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TRANSIENT-FLOW EQUATIONS

Isovel lines of measured constant density for the calculated constant
Mach Numbers (adiabatic isentropic flow) for a standing pressure wave
in a safety valve for pressure ratio of 0.35. Flow pattern is at the limit

of becoming unstable. (Courtesy, Föllmer, B. and Zeller, H. [1980].)
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2-1 Introduction

Equations for the conservation of mass and momentum describe the transient
flow in closed conduits. These equations are usually referred to as the conti-
nuity and momentum equations. Some authors call a simplified form of the
latter, the equation of motion or the dynamic equation. These equations are
a set of partial differential equations since the flow velocity and pressure in
transient flow are functions of time as well as distance.

In this chapter, the continuity and momentum equations are derived by
making a number of simplifying assumptions. A brief introduction to the
Reynolds transport theorem, which is used to derive a generalized form of
these equations, is first presented. A simplified version of these equations is
then derived and various methods for their solution are discussed. Expressions
for the wave velocity and a number of models to simulate unsteady friction
are presented.

2-2 Reynolds Transport Theorem

A number of terms are defined first for the presentation of this theorem which
relates the flow variables for a specified quantity of fluid mass, called a system,
to that of a specified region, called a control volume [Roberson and Crowe,
1997]. Everything external to this system is called the surroundings, and the
system boundaries separate the system from its surroundings. The boundary
of a control volume is referred to as the control surface.

In fluid flow, the shape of a system may change as it travels from one
location to another. A control volume usually remains fixed at a location;
although in some applications, it may travel and/or deform in shape. For the
application of this theorem in this chapter, the shape of the control volume
changes with time due to variation in the internal pressure.

The basic conservation laws of mechanics, such as, conservation of mass,
momentum and energy are valid for a system. These laws describe the inter-
action between the system and its surroundings and usually specify the time
rate of change of some system property. For example, Newton’s second law of
motion relates the time rate of change of momentum of a system to the ex-
ternal forces exerted on the system by its surroundings. In the control-volume
approach, the boundaries of the system and that of the control volume are the
same at the instant a particular conservation law is applied. In other words,
all of the system mass is contained in the control volume.

For the analysis of fluid flow, we do not follow the motion of a specified
particle or of a specified quantity of mass. Instead, we are interested in the
flow through a region. The basic laws, therefore, are written for the flow in a
region. The Reynolds transport theorem is useful for this application.

Let B be an extensive property (momentum, energy) of a fluid, and let β
be the corresponding intensive property. An intensive property is defined as
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the amount of B per unit mass of a system, i.e., β = limΔm→0 ΔB/Δm. The
total amount of B in a control volume, Bcv, is then

Bcv =

∫
cv

βρd∀ (2-1)

in which m = mass, ρ = mass density, and d∀ = differential volume of the
fluid.

Let us now discuss how the flow variables of a control volume are related
to that of a system. To facilitate understanding, our discussion is confined to
one-dimensional flow and we assume that the control volume is fixed in space.
We are interested in relating the time rate of change of property B of the
system to that of the control volume and the inflow and outflow of B across
the control surface.

Let us consider a system at times t and t+Δt, as shown in Fig. 2-1. The
dashed lines show the control surface, and the solid lines show the boundaries
of the system. At time t, part of the system occupies the control volume while
another part is about to move into the control volume. At time t +Δt, part
of the system occupies the control volume while another part has moved out.
Property B of the system at times t and t+Δt may be written as

Bsys(t) = Bcv(t) +ΔBin

Bsys(t+Δt) = Bcv(t+Δt) +ΔBout

(2-2)

where the subscripts “sys” and “cv” refer to the system and the control vol-
ume, and the subscripts “in” and “out” refer to the inflow and outflow from
the control volume respectively, and ΔBin and ΔBout are inflow and outflow
of property B into or out of the control volume during time interval Δt.

The time rate of change of property B of the system is

dBsys

dt
= lim

Δt→0

Bsys(t+Δt)−Bsys(t)

Δt
(2-3)

By substituting the expressions for Bsys from Eq. 2-2 into Eq. 2-3 and rear-
ranging the terms yield

dBsys

dt
= lim

Δt→0

Bcv(t+Δt)−Bcv(t)

Δt
+ lim

Δt→0

ΔBout
Δt

− lim
Δt→0

ΔBin
Δt

(2-4)

Now, as Δt approaches zero in the limit, the first term on the right-hand side
of Eq. 2-4 represents the time rate of change of property B in the control
volume, i.e.,

lim
Δt→0

Bcv(t+Δt)−Bcv(t)

Δt
=

dBcv
dt

(2-5)

By substituting Eq. 2-1 into Eq. 2-5

lim
Δt→0

Bcv(t+Δt)−Bcv(t)

Δt
=

d

dt

∫
cv

βρd∀ (2-6)
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(a)

(b)

Fig. 2-1. System and control volume.

The second term on the right-hand side of Eq. 2-4 is the rate at which property
B is leaving the control volume. Similarly, the third term of this equation
represents the rate at which property B is entering the control volume. For
one-dimensional flow, we may write

lim
Δt→0

ΔBout
Δt

= (βρAVs)out

lim
Δt→0

ΔBin
Δt

= (βρAVs)in

(2-7)

where A = cross-sectional area of the conduit and Vs = flow velocity measured
relative to the control surface.

