
Chapter 2

Peridynamic Theory

2.1 Basics

At any instant of time, every point in the material denotes the location of a material

particle, and these infinitely many material points (particles) constitute the contin-

uum. In an undeformed state of the body, each material point is identified by its

coordinates, xðkÞ with ðk ¼ 1; 2; . . . ;1Þ , and is associated with an incremental

volume, VðkÞ, and a mass density of ρðxðkÞÞ: Each material point can be subjected to

prescribed body loads, displacement, or velocity, resulting in motion and deforma-

tion. With respect to a Cartesian coordinate system, the material point xðkÞ
experiences displacement, uðkÞ, and its location is described by the position vector

yðkÞ in the deformed state. The displacement and body load vectors at material point

xðkÞ are represented by uðkÞðxðkÞ; tÞ and bðkÞðxðkÞ; tÞ, respectively. The motion of a

material point conforms to the Lagrangian description.

According to the peridynamic (PD) theory introduced by Silling (2000), the

motion of a body is analyzed by considering the interaction of a material point, xðkÞ,
with the other, possibly infinitely many, material points, xðjÞ; with ðj ¼ 1; 2; ::;1Þ,
in the body. Therefore, an infinite number of interactions may exist between the

material point at location xðkÞ and other material points. However, the influence of

the material points interacting with xðkÞ is assumed to vanish beyond a local region

(horizon), denoted byHxðkÞ, shown in Fig. 2.1. Similarly, material point xðjÞ interacts
with material points in its own family, HxðjÞ .

In other words, the PD theory is concerned with the physics of a material body at

a point that interacts with all points within its range, as shown in Fig. 2.1. The range

of material point xðkÞ is defined by δ; referred to as the “horizon.” Also, the material

points within a distance δ of xðkÞ are called the family of xðkÞ,HxðkÞ :The interaction of

material points is prescribed through a micropotential that depends on the deforma-

tion and constitutive properties of the material. The locality of interactions depends

on the horizon, and the interactions become more local with a decreasing horizon, δ.
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Hence, the classical theory of elasticity can be considered a limiting case of the

peridynamic theory as the horizon approaches zero (Silling and Lehoucq 2008).

2.2 Deformation

As shown in Fig. 2.2, material point xðkÞ interacts with its family of material points,

HxðkÞ ; and it is influenced by the collective deformation of all these material points.

Similarly, material point xðjÞ is influenced by deformation of the material points,

HxðjÞ ; in its own family. In the deformed configuration, the material points xðkÞ and
xðjÞ experience displacements, uðkÞ and uðjÞ, respectively, as shown in Fig. 2.2. Their
initial relative position vector ðxðjÞ � xðkÞÞprior to deformation becomes ðyðjÞ � yðkÞÞ
after deformation. The stretch between material points xðkÞ and xðjÞ is defined as

sðkÞðjÞ ¼
yðjÞ � yðkÞ
��� ���� xðjÞ � xðkÞ

�� ��� �
xðjÞ � xðkÞ
�� �� : (2.1)

Associated with material point xðkÞ , all of the relative position vectors in the

deformed configuration, ðyðjÞ � yðkÞÞ with ðj ¼ 1; 2; ::;1Þ , can be stored in an

infinite-dimensional array, or a deformation vector state, Y:
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YðxðkÞ; tÞ ¼
ðyð1Þ � yðkÞÞ

..

.

ðyð1Þ � yðkÞÞ

8><
>:

9>=
>;: (2.2)

The definitions and mathematical properties of vector states are presented by

Silling et al. (2007). Their properties in relation to the derivation of PD equations

are summarized in the Appendix.

2.3 Force Density

As illustrated in Fig. 2.3, the material point xðkÞ interacts with its family of material

points, HxðkÞ , and it is influenced by the collective deformation of all these material

points, thus resulting in a force density vector, tðkÞðjÞ; acting at material point xðkÞ. It
can be viewed as the force exerted by material point xðjÞ. Similarly, material point

xðjÞ is influenced by deformation of the material points, HxðjÞ, in its own family, and

the corresponding force density vector is tðjÞðkÞ at material pointxðjÞ and is exerted on
by material point xðkÞ . These forces are determined jointly by the collective

deformation of HxðkÞ and HxðjÞ through the material model.
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Associated with material point xðkÞ , all of the force density vectors, tðkÞðjÞ with
ðj ¼ 1; 2; ::;1Þ , can be stored in an infinite-dimensional array, or a force vector

state, T:

TðxðkÞ; tÞ ¼
tðkÞð1Þ
..
.

tðkÞð1Þ

8><
>:

9>=
>;: (2.3)
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Fig. 2.3 PD vector states: (a) deformation, Y, and (b) force, T
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2.4 Peridynamic States

The PD theory mainly concerns the deformation state, Y, and the force state, T.

