" (Au — AW dV'aV

vy (2.56)
= J J (T(x, 1) (x' — x))" (AX(x, 1) (X' — X)) dV'dV.
A%
With this equation, Eq. 2.52 can be written in the form
J (p(x)i" (x,1) — b"(x,7)) AudV = — J AW,dV, (2.57)

Vv Vv

where AW; corresponds to the virtual work of the internal forces at location x due to
its interactions with all other material points:
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AW, = J(I(x, (X = X)) (AY(x, 1) (x — X)) dV". 2.58)
v

Considering only the material points within the horizon, Eq. 2.58 can be
rewritten as

AW, = J (T(x,0)(x' — x))" (AY(x,1)(x' — x)) dH. (2.59)

The corresponding internal virtual work at location x in classical continuum
mechanics can be expressed as

AW; = tr(ST AE) (2.60)

where S = ST is the second Piola-Kirchhoff (Kirchhoff) stress tensor, and the
Green-Lagrange strain tensor, E = E”, can be related to the deformation gradient
tensor, F,

E=_(F'F-1I). (2.61)

1
2

Using Eq. 2.61, the virtual form of the Green-Lagrange strain tensor can be
written as

1
AE = 5 (AF'F + F'AF). (2.62)

After substituting from Eq. 2.62 into Eq. 2.60, the internal virtual work expres-
sion in classical continuum mechanics takes the form

AW; = tr(S" FT AF) = tr(P AF), (2.63)
where P = (S” F7) is the first Piola-Kirchhoff (Lagrangian) stress tensor.
By using the vector state reduction to a second-order tensor, given in Eq. A.8§, the

deformation gradient tensor, which corresponds to the deformation state in PD
theory, can be obtained as

F=(Y+X)K!', (2.64)
whose virtual form can be written as

AF = (AY * X)K™, (2.65)


http://dx.doi.org/10.1007/978-1-4614-8465-3_BM1
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in which the explicit form of the shape tensor, K, serving as a volume-averaging
quantity, is derived in the Appendix; it is symmetric and diagonal. The symbol *
denotes the convolution of vector states, also defined in the Appendix.
Substituting from Eq. 2.65 into the internal virtual work expression of classical
continuum mechanics, Eq. 2.63, in conjunction with Eq. A.7, results in

AW, =tr| P Jw(x’ —x)AY(X —x) @ X(x' —x)dH |K™' |, (2.66)
H

where the influence (weight) function, w, is a scalar state, and ® denotes the dyadic
product of two vectors, i.e., C=a®b or C; = a; b;. The scalar state influence
function provides a means to control the influence of PD points away from the
current point.

Using Eqgs. A.4 and 2.55, this equation can be expressed in indicial form as

AW, = P;; JMX’ — x)(Au; — Auy) (i — ) dH | Ky, with (i,j,k) = 1,2,3
H
(2.67)

Because the shape tensor is symmetric, this equation can be rearranged in the
form

AW = Jm(x' —X)P; Ky (Yx — x) (A — Aw;) dH, with (i, k) = 1,2,3
H
(2.68a)

or, in matrix form,

AW, = J (w(x' = x)PK'(x' — x))T(Au’ — Au)dH . (2.68b)
i

After invoking Eq. 2.55 into Eq. 2.68b, equating the virtual work expressions
from the PD theory, Eq. 2.59, and classical continuum mechanics, Eq. 2.68b,
results in

J (T(x, ) — %)) (AX(x,0)(x' — x)) dH

" (2.69)

= J (w(x' —x)PK'(x = x))" (AY(x,0)(x' — X)) dH .
H
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This requirement leads to the relation between the force vector state and the
deformation gradient and stress tensors of classical continuum mechanics as

tl —u,xX —x,7) = T(x,){(xX —x) = wx —x)PK (X —x) (2.70)

Although this expression for the force density vector, Eq. 2.70, is identical to that
derived by Silling et al. (2007), this derivation based on the principle of virtual
displacements proves that the force density vector is valid for any material model
provided that the Piola-Kirchhoff stress tensor can be obtained directly or by using
incremental procedures. Therefore, this equation also forms the basis for
implementing any material behavior in the PD theory.
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