On the basis of Eqs. 2-6 and 2-7, Eq. 2-4 may be written as

dBsys

dt
=

d

dt

∫
cv

βρd∀+ (βρAVs)out − (βρAVs)in (2-8)

Note that the velocity, V , is with respect to the control surface, since it ac-
counts for the inflow or outflow from the control volume. For a fixed control
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volume, Vs = fluid flow velocity, V . However, if the control volume stretches
or contracts with respect to time, then the control surface is not fixed and Vs

in Eq. 2-8 is the relative flow velocity, i.e., Vs = (V −W ), where W is the ve-
locity of the control surface at section 1 for inflow and at section 2 for outflow.
Both V and W are measured with respect to the coordinate axes. Hence, a
general form of Eq. 2-8 for an expanding or contracting control volume in a
one-dimensional flow may be written as

dBsys

dt
=

d

dt

∫
cv

βρd∀+ [βρA(V −W )]out − [βρA(V −W )]in (2-9)

This is the Reynolds transport theorem relating the properties of the system
to those of the control volume.

2-3 Continuity Equation

To derive the continuity equation, we apply the law of conservation of mass
to a control volume. We consider the flow of a slightly compressible fluid in
a conduit having linearly elastic walls. Let the control surface be comprised
of sections 1 and 2 and the inside surface of the conduit walls (Fig. 2-2). The
control volume may shorten or elongate as pressure changes. Let the velocity
(with respect to the coordinate axes) of sections 1 and 2 due to this contraction
or expansion be W1 and W2, respectively. Let us assume that the flow is one
dimensional and the pressure at the end sections of the control volume is
uniform. The radial velocity due to radial expansion and contraction is small
and not included in the analysis. However, the effects of radial expansion
and contraction are important and are taken into account. The distance x,
flow velocity V , and discharge Q are considered positive in the downstream
direction.

Fig. 2-2. Definition sketch.
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To apply the Reynolds transport theorem for the conservation of
mass, the intensive property of the fluid is mass/unit mass, i.e., β =
limΔm→0 Δm/Δm = 1. In addition, since the mass of a system remains con-
stant, dMsys/dt = 0. Hence, applying Eq. 2-9 to the control volume shown in
Fig. 2-2 and substituting β = 1, we obtain

d

dt

∫ x2

x1

ρAdx+ ρ2A2 (V2 −W2)− ρ1A1 (V1 −W1) = 0 (2-10)

The application of the Leibnitz’s rule∗ to the first term on the left-hand side
gives ∫ x2

x1

∂

∂t
(ρA)dx + ρ2A2

dx2

dt
− ρ1A1

dx1

dt

+ ρ2A2 (V2 −W2)− ρ1A1 (V1 −W1) = 0 (2-11)

Noting that dx2/dt = W2 and dx1/dt = W1, this equation simplifies to∫ x2

x1

∂

∂t
(ρA)dx+ (ρAV )2 − (ρAV )1 = 0 (2-12)

Based on the mean value theorem†, this equation may be written as

∂

∂t
(ρA)Δx+ (ρAV )2 − (ρAV )1 = 0 (2-13)

where Δx = x2 − x1. Dividing throughout by Δx and letting Δx approach
zero, Eq. 2-13 is simplified as

∂

∂t
(ρA) +

∂

∂x
(ρAV ) = 0 (2-14)

Expansion of the terms inside the parentheses gives

A
∂ρ

∂t
+ ρ

∂A

∂t
+ ρA

∂V

∂x
+ ρV

∂A

∂x
+AV

∂ρ

∂x
= 0 (2-15)

By rearranging terms, using expressions for the total derivatives, and dividing
throughout by ρA, we obtain

∗Material presented in Sections 2-3 and 2-4 is based on the collaborative efforts
of Professor Clayton Crowe and the author.
According to this rule [Wylie, 1967],

d

dt

∫ f2(t)

f1(t)

F (x, t)dx =

∫ f2(t)

f1(t)

∂

∂t
F (x, t)dx+ F (f2(t), t)

df2
dt
− F (f1(t), t)

df1
dt

if f1 and f2 are differentiable functions of t and F (x, t) and ∂F/∂t are continuous
in x and t.
†According to this theorem,

∫ x1

x2
F (x)dx = (x2 − x1)F (ξ), where x1 < ξ < x2.
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1

ρ

dρ

dt
+

1

A

dA

dt
+

∂V

∂x
= 0 (2-16)

Typically the variables of interest are the pressure intensity p and the flow
velocity V . To write this equation in terms of these variables, we express the
derivatives of ρ and A in terms of p and V as follows.

The bulk modulus of elasticity, of a fluid [Roberson and Crowe, 1997]

K =
dp

dρ/ρ
(2-17)

This equation may be written as

dρ

dt
=

ρ

K

dp

dt
(2-18)

Now, for a circular conduit having radius R,

dA

dt
= 2πR

dR

dt
(2-19)

In terms of the strain, ε, this equation may be written as

dA

dt
= 2πR2 1

R

dR

dt
(2-20)

or
1

A

dA

dt
= 2

dε

dt
(2-21)

As indicated earlier, we assume that the conduit walls are linearly elastic
[Timoshenko, 1941], i.e., stress is proportional to strain. This is true for most
common pipe wall materials, e.g., metal, wood, concrete, etc. Then

ε =
σ2 − μσ1

E
(2-22)

where σ2 = hoop stress, σ1 = axial stress, and μ = Poisson ratio. To simplify
the derivation, we assume the conduit has expansion joints throughout its
length. Therefore, the axial stress, σ1 = 0. Hence, Eq. 2-22 becomes

ε =
σ2

E
(2-23)

Now, the hoop stress in a thin-walled conduit

σ2 =
pD

2e
(2-24)

where p = inside pressure; e = thickness of the conduit walls and D = conduit
diameter. By taking the time derivative of Eq. 2-24, we obtain

dσ2

dt
=

p

2e

dD

dt
+

D

2e

dp

dt
(2-25)
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Based on Eq. 2-23, we may write Eq. 2-25 as