As described in Fig. 2.3a, the relative position vector ðyðjÞ � yðkÞÞ can be

obtained by operating the deformation state, Y , on the relative position vector

ðxðjÞ � xðkÞÞ as

ðyðjÞ � yðkÞÞ ¼ YðxðkÞ; tÞ xðjÞ � xðkÞ
� �

: (2.4)

Similarly, the force density vector, tðkÞðjÞ , shown in Fig. 2.3b, that the material

point at location xðjÞ exerts on the material point at location xðkÞ can be expressed as

tðkÞðjÞ uðjÞ � uðkÞ; xðjÞ � xðkÞ; t
� � ¼ TðxðkÞ; tÞ xðjÞ � xðkÞ

� �
: (2.5)

The difference between the force state and the deformation state is that the force

state is dependent on the deformation state while the deformation state is indepen-

dent. Therefore, the force state for material point xðkÞ depends on the relative

displacements between this material point and the other material points within its

horizon. Hence, the force state can also be written as

TðxðkÞ; tÞ ¼ T Y xðkÞ; t
� �� �

: (2.6)

2.5 Strain Energy Density

Due to the interaction between material points xðkÞ and xðjÞ, a scalar-valued

micropotential, wðkÞðjÞ , develops; it depends on the material properties as well as

the stretch between point xðkÞ and all other material points in its family. Note that

the micropotential wðjÞðkÞ 6¼ wðkÞðjÞ, because wðjÞðkÞ depends on the state of material

points within the family of material point xðjÞ . These micropotentials can be

expressed as

wðkÞðjÞ ¼ wðkÞðjÞ yð1kÞ � yðkÞ; yð2kÞ � yðkÞ; � � �
� �

(2.7a)

and

wðjÞðkÞ ¼ wðjÞðkÞ yð1jÞ � yðjÞ; yð2jÞ � yðjÞ; � � �
� �

; (2.7b)
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where yðkÞ is the position vector of point xðkÞ in the deformed configuration and yð1kÞ
is the position vector of the first material point that interacts with point xðkÞ:
Similarly, yðjÞ is the position vector of point xðjÞ in the deformed configuration

and yð1jÞ is the position vector of the first material point that interacts with point xðjÞ.
The strain energy density, WðkÞ; of material point xðkÞ can be expressed as a

summation of micropotentials, wðkÞðjÞ, arising from the interaction of material point

xðkÞ and the other material points, xðjÞ, within its horizon in the form

WðkÞ ¼ 1

2

X1
j¼1

1

2
wðkÞðjÞ yð1kÞ � yðkÞ; yð2kÞ � yðkÞ; � � �

� ��

þ wðjÞðkÞ yð1jÞ � yðjÞ; yð2jÞ � yðjÞ; � � �
� ��

VðjÞ;

(2.8)

in which wðkÞðjÞ ¼ 0 for k ¼ j.

2.6 Equations of Motion

The PD equations of motion at material point xðkÞ can be derived by applying the

principle of virtual work, i.e.,

δ

ð t1

t0

ðT � UÞdt ¼ 0; (2.9)

where T and U represent the total kinetic and potential energies in the body. This

principle is satisfied by solving for the Lagrange’s equation

d

dt

@L

@ _uðkÞ

	 

� @L

@uðkÞ
¼ 0; (2.10)

where the Lagrangian L is defined as

L ¼ T � U: (2.11)

The total kinetic and potential energies in the body can be obtained by summa-

tion of kinetic and potential energies of all material points, respectively,

T ¼
X1
i¼1

1

2
ρðiÞ _uðiÞ � _uðiÞ VðiÞ (2.12a)
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and

U ¼
X1
i¼1

WðiÞ VðiÞ �
X1
i¼1

bðiÞ � uðiÞ
� �

VðiÞ: (2.12b)

Substituting for the strain energy density,WðiÞ, of material point xðiÞ from Eq. 2.8,

the potential energy can be rewritten as

U ¼
X1
i¼1

1

2

X1
j¼1

1

2

wðiÞðjÞ yð1iÞ � yðiÞ; yð2iÞ � yðiÞ; � � �
� �

þwðjÞðiÞ yð1jÞ � yðjÞ; yð2jÞ � yðjÞ; � � �
� �

2
64

3
75VðjÞ� bðiÞ � uðiÞ

� �
8><
>:

9>=
>;VðiÞ :

(2.13)

By using Eq. 2.11, the Lagrangian can be written in an expanded form by

showing only the terms associated with the material point xðkÞ:

L ¼ . . .þ 1

2
ρðkÞ _uðkÞ � _uðkÞ VðkÞ þ � � �

� � � � 1

2

X1
j¼1

1

2
wðkÞðjÞ yð1kÞ � yðkÞ; yð2kÞ � yðkÞ; � � �

� �h�

þ wðjÞðkÞ yð1jÞ � yðjÞ; yð2jÞ � yðjÞ; � � �
� �i

VðjÞ
o
VðkÞ � � �

� � � � 1

2

X1
i¼1

1

2
wðiÞðkÞ yð1iÞ � yðiÞ; yð2iÞ � yðiÞ; � � �

� �h�

þ wðkÞðiÞ yð1kÞ � yðkÞ; yð2kÞ � yðkÞ; � � �
� �i

VðiÞ
o
VðkÞ � � �

. . .þ bðkÞ � uðkÞ
� �

VðkÞ � � �

(2.14a)

or

L ¼ � � � þ 1

2
ρðkÞ _uðkÞ � _uðkÞ VðkÞ þ � � �

� � � � 1

2

X1
j¼1

wðkÞðjÞ yð1kÞ � yðkÞ; yð2kÞ � yðkÞ; � � �
� �

VðjÞ VðkÞ
n o

. . .

