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Preface

The warning could not have been meant for the place
where it could only be found after approach.
—Joseph Conrad, Heart of Darkness

This solution manual to Bayesian Essentials with R covers all the exercises
contained in the book, with a large overlap with the solution manual of the
previous edition, Bayesian Core, since many exercises are common to both
editions of the book. These solutions were written by the authors themselves.

The warnings attached with the solution manual of Bayesian Core apply
as well to this solution manual: some of our self-study readers may come to the
conclusion that these solutions are too sketchy for them because the way we
wrote those solutions assumes some minimal familiarity with the maths, the
probability theory, and the statistics behind the arguments. There is unfortu-
nately a limit to the time and to the efforts we can put in this solution manual
and studying Bayesian Fssentials with R does require some prerequisites in
maths (such as matrix algebra and Riemann integrals), and in probability
theory (such as the use of joint and conditional densities), as well as some
bases of statistics (such as the notions of inference, sufficiency, and confidence
sets) that we cannot usefully summarise here. Instead, we suggest Casella and
Berger (2001) as a fairly detailed reference in case a reader is lost with the
“basic” concepts or our sketchy math derivations. Indeed, we realised after
publishing Bayesian Core that describing our book as“self-contained” was a
dangerous label as readers were naturally inclined to relate this qualification
to their current state of knowledge, a bias resulting in inappropriate expec-
tations. (For instance, some students unfortunately came to one of my short
courses with no previous exposure to standard distributions like the ¢ or the
gamma distributions, and a deep reluctance to read Greek letters.)

We obviously welcome comments and questions on possibly erroneous so-
lutions, as well as suggestions for more elegant or more complete solutions:
since this manual is distributed both freely and independently from the book,
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it can easily be updated and corrected [almost] in real time! Note however
that the R codes given in the following solution pages are far from optimal or
elegant because we prefer to use simple and understandable R codes, rather
than condensed and efficient ones, both for time constraints and for pedagogi-
cal purposes: the readers must be able to grasp the meaning of the R code with
a minimum of effort since R programming is not supposed to be an obligatory
entry to the book. In this respect, using R replaces the pseudo-code found in
other books since it can be implemented as such but does not restrict under-
standing. Therefore, if you find better [meaning, more efficient/faster]| codes
than those provided along those pages, we would be glad to hear from you,
but that does not mean that we will automatically substitute your R code for
the current one, because readability is also an important factor.

Sceaux & Montpellier, France, March 16, 2015
Christian P. Robert & Jean-Michel Marin
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Normal Models

2.1 Show that, if
M|J2NJV(§,J2/)\H), ozwfg()\g/2,a/2),

then
o~ y()‘a)gaa/)‘ﬂ)\a)

a t distribution with A\, degrees of freedom, location parameter £ and scale pa-
rameter o/ A, A

The marginal distribution of x has for density-using 7 = o2 as a shortcut
notation—

2T

e} 2
Oc/ TAG/23/2eXp{)\;L(N—§) +Oé} dr
0 2T

<1 A — )2 _ _
f(NP\;u/\a,&Oé)O(/ MGXP{M} T A /2 1exp{—oz/ZT} dr
0

o8 {/\;L(M - 6)2 + a}f()‘o+1)/2

1 A, )
OC{l‘*‘)\” o (n—29)

}()\g+1)/2

which corresponds to the density of a .7 (A, §, a/A,)s) distribution.

2.2 Show that, if 0 ~ #%(«,3), then E[0?] = 3/(a — 1). Derive from the
density of #¥ (v, B) that the mode is located in 8/(a + 1).

2

Once again, use 7 = ¢° as a shortcut notation. Then
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E[o?] = /000 T FB((;) % Lexp{—B/r}dr

:/O T i T_“_lexp{—ﬁ/T}dT

I(a)
_ B Ia-1)
o1 " T(a)
= B/(a—1),

2.3 Show that minimizing (in 6(Z,)) the posterior expectation E[||0 — 8|%|Z,,]
produces the posterior expectation as the solution in 6.

Since

E[|| — 011%|2]

(0= 0)7(6~0)|2.]

16117 — 2676 + 11611%| 2]

1611%120] — 207 E[9] 2] + 1161

1611%120] — I[E[B1Za]lI? + [|E[6] 2] — 611,

E[L(6,6))|Z0]

[
E[
E[
E[
E[

minimising E[L(6, 0))| Z,] is equivalent to minimising ||E[0] Z,,]—0||? and hence
the solution is

0 =E[0]2,)].

2.4 Show that the Fisher information matrix on 6 = (u,0?) for the normal
N (p, 02) distribution is given by

20 =50 (50 Dot et aga) | = (0 1200)

and deduce that Jeffreys' prior is 77/ (0) < 1/03.

The log-density of the normal .4 (u, 02) distribution is given by

=]

log p(w; p, 0%) = — {log@mQ) +—
g

1
2

Hence,



2 Normal Models 3

g [Plogpwipa®)] o 1) _ 1
| aIuQ | I 0-2 0—2
r 92 5 2)] [ ( —
E a IOgSO(m:,UaU ) =K _($ /J) =0
i Oudo? | L ot
g |Ploge(@ipo®)] o[ 1 (@-w?]_ 1 o 1
L do* | 20 o6 204 o6 204

The corresponding Fisher information matrix

I(6) = (1/002 1/ga4)

has the associated determinant det(I%'(6)) = 1/205, which does lead to

77(0) o det(I7(0))7* « 1/0°.

2.5 Derive each line of Table 2.1 by an application of Bayes' formula, 7(6|z)
7(0) f(x|0), and the identification of the standard distributions.

For the normal distribution P(6,0?),
F(@lf) x 7(0lp,7) = (o™ Hz — 0})p(r7{0 — u})
X exp _71 {?[c72 + 772 = 20[0 "z + 7 2p]}
X exp _71 {6 /p?0® — 20(7%x + o*plp/pr’0” }
x ([0 — p(T?z + o?p)] /pl/zTO')
For the Poisson distribution P(6),
f(x]0) x 7(Be, B) ox 6% e799Le™F0 = ol —(B+1)0

which is proportional to the G(a + z, 5 + 1) density.
For the Gamma distribution G(v, 6),

f(x]0) x w(Ba, B) ox 9zt e70Tg el o gatv—le—(BFa)0

which is proportional to the G(«a + v, 8 + x) density.
For the Binomial distribution B(n, ),

F(]0) x w(0la, B) o< 67 (1 — )" 79>~ (1 — )P~ = g (1 — gy HA!

which is proportional to the B(a + x, 8 +n — ) density.
For the Negative Binomial distribution Neg(m, ),
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f(2]0) x (0o, B) o 6™ (1 — 0) 21 (1 — §)P~1 = gmra—l(1 — g)z+F-L

which is proportional to the B(a + m, 8 + x) deunsity.
For the multinomial distribution M(61,...,0%)

k k k
F(@]0) x w(0la) o [T 07 [T 00" = [ ozt
=1 =l i=1

which is proportional to the D(a; + 21, ..., ax + i) density.
For the normal N (y,1/6) distribution,
f(z|0) x 7(0a, B) x 0% exp{—0(x — 1) /2}6° exp{—50}
= 6% Lexp{—(B + 0.5(x — p1)*)6}

which is proportional to the G(a + 0.5, 3 + 0.5(u — x)?) density.

2.6 A Weibull distribution # (v, 8,) is defined as the power transform of a
gamma ¥ (a, ) distribution: If x ~ # («, 8,7), then 27 ~ ¥(«, ). Show that,
when v is known, # («, 8,7) allows for a conjugate family, but that it does not
an exponential family when ~ is unknown.

For the first part, if v is known, observing x is equivalent to observing x7,
hence to be in a ¢(«, 8) model for which a conjugate distribution is available.
Since the likelihood function is

Uz|a, B) x

Fﬁ(a) % e PT = exp {alog(z) — Bz +log(B*/I'(a))} ,

a conjugate distribution has a density proportional to

7T(Ol7ﬂ|§,‘u,>\) S8 GXp{Oéf *ﬂHJF/\lOg(ﬁa/F(O‘))} )

with &, u, A chosen so that the above function is integrable.
A Weibull distribution has for density

B
107 (g1 aTe
f(x @, 67 FY) T L € )
50 7)
since the Jacobian of the change of variables y = 27 is ya? L. If we express
this density as an exponential transform, we get

o’
r(g)
If v is unknown, the term z7« in the exponential part makes it impossible

to separate parameter from random variable within the exponential. In other
words, it cannot be an exponential family.

f@le, B,7) = exp{[(8 + 1)y — 1]log(z) — az} ,
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2.7 Show that, when the prior on § = (u, %) is A (£, 0% /X)) X G (\s, a), the

marginal prior on p is a Student ¢ distribution T(2),,&, a/A,\,) (see Exercise
2.1 for the definition of a Student ¢ density). Give the corresponding marginal
prior on o2. For an iid sample 2,, = (v1,...,2,) from A (u,c?), derive the
parameters of the posterior distribution of (u, 02).