E
dε

dt
=

p

2e

dD

dt
+

D

2e

dp

dt
(2-26)

Using Eqs. 2-19 and 2-21, Eq. 2-26 becomes

E
dε

dt
=

pD

2e

dε

dt
+

D

2e

dp

dt
(2-27)

which may be simplified as

dε

dt
=

D

2e

dp

dt

E − pD

2e

(2-28)

It follows from Eqs. 2-21 and 2-28 that

1

A

dA

dt
=

D

e

dp

dt

E − pD

2e

(2-29)

Substituting Eqs. 2-18 and 2-29 into Eq. 2-16 and simplifying, the resulting
equation becomes

∂V

∂x
+

⎛
⎜⎝ 1

K
+

1
eE

D
− p

2

⎞
⎟⎠ dp

dt
= 0 (2-30)

Since p/2 << eE/D in typical engineering applications, this equation may be
written as

∂V

∂x
+

1

K

⎛
⎜⎝1 +

1
eE

DK

⎞
⎟⎠ dp

dt
= 0 (2-31)

Let us define

a2 =

K

ρ

1 +
DK

eE

(2-32)

Note that this expression for the wave velocity is for a conduit with expansion
joints. In Chapter 3, we show that a is the velocity of pressure wave in an
elastic conduit filled with a slightly compressible fluid. For other types of
support conditions, the expressions for the wave velocity are modified slightly.
These expressions are presented in Section 2-6, with their derivation left as an
exercise for the reader (Problem 2-6). Substituting Eq. 2-32 and the expression
for the total derivative into Eq. 2-31 gives

∂p

∂t
+ V

∂p

∂x
+ ρa2

∂V

∂x
= 0 (2-33)

This equation is called the continuity equation.
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2-4 Momentum Equation

In this Section, we apply the Reynolds Transport Theorem to derive the mo-
mentum equation. The extensive propertyB for this application is the momen-
tum of the fluid which is equal to mV . Therefore, the corresponding intensive
property,

β = lim
Δm→0

V (Δm/Δm) = V

According to the Newton’s second law of motion, the time rate of change of
momentum of a system is equal to the resultant of the forces exerted on the
system by its surroundings, i.e.,

dMsys

dt
=

∑
F (2-34)

By substituting β = V into Eq. 2-9 and using Eq. 2-34, we obtain

d

dt

∫
cv

V ρd∀+ [ρA (V −W )V ]2 − [ρA (V −W )V ]1 =
∑

F (2-35)

By applying the Leibnitz rule to the first term on the left-hand side of this
equation and noting that dx1/dt = W1 and dx2/dt = W2, we obtain∫ x2

x1

∂

∂t
(ρAV ) dx + (ρAV )2 W2 − (ρAV )1 W1 + [ρA (V −W )V ]2

− [ρA (V −W )V ]1 =
∑

F (2-36)

Fig. 2-3. Notation for momentum equation.

By simplifying this equation, applying the mean-value theorem to the first
term, and dividing throughout by Δx give
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d

dt
(ρAV ) +

(
ρAV 2

)
2
− (

ρAV 2
)
1

Δx
=

∑
F

Δx
(2-37)

Now let us consider the following forces acting on the control volume (Fig.
2-3):

Pressure force at section 1, Fp1 = p1A1 (2-38)

where p = pressure intensity, and the subscript 1 refers to cross section 1.

Similarly,

Pressure force at section 2, Fp2 = p2A2 (2-39)

Pressure force on the converging sides,

Fp12 =
1

2
(p1 + p2) (A1 −A2) (2-40)

Component of the weight of fluid along the conduit centerline

Fwx = ρgA (x2 − x1) sin θ (2-41)

where θ = angle the conduit makes with the horizontal, considered positive
for conduit sloping upwards in the downstream direction. Now,

Shear force, Fs = τoπD (x2 − x1) (2-42)

where τo = shear stress exerted by the conduit walls on the flowing fluid.
Considering the downstream flow direction as positive, it follows from Eqs.

2-38 to 2-42 that∑
F = p1A1 − p2A2 − 1

2
(p1 + p2) (A1 −A2)

−ρgA (x2 − x1) sin θ − τoπD (x2 − x1)

=
1

2
(p1 − p2) (A1 +A2)− ρgA (x2 − x1) sin θ

−τoπD (x2 − x1) (2-43)

Dividing Eq. 2-43 by Δx = x2 − x1 gives∑
F

Δx
=

(p1 − p2) (A1 +A2)

2Δx
− ρgA sin θ − τoπD (2-44)

By substituting Eq. 2-44 into Eq. 2-37 and letting Δx approach zero in the
limit, we obtain

∂

∂t
(ρAV ) +

∂

∂x

(
ρAV 2

)
+A

∂p

∂x
+ ρgA sin θ + τoπD = 0 (2-45)
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Let us assume the energy losses for a given flow velocity during the tran-
sient state are the same as those for steady flows at that velocity (we will
discuss unsteady friction in Section 2-8). If we use the Darcy-Weisbach fric-
tion equation for computing the friction losses, then the wall shear stress

τo =
1

8
ρfV |V | (2-46)

where f = Darcy-Weisbach friction factor. Note that we are writing V 2 as
V |V | to allow for the reverse flow. The substitution of this expression into Eq.
2-45 and the expansion of the terms in parentheses yield

V
∂

∂t
(ρA) + ρA

∂V

∂t
+ V

∂

∂x
(ρAV ) + ρAV

∂V

∂x

+ A
∂p

∂x
+ ρgA sin θ +

ρAfV |V |
2D

= 0 (2-47)

The rearrangement of the terms of this equation gives

V

[
∂

∂t
(ρA) +

∂

∂x
(ρAV )

]
+ ρA

∂V

∂t
+ ρAV

∂V

∂x

+ A
∂p

∂x
+ ρgA sin θ +

ρAfV |V |
2D

= 0 (2-48)

Based on the continuity equation (Eq. 2-14), the sum of the two terms in-
side the brackets is zero. Hence, dropping the terms inside the brackets and
dividing the resulting equation by pA, we obtain

∂V

∂t
+ V

∂V

∂x
+

1

ρ

∂p

∂x
+ g sin θ +

fV |V |
2D

= 0 (2-49)

This equation is called the momentum equation.