� � � � 1

2

X1
j¼1

wðjÞðkÞ yð1jÞ � yðjÞ; yð2jÞ � yðjÞ; � � �
� �

VðjÞ VðkÞ
n o

. . .

� � � þ bðkÞ � uðkÞ
� �

VðkÞ � � � :

(2.14b)
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Substituting from Eq. 2.14b into Eq. 2.10 results in the Lagrange’s equation of

the material point xðkÞ as

ρðkÞ€uðkÞ VðkÞ þ
X1
j¼1

1

2

X1
i¼1

@wðkÞðjÞ

@ yðjÞ � yðkÞ
� �VðiÞ

0
@

1
A @ yðjÞ � yðkÞ

� �
@uðkÞ

0
@

þ
X1
j¼1

1

2

X1
i¼1

@wðjÞðkÞ

@ yðkÞ � yðjÞ
� � VðiÞ

0
@

1
A @ yðkÞ � yðjÞ

� �
@uðkÞ

� bðkÞ

1
AVðkÞ ¼ 0

(2.15a)

or

ρðkÞ€uðkÞ ¼
X1
j¼1

1

2

X1
i¼1

@wðkÞðiÞ

@ yðjÞ � yðkÞ
� �VðiÞ

0
@

1
A�

X1
j¼1

1

2

X1
i¼1

@wðiÞðkÞ

@ yðkÞ � yðjÞ
� �VðiÞ

0
@

1
Aþ bðkÞ;

(2.15b)

in which it is assumed that the interactions not involving material point xðkÞ do not

have any effect on material point xðkÞ . Based on the dimensional analysis of this

equation, it is apparent that
P1
i¼1

VðiÞ@wðkÞðiÞ=@ðyðjÞ � yðkÞÞ represents the force density

that material point xðjÞ exerts on material point xðkÞ and
P1
i¼1

VðiÞ@wðiÞðkÞ=@ðyðkÞ � yðjÞÞ
represents the force density that material point xðkÞ exerts on material point xðjÞ. With

this interpretation, Eq. 2.15b can be rewritten as

ρðkÞ€uðkÞ ¼
X1
j¼1

tðkÞðjÞ uðjÞ � uðkÞ; xðjÞ � xðkÞ; t
� ��

� tðjÞðkÞ uðkÞ � uðjÞ; xðkÞ � xðjÞ; t
� �


VðjÞ þ bðkÞ;

(2.16)

where

tðkÞðjÞ uðjÞ � uðkÞ; xðjÞ � xðkÞ; t
� � ¼ 1

2

1

VðjÞ

X1
i¼1

@wðkÞðiÞ

@ yðjÞ � yðkÞ
� �VðiÞ

0
@

1
A (2.17a)

and

tðjÞðkÞ uðkÞ � uðjÞ; xðkÞ � xðjÞ; t
� � ¼ 1

2

1

VðjÞ

X1
i¼1

@wðiÞðkÞ

@ yðkÞ � yðjÞ
� �VðiÞ

0
@

1
A : (2.17b)
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By utilizing the state concept, the force densities tðkÞðjÞ and tðjÞðkÞ can be stored in

force vector states that belong to material points xðkÞ and xðjÞ; respectively, as

T xðkÞ; t
� � ¼

..

.

tðkÞðjÞ
..
.

8>><
>>:

9>>=
>>; and T xðjÞ; t

� � ¼
..
.

tðjÞðkÞ
..
.

8>><
>>:

9>>=
>>;: (2.18a,b)

The force densities tðkÞðjÞ and tðjÞðkÞ stored in vector states TðxðkÞ; tÞ and TðxðjÞ; tÞ
can be extracted again by operating the force states on the corresponding initial

relative position vectors

tðkÞðjÞ ¼ T xðkÞ; t
� �

xðjÞ � xðkÞ
� �

(2.19a)

and

tðjÞðkÞ ¼ T xðjÞ; t
� �

xðkÞ � xðjÞ
� �

: (2.19b)

By using Eqs. 2.19a and 2.19b, Lagrange’s equation of the material pointxðkÞ can
be recast as

ρðkÞ€uðkÞ ¼
X1
j¼1

T xðkÞ; t
� �

xðjÞ � xðkÞ
� �� T xðjÞ; t

� �
xðkÞ � xðjÞ
� �� �

VðjÞ þ bðkÞ: (2.20)

Because the volume of each material point VðjÞ is infinitesimally small, for the

limiting case of VðjÞ ! 0, the infinite summation can be expressed as integration

while considering only the material points within the horizon,

X1
j¼1

�ð ÞVðjÞ !
ð
V

�ð Þ dV0 !
ð
H

�ð Þ dH: (2.21)

With this replacement, Eq. 2.20 can be written in integral equation form as

ρ xð Þ€u x; tð Þ ¼
ð
H

T x; tð Þ x0 � xh i � T x0; tð Þ x� x0h ið Þ dH þ b x; tð Þ (2.22a)

or

ρ xð Þ€u x; tð Þ ¼
ð
H

t u0 � u; x0 � x; tð Þ � t0 u� u0; x� x0; tð Þð Þ dH þ b x; tð Þ : (2.22b)
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2.7 Initial and Constraint Conditions

The resulting PD equation of motion is a nonlinear integro-differential equation in

time and space and is free of kinematic linearization, thus it is suitable for

geometrically nonlinear analyses. It contains differentiation with respect to time

and integration in the spatial domain. It does not contain any spatial derivatives of

displacements. Thus, the PD equation of motion is valid everywhere whether or not

displacement discontinuities exist in the material. Construction of its solution

involves time and spatial integrations while being subject to constraints and/or

loading conditions on the boundary, B , of the material region, R , and initial

conditions on the displacement and velocity fields.