Since the joint prior distribution of (u,o?) is

1
m(p,0%) o< (%) AT exp o {1 — €)° + 20}

2

(given that the Jacobian of the change of variable w = 0~2 is w™2), integrating

out o2 leads to
°° -1
() o / (o?)~ e —3/2 exp o {Au(p—€)? + 20} do?
0 g
x / w712 exp %w (e =€) +2a} dw
0

o< D= €2 420} 72

2Ag+1

Aodu(p =621 7
0({1+ 2\« ’

which is the proper density of a Student’s ¢ distribution 7 (2X,, &, a/AuAs).
By definition of the joint prior on (u,o?), the marginal prior on o2 is a
inverse gamma .#¥(\,, ) distribution.
The joint posterior distribution of (i, 0?) is

(1, 0%)|2) o (0%) 2D exp {~ (A\u(2) (0~ £(2))* + a(2)) [20°} .

with

Ao(Z) = As +3/2+1/2,

MN(Z) =N+,

5(-@) = (Au£+nf)/)‘;t(-@)a

(2) 2a+)\;§f)(x£)2+52(9).

This is the product of a marginal inverse gamma
IY ()‘U(-@) - 3/27 Oé(@)/Q)
distribution on ¢? by a conditional normal

N (6(2),0%/\u(2))
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on . (Hence, we do get a conjugate prior.) Integrating out o leads to

7)o | T (@) exp {— (M(D)(u— £(D) + (D)) 207} do®

0
o /000 wr @72 exp {— (A\(2) (1 — £(2))* + (D)) w/2} dw

o< [Au(2) (- E(2))* + (2] ~(e(2)-1) 7

which is the generic form of a Student’s ¢ distribution.

2.8 Show that the normalizing constant for a Student 7 (v, i1, o) distribution

® (v +0)/2)/T(v/2)

O\/ VT

Deduce that the density of the Student ¢ distribution 7 (v,6,0?) is

I'((v+1)/2) (@ — )2~/
o\vr I'(v/2) <1+ vo? > '

fu(x) =

The normalizing constant of a Student .7 (v, u, 02) distribution is defined
by

I((v+0)/2)/I(v/2) _ I'((v+0)/2)/I(v/2)

_ (v +0)/2)/I'(v/2)
o\/vT
We have o B ,
(=P =2 (- T ) 4 B0
and thus

= 2 7—)2 S2|
(M_x;ry> Il

/

o
= (20%)™"

_ _\ 2
1+ (u— x;ry) Jo%v

where v = 2n — 1 and
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Therefore,

/ [(n—2)*+ (n—9)*+ 5% "du

= R TeR)
N

2761 ((v + 1))/ T (0/2)
(2n —1)21 /o |
2 [(52)" + S r(w+1)/2)/I0/2)

Note that this expression is used later in the simplified derivation of Bf;
without the term (2n —1)*"~1\/vr/2"I"((v +1)/2)/I'(v/2) because this term
appears in both the numerator and the denominator.

2.9 Show that, for location and scale models, the specific noninformative priors
are special cases of Jeffreys' generic prior, i.e., that 7/(0) = 1 and 7/(6) = 1/9,
respectively.

In the case of a location model, f(y|0) = p(y — 6), the Fisher information
matrix of a location model is given by

Ologp(Y — 6 Talogp Y -0
- [Py o

:/[ap(ge Q)T {ap(gea)]/p(y—a)dy

T
12 2] o
0z 0z

This matrix is indeed constant in 6. Therefore its determinant is also constant
in 6 and Jeffreys’ prior on @ can be chosen as 77/ (#) = 1 [or any other constant
provided the parameter space is not compact].

In the case of a scale model, if y ~ f(y/6)/60, a change of variable from
y to z = log(y) [if y > 0] implies that n = log(#) is a location parameter for
z. Therefore, the Jacobian transform of 77/(n) = 1 is 7/(§) = 1/0. When y
can take both negative and positive values, a transform of y into z = log(|y|)
leads to the same result.

2.10 Show that, when 7(6) is a probability density, (2.5) necessarily holds for
all datasets Z,,.
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Given that 7(6) is a (true) probability density and that the likelihood
£(0|2) is also a (true) probability density in 2 that can be interpreted as a
conditional density, the product

m(0)¢(6]2)

is a true joint probability density for (0, 2). The above integral therefore
defines the marginal density of &, which is always defined.

2.11 Consider a dataset Z,, from the Cauchy distribution, € (u,1).

1. Show that the likelihood function is

n

1
(| Zn) = 1:[1 W) = e A @y

2. Examine whether or not there is a conjugate prior for this problem. (The
answer is no.)

3. Introducing a normal prior on p, say .4#°(0,10), show that the posterior dis-
tribution is proportional to

exp(—4*/20)
[Ty (U + (@i — w)?)
4. Propose a numerical solution for solving 7(u|%y,) = k. (Hint: A simple trape-

zoidal integration can be used: based on a discretization size A, computing
7(u|2y) on a regular grid of width A and summing up.)

(| Dn) =

1. Since the Cauchy € (u, 1) distribution is associated with the density

1

A e

the likelihood £(1|Z,,) is made of the product of the densities.

2. Given that £(u]|2,) is the inverse of a polynomial of order 2n, it can-
not be associated with a sufficient statistic of fixed dimension against n.
Therefore, there is no family of prior distributions parametrised by a fixed
dimension vector that can operate as a conjugate family. The only formal
family of conjugate priors is made of densities of the form

1
iy (L4 (2 = p)?)

() o i

where m and the m values z{ are arbitrarily chosen. Since this family has

an unbounded number of parameters, it is of limited modelling interest.
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3. If u ~ N(0,10), 7(p) o< exp{—pu?/20}. Hence,

exp(—pu?/20)

[ (U4 (s = p)?)

4. The question is ambiguous: as stated, there is no need to compute the
normalising constant. However, the appealing version consists in finding
an HPD region at a given confidence level a.

First, we can define the un-normalised posterior as

m(u|Zn) o<

> Dn=rcauchy(100)

> pitilde=function(the,Dn){
post=dnorm(the, sd=sqrt(10))
for (i in 1:length(Dn)) post=post*dcauchy(Dn[i]-the)
return(post)}

where Dn is the sample. To find the normalising constant, the easiest is
to use integrate:

> tointegre=function(x){ pitilde(the=x,Dn=Dn) }
> Z=integrate(f=tointegre,low=-1,up=1)$val
1.985114e-104

From there, we need to compute coverages of HPD regions until we hit
the proper coverage:

trunpos=function(alpha=.95){
levels=max(pitilde(the=seq(-1,1,by=.01) ,Dn=Dn))*seq(.99,.01,by=-.01)
cover=0
indx=1
while ((cover<alpha) || (indx<length(indx))){
tointegre=function(x){
pitilde(the=x,Dn=Dn) * (pitilde(the=x,Dn=Dn)>levels[indx]) }
cover=integrate(f=tointegre,low=-1,up=1)$val/Z
indx=indx+1
}
return(levels[indx])

}
For our simulated dataset, this results in

> trunpos ()

[1] 1.342565e-104
> trunpos()/Z

[1] 0.6763163

2.12 Show that the limit of the posterior probability P™ (1 < 0]z) of (2.7) when
T goes to oo is ®(—x /o). Show that, when & varies in R, the posterior probability
can take any value between 0 and 1.
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Since

PT(p < 0lz) = & (—¢(x) /w)
o2+ 1% o2+ 12
:¢< U§+T2 \ “o2r2 )

—gp( o2+ 12z )
Vo2 + 2oz )’

when € is fixed and 7 goes to oo, the ratio

025 + 72z
/o2 + 721/0272

goes to

7'237 . 7'2.1' T

TILHOIO A /0-2 + 7—21/0-27—2 - Tll)ngo 20 - g ’
However, if ¢ varies with 7, the limit can be anything: simply take & = 724,
then

lim 027'2u+7'2x — lim T 02u+x _ 02u+z

T—00 \/g2 + 72y/g272 T—=00 /g2 4+ 72 o o

2.13 Define a function BaRaJ of the ratio rat when z=mean(shift)/.75 in
the function BaFa. Deduce from a plot of the function BaRaJ that the Bayes
factor is always less than one when rat varies. (Note: It is possible to establish
analytically that the Bayes factor is maximal and equal to 1 for 7 = 0.)

Since

BaFa=function(z,rat){
#rat denotes the ratio tau"2/sigma”2
sqrt (1/(1+rat) ) *exp(z~2/ (2% (1+1/rat)))}

it is straightforward to define

BaRaJ=function(rat){
BaFa(mean(shift)/.75,rat)}

and to plot the corresponding curve (Figure 2.1 in this manual).

2.14 In the application part of Example 2.1 to normaldata, plot the approxi-
mated Bayes factor as a function of 7. (Hint: Simulate a single normal .47(0,1)
sample and recycle it for all values of 7.)
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Fig. 2.1. Evolution of the Bayes factor as a function of 72 /5>,

The Bayes factor is given by

/ (=22 +(u+E—9)2+2,] e €2 /rv2mdude

Bgl (Dn) =

where 52, denotes the average

n

i=1

1 _
2= 0 Y -2+

/ (=) + (u—9)® +52,] " du

(vi —9)*.