2-5 General Remarks

In this section, we discuss various parameters of the governing equations and
whether they are hyperbolic, parabolic or elliptic. Each type of these equations
describes a particular physical process or phenomenon. For example, wave
propagation in a fluid is described by a set of hyperbolic partial differential
equations. In addition, once we know the type of the governing equations,
suitable numerical methods can be selected for their solution.

The continuity and momentum equations (Eqs. 2-33 and 2-49) describe
transient-flows in closed conduits. In these equations, distance x and time t
are two independent variables and pressure p and flow velocity V are two
dependent variables. The other variables, a, ρ, f , and D, are the system pa-
rameters and usually do not vary with time; these may, however, be functions
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of x. Although wave velocity a depends on the characteristics of the conduit
and on the fluid properties, laboratory tests [Streeter, 1972] show that it is
significantly reduced by a reduction of pressure, even when the pressure re-
mains above the liquid vapor pressure. The friction factor f usually varies
with the Reynolds number. However, the effects of such a variation of f on
transient conditions are usually small and may be neglected.

Classification of Governing Equations

Equations 2-33 and 2-49 are a set of first-order, partial differential equations.
We shall now determine the type of these equations, make some qualitative ob-
servations for their solution, and discuss methods for numerically integrating
them. These equations may be written in the matrix form as

∂

∂t

⎛
⎝ p

V

⎞
⎠ +

⎡
⎢⎣
V ρa2

1

ρ
V

⎤
⎥⎦ ∂

∂x

⎛
⎝ p

V

⎞
⎠ =

⎛
⎜⎝

0

−g sin θ − fV |V |
D

⎞
⎟⎠ (2-50)

or
∂U

∂t
+B

∂U

∂x
= E (2-51)

where

U =

⎛
⎝ p

V

⎞
⎠ ; B =

⎡
⎢⎣
V ρa2

1

ρ
V

⎤
⎥⎦ ;

E =

⎛
⎜⎝

0

−g sin θ − fV |V |
D

⎞
⎟⎠

(2-52)

The eigenvalues, λ, of matrix B determine the type of the set of partial
differential equations. The characteristic equation [Wylie, 1967] of matrix B
is

(V − λ)
2
= a2 (2-53)

Hence,
λ = V ± a (2-54)

Since both eigenvalues are real and distinct, Eqs. 2-33 and 2-49 are a set of
hyperbolic partial differential equations. This type of equations describes the
propagation of waves in a fluid.
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Initial Conditions

The initial conditions are needed to compute the transient conditions. Mostly
the initial conditions correspond to the initial steady-state flows. In this sec-
tion, we discuss how to specify the initial flow conditions that are compatible
with the transient flow equations.

Equations 2-33 and 2-49 describe unsteady, nonuniform flow of a slightly
compressible fluid in an elastic conduit. Steady flow may be considered a
special case [Stuckenbruck and Wiggert, 1985 ] in which the time variation of
flow velocity, ∂V/∂t and of pressure, ∂p/∂t are both zero. Hence the governing
equations for steady flow may be derived from these two equations by dropping
the terms representing the local variation of pressure and flow velocity with
respect to time t; i.e., ∂p/∂t and ∂V/∂t of Eqs. 2-33 and 2-49 are both zero.
Therefore, Eqs. 2-33 and 2-49 for steady flow become

V
dp

dx
+ ρa2

dV

dx
= 0 (2-55)

V
dV

dx
+

1

ρ

dp

dx
+ g sin θ +

fV |V |
2D

= 0 (2-56)

Note the total derivatives and not the partial derivatives in these equations
since both p and V are functions of x only. It follows from Eq. 2-55 that

dV

dx
= − V

ρa2
dp

dx
(2-57)

Substitution of this expression into Eq. 2-56 and simplification of the resulting
equation give

dp

dx
=

ρ [g sin θ + fV |V |/ (2D)]

M2 − 1
(2-58)

where M = V/a = Mach number. By substituting Eq. 2-58 into Eq. 2-57 and
simplifying, we obtain

dV

dx
=

M2

V

(g sin θ + fV |V |/2D)

1−M2
(2-59)

For nonzero V , it is clear from Eq. 2-59 that the velocity gradient dV/dx is not
zero and similarly it is clear from Eq. 2-58 that the pressure gradient dp/dx
is not constant. This is due to the fact that the mass density of the fluid and
the flow area of the conduit are functions of x.