2.7.1 Initial Conditions

Time integration requires the application of initial displacement and velocity values

at each material point in R, and they can be specified as

uðx; t ¼ 0Þ ¼ u�ðxÞ (2.23a)

and

_uðx; t ¼ 0Þ ¼ v�ðxÞ: (2.23b)

In addition to these required initial conditions, the initial conditions may also be

necessary on the displacement and velocity gradients, H�ðxÞ and L�ðxÞ, respec-
tively. They can be specified as

Hðx; t ¼ 0Þ ¼ H�ðxÞ � @uiðxk; 0Þ
@xj

; with ði; j; kÞ ¼ 1; 2; 3; (2.24a)

and

Lðx; t ¼ 0Þ ¼ L�ðxÞ � @ _uiðxk; 0Þ
@xj

; with ði; j; kÞ ¼ 1; 2; 3 : (2.24b)

The corresponding displacement and velocity fields are superimposed on the

initial displacement and velocity fields as

uðx; t ¼ 0Þ ¼ u�ðxÞ þH�ðxÞ x� xref
� �

(2.25a)

and

28 2 Peridynamic Theory



_uðx; t ¼ 0Þ ¼ v�ðxÞ þ L�ðxÞ x� xref
� �

; (2.25b)

where xref is a reference point (Silling 2004).

2.7.2 Constraint Conditions

The PD equation of motion does not contain any spatial derivatives; therefore,

constraint conditions are, in general, not necessary for the solution of an integro-

differential equation. However, such conditions can be imposed by prescribing

constraints on displacement and velocity fields in a “fictitious material layer”

along the boundary of a nonzero volume. Based on numerical experiments,

Macek and Silling (2007) suggested that the extent of the fictitious boundary

layer be equal to the horizon, δ , in order to ensure that the imposed prescribed

constraints are sufficiently reflected on the actual material region. Therefore, a

fictitious boundary layer,Rc, with depth δ, is introduced along the boundary of the

actual material region, R, as shown in Fig. 2.4.

2.7.2.1 Displacement Constraints

The prescribed displacement vector U0 can be imposed through the material points

in Rc as

uðx; tÞ ¼ U0; for x 2 Rc: (2.26)

Also, in order to avoid abrupt constraint introduction, it can be applied as

uðx; tÞ ¼ U0

t

t0
for 0 � t � t0

U0 for t0 � t ;

(
(2.27)

c

Fig. 2.4 Boundary regions

for constraint and external

load introduction
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where t0 represents the time at which the prescribed displacement is reached. The

velocity of each material point, _uðx; tÞ, can be calculated through differentiation.

2.7.2.2 Velocity Constraints

The prescribed velocity vector VðtÞ can be imposed through the material points in

Rc as

_uðx; tÞ ¼ VðtÞ; for x 2 Rc: (2.28)

Their displacement, uðx; tÞ, can be obtained from

uðx; tÞ ¼
ðt
0

Vðt0Þdt0: (2.29)

If VðtÞ ¼ V0HðtÞ , with V0 containing constant constraint values, then uðx; tÞ
¼ V0t for all material points in Rc. The Heaviside step function is represented by

HðtÞ. Also, in order to avoid abrupt velocity introduction, it can be applied as

VðtÞ ¼ V0

t

t0
for 0 � t � t0

V0 for t0 � t ;

(
(2.30)

where t0 represents the time at which the prescribed velocity is reached.

2.7.3 External Loads

Boundary traction does not directly appear in the PD equation of motion. Therefore,

the application of external loads is also different from that of the classical contin-

uum theory. The difference can be illustrated by considering a region, Ω, that is

subjected to external loads. If this region is fictitiously divided into two domains,

Ω� and Ωþ, as shown in Fig. 2.5a, there must be a net force, Fþ, that is exerted to

domain Ωþ by domain Ω� so that force equilibrium is satisfied (Kilic 2008).

According to classical continuum mechanics, force Fþ can be determined by

integrating surface tractions over the cross-sectional area, @Ω, of domains Ω� and

Ωþ as

Fþ ¼
ð
@Ω

TdA; (2.31)

in which T is the surface tractions (Fig. 2.5b).