11

)

As mentioned in Example 2.1, the denominator can be integrated in closed

form:

(h—2)*+(n—7)* = 20° —2u(Z+9) + 2 +7° = 2(u— Y[z +7))>+ /2(2—5)* .

Hence, if s2,, = 1/2(z — )* + 52
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Bayes factor

00

Fig. 2.2. Evolution of the Bayes factor approximation §§1 (Dr) as a function of T,
when comparing the fifth and the sixth sessions of Illingworth’s experiment.

/ =2+ (= 9)* + 2, " du

[ = la 1 2= 07 2,

/ 20— 2l + 9% + 52,.] " du

o [ [ el 02, + 1)
1 2(2n — 1) o -n
5T / {(Qn—l)s%yz (n=1plz 9" +1]
1 Swyz‘ F(TL — 1/2) (2’]1 — 1)7T
s, /2(2n — 1) I'(n)

L D(n—1)V7

Tt Var(n)

by identification of the missing constant in the ¢ density (see Exercise 2.8).
The integral in g in the numerator can be found in the same way and it
leads to the simplified form of Example 2,2:

B31(Dn)

/ (@6 +z g2 +282) " e €2 ag/rvon

—n+1/2

[(Z—9)2+2 sgy]

The numerator can be aproximated by simulations from a normal .4(0,72)
distribution. Therefore, simulating a normal .#(0,72) sample of &’s (i =

1,..

., N) produces a converging estimate of B, (D,,) as
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_ _ —n+1/2
LYV g +z—g)2+2s2,] "

B3, (D,,) = —
[(z—9)2 +2852,] +1/2

An R implementation is as follows:

> illing=as.matrix(normaldata)

> xsam=illing[illing[,1]==5,2]

> xbar=mean(xsam)

(1] -0.041

> ysam=illing[illing[,1]==6,2]

> ybar=mean(ysam)

[1] -0.025

> Ssquar=9% (var (xsam)+var (ysam)) /10

[1] 0.101474

> Nsim=10"4

> montecarl=rnorm(Nsim)

> BF=tau=seq(.1,10,1e=100)

> for (t in 1:100)
BF [t]=mean(((2*tau[t]*montecarl+xbar-ybar) “2+2xSsquar) " (-8.5))/
((xbar-ybar) "2+2*Ssquar) ~ (-8.5)

> plot(tau,BF,type="1")

2.15 In the setup of Example 2.1, show that, when & ~ .47(0,0?), the Bayes
factor can be expressed in closed form using the normalizing constant of the ¢
distribution (see Exercise 2.8)

When ¢ ~ A4(0,02), we have

/ o~ [(h—6=2)* +(n+€6-9)+s2,] /207 0—2"—26—52/202/0@(102 dpde
Bgl (Dn) =

/ e—n[(u—z)2+(u—g)2+s§y]/2(r2 o212 42 du

In the numerator,

nl(p—E6-2)°+ (u+&—9)°+s2,]+€

= on (= ol + 7 4TSI o) (64 ool — g - MO 2
=2 (u— Y2+ 7))° + 2n+1) (€ + /2nt1]z — 7)) + nn— )@ —g° ns2,

2(2n 4 1)

implies
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/e—n[(u—f—fi)z-s-(/ﬁ&—?) s2,]/20° *271736*52/202/\/%(102 dpde

2 1) 2
(ReroDE=D® L2} /262 o271 g2

—n

\/2n 2n+1) /
2n —1)(z —9)°

\/E n+l, —n (
n(2n + 1)11(71)2 i [ 2(2n+1)

2
+ Say

Similarly, for the denominator

(n=2)° + (1= 9)* = 2(p = Yelz +9))° + 12z - 9)°.

and
/e—n[(u—f)2+(u—ﬂ)2+85y]/202 o722 452 dy
_ / e[t /ala a1 2= 0) 452 ] /207 =22 g2
_ V2rm —n[Y2(3-7)*+s2,]/20% _—2n—2 5 _2
= —2 e v o do
V2n
LS
:ﬁf() T [Y2(z - 9)* + s5,]
Therefore,
v 2n+1 —n |: (2n—1)(z— y +52 :|*n
B3y (Dn) = NCEE 2@n+1) =y
TE ()2 [Yo@ — )+ 2,] "
2n—1)(x
B 2 [( 2(2’2L(-‘r1)y) + 53 ]
VeI [Ya(z - )2 +s2,] "

2.16 Discuss what happens to the importance sampling approximation when
the support of g is larger than the support of .

If the support of v, &, is smaller than the support of g, the representation
h(z)g(z
o= [ ),
v(x)
is not valid and the importance sampling approximation evaluates instead the

integral

~
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2.17 Show that, when + is the normal 47 (0,v/(v — 2)) density and f, is the
density of the ¢ distribution with v degrees of freedom, the ratio

fg(x) er(V—2)/2V
X
v(@) [+ a2 /p]D

does not have a finite integral. What does this imply about the variance of the
importance weights?
Deduce that the importance weights of Example 2.3 have infinite variance.

The importance weight is
exp {(0 — w)*/2} [+ (i - 0)°]
i=1

with 0 ~ A (u,0?). While its expectation is finite—it would be equal to 1
were we to use the right normalising constants—, the expectation of its square
is not:

[exo (0= w?/2) T[ + (i~ 072 a0 = +oc.

due to the dominance of the exponential term over the polynomial term.

2.18 If f, denotes the density of the Student ¢ distribution 7 (v,0,1) (see
Exercise 2.8), consider the integral

3:/,/‘1; fu(z) da.

1. Show that J is finite but that

/“lf;'fy(z)dxzoo.

2. Discuss the respective merits of the following importance functions -y
— the density of the Student 7 (v,0, 1) distribution,
— the density of the Cauchy %(0, 1) distribution,
— the density of the normal 4(0,v/(v — 2)) distribution.
In particular, show via an R simulation experiment that these different choices
all lead to unreliable estimates of J and deduce that the three corresponding
estimators have infinite variance.

3. Discuss the alternative choice of a gamma distribution folded at 1, that is,
the distribution of z symmetric around 1 and such that
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|z — 1] ~ Ga(a,1).
Show that

z X
re) L o & )1 - ol = explt -

)

is integrable around z = 1 when a < 1 but not at infinity. Run a simulation
experiment to evaluate the performances of this new proposal.

. The integral J is finite when v > 1/2 since the function

fu(z)

T
1—2x

is equivalent to z'/>7~! = 27¥~"? at = +o0. Since v + 1/2 > 1, the
function is integrable. (The condition v > 1/2 is missing in the text of
the exercise.) Similarly, at x = 1, the function is equivalent to |1 — z|~"2,
which is integrable.

The function

is not integrable at x = 1 since it is equivalent to 1/|1 — z|.

. Using as importance function ~y

— the density of the Student 7 (v,0,1) distribution produces an impor-
tance weight of 1 and an infinite variance estimator since the integrand
is not square integrable;

—  the density of the Cauchy %(0,1) distribution produces a well-behaved
importance weight since the Cauchy has heavier tails when v > 1/2,
however, the integrability problem at x = 1 remains, hence an impor-
tance sampling estimate with infinite variance;

— the density of the normal .47(0,v/(v—2)) distribution faces difficulties
both with integrability of the squared integrand at x = 1 and with the
infinite variance of the importance weight due to thinner tails.

When evaluating the performances of the three solutions in R, one can

use the following:

grand=function(x,nu=3){
sqrt(abs(x)/abs(1-x))}

N=10"3

sampone=rt (N,df=3)

samptwo=rcauchy (N)

samptre=rnorm(N)

weitwo=dt (samptwo,df=3)/dcauchy(samptwo)

weitre=dt (samptre,df=3)/dnorm(samptre)
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Fig. 2.3. Evolution of three importance sampling evaluations of the integral J using
a normal sample (gold), a t3 sample (blue), and a Cauchy sample (sienna).

plot (cumsum(grand (samptwo) *weitwo)/(1:N),type="1",
xlab="simulations",ylab="cumulated average",lwd=2,col="sienna"

lines(cumsum(grand (samptre)*weitre)/(1:N),col="steelblue",lwd=2)

lines(cumsum(grand (sampone))/(1:N),col="gold2",1lwd=2)

Running the above code several times exhibits variability in the outcome,

with sometimes agreement between the estimators and sometimes huge

jumps in some of the series, as exemplified by Figure 2.3 in this manual.
3. If we consider instead the folded Gamma solution, its density is

1 1
- 1= a—1 _—|1—z| )
) = 5 gl el e

Therefore, taking h(x) = |z|/|1 —2| (missing from the text of the exercise),

F@) ol £2a) 11— a2 exp|1 —af
y(x) v P

h(x)

which is integrable around x = 1 when o < 1 but not at x = £o0.
Running the R code

alpha=.5

y=rgamma (N, sh=alpha)
x=sample(c(-1,1),N,rep=TRUE) *y+1
weiqar=2xdt (x,df=3) /dgamma(y,sh=alpha)

does not show a considerable improvement in the evaluation of the integral
(Figure 2.4 in this manual). (It may be noted that in this particular run,
the folded Gamma solution does provide the estimation the closest to the
true value.)
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1
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Fig. 2.4. Evolution of three importance sampling evaluations of the integral J using
a normal sample (gold), a t3 sample (blue), a Cauchy sample (sienna), and a folded
Gamma G(.5,1) (tomato).