If the initial conditions correspond to steady flow and all the terms of
the governing equations have to be included in the analysis, then the initial
conditions should be determined from Eqs. 2-58 and 2-59 . However, in most
of the engineering applications, a number of terms of the governing equations
are small as compared to the other terms and may be neglected. This con-
siderably simplifies the analysis without significantly affecting the accuracy
of the computed results. These simplified equations are derived in the next
section.
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Simplified Equations

In most of the engineering applications, the convective acceleration terms,
V (∂p/∂x) and V (∂V/∂x), are small as compared to the other terms. Similarly,
the slope term is usually small and may be neglected. Therefore, dropping
these terms from the governing equations, we obtain

∂p

∂t
+ ρa2

∂V

∂x
= 0

∂V

∂t
+

1

ρ

∂p

∂x
+

fV |V |
2D

= 0

(2-60)

It is a common practice in hydraulic engineering to compute pressures in the
pipeline in terms of the piezometric head, H, above a specified datum and use
the discharge, Q, as the second variable instead of the flow velocity V . Now,
Q = V A and the pressure intensity p may be written as

p = ρg (H − z) (2-61)

in which z = elevation of the pipe centerline above the specified datum.
We assumed in the derivation of the governing equations (Eqs. 2-33 and

2-49) that the fluid is slightly compressible, and the conduit walls are slightly
deformable. Therefore, we may neglect the spatial variation of ρ and flow
area A due to the variation of the inside pressure with x. However, the small
variation of ρ and A is indirectly taken into account by considering the wave
velocity a to have a finite value. Note that if the fluid is considered incompress-
ible and the conduit walls are assumed rigid, then the wave velocity becomes
infinite, and a pressure or velocity change is felt instantaneously throughout
the system. For a horizontal pipe, dz/dx = 0. Hence, with these assumptions,
it follows from Eq. 2-61 that ∂p/∂t = ρg (∂H/∂t) and ∂p/∂x = ρg (∂H/∂x).

By substituting these relationships into Eqs. 2-60 and 2-61, we obtain

∂H

∂t
+

a2

gA

∂Q

∂x
= 0 (2-62)

∂Q

∂t
+ gA

∂H

∂x
+

fQ|Q|
2DA

= 0 (2-63)

Steady-state equations corresponding to Eqs. 2-62 and 2-63 may be ob-
tained by substituting ∂H/∂t = 0 and ∂Q/∂t = 0. Hence, it follows from Eq.
2-62 that ∂Q/∂x = 0; i.e., Q is constant along the pipe length. Substituting
∂Q/∂t = 0 into Eq. 2-63, simplifying the resulting equation, and writing it in
a finite-difference form, we obtain

ΔH =
fΔxQ2

2gDA2
(2-64)
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where ΔH = head loss in pipe length Δx for a flow of Q. Note that this
equation is the same as the Darcy-Weisbach friction equation.

To summarize, steady-state conditions should be computed from Eqs. 2-55
and 2-56 if Eqs. 2-33 and 2-49 are the governing equations. However, if a sim-
plified form of the governing equations (i.e., Eqs. 2-62 and 2-63) is used, then
Q is considered as constant along the pipe, and the piezometric head along the
pipe length is computed from Eq. 2-64. However, if complete equations (Eqs.
2-33 and 2-49) are the governing equations, then assuming constant discharge
for the initial steady-state conditions and computing the pressure head along
the pipe length by using the Darcy-Weisbach equation give erroneous results.

In the above derivation, we used the Darcy-Weisbach equation to compute
the friction losses. For a general exponential formula for these losses, the last
term of Eq. 2-63 may be written as kQ|Q|m/Db, with the values of k, m, and
b depending on the formula employed. For example, for the Hazen-William
formula, m = 0.85 and b = 4.87. With correct values of m and b, the results
are independent of the formula employed; i.e., the Darcy-Weisbach and the
Hazen-William formulas give comparable results [Evangelisti, 1969 ]. For most
of typical engineering applications, the above assumptions are valid and Eqs.
2-62 and 2-63 may be used. However, if any of the above assumptions are
not valid, then the analysis should employ complete equations, Eqs. 2-33 and
2-49. From hereon, in our discussion, we will use Eqs. 2-62 and 2-63.

2-6 Wave Velocity

An expression for the wave velocity in a slightly compressible fluid confined
in a rigid conduit was derived in Section 1-4. However, in addition to the
bulk modulus of elasticity and mass density of the fluid, the wave velocity
depends upon the elastic properties of the conduit as well as on the external
constraints. Elastic properties include the conduit size, wall thickness, and wall
material; and the external constraints include the type of supports and the
freedom of conduit movement in the longitudinal direction. The bulk modulus
of elasticity of a fluid depends upon its temperature, pressure, and the quantity
of entrained gases. Pearsall [1965] showed that the wave velocity changes by
about 1 percent per 5◦C. The fluid compressibility increases by the presence
of free gases, and it has been reported [Pearsall, 1965] that 1 part of air in
10,000 parts of water by volume reduces the wave velocity by about 50 percent.
Figure 2-4 shows the variation of wave velocity in an air-water mixture with
different air content [Kobori, et al., 1955]. An expression for the wave velocity
in a gas-liquid mixture is derived in Section 9-5.

The presence of solids in liquids have less drastic influence on the wave
velocity, unless they are compressible. Laboratory studies [Streeter, 1972] and
prototype tests [Pearsall, 1965] show that the dissolved gases tend to come
out of solution when the pressure is reduced, even when it remains above the
liquid vapor pressure. This results in decreasing the wave velocity significantly.
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Fig. 2-4. Variation of wave velocity in an air-water mixture with air
content. (After Kobori, et al. [1955].)

Therefore, the wave velocity of a positive pressure wave may be higher than
that of a negative wave. Further prototype tests are needed to quantify the
reduction in the wave velocity due to reduction of pressure.

Halliwell [1963] presented the following general expression for the wave
velocity

a =

√
K

ρ [1 + (K/E)ψ]
(2-65)

in which ψ is a nondimensional parameter that depends on the elastic prop-
erties of the conduit; E = Young’s modulus of elasticity of the conduit walls;
and K and ρ are the bulk modulus of elasticity and density of the fluid, re-
spectively. The moduli of elasticity of materials commonly used for conduit
walls and the bulk moduli of elasticity and mass densities of various liquids
are listed in Tables 2-1 and 2-2.