30 2 Peridynamic Theory



In the case of the PD theory, the material points located in domain Ωþ interact

with the other material points in domain Ω� (Fig. 2.5c). Thus, the force Fþ can

be computed by volume integration of the force densities (Fig. 2.5d) over domain

Ωþ as

Fþ ¼
ð
Ωþ

LðxÞdV; (2.32a)

in which L, acting on a material point in domain Ωþ, is determined by

-

F+ T

t

t

L

a b

c d

Fig. 2.5 Boundary conditions: (a) domain of interest, (b) tractions in classical continuum

mechanics, (c) interaction of a material point in domain Ωþ with other material points in domain

Ω�, (d) force densities acting on domain Ωþ due to domain Ω�
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LðxÞ ¼
ð
Ω�

t u0 � u; x0 � x; tð Þ � t0 u� u0; x� x0; tð Þ½ �dV : (2.32b)

Note that if the volumeΩ� is void, the volume integration in Eq. 2.32b vanishes.

Hence, the tractions or point forces cannot be applied as boundary conditions since

their volume integrations result in a zero value. Therefore, the external loads can be

applied as body force density in a “real material layer” along the boundary of a

nonzero volume. Based on numerical experiments, the extent of the boundary layer

should be as close to the boundary as possible. Therefore, a boundary layer for

external load application,R‘, with depthΔ, is introduced along the boundary of the
material region R, as shown in Fig. 2.4.

In the case of distributed pressure, pðx; tÞ, or a point force, PðtÞ, over the surface
S‘ of the boundary layer R‘, the body force density vector can be expressed as

bðx; tÞ ¼ � 1

Δ
pðx; tÞn (2.33a)

or

bðx; tÞ ¼ 1

S‘Δ
PðtÞ : (2.33b)

If pðx; tÞ ¼ p0ðxÞHðtÞ and PðtÞ ¼ P0HðtÞ, with p0ðxÞ and P0 representing the

distributed pressure and constant point force, in order to avoid abrupt constraint

introduction, they can be applied as

bðx; tÞ ¼ � 1

Δ
p0ðxÞn t

t0
or bðx; tÞ ¼ 1

S‘Δ
P0

t

t0
for 0 � t � t0 (2.34a)

and

bðx; tÞ ¼ � 1

Δ
p0ðxÞn or bðx; tÞ ¼ 1

S‘Δ
P0; for t0 � t; (2.34b)

where t0 represents the time at which the prescribed external load is reached.

The displacement and velocity of all points in the boundary layerR‘ are calculated

based on the equation of motion.

2.8 Balance Laws

The PD equation of motion must be further governed by the balance of linear

momentum, angular momentum, and energy. These balance laws are viewed as

having a primitive status in mechanics. The balance of linear momentum and
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energy are automatically satisfied, as the principle of virtual work, Eq. 2.9,

represents their weak forms. However, the balance of angular momentum must be

assured.

The linear momentum, L, and angular momentum (about the coordinate origin),

H0, of a fixed set of particles at time t in volume V are given by

L ¼
ð
V

ρðxÞ _u x; tð ÞdV (2.35a)

and

H0 ¼
ð
V

yðx; tÞ � ρðxÞ _u x; tð ÞdV; (2.35b)

while the total force, F, and torque, Π0, about the origin are given by

F ¼
ð
V

bðx; tÞdV þ
ð
V

ð
H

T x; tð Þ x0 � xh i dHdV �
ð
V

ð
H

T x0; tð Þ x� x0h i dHdV (2.35c)

and

Π0 ¼
ð
V

yðx; tÞ � bðx; tÞdV þ
ð
V

ð
H

yðx; tÞ � T x; tð Þ x0 � xh i dHdV

�
ð
V

ð
H

yðx; tÞ � T x0; tð Þ x� x0h i dHdV :

(2.35d)

Thus, the balance of linear momentum, _L ¼ F , and angular momentum, _H0

¼ Π0; results in ð
V

ρ xð Þ€u x; tð Þ dV ¼
ð
V

bðx; tÞdV

þ
ð
V

ð
H

T x; tð Þ x0 � xh i dHdV

�
ð
V

ð
H

T x0; tð Þ x� x0h i dHdV

(2.36a)

and
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ð
V

y x; tð Þ � ρ xð Þ€u x; tð Þ dV ¼
ð
V

yðx; tÞ � bðx; tÞdV

þ
ð
V

ð
H

yðx; tÞ � T x; tð Þ x0 � xh i dHdV

�
ð
V

ð
H

yðx; tÞ � T x0; tð Þ x� x0h i dHdV :

(2.36b)

Because T x; tð Þ x0 � xh i ¼ T x0; tð Þ x� x0h i ¼ 0 for x0 =2 H, these equations can

be rewritten to include all of the material points in volume V as

ð
V

ρ xð Þ€u x; tð Þ dV ¼
ð
V

bðx; tÞdV

þ
ð
V

ð
V

T x; tð Þ x0 � xh i dV0dV

�
ð
V

ð
V

T x0; tð Þ x� x0h i dV0dV

(2.37a)

and

ð
V

y x; tð Þ � ρ xð Þ€u x; tð Þð Þ dV ¼
ð
V

yðx; tÞ � bðx; tÞdV

þ
ð
V

ð
V

yðx; tÞ � T x; tð Þ x0 � xh i dV0dV

�
ð
V

ð
V

yðx; tÞ � T x0; tð Þ x� x0h i dV0dV :

(2.37b)