2.19 Evaluate the harmonic mean approximation
al 1
mi(Dp) =1/ N1 _—
1(P) / ; €1(01;|Dn)
when applied to the .#/(0, 02) model, normaldata, and an .#%(1,1) prior on o2.

Given a normal 4 (0,0%) sample D,, and a ¢(1,1) prior on 7 = 02, the
posterior on 7 is simply

7(7|Dp) o 7% exp {—1/2 Z 1’22’7'} exp{—7} = 7" exp {—’T

i=1

1+1/2ix?1} ,

i=1

which means that the posterior distribution on 7 is a

% <n/2+ 1,12 a? + 1)

i=1

distribution.

Evaluting the harmonic mean approximation thus implies producing a
sample from the posterior

N=10"4

simtau=rgamma (N, sh=33,rat=1+.5*%sum(normaldata$x2))

and averaging the inverse likelihoods
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> kood=function(tau){ (2*pi/tau)”(-32)*exp(-0.5*sum(normaldata$x2~2)*tau) }
> 1/mean(1/kood(simtau))
[1] 1.149142e-21

If we repeat this experiment many times, the estimates remain within this
order of magnitude. However, the true value of the marginal likelihood is

oo n —1—n/2
(277)_"/2/ '/ {—T 1+ 1/2213121
0 =1

equal to

14 1/2 Z x?] } dr = (2r) 7" I'(/2))

> (2xpi)~(-32)*gamma(32)/(1+0.5*sum(normaldata$x2-2)) "33
[1] 0.0001717292

There is therefore no connection between the estimate and the true value of
the marginal likelihood, confirming our warning that it should not be used.
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Regression and Variable Selection

3.1 Show that the matrix Z is of full rank if and only if the matrix ZTZ is in-
vertible (where ZT denotes the transpose of the matrix Z, which can be produced
in R using the t(Z) command). Apply to Z = [1,, X] and deduce that this
cannot happen when p+ 1 > n.

The matrix X is a (n,k + 1) matrix. It is of full rank if the k& + 1 columns
of X induce a subspace of R™ of dimension (k + 1), or, in other words, if
those columns are linearly independent: there exists no solution to Xy = 0,,
other than v = 0,,, where 011 denotes the (k + 1)-dimensional vector made
of 0’s. If XTX is invertible, then X~ = 0, implies XTX'y = XTo, = Ok+1
and thus v = (X'X)710;41 = 0441, therefore X is of full rank. If XTX is
not invertible, there exist vectors 5 and v # (3 such that XTX3 = X X~,
ie. XTX(B8 —9) = 0p41. This implies that || X(8 — 7)||*> = 0 and hence
X(B =) =0, for B —~ # O0gy1, thus X is not of full rank.

Obviously, the matrix (k + 1,k + 1) matrix X" X cannot be invertible if
k 4+ 1 > n since the columns of X are then necessarily linearly dependent.

3.2 Show that solving the minimization program
min (y = X8)" (y = X5)

requires solving the system of equations (XTX)3 = XTy. Check that this can
be done via the R command solve (t (X) %% (X) ,t (X) %*%y) .

If we decompose (y — X8)T(y — XB) as

y'y -2y XB+B8TXTXp
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and differentiate this expression in 5, we obtain the equation
—2y X +287XTX = 0441,
ie.
(XTX)B=XTy

by transposing the above.

As can be checked via help(solve), solve(A,b) is the R function that
solves the linear equation system Ax = b. Defining X and y from caterpillar,
we get

> solve (t (XD %*%X, t (X) %xly)

[,1]
rep(1, 33) 10.998412367
Vi -0.004430805
V2 -0.053830053
V3 0.067939357
V4 -1.293636435
V5 0.231636755
V6 -0.356799738
V7 -0.237469094
V8 0.181060170
V9 -1.285316143
V10 -0.4331056521

which [obviously] gives the same result as the call to the linear regression
function Im():

> Im(y~X-1)

Call:
Im(formula =y ~ X - 1)

Coefficients:
Xrep(1, 33) Xvi XvV2 Xv3 Xv4 XV5
10.998412 -0.004431 -0.053830 0.067939 -1.29363 0.23163
XvVe Xv7 XV8 Xv9 XV10

-0.356800 -0.237469 0.181060 -1.285316 -0.43310

Note the use of the -1 in the formula y~X-1 that eliminates the intercept
already contained in X.

3.3 Show that the variance of the maximum likelihood estimator of /3 in the
regression model is given by V(§|0?) = o2(XTX) 1.
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Since f = (XTX) !XTy is a linear transform of y ~ .4 (X3, 021,), we
have
B N (XTX)TIXTXB,0*(XTX)TIXTX(XTX)7Y)
ie.

BN (8,05 (XTX)TT)
3.4 For the model
y|B,0% ~ A, (XB,0°1,,)

a conjugate prior distribution is as follows: the conditional distribution of 3 is
given by _
,3|0‘2 ~ %(6’ UzM_l) )

where M is a (p, p) positive definite symmetric matrix, and the marginal prior on

o2 is an inverse Gamma distribution

0% ~ IY(a,b), a,b>0.

Taking advantage of the matrix identities

M+X"X) " =M ' -M (M +(X™X)") " M!

=X'X)"'-XTX)T'MT - (XTX)T) T (XTX) !
and
XXM+ X'X)"'M= (M '(M+X'X)X'X)") "
- M+ XX
establish that

Bly, 0 ~ Ay (M +XTX)"H(XTX)5 + MB},o*(M+XTX)71)  (38)

where 3 = (XTX)"'1XTy and

2 3_ A\T -1 T~x\=1\"L (3 _ A
02|wag<g+a,b+;+<5 B (M 00 3 )

(3.9)
where s2 = (y — AX)T(y — 3X) are the correct posterior distributions. Give a
(1 — &) HPD region on §.

Starting from the prior distribution
Blo?, X ~ N1 (B, 0 M™Y) 0% X ~ 7Y (a,b),

the posterior distribution is
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+(B=BT(XTX)(B - B) + 5" + Qb}
= ok e o LGT(M 4+ XTX)B — 267 (MG + XTXP)
ATMB+ AT + 5%+ 20)

p—k-n=2a=3 o %‘12 {(B—E[Bly, X])T(M + XTX)(8 — E[B]y, X])

+B8TMB + BT(XTX)B — ElBly, X|T(M + XTX)E[Bly, X] +5* + 25

with
E[Bly, X] = (M + X" X) " (MB+ XTXp).

Therefore, (3.3) is the conditional posterior distribution of 3 given o2. Inte-

grating out 8 leads to
(0?13, 5% X) oc 0772072 exp % {BTMB +BT(XTX)p
~E[Bly, X]" (M + XTX)E[B|y, X] + s> + 2b}
=g 2072 gxp 2_712 {ﬁTMB +BT(XTX)B+ s> +2b
~(MB+ XTXB)T(M + XTX) " (MB+ XTXB) |
Using the first matrix identity, we get that

(MB+XTX3)T (M + XTX) ™ (MB+ X" Xp)
= BTMB - BT (M7 + (XTX) ) B
+BT(XTX)B - BT (M—l n (XTX)—l)_lﬁA
+28T(XTX) (M +XTX) " MJ
=BTMB+BT(XTX)p
—@=-HT(M (X)) (B B)

by virtue of the second identity. Therefore,

HXTX)) (B B)+ s+ 2}

which is the distribution (3.4).

Since .
/6|va ~ ‘%ﬂ-ﬁ-l (n+2a,ﬂ, E) )
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this means that

(B—)TEHB—f)
n+ 2a

1 (n+2a+k+1)

and therefore that an HPD region is of the form
5o = {8, (B=RTEB-p) <k},

where k, is determined by the coverage probability a.

Now, (8 — 2)TE2~1(8 — 4) has the same distribution as ||z||> when
z ~ Tr1(n + 2a,0, I;4+1). This distribution is Fisher’s F(k 4+ 1,n + 2a) dis-
tribution, which means that the bound k, is determined by the quantiles of
this distribution.