Expressions for ψ for various conditions are as follows:

Rigid Conduit

ψ = 0 (2-66)

Thick-Walled Elastic Conduit

Three different cases for the anchoring of the conduit are as follows.
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Table 2-1. Young’s modulus of elasticity and Poisson’s ratio

Modulus of Elasticity, E∗

Material (GPa) Poisson’s Ratio

Aluminum alloys 68-73 0.33
Asbestos cement, transite 24
Brass 78-110 0.36
Cast iron 80-170 0.25
Concrete 14-30 0.1-0.15
Copper 107-131 0.34
Glass 46-73 0.24
Lead 4.8-17 0.44
Mild steel 200-212 0.27
Plastics

ABS 1.7 0.33
Nylon 1.4-2.75
Perspex 6.0 0.33
Polyethylene 0.8 0.46
Polystyrene 5.0 0.4
PVC rigid 2.4-2.75

Rocks
Granite 50 0.28
Limestone 55 0.21
Quartizite 24.0-44.8
Sandstone 2.75-4.8 0.28
Schist 6.5-18.6

Source: Compiled from Halliwell [1963]; Roark [1965] and Pickford [1969].
∗ To convert E into lb/ft2, multiply the values in this column by 145.04 × 103.

i. Conduit anchored against longitudinal movement throughout its length

ψ = 2 (1 + ν)

(
R2

o +R2
i

R2
o −R2

i

− 2νR2
i

R2
o −R2

i

)
(2-67)

in which ν = the Poisson ratio and Ro and Ri = the external and internal
radii of the conduit.

ii. Conduit anchored against longitudinal movement at the upper end

ψ = 2

[
R2

o + 1.5R2
i

R2
o −R2

i

+
ν

(
R2

o − 3R2
i

)
R2

o −R2
i

]
(2-68)

iii. Conduit with frequent expansion joints

ψ = 2

(
R2

o +R2
i

R2
o −R2

i

+ ν

)
(2-69)
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Thin-Walled Elastic Conduit

Three different cases for the anchoring of the conduit against longitudinal
movement are:

i. Conduit anchored against longitudinal movement throughout its length

ψ =
D

e

(
1− ν2

)
(2-70)

in which D = conduit diameter and e = wall thickness.
ii. Conduit anchored against longitudinal movement at the upper end [Wylie

and Streeter, 1983]

ψ =
D

e
(1− 0.5ν) (2-71)

iii. Conduit with frequent expansion joints

ψ =
D

e
(2-72)

Rock Tunnel

Halliwell [1963] presented long expressions for ψ for the lined and unlined
rock tunnels. Usually the rock characteristics are not known precisely because
of nonhomogeneous rock conditions and because of the presence of fissures.
Therefore, the following simplified expressions [Parmakian, 1963] may be used
instead of Halliwell’s expressions.

i. Unlined tunnel

ψ = 1

E = G (2-73)

in which G = modulus of rigidity of the rock.
ii. Steel-lined tunnel

ψ =
DE

GD + Ee
(2-74)

in which e = thickness of the steel-liner and E = modulus of elasticity of
steel.

Reinforced Concrete Pipe

The reinforced concrete pipe is replaced by an equivalent steel pipe having
equivalent thickness [Parmakian, 1963]

ee = Erec +
As

ls
(2-75)
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in which ec = thickness of the concrete pipe; As and ls are the cross-sectional
area and the spacing of steel bars, respectively; and Er = ratio of the modulus
of elasticity of concrete to that of steel. Usually the value of Er varies from 0.06
to 0.1. However, to allow for any cracks in the concrete pipe, a value of 0.05
is suggested [Parmakian, 1963]. The wave velocity may then be determined
from Eq. 2-65 for the equivalent thickness ee and the modulus of elasticity of
steel.

Wood-Stave Pipe

The thickness of a uniform steel pipe equivalent to the wood-stave pipe is
determined [Parmakian, 1963] from Eq. 2-75 by using Er = 1

60 , ec = thickness
of wood staves, and As and ls are the cross-sectional area and the spacing of
the steel bands, respectively. The wave velocity is then computed from Eq.
2-65.

Polyvinyl Chloride (PVC) and Reinforced Plastic Pipes

Watters et al. [1976] show that Eq. 2-65 may be used to determine the wave
velocity in the polyvinyl chloride (PVC) and in the reinforced plastic pipes,
provided a proper value of the modulus of elasticity for the wall material is
used.

Noncircular Conduits

The following expression for ψ is obtained from the equation for the wave
velocity in the thin-walled rectangular conduits presented by Jenkner [1971]
by using the steady-state bending theory and by allowing the corners of the
conduit to rotate:

ψ =
βb4

15e3d
(2-76)

in which β = 0.5(6− 5α)+0.5(d/b)3[6− 5(b/d)2], α = [1+ (d/b)3]/[1+ (d/b)],
b = width of the conduit (longer side), and d = depth of the conduit (shorter
side).

Thorley and Guymer [1976] included the influence of the shear force on
the bending deflection of the thick-walled (l/e < 20) rectangular conduits
while deriving the equations for the wave velocity. From these equations, the
following expression is obtained for a thick-walled conduit having a square
cross section:

ψ =
1

15

(
l

e

)3

+
l

e

(
1 +

e

2G

)
(2-77)

in which e = wall thickness, (l− e) = inside dimension of the conduit, and G
= shear modulus of the wall material. Based on the equations presented by
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Thorley and Twyman [1977], the following expression is obtained for ψ for a
thin-walled hexagonal conduit:

ψ = 0.0385

(
l

e

)3

(2-78)

in which l = mean width of one of the flat sides of the hexagonal section.