If the parameters x and x0 in the third integrals on the right-hand side of

Eqs. 2.37a, b are exchanged, the third integrals become

ð
V

ð
V

T x0; tð Þ x� x0h i dV0 dV ¼
ð
V

ð
V

T x; tð Þ x0 � xh i dV dV0 (2.38a)

and
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ð
V

ð
V

y x; tð Þ � T x0; tð Þ x� x0h ið Þ dV0 dV

¼
ð
V

ð
V

y x0; tð Þ � T x; tð Þ x0 � xh ið Þ dV dV0 :
(2.38b)

Therefore, Eqs. 2.37a, b can be rewritten as

ð
V

ρ xð Þ€u x; tð Þ � b x; tð Þð Þ dV ¼ 0 (2.39a)

and

ð
V

y x; tð Þ � ρ xð Þ€u x; tð Þð Þ dV ¼
ð
V

y x; tð Þ � b x; tð Þ dV

�
ð
V

ð
V

y x0; tð Þ � y x; tð Þð Þ � T x; tð Þ x0 � xh ið Þ dV 0 dV:

(2.39b)

Hence, the balance of linear momentum, Eq. 2.39a, is automatically satisfied for

arbitrary force density vectors T x; tð Þ x0 � xh i and T x0; tð Þ x� x0h i.
The difference between the locations of material points at x and x0 in the

deformed configuration can be written by using the state notation as

y x0; tð Þ � y x; tð Þ ¼ ðy0 � yÞ ¼ Y x; tð Þ x0 � xh i; (2.40)

wherey0 ¼ y x0; tð Þ ¼ x0 þ u0 andy ¼ y x; tð Þ ¼ xþ u. Considering only the material

points within the horizon, substituting from Eq. 2.40 into Eq. 2.39b results in

ð
V

y x; tð Þ � ρ xð Þ€u x; tð Þ � b x; tð Þð ÞdV

¼ �
ð
V

ð
H

Y x; tð Þ x0 � xh i � T x; tð Þ x0 � xh ið Þ dH dV:

(2.41)

While invoking the requirement of a balance of linear momentum, Eq. 2.39a, in

order to satisfy the balance of angular momentum, the integral on the right-hand

side of Eq. 2.41 must be forced to vanish, i.e.,

ð
H

Y x; tð Þ x0 � xh i � T x; tð Þ x0 � xh ið Þ dH ¼ 0 (2.42a)
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or

ð
H

ðy0 � yÞ � T x; tð Þ x0 � xh ið Þ dH ¼ 0 : (2.42b)

It is apparent that this requirement is automatically satisfied if the force vectors

t u0 � u; x0 � x; tð Þ ¼ T x; tð Þ x0 � xh i and t0 u� u0; x� x0; tð Þ ¼ T x0; tð Þ x� x0h i are

aligned with the relative position vector of the material points in the deformed state,

ðy0 � yÞ. However, their general form that satisfies the requirement of Eq. 2.42b can

also be derived in terms of the deformation gradient and stress tensors of classical

continuum mechanics.

2.9 Bond-Based Peridynamics

As a special case, the force density vectors can also be equal in magnitude as well as

being parallel to the relative position vector in the deformed state, shown in

Fig. 2.6, in order to satisfy the requirement for balance of angular momentum.

Thus, they can be expressed in the form

t u0 � u; x0 � x; tð Þ ¼ T x; tð Þ x0 � xh i ¼ 1

2
C

y0 � y

y0 � yj j
¼ 1

2
f u0 � u; x0 � x; tð Þ

(2.43a)

and

t0 u� u0; x� x0; tð Þ ¼ T x0; tð Þ x� x0h i

¼ � 1

2
C

y0 � y

y0 � yj j ¼ � 1

2
f u0 � u; x0 � x; tð Þ; (2.43b)

where C is an unknown auxiliary parameter that depends on the engineering

material constants, pairwise stretch between x0 and x, and the horizon. This

particular form of the force vectors is referred to as “bond-based” peridynamics,

as introduced by Silling (2000). As shown in Fig. 2.6, the bond-based peridynamic

theory is concerned with pairwise interactions of material points.

Their substitution into Eq. 2.22b results in the bond-based PD equation of

motion of the material point x

ρ xð Þ €u x; tð Þ ¼
ð
H

f u0 � u; x0 � x; tð Þ dH þ b x; tð Þ; (2.44)
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in which the force density vector, fðu0 � u; x0 � xÞ is referred to as the pairwise

response function by Silling and Askari (2005). It is defined as the force vector per

unit volume squared that the material point atx0 exerts on the material point atx. The

force density vector can be assumed linearly dependent on the stretch between these

material points in the form

f u0 � u; x0 � xð Þ ¼ c1sðu0 � u; x0 � xÞ � c2T½ � y0 � y

y0 � yj j ; (2.45)

where the mean value of the temperatures at material points x0 and x relative to the

ambient temperature is denoted byT. The stretch sðu0 � u; x0 � xÞcan be interpreted
as the strain in the classical continuum theory, and it is defined as

sðu0 � u; x0 � xÞ ¼ y0 � yj j � x0 � xj j
x0 � xj j : (2.46)

For an isotropic material, the peridynamic material parameters c1 and c2 in

Eq. 2.45 can be determined by considering an infinite homogeneous body under

isotropic expansion, as suggested by Silling and Askari (2005). The body is also

subjected to uniform temperature change, T . Equating the energy densities of

peridynamic and classical continuum theory leads to the determination of c1 and

c2 as

c1 ¼ c ¼ 18κ

πδ4
and c2 ¼ cα; (2.47a, b)

in which κ is the bulk modulus and α is the coefficient of thermal expansion of the

material. The PD material parameter c is referred to as the bond-constant. In this

case, the PD theory limits the number of independent material constants to one for

isotropic materials with a constraint on the Poisson’s ratio. It permits only total

deformation without distinguishing the distortional and volumetric deformations.