3.5 The regression model of Exercise 3.4 can also be used in a predictive sense:
for a given (m, p + 1) explanatory matrix X, i.e., when predicting m unobserved
variates ¢;, the corresponding outcome y can be inferred through the predictive
distribution 7(y|0?,y). Show that 7(y|o2,y) is a Gaussian density with mean

E™ 7|02, y] = X(M + X"X) /(X X3 + M§)
and covariance matrix
V™ (§l0%,y) = 02(In + X(M 4+ XTX)'XT).
Deduce that
Iy ~ T (1 + 20, XM + XTX) "1 (XTXG + M§),

2%+ 52+ (B —B)T (M~ +(XTX)"1) ' (5 - B)
n+ 2a
X {Im FXM + XTX)‘lfiT}) :

Once again, integrating the normal distribution over the inverse gamma
random variable 0% produces a Student’s .7 distribution. Since

nos®
22 " 2(c+1)

yx 79 ( (- BTXTXG - )

under Zellner’s G-prior, the predictive distribution is a

. > SBFcB s+ (B=B)TXTX(B-B)/(c+1)
y|an7XN<7k+l <naX c+1 ’ n(c+1)

x{1m+ ¢ X’(XTX)‘lXT}>
c+1
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distribution.

3.6 Show that the marginal distribution of y associated with (3.8) and (3.9) is
given by

y ~ T <2a,X,§, Q(In - XM1XT)> .
a

The joint posterior is given by

Blo%,y, X ~ Moy (8,05 (XTX) ),
Aly, X ~ IG((n—k —1)/2,5%/2).

lherefore,
ﬂ|yX I, n—k—1372 (X X)l
’ i -k —-1

by the same argument as in the previous exercises.

3.7 Show that the matrix (I, + ¢X(XTX)"!XT) has 1 and g + 1 as only
eigenvalues. (Hint: Show that the eigenvectors associated with g + 1 are of the
form X/ and that the eigenvectors associated with 1 are those orthogonal to
X). Deduce that the determinant of the matrix (I, + ¢X(XTX)~*XT) is indeed
(g+1)P*

Given the hint, this is somewhat obvious:

(I, +eX(XTX)'X)XB = XB+cX(XTX) ' XTX]
=(c+1)Xp
(I +eX(XTX) ' XNz =24 eX(XTX)1X T
=z
for all #’s in R**! and all z’s orthogonal to X. Since the addition of those two
subspaces generates a vector space of dimension n, this defines the whole set

of eigenvectors for both eigenvalues. And since the vector subspace generated
by X is of dimension (k + 1), this means that the determinant of

(I, +cX(XTX)71XT)

is (c+ 1)kt x 1n=k-1,
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3.8 Under the Jeffreys prior, give the predictive distribution of y, m dimensional
vector corresponding to the (m,p) matrix of explanatory variables X.

This predictive can be derived from Exercise 3.5. Indeed, Jeffreys’ prior
is nothing but a special case of conjugate prior with a = b = 0. Therefore,
Exercise 3.5 implies that, in this limiting case,

IIy X, X ~ T (n, X (M + XTX)H(XTXB + M),

SHB-HTMT+(XTX)N (BB
x {Im XM+ XTX)—lXT}) .

3.9 If (z1,x2) is distributed from the uniform distribution on
{(21,22); (z1 = 1)* + (z2 — 1)® < 1}U{(21, 22); (z1 +1)* + (22 +1)* < 1},

show that the Gibbs sampler does not produce an irreducible chain. For this dis-
tribution, find an alternative Gibbs sampler that works. (Hint: Consider a rotation
of the coordinate axes.)

The support of this uniform distribution is made of two disks with re-
spective centers (—1,—1) and (1,1), and with radius 1. This support is not
connected (see Figure 3.1 in this manual) and conditioning on x; < 0 means
that the conditional distribution of zg is % (—1—+/1 — 2§, —1++/1 — 2%, thus
cannot produce a value in [0, 1]. Similarly, when simulating the next value of
x1, it necessarily remains negative. The Gibbs sampler thus produces two
types of chains, depending on whether or not it is started from the negative
disk. If we now consider the Gibbs sampler for the new parameterisation

Y1 =21+ T2, Y2=2T2—T1,

conditioning on y; produces a uniform distribution on the union of a negative
and of a positive interval. Therefore, one iteration of the Gibbs sampler is
sufficient to jump [with positive probability] from one disk to the other one.

3.10 If a joint density g(y1,y=2) corresponds to the conditional distributions
91(y1]y2) and g2 (y2ly1), show that it is given by

_ 92(y2|y1)
9 ) = T ) o) o
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€
o

Fig. 3.1. Support of the uniform distribution.

If the joint density g(y1,y2) exists, then

9(y1,y2) = 91(91)92(y2|y1)
= ¢*(y2)91(u1]y2)

where g' and ¢g? denote the densities of the marginal distributions of y; and
Y2, respectively. Thus,

as a function of y; [g?(y2) is irrelevant]. Since g is a density,
1 91 (y1ly2) 91(uly2) |
g (y1) =
92(y2y1) g2 y2|u

g1(uly2) 4
9(y1,y2 =0 y1|y2
Z/2|u

Since y; and yo play symmetric roles in this derlvatlon, the symmetric version
also holds.

and

3.11 Considering the model

7|0 ~ Bin(n,0), 6 ~ Be(a,b),
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derive the joint distribution of (7, 6) and the corresponding full conditional distri-
butions. Implement a Gibbs sampler associated with those full conditionals and
compare the outcome of the Gibbs sampler on 6 with the true marginal distribu-
tion of 6.

The joint density of (n,0) is

7(n,0) <”) 07(1 — 0)"9°(1 — )"
n
The full conditionals are therefore
n|6 ~ Bin(n,0)  0ln ~ Be(a+n,b+n—mn).
This means running a Gibbs sampler is straightforward:
# pseudo-data
n=18
a=b=2.5
N=10"5
#storage matrix
#col.1 for eta, col.2 for theta
gibb=matrix(NA,N,2)
gibb[1,1]=sample(0:n,1)
gibb[1,2]=rbeta(l,a+gibb[1,1],b+n-gibb[1,1])
for (t in 2:N){
gibb[t,1]=rbinom(1,n,gibb[t-1,2])
gibb[t,2]=rbeta(l,a+gibb[t,1] ,b+n-gibb[t,1]1)}
The output of the above algorithm can be compared with the true marginal
distribution, namely the Be(a, b) distribution

hist(gibb[,2],prob=TRUE, col="wheat")
curve (dbeta(x,a,b),add=TRUE, 1wd=2)

which shows indeed a very good fit (Figure 3.2 in this manual).

3.12 Take the posterior distribution on (0, %) associated with the joint model

z5|0,0% ~ N (0,0%), i=1,...,n,
0 ~ N (0,72, o02~19(a,b).

Show that the full conditional distributions are given by

o2 nr? o272 >

—— Oy + T
02+ nr2 o24+nt2 " o2+ nr2

Olx,0°% ~ N <

and



30 3 Regression and Variable Selection

A
f by

hi

I
| y \

7 /

5 l

o "‘ {‘

| h
5 1
i I
F YT
h
h
T T T 1
2 04 06 08 10

15

1.0

(X

0.0

r T
0.0 0.

[}

Fig. 3.2. Fit of the Gibbs output to the Beta B(5/2,5/2) distribution.

2 n 1 2

i
where 7 is the empirical average of the observations. Implement the Gibbs sampler
associated with these conditionals.

From the full posterior density

(6, 0%[x) Hexp{—(mi —0)?/20%} exp{—(0 — 0p)* /27%} (0272727t exp{—b/o?}
i=1
= (o2)7"*7 7 exp{—n(z — 0)* /202 — 5% [20% — (0 — 09)? /27% — b/0?}
we derive easily that
m(0]x,0) o exp{—n(z — 0)* /20% — (0 — 69)* /27°},

which leads to

0lx,02 ~ N | —— 0 z,
| <02+n72 o+t 02 +nt? 02 4+ nt?

o? nr? o272 )
Similarly,

m(0?x,0) o (0) 727 exp{— (x; — 0)*/20% — b/o?},
i=1

hence
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aﬂ&@wfg<wb+a9ﬁ§:@f_m2+b>'

K

Running an R code based on those two conditionals is straightforward:

# pseudo-data

n=1492

x=rnorm(n)

meanx=mean (x)
varx=var (x) *(n-1)

a=b=2.5

tau=5

meantop=n*tau*meanx
apost=a+(n/2)

# Gibbs parameters

N=10"4

gibb=matrix(NA,N,2)
gibb[1,1]=rnorm(1,mean(x),6)
gibb[1,2]=1/rgamma(l,sh=apost,rate=b+0.5*sum((x-gibb[1,1])"2))
for (t in 2:NM){

gibb[t,1]=rnorm(1,mean=meantop/(gibb[t-1,2]+n*tau),
sd=sqrt (gibb[t-1,2]*tau/(gibb[t-1,2] +n*xtau)))
gibb[t,2]=1/rgamma(1,sh=apost,rate=b+0.5*sum((x-gibb[t,1])"2))
}
# remove warmup
gibb=gibb[(N/10) :N,]
par (mfrow=c(1,2))
plot(gibb,typ="1",col="gray",ylab=expression(sigma~2)}
grid.the=seq(-.15,.15,1e=111)
grid.sig=seq(.8,1.2,1e=123)
like=function(the,sig){
-.5*xn* (meanx-the) "2/sig-.5*%varx/sig-.5*n*log(sig) -
dnorm(the,sd=sqrt (tau) ,log=TRUE) -dgamma(1/sig,sh=a,rat=b,log=TRUE)}
post=matrix(NA,111,123)
for (i in 1:111)
post[i,]=like(grid.the[i],grid.sig)
image(grid.the,grid.sig,post)
points(gibb,cex=.4,col="sienna"
contour(grid.the,grid.sig,post,add=TRUE)

Figure 3.3 in this manualshows how the Gibbs sample fits the target, after
eliminating 10? iterations as warmup.
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Fig. 3.3. Gibbs output for the normal posterior with (left) Gibbs path and (right)
superposition with the log-posterior.
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Generalized Linear Models

4.1 Show that, for the logistic regression model, the statistic ) ., y; X" is suf-
ficient when conditioning on the x*'s (1 < i < n), and give the corresponding
family of conjugate priors.