Table 2-2. Bulk modulus of elasticity and density of common liquids at
atmospheric pressure

Bulk Modulus of
Temperature Density ρ∗ Elasticity, K∗∗

Liquid (◦C) (kg/m3) (GPa)

Benzene 15 880 1.05
Ethyl alcohol 0 790 1.32
Glycerin 15 1,260 4.43
Kerosene 20 804 1.32
Mercury 20 13,570 26.2
Oil 15 900 1.5
Water, fresh 20 999 2.19
Water, sea 15 1,025 2.27

Source: Compiled from Pearsall [1965]; Baumeister [1967] and Pickford [1969].
∗ To convert the specific weight of the liquid into lb/ft3, multiply the values of this
column by 62.43 × 10−3.
∗∗ To convert K into lb/in2, multiply the values of this column by 145.04 × 103.

2-7 Solution of Governing Equations

As demonstrated previously, the momentum and continuity equations are
quasi-linear, hyperbolic, partial differential equations. A closed-form solution
of these equations is not available. However, by neglecting or by lineariz-
ing the nonlinear terms, various graphical [Parmakian, 1963; Bergeron, 1961]
and analytical [Rich, 1963; Wood, 1937] methods have been developed. These
methods are approximate and cannot be used to analyze large systems or
systems with complex boundary conditions.

The following methods, suitable for computer analyses, are available for
numerically integrating the nonlinear, hyperbolic partial differential equa-
tions:

Method of characteristics;
Finite-difference methods;
Finite-element method;
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Spectral method, and
Boundary-integral method.

The method of characteristics has become popular and is extensively used
for the solution of one-dimensional, hydraulic transient problems, especially
if the wave velocity is constant. This method has proven to be superior to
other methods in several aspects, such as correct simulation of steep wave
fronts, illustration of wave propagation, ease of programming, and efficiency
of computations [Evangelisti, 1969; Wylie and Streeter, 1983; Lister, 1960;
Abbott, 1966; Streeter and Lai, 1962]. Details of this method are presented in
the next chapter; and its use and necessary boundary conditions are developed
in Chapters 4 through 10.

The finite-difference methods [Perkins at al., 1964; Smith, 1978; Chaudhry
and Yevjevich, 1981; Chaudhry, 1983; Chaudhry and Hussaini, 1983] may be
classified into two categories: explicit and implicit. Both of these categories
have several schemes. Implicit methods usually have the advantage that they
allow larger time steps. However, if too large a time step is used, then the
accuracy of the scheme is adversely affected and numerical oscillations may
be produced in some cases that may yield totally incorrect results [Holloway
and Chaudhry, 1985]. Both of these methods are briefly discussed in Chapter
3. The finite-element method [Chung, 1978; Baker, 1983] does not offer any
significant advantage for the solution of one-dimensional problems. The spec-
tral method [Gottlieb and Orszag, 1976-1977] is not suitable for nonperiodic
boundary conditions and the boundary-integral method [Liggett, 1984] does
not efficiently handle the time-dependent problems as compared to the other
available methods, especially if shocks or bores are formed. Neither of these
methods are discussed further herein.

2-8 Unsteady Friction

In the derivation of the governing equations in Sections 2-3 and 2-4, we as-
sumed that the steady friction formulas may be used to compute the transient-
state head losses. Although this approximation yields satisfactory results for
computing the first peak of transient pressures, the computed pressure oscil-
lations show very slow dissipation as compared to that measured in the lab-
oratory experiments or that measured during field tests on actual projects.
This does not pose serious limitations for determining the maximum or min-
imum pressures in a typical installations or typical operations. However, the
computed results are not reliable for multiple operations, such as starting the
pumps following a power failure, load acceptance on turbines following load
rejection, or for sequential starting or stopping of turbo-machinery, etc.

Several methods have been proposed to account for the unsteady friction
effects in transient flow computations. These methods may be classified into
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three categories: Quasi-two-dimensional, convolution integral, and instanta-
neous, acceleration-based methods. Brief descriptions of the first two meth-
ods and details of the third method are presented in the following paragraphs.
This discussion is based on the paper by Reddy, Silva, and Chaudhry [2012].
Literature review by Ghidaoui [2001] is a good source on the topic.

Quasi-two-dimensional models
These models provide accurate simulation of the phenomenon [Vardy and
Hwang 1991; Brunone et al. 1995; Silva-Araya and Chaudhry 1997; Pezzinga
1999; Zhao and Ghidaoui 2004]. However, they are computationally intensive,
and thus have been used primarily for simple piping systems.

Convolution integral methods
Zielke [1968] introduced these methods by developing an exact solution for
the laminar unsteady friction. These methods, suitable for one-dimensional
models, use past local accelerations and weighting functions. These solutions
are time consuming and require large computer memory. Trikha [1975] pro-
posed a less demanding version of Zielke’s method, but with reduced accuracy.
Similar versions were proposed by Kagawa et al. [1983], Suzuki et al. [1991],
and Schohl [1993]. The convolution integral method was extended to turbu-
lent flow by Vardy and Brown [1995, 2003, 2004] for smooth and for rough
pipes. These solutions provide acceptable results at the expense of numerical
accuracy, because of the approximation of the convolution integral by a lim-
ited number of weighted coefficients [Vitkovsky et al. 2006b].