Furthermore, it does not allow plastic incompressibility.

Undeformed state

Deformed state

u

u

y

x

y

z

y
f

x

x

f

Fig. 2.6 Deformation of

PD material points x and x0,
and developing equal and

opposite pairwise force

densities
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2.10 Ordinary State-Based Peridynamics

As shown in Fig. 2.7, the force density vectors having unequal magnitudes while

being parallel to the relative position vector in the deformed state also satisfy the

requirement for balance of angular momentum, Eq. 2.42b. Thus, they can be

defined in the form

t u0 � u; x0 � x; tð Þ ¼ T x; tð Þ x0 � xh i ¼ 1

2
A

y0 � y

y0 � yj j (2.48a)

and

t0 u� u0; x� x0; tð Þ ¼ T x0; tð Þ x� x0h i ¼ � 1

2
B

y0 � y

y0 � yj j ; (2.48b)

where A and B are auxiliary parameters that are dependent on engineering material

constants, deformation field, and the horizon. As coined by Silling et al. (2007), the

choice of the force density vectors in this form is referred to as “ordinary

state-based” peridynamics. It permits decoupled distortional and volumetric

deformations. Also, it enables the enforcement of plastic incompressibility.

In light of the definition of the strain energy density function, Eq. 2.8, and the

expressions for force density vectors in terms of micropotentials, Eqs. 2.17a, b,

while considering the requirement on their direction, Eqs. 2.48a, b, the force density

vectors can be related to the strain energy density function, W, as

t u0 � u; x0 � x; tð Þ � @WðxÞ
@ y0 � yj jð Þ

y0 � y

y0 � yj j ; (2.49a)

x

y

z

x

x

y

y

Undeformed state

Deformed state

t
t

Fig. 2.7 Deformation of

PD material points x and x0,
and developing unequal

pairwise force densities
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or

t0 u� u0; x� x0; tð Þ � @Wðx0Þ
@ y� y0j jð Þ

y0 � y

y0 � yj j : (2.49b)

These relations permit the determination of the auxiliary parameters A and B in

Eq. 2.48, and thus the peridynamic constitutive parameters that describe the mate-

rial behavior. The explicit forms of the expressions for these parameters are derived

in Chap. 4 for isotropic and in Chap. 5 for fiber-reinforced composite materials.

2.11 Nonordinary State-Based Peridynamics

As shown in Fig. 2.8, a general form of a force density vector that satisfies the

requirement of Eq. 2.42b necessary for balance of angular momentum can be

derived by applying the principle of virtual displacements to Eq. 2.22a as

ρ xð Þ€u x; tð Þ � Δu ¼
ð
H

T x; tð Þ x0 � xh ið

�T x0; tð Þ x� x0h iÞ � Δu dH þ b x; tð Þ � Δu;
(2.50)

where Δu represents the virtual displacement vector applied to the PD material

point at x. This equation can also be written in matrix notation as

ρ xð Þ€uT x; tð ÞΔu ¼
ð
H

T x; tð Þ x0 � xh ið

�T x0; tð Þ x� x0h iÞTΔu dH þ bT x; tð ÞΔu :

(2.51)

x

y

z

x

x

y

y

Undeformed state

Deformed state

t t

Fig. 2.8 Deformation of

PD material points x and x0,
and developing force

densities in arbitrary

directions
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Noting that Tðx; tÞhx0 � xi ¼ Tðx0; tÞhx� x0i ¼ 0 for x0 =2 H and integrating

Eq. 2.51 throughout the body result in

ð
V

ρ xð Þ€uT x; tð Þ � bT x; tð Þ� �
Δu dV ¼

ð
V

ð
V

T x; tð Þ x0 � xh ið ÞTΔu dV0dV

�
ð
V

ð
V

T x0; tð Þ x� x0h ið ÞTΔu dV0dV:
(2.52)

Exchanging the parameters x and x0 in the second integral on the right-hand side

of Eq. 2.52 leads to

ð
V

ð
V

T x0; tð Þ x� x0h ið ÞTΔu dV0dV ¼
ð
V

ð
V

T x; tð Þ x0 � xh ið ÞTΔu0 dVdV0 : (2.53)

This relationship permits the right-hand side of Eq. 2.52 to be rewritten as

ð
V

ð
V

T x; tð Þ x0 � xh ið ÞTΔu dV0dV �
ð
V

ð
V

T x0; tð Þ x� x0h ið ÞTΔu dV0dV

¼
ð
V

ð
V

T x; tð Þ x0 � xh ið ÞT Δu� Δu0ð Þ dV0dV:
(2.54)