The likelihood associated with a sample ((y1,X1), ..., (Yn, X, )) from a logistic
model writes as

n eXp ZTﬁ) Yi 1 1—y;
((Bly,x) H (1 + exp( xZTﬁ)) <1 + exp(x”ﬂ))

1=1
n
—exp{Zyixﬁﬂ}/H 1+exp ZTﬂ)]
i=1 i=1
Hence, if we consider the x%’s as given, the part of the density that only

depends on the y;’s is
n
exp {Z Yi X”ﬂ}
i=1

and factorises through the statistic >, y; x*
This implies that the prior distribution with density

(B0, \) x exp {foﬁ}/H 1 + exp(x ’Tﬂ)]
is conjugate, since the corresponding posterior is 7(8|& + iy vix", A+ 1).

4.2 Show that the logarithmic link is the canonical link function in the case of
the Poisson regression model.
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The likelihood of the Poisson regression model is

L(Bly, X) = H (ylz') exp {yi XiTﬁ _ eXp(xiTﬁ)}

so log(u;) = x'T3 and the logarithmic link is indeed the canonical link func-
tion.

4.3 Suppose y1, .. ., yi are independent Poisson &7 (u;) random variables. Show
. k
that, conditional on n = >"7 ; y;,

y = (yla"'ayk) N%k(n;alw'wak)a

and determine the ¢;'s

The joint distribution of y is

K vi k
f(y|:u17aHk)H(II;j')eXp{ZNI} )
i=1 v i=1

while n = Zl 1Y ~ 77(2:Z 1 i) [which can be established using the mo-
ment generating function of the P(u) distribution]. Therefore, the conditional
distribution of y given n is

f(y‘,ulw"a/j/knn) =

() e, ()

7[2%31%]” €xXp {* ZZ 1 Hz}
n! b v
- H?:l yi! 11;[1 (Ef 1 M ) (Zyl> ’

which is the pdf of the My (n;aq, ..., ax) distribution, with

Hi

k
Zj:l Mg

This conditional representation is a standard property used in the sta-
tistical analysis of contingency tables (Section 4.5): when the margins are
random, the cells are Poisson while, when the margins are fixed, the cells are
multinomial.

. i=1,...k.

o; =
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4.4 For 7 the density of an inverse normal distribution with parameters 6; = 3/2
and 05 = 2,
m(z) oc 2732 exp(—3/2z — 2/x)I,>0,

write down and implement an independence MH sampler with a Gamma proposal
with parameters (o, 8) = (4/3,1) and (o, 8) = (0.54/4/3,0.5).

A possible R code for running an independence Metropolis—Hastings sam-
pler in this setting is as follows:

# target density
target=function(x,thel=1.5,the2=2){
x” (-thel)*exp(-thel*x-the2/x)
¥

al=4/3
bet=1

# initial value
mcmc=rep(1,1000)

for (t in 2:1000){

y = rgamma(l,shape=al,rate=bet)
if (runif(1)<target(y)*dgamma(mcmc[t-1],shape=al,rate=bet)/
(target (mcmc [t-1]) *dgamma (y, shape=al,rate=bet)))
mcme [t] =y
else
meme [t]=mcme [t-1]

# plots
par (mfrow=c(2,1) ,mar=c(4,2,2,1))
res=hist (mcmc,freq=F,nclass=55,prob=T,col="grey56",
ylab=ll n , maln=" ")
lines(seq(0.01,4,length=500) ,valpi*max(res$int) /max(valpi),
lwd=2,col="sienna2")
plot(mcmc,type="1",col="steelblue2",lwd=2)

The output of this code is illustrated on Figure 4.1 in this manual and shows
a reasonable fit of the target by the histogram and a proper mixing behaviour.
Out of the 1000 iterations in this example, 600 corresponded to an acceptance
of the Gamma random variable. (Note that to plot the density on the same
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scale as the histogram, we resorted to a trick by identifying the maxima of
the histogram and of the density.)
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Fig. 4.1. Output of an MCMC simulation of the inverse normal distribution.

4.5 Consider o1, o, and w3 iid (6, 1), and 7(6) o exp(—62/100). Show that
the posterior distribution of 6, 7(0|z1, z2, z3), is proportional to

exp(=62/100)[(1 + (6 = 21)*) (1 + (6 = 22)*) (A1 + (0 —23)*)] " (4.1)

and that it is trimodal when z; = 0, x5 = 5, and z3 = 9. Using a random walk
based on the Cauchy distribution €’ (0, 0%), estimate the posterior mean of 6 using
different values of o2. In each case, monitor the convergence.

The function (4.1) appears as the product of the [Normal] prior by the
three [Cauchy] densities f(x;|0). The trimodality of the posterior can be
checked on a graph when plotting the function (4.1).

A random walk Metropolis—Hastings algorithm can be coded as follows

x=c(0,5,9)

# target

targ=function(y){
dnorm(y,sd=sqrt (50))*dt (y-x[1],df=1)*
dt (y-x[2],df=1)*dt (y-x[3],df=1)

}

# Checking trimodality
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plot(seq(-2,15,length=250),
targ(seq(-2,15,length=250)) ,type="1")

sigma=c(.001,.05,1)*9 # different scales
N=100000 # number of mcmc iterations

mcmc=matrix (mean(x) ,ncol=3,nrow=N)
for (t in 2:N){

mcme [t,]=mcmc[t-1,]

y=mcmc [t,]+sigma*rt(3,1) # rnorm(3)
valid=(runif (3)<targ(y)/targ(mcmc[t-1,]))
mcme [t,valid]=y[valid]

}

The comparison of the three cumulated averages is given in Figure 4.2 in this
manual and shows that, for the Cauchy noise, both large scales are acceptable
while the smallest scale slows down the convergence properties of the chain.
For the normal noise, these features are exacerbated in the sense that the
smallest scale does not produce convergence for the number of iterations under
study [the blue curve leaves the window of observation], the medium scale
induces some variability and it is only the largest scale that gives an acceptable
approximation to the mean of the distribution (4.1).

4.6 Estimate the mean of a %a(4.3,6.2) random variable using

1. direct sampling from the distribution via the R command
> x=rgamma(n,4.3,scale=6.2)

2. Metropolis—Hastings with a Za(4, 7) proposal distribution;

3. Metropolis—Hastings with a %a(5, 6) proposal distribution.

In each case, monitor the convergence of the cumulated average.

Both independence Metropolis—Hastings samplers can be implemented via
an R code like

al=4.3
bet=6.2

mcme=rep (1,1000)
for (t in 2:1000){

mcme [,t]=mcmc[,t-1]

y = rgamma(500,4,rate=7)

if (runif (1)< dgamma(y,al,rate=bet)*dgamma(mcmc[t-1],4,rate=7)/
(dgamma (mcmc [t-1] ,al,rate=bet) *dgamma(y,4,rate=7))){
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Fig. 4.2. Comparison of the three scale factors o = .009 (blue), o = .45 (gold) and
o =9 (brown), when using a Cauchy noise (left) and a normal noise (right).

mcme [t] =y
}
}

aver=cumsum(mcmc) /1:1000

When comparing those samplers, their variability can only be evaluated
through repeated calls to the above code, in order to produce a range of out-
puts for the three methods. For instance, one can define a matrix of cumulated
averages aver=matrix(0,250,1000) and take the range of the cumulated av-
erages over the 250 repetitions as in ranj=apply(aver,1,range), leading to
something similar to Figure 4.3 in this manual. The complete code for one of
the ranges is
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al=4.3
bet=6.2

mcmc=matrix(1,ncol=1000,nrow=500)
for (t in 2:1000){
mecme [, t]=mcmc[,t-1]
y = rgamma(500,4,rate=7)
valid=(runif (500)<dgamma (y,al,rate=bet)*
dgamma (mcme [i,t-1],4,rate=7)/(dgamma(mcmc [,t-1] ,al,rate=bet)*
dgamma (y,4,rate=7)))
mcme [valid,t]=y[valid]
}
aver2=apply(mcmc, 1, cumsum)
aver2=t (aver2/(1:1000))
ranj2=apply(aver2,2,range)
plot(ranj2[1,],type="1",ylim=range(ranj2),ylab="")
polygon(c(1:1000,1000:1),c(ranj2[2,],rev(ranj2[1,1)))

which removes the Monte Carlo loop over the 500 replications by running
the simulations in parallel. We can notice on Figure 4.3 in this manual that,
while the output from the third sampler is quite similar with the output from
the iid sampler [since we use the same scale on the y axis|, the Metropolis—
Hastings algorithm based on the %a(4,7) proposal is rather biased, which
may indicate a difficulty in converging to the stationary distribution. This is
somehow an expected problem, in the sense that the ratio target-over-proposal
is proportional to 2%-% exp(0.8x), which is explosive at both x = 0 and x = oo.

12
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08
|
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|
06
|

Fig. 4.3. Range of three samplers for the approximation of the ¥a(4.3,6.2) mean:
(left) iid; (center) Ya(4,7) proposal; (right) 4a(5,6) proposal.
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4.7 For a standard normal distribution as target, implement a Hastings-
Metropolis algorithm with a mixture of five random walks with variances o =
0.01,0.1,1,10,100 and equal weights. Compare its output with the output of
Figure 4.2 (in the book).

We thus compare the R code provided in the book

hm=function(n,x0,sigma2){
x=rep(x0,n)
for (i in 2:n){
y=rnorm(1,x[i-1],sqrt(sigma2))
if (runif (1)<=exp(-0.5%(y"2-x[i-11"2))) x[il=y
else x[i]=x[i-1]
}

X

}

with a mixture version

mhm=function(n,x0){

x=rep(x0,n)

sigmas=c(0.01,0.1,1,10,100)

for (i in 2:n){
y=rnorm(1,x[i-1],sqrt(sample(sigmas,1)))
if (runif(1)<=exp(-0.5*(y~2-x[i-1]1"2))) x[il=y
else x[i]=x[i-1]
}

X

}

The outcome from the mixture version in Figure 4.4 in this manual is quite
an improvement when compared with Figure 4.2 from the book.

4.8 For the probit model under flat prior, find conditions on the observed pairs
(x?,y;) for the posterior distribution above to be proper.

This distribution is proper (i.e. well-defined) if the integral
3= / [Tee"8)" [1 - o(x"8)]' " a8
i=1

is finite. If we introduce the latent variable behind @(x'T 3), we get by Fubini

that .
Jz/Hcp(zi)/ dBdz ---dz,,
i=1 {BxiTB)Zz;, i=1,...,n}
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Fig. 4.4. Outcome of a Metropolis—Hastings simulation of a .47(0,1) target using
a mixture of random walk proposals: (Top:) Sequence of 10,000 iterations; (mid-
dle:) Histogram of sample compared with the target density; (bottom:) Empirical
autocorrelations using R function acf.

where x'T 3 = z; means that the inequality is x'T 8 < z; ify; = 1 and x*T 8 < z;
otherwise. Therefore, the inner integral is finite if and only if the set

‘B:{/B,XZTBEZZ, 7’:177”’}

is compact. The fact that the whole integral J is finite follows from the fact
that the volume of the polyhedron defined by 8 grows like |z;|* when z; goes to
infinity. This is however a rather less than explicit constraint on the (x*,y;)’s!

4.9 For the probit model under non-informative prior, find conditions on ). y;
and . (1 — y;) for the posterior distribution defined by (4.4) to be proper.

There is litZtl}gldiﬂ’erence with Exercise 4.8 because the additional term
BTXTX)B) /s only creating a problem when 3 goes to 0. This dif-

2k—1/2

ficulty is however superficial since the power in || X ]| is small enough
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to be controlled by the power in ||X3||*~! in an appropriate polar change of
variables. Nonetheless, this is the main reason why we need a 7(0?) o< o~>
prior rather than the traditional 7(0?) o 0~2 which is not controlled in 3 = 0.
(This is the limiting case, in the sense that the posterior is well-defined for
7(0?) oc o72F¢ for all € > 0.)

4.10 Include an intercept in the probit analysis of bank and run the correspond-
ing version of Algorithm 4.7 to discuss whether or not the posterior variance of
the intercept is high.

We simply need to add a column of 1’s to the matrix X, as for instance in
> X=as.matrix(cbind(rep(1,dim(X) [11),X))
and then use the code provided in the function hmflatprobit, i.e.

flatprobit=hmflatprobit(10000,y,X,1)
par (mfrow=c(5,3) ,mar=1+c(1.5,1.5,1.5,1.5))
for (i in 1:5){
plot(flatprobit[,i],type="1",xlab="Iterations",
ylab=expression(betali]))
hist(flatprobit[1001:10000,i] ,nclass=50,prob=T,main="",
xlab=expression(betali]))
acf (flatprobit[1001:10000,i],1ag=1000,main="",
ylab="Autocorrelation",ci=F)

}

which produces the analysis of bank with an intercept factor. Figure 4.5 in
this manual gives the equivalent to Figure 4.4 [in the book]. The intercept Sy
has a posterior variance equal to 7558.3, but this must be put in perspective
in that the covariates of bank are taking their values in the magnitude of 100
for the three first covariates and of 10 for the last covariate. The covariance
of x;13; is therefore of order 7000 as well. A noticeable difference with Figure
4.4 [in the book] is that, with the inclusion of the intercept, the range of 51’s
supported by the posterior is now negative.

4.11 Using the latent variable representation of the probit model, introduce
zi|B ~ A (xTB,1) (1 <i < n) such that y; = I, <o. Deduce that

'/V"r XiTﬂ7170 if yl:17
Zly“ﬁN{f/VEXiTﬁ,l,O if 4, =0,

where A4 (u,1,0) and A~ (u,1,0) are the normal distributions with mean x and
variance 1 that are left-truncated and right-truncated at 0, respectively. Check
that those distributions can be simulated using the R commands
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Fig. 4.5. bank: estimation of the probit coefficients [including one intercept So] via
Algorithm 4.2 and a flat prior. Left: 8;’s (¢ = 0,...,4); center: histogram over the
last 9,000 iterations; right: auto-correlation over the last 9,000 iterations.

> xp=qnorm(runif (1)*pnorm(mu)+pnorm(-mu) ) +mu
> xm=qnorm(runif (1) *pnorm(-mu) ) +mu

Under the flat prior () o 1, show that
Blyz ~ M (XTX) 71Xz, (XTX) )

where z = (z1,...,2,), and derive the corresponding Gibbs sampler, sometimes
called the Albert—Chib sampler. (Hint: A good starting point is the maximum
likelihood estimate of 3.) Compare the application to bank with the output in
Figure 4.4 in this manual. (Note: Account for differences in computing time.)
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If z;|8 ~ A (x'Tf3,1) is a latent [unobserved] variable, it can be related
to y; via the function
Yi = ]Iz,; <0

since P(y; = 1) = P(z > 0) =1 — & (—x'T8) = & (x'73). The conditional
distribution of z; given y; is then a constrained normal distribution: if y; = 1,
z; < 0 and therefore

zilyi = 1,8 ~ A (x'75,1,0) .

(The symmetric case is obvious.)

The command gnorm(runif (1)*pnorm(mu)+pnorm(-mu))+mu is a simple
application of the inverse cdf transform principle given, e.g., in Robert and
Casella (2004): the cdf of the A4 (u,1,0) distribution is

P(x —p) — P(—p)
P(p) '

(An alternative is to call the R library truncnorm.) If we condition on both
z and y [the conjunction of which is defined as the “completed model”], the
y;’s get irrelevant and we are back to a linear regression model, for which the
posterior distribution under a flat prior is given in Section 3.3.1 and is indeed
78 ((XTX)_lXTz, (XTX)_l).

This closed-form representation justifies the introduction of the latent vari-
able z in the simulation process and leads to the Gibbs sampler that simulates
[ given z and z given 8 and y as in

F(z) =

Ny (x773,1,0) if y; =1

zilyi, B~ {m (xT5.1.0) if g5 —0 (4.2)

where A4 (u,1,0) and AZ (p,1,0) are the normal distributions with mean g

and variance 1 that are left-truncated and right-truncated at 0, respectively.

A R code of this sampler is available as follows (based on a call to the R
library truncnorm):

gibbsprobit=function(niter,y,X){

p=dim(X) [2]

beta=matrix(0,niter,p)

z=rep(0,length(y))

mod=summary (glm(y~-1+X,family=binomial (1ink="probit")))

beta[l,]=as.vector (mod$coefficient[,1])

Sigma2=solve (t (X)%*%X)

for (i in 2:niter){
mean=XY%*%betal[i-1,]
z[y==1]=rtruncnorm(sum(y==1) ,a=0,b=Inf ,mean[y==1],sd=1)
z[y==0]==rtruncnorm(sum(y==0) ,a=-Inf,b=0,mean[y==0] ,sd=1)
Mu=3igma2%*%t (X) %*%z
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betali,]=rmvn(1l,Mu,Sigma?2)
}

beta

}

The output of this function is represented on Figure 4.6 in this manual. Note
that the output is somehow smoother than on Figure 4.5 in this manual. (This
does not mean that the Gibbs sampler is converging faster but rather than
its component-wise modification of the Markov chain induces slow moves and
smooth transitions.)

When comparing the computing times, the increase due to the simulation
of the z;’s is not noticeable: for the bank dataset, using the above codes re-
quire 27s and 26s over 10, 000 iterations for hmflatprobit and gibbsprobit.
respectively.

4.12 For the bank dataset and the probit model, compute the Bayes factor
associated with the null hypothesis Hy : f2 = 3 = 0.

The Bayes factor is given by
7 k20 ((2k —1)/4)
7= (k=221 {(2k — 5)/4}
TvT —(2k=1)/4 n iT B\ iT g\t~ ¥i
J (BT(XTX)B) [T, o(xTB)% [1-2(x'TB)] ™ dB
—(2k—5)/4 i , p -y, :
LT X)) VI @il 80 [1 - e(ail 89)]' " a0
For its approximation, we can use simulation from a multivariate normal as

suggested in the book or even better from a multivariate J: a direct adapta-
tion from the code in hmnoinfprobit is

A —
BOl_

noinfprobit=hmnoinfprobit (10000,y,X,1)
library (mnormt)

mkprob=apply (noinfprobit,2,mean)
vkprob=var (noinfprobit)
simk=rmvnorm(100000,mkprob, 2*vkprob)
usk=probitnoinflpost (simk,y,X)-
dmnorm(simk,mkprob, 2*vkprob,log=TRUE)

noinfprobitO=hmnoinfprobit(10000,y,X[,c(1,4)]1,1)
mkO=apply(noinfprobit0,2,mean)

vkO=var (noinfprobit0)

simkO=rmvnorm(100000,mk0, 2*vk0)
uskO=probitnoinflpost (simk0,y,X[,c(1,4)1)-
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Fig. 4.6. bank: estimation of the probit coefficients [including one intercept So] by
a Gibbs sampler 4.2 under a flat prior. Left: 8;’s (i = 0,...,4); center: histogram
over the last 9,000 iterations; right: auto-correlation over the last 9,000 iterations.

dmnorm(simkO,mk0,2*vk0,log=TRUE)
bfOprobit=mean (exp (usk)) /mean (exp (usk0))

(If a multivariate 7 is used, the dmnorm function must be replaced with
dt the density of the multivariate .7.) The value contained in bfOprobit is
67.74, which is thus an approximation to BJ, [since we divide the approxi-
mate marginal under the full model with the approximate marginal under the
restricted model]. Therefore, Hy is quite unlikely to hold, even though, inde-
pendently, the Bayes factors associated with the componentwise hypotheses
HZ : B2 =0 and H{ : B3 = 0 support those hypotheses.
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4.13 In the case of the logit model-i.e., when p; = expx'T3/{1 + expx'" 3}
(1 < i < k)—derive the prior distribution on ( associated with the prior 4.6 on

(pl) coo ?Pk)

The only difference with Exercise 4.11 is in the use of a logistic density,
hence both the Jacobian and the probabilities are modified:

ﬁ exp({K;9; — J%'T3)  exp(x'Th)
1 {1+ expE T {1+ expxiTH)}

exp <z": Kigifi”ﬂ>

7(f) x

i=1

k

H {1 + exp(i”ﬁ)}&

i=1

4.14 Examine whether or not the sufficient conditions for propriety of the pos-
terior distribution found in Exercise 4.9 for the probit model are the same for the
logit model.

There is little difference with Exercise 4.8 because the only change is [again)]
in the use of a logistic density, which has asymptotics similar to the normal
density. The problem at 8 = 0 is solved in the same manner.

4.15 For the bank dataset and the logit model, compute the Bayes factor as-
sociated with the null hypothesis Hy : 82 = B3 = 0 and compare its value with
the value obtained for the probit model in Exercise 4.12.

This is very similar to Exercise 4.12, except that the parameters are now
estimated for the logit model. The code is provided in bayess as

# noninformative prior and random walk HM sample
noinflogit=hmnoinflogit(10000,y,X,1)

# log-marginal under full model
mklog=apply(noinflogit,2,mean)
vklog=var(noinflogit)
simk=rmnorm(100000,mklog,2*vklog)
usk=logitnoinflpost(simk,y,X)-
dmnorm(simk,mklog,2*vklog,log=TRUE)

# noninformative prior and random walk HM sample
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# for restricted model
noinflogitO=hmnoinflogit(10000,y,X[,c(1,4)],1)

# log-marginal under restricted model

mkO=apply(noinflogit0,2,mean)

vkO=var (noinflogit0)

simkO=rmnorm(100000,mk0, 2*vk0)

uskO=logitnoinflpost(simkO,y,X[,c(1,4)])-
dmnorm(simkO,mk0,2*vk0,log=TRUE)

bfOlogit=mean (exp(usk))/mean (exp(usk0))

The value of bfOlogit is 127.2, which, as an approximation to B,, argues
rather strongly against the null hypothesis Hy. It thus leads to the same con-
clusion as in the probit model of Exercise 4.12, except that the numerical value
is almost twice as large. Note that, once again, the Bayes factors associated
with the componentwise hypotheses HZ : B2 = 0 and H§ : 83 = 0 support
those hypotheses.

4.16 Given a contingency table with four categorical variables, determine the
number of submodels to consider.

Note that the numbers of classes for the different variables do not matter
since, when building a non-saturated submodel, a variable is in or out. There
are

1. 2% single-factor models [including the zero-factor model];

2. (25 — 1) two-factor models [since there are (3) = 6 ways of picking a pair
of variables out of 4 and since the complete single-factor model is already
treated];

3. (2* — 1) three-factor models.

Thus, if we exclude the saturated model, there are 26 + 2% — 2 = 94 different
submodels.

4.17 In the case of a 2 x 2 contingency table with fixed total count n =
ni11 + ni2 + no1 + nog, we denote by 611,612,051, 025 the corresponding proba-
bilities. If the prior on those probabilities is a Dirichlet Z4(1/2,...,1/2), give the
corresponding marginal distributions of & = 617 + 615 and 8 = 011 + 051. Deduce
the associated Bayes factor if Hy is the hypothesis of independence between the
factors and if the priors on the margin probabilities  and [ are those derived
above.

A very handy representation of the Dirichlet Dy (d1,. .., dx) distribution is
that
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(&1, ., &)
Gt tgg D0k

when
«fiwga(éi,l), iZl,...,k’.

Therefore, if

(€11, &12, €21, &22)

ud
§11 + 812 + o1 + &oo b ~ Fa(/z 1),

(011; 0127 9217 022)

then
(€11 + &12, 621 + E22)

&1+ &2 +8&1 + &0’

(011 4 612,021 + O32) =
and "
(€11 + €12), (Ea1 + E22) © Fa(1,1)

implies that « is a Pe(1, 1) random variable, that is, a uniform % (01, ) vari-
able. The same applies to 5. (Note that @ and § are dependent in this repre-
sentation.)

Since the likelihood under the full model is multinomial,

[(0|T) = ( n >911111 0"12 0n21 03222 ,

n11 N2 N21

where T denotes the contingency table [or the dataset {ni1,n12,n21,n22}],
the [full model] marginal is

m(T) = (nll n12 n21) /0n11—1/2 n12—1/2 03121_1/2 0;1222—1/2 a0

( n ) HF (nij +1/2)

_ n11Mn12 N21 1,
7r2 F(n + 2)
( n ) H I'(n;j + 1/2)
_ n11M12 N21 ,J
7r2 (n+1)!

B H I'(ngj + Y2)
N (n + 1)7? I'(ni;+1) 7

where the 72 term comes from I'(1/2) = /7.
In the restricted model, 61 is replaced with a3, 612 by a(l — ), and so
on. Therefore, the likelihood under the restricted model is the product

<n7i> Oénl'(l _ a)nfnl. % <nn1) ﬁnl(l _ B)nfn.l ,
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where ny. = ny1 +n12 and n.y = n11 + ne1, and the restricted marginal under
uniform priors on both a and f is

o= (1) (1) [ era-ayaa [aas sy
( n ) ( n > (ne + D — 1+ 1) (01 +1)(n— 1y +1)!

ny.) \n.1 (n+2)! (n+2)!
(. +D)n=n1.+1) (na+1)(n—nyg+1)
 (n+2)(n+1) (n+2)(n+1)

The Bayes factor B is then the ratio mo(7)/m(T).
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Capture—Recapture Experiments

5.1 Show that the posterior distribution (N |n™t) given by (5.1), while asso-

ciated with an improper prior, is defined for all values of n". Show that the
normalization factor of (5.1) is n™ V 1, and deduce that the posterior median is
equal to 2(n™ v 1) — 1. Discuss the relevance of this estimator and show that it
corresponds to a Bayes estimate of p equal to 1/2.

Since the main term of the series is equivalent to N2, the series converges.
The posterior distribution can thus be normalised. Moreover,

> Z(Z-lkl)zi(i_zL)

i=ng

1 1 1
7n707n0+1+n0+17n0+2+"'
1
g

Therefore, the normalisation factor is available in closed form and is equal to
nt V1. The posterior median is the value N* such that 7(N > N*|nt) = 1/2,

i.e.
oo

Z Vigi41) = 1