Instantaneous acceleration-based (IAB) methods
These models are based on the assumption that the damping attributable to
unsteady friction is caused by instantaneous local and convective accelera-
tions. The accelerations are computed from the average cross-sectional values
without taking into consideration the velocity distribution at a cross section.
Carsten and Roller [1959] introduced this concept. Since then several different
formulations have been proposed [Brunone and Golia, 1990; Vitkovsky et al.
2006a, Brunone et al. 1991b; Bergant et al. 2001; Bughazem and Anderson,
2000; Vardy and Brown, 1995, and 2003; Ramos et al. 2004]. Of these for-
mulations, one- and two-coefficient models appear to give satisfactory results
and are presented herein.

The friction term in the momentum equation may be divided into steady
and unsteady parts as

∂H

∂x
+

1

g

∂V

∂t
+ Js + Ju = 0 (2-79)

in which Js and Ju are the steady and unsteady friction terms, respectively.
The steady friction may be expressed by the Darcy-Weisbach relation as
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Js =
fV |V |
2gD

(2-80)

An expression for Ju for a one-coefficient model may be written as

Ju =
k

g

[
∂V

∂t
+ Sign(V )a

∣∣∣∣∂V∂x
∣∣∣∣
]

(2-81)

The expression for a two-coefficient model used by Lourerio and Ramos [2003],
Ramos [2004] and Vitkovsky et al. [2000] are similar and are of the form

Ju =
1

g

[
Kut

∂V

∂t
+KuxSign(V )a

∣∣∣∣∂V∂x
∣∣∣∣
]

(2-82)

in which Kut and Kux are two decay coefficients related to the local and
convective accelerations, respectively. It has been shown numerically that
the term Kut∂V/∂t affects the phase shift of transient pressure waves and
Kux∂V/∂x affects the rate of damping [Ramos et al. 2004].

Reddy, Silva and Chaudhry [2012] presented an equation for the estima-
tion of decay coefficients for IAB models. To develop this equation, a genetic
algorithm (GA) was used to reproduce time-history of pressure oscillations
recorded in 14 experiments, conducted in laboratories all over the world. The
pipe material for these experiments includes steel, copper, and PVC, pipe di-
ameter ranges from 0.012 m to 0.4 m and pipe length from 14 m to 160 m.
Transients were produced by valve closure at the upstream or downstream
ends of the piping systems.

The decay coefficients for one- and two-coefficient IAB models were deter-
mined for both methods of characteristics and finite-difference methods. The
values that reproduced the time history of the experimental pressure oscilla-
tions range from 0.015 to 0.060 for K in the one-coefficient model and from
0.025 to 0.053 for Kux and from 0.006 to 0.057 for Kut in the two-coefficient
model.

Example

Compute the wave velocity in the steel penstock of the Kootenay Canal hy-
droelectric power plant, BC, Canada, The data for different segments of the
penstock are listed in Table 2-3. The values of E for steel, G for concrete,
and K and ρ for water are 207 GPa, 20.7 GPa, 2.19 GPa, and 999 kg/m3,
respectively.

Solution

For transient analysis, the wave velocity in each segment of the penstock may
be determined as follows.
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Table 2-3. Data for penstock

Wall
Length Diameter Thickness,

Pipe (m) (m) (mm) Remarks

1 244. 6.771 19 Expansion coupling at one end

2 36.5 5.55 22 Encased in concrete

Pipe 1
D

e
=

6.71

0.019
= 353

As the pipe is anchored at one end,

ψ =
D

e
(1− 0.50ν) (Eq. 2-71)

= 353 (1− 0.15)

= 300.05

a =

√
K

ρ [1 + (K/E)ψ]
(Eq. 2-65)

K

E
=

2.19

207
= 0.0106

a =

√
2.19× 109

999 (1 + 0.0106× 300.05)

= 724 m/s

Pipe 2
Equations for a steel-lined tunnel (Eq. 2-74) may be used to compute the wave
velocity in pipe 2.

ψ =
DE

GD + Ee

=
5.55× 207× 109

20.7× 109 × 5.55 + 207× 109 × .022

= 9.62 (Eq. 2-74)

a =

√
2.19× 109

999 (1 + 0.0106× 9.62)

= 1410 m/s
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2-9 Summary

In this chapter, the momentum and continuity equations describing the tran-
sient flows in closed conduits are derived and the assumptions made in the
derivations are discussed. It is demonstrated that these equations are quasi-
linear, hyperbolic, partial differential equations. Various numerical methods
available for their solution are discussed and a number of models to simulate
unsteady friction and expressions for the wave velocity in the closed conduits
are presented.

Problems

2-1 Derive the momentum equation considering the conduit walls are rigid
and the fluid is compressible.

2-2 Compute the wave velocity in a 3.05-m-diameter steel penstock having a
wall thickness of 25 mm if it:

i. is embedded in a concrete dam;
ii. is anchored at the upstream end; and
iii. has expansion joints throughout its length.

2-3 Determine the wave velocity in a reinforced concrete pipe having 1.25-m
diameter, 0.15-m wall thickness, and carrying water. The 20-mm reinforcing
bars have a spacing of 0.5 m, and the pipe has expansion joints throughout
its length.

2-4 A 0.2-m-diameter copper pipe having a wall thickness of 25 mm is con-
veying kerosene oil at 20◦C from a container to a valve. If the valve is closed
instantly, at what velocity would the pressure waves propagate in the pipe?
Assume the pipe is anchored at the upper end.

2-5 Figure 5-13 shows the power conduits of an underground hydroelectric
power station. Compute the wave velocity in each segment of the conduit.
Assume modulus of rigidity of rock is 5.24 GPa.

2-6 Derive the continuity equation if the conduit is:

i. anchored against longitudinal movement throughout its length; and
ii. anchored against longitudinal movement at the upper end.
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Answers

2-2

i. 1413 m/s
ii. 992 m/s
iii. 978 m/s

2-3 913 m/s

2-4 1232 m/s
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