The difference in virtual displacements of material points at locationsxandx0 can
be written in state form as

Δu0 � Δu ¼ ΔY x; tð Þ x0 � xh i: (2.55)

Therefore, Eq. 2.54 can be rewritten as

ð
V

ð
V

T x; tð Þ x0 � xh ið ÞT Δu� Δu0ð Þ dV 0dV

¼ �
ð
V

ð
V

T x; tð Þ x0 � xh ið ÞT ΔY x; tð Þ x0 � xh ið Þ dV0dV:
(2.56)

With this equation, Eq. 2.52 can be written in the form

ð
V

ρ xð Þ€uT x; tð Þ � bT x; tð Þ� �
Δu dV ¼ �

ð
V

ΔWIdV; (2.57)

whereΔWI corresponds to the virtual work of the internal forces at location x due to

its interactions with all other material points:
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ΔWI ¼
ð
V

T x; tð Þ x0 � xh ið ÞT ΔY x; tð Þ x0 � xh ið Þ dV0: (2.58)

Considering only the material points within the horizon, Eq. 2.58 can be

rewritten as

ΔWI ¼
ð
H

T x; tð Þ x0 � xh ið ÞT ΔY x; tð Þ x0 � xh ið Þ dH: (2.59)

The corresponding internal virtual work at location x in classical continuum

mechanics can be expressed as

ΔŴI ¼ trðST ΔEÞ (2.60)

where S ¼ ST is the second Piola-Kirchhoff (Kirchhoff) stress tensor, and the

Green-Lagrange strain tensor, E ¼ ET , can be related to the deformation gradient

tensor, F,

E ¼ 1

2
FTF� I
� �

: (2.61)

Using Eq. 2.61, the virtual form of the Green-Lagrange strain tensor can be

written as

ΔE ¼ 1

2
ΔFTFþ FTΔF
� �

: (2.62)

After substituting from Eq. 2.62 into Eq. 2.60, the internal virtual work expres-

sion in classical continuum mechanics takes the form

ΔŴI ¼ trðST FTΔFÞ ¼ trðPΔFÞ; (2.63)

where P ¼ ðST FTÞ is the first Piola-Kirchhoff (Lagrangian) stress tensor.
By using the vector state reduction to a second-order tensor, given in Eq. A.8, the

deformation gradient tensor, which corresponds to the deformation state in PD

theory, can be obtained as

F ¼ Y � Xð ÞK�1; (2.64)

whose virtual form can be written as

ΔF ¼ ΔY � Xð ÞK�1; (2.65)
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in which the explicit form of the shape tensor, K, serving as a volume-averaging

quantity, is derived in the Appendix; it is symmetric and diagonal. The symbol �
denotes the convolution of vector states, also defined in the Appendix.

Substituting from Eq. 2.65 into the internal virtual work expression of classical

continuum mechanics, Eq. 2.63, in conjunction with Eq. A.7, results in

ΔŴI ¼ tr P

ð
H

w x0 � xh iΔY x0 � xh i 	 X x0 � xh i dH
0
@

1
AK�1

0
@

1
A; (2.66)

where the influence (weight) function,w, is a scalar state, and 	 denotes the dyadic

product of two vectors, i.e., C ¼ a	 b or Cij ¼ ai bj . The scalar state influence

function provides a means to control the influence of PD points away from the

current point.

Using Eqs. A.4 and 2.55, this equation can be expressed in indicial form as

ΔŴI ¼ Pij

ð
H

w x0 � xh i Δu0i � Δuið Þ x0k � xkð Þ dH
0
@

1
AK�1

kj ; with ði; j; kÞ ¼ 1; 2; 3

(2.67)

Because the shape tensor is symmetric, this equation can be rearranged in the

form

ΔŴI ¼
ð
H

w x0 � xh iPij K
�1
jk x0k � xkð Þ Δu0i � Δuið Þ dH; with ði; j; kÞ ¼ 1; 2; 3

(2.68a)

or, in matrix form,

ΔŴI ¼
ð
H

w x0 � xh iPK�1 x0 � xð Þ� �T Δu0 � Δuð Þ dH : (2.68b)

After invoking Eq. 2.55 into Eq. 2.68b, equating the virtual work expressions

from the PD theory, Eq. 2.59, and classical continuum mechanics, Eq. 2.68b,

results in

ð
H

T x; tð Þ x0 � xh ið ÞT ΔY x; tð Þ x0 � xh ið Þ dH



ð
H

w x0 � xh iPK�1 x0 � xð Þ� �T ΔY x; tð Þ x0 � xh ið Þ dH :

(2.69)
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This requirement leads to the relation between the force vector state and the

deformation gradient and stress tensors of classical continuum mechanics as

t u0 � u; x0 � x; tð Þ ¼ T x; tð Þ x0 � xh i 
 w x0 � xh iPK�1 x0 � xð Þ (2.70)

Although this expression for the force density vector, Eq. 2.70, is identical to that

derived by Silling et al. (2007), this derivation based on the principle of virtual

displacements proves that the force density vector is valid for any material model

provided that the Piola-Kirchhoff stress tensor can be obtained directly or by using

incremental procedures. Therefore, this equation also forms the basis for

implementing any material behavior in the PD theory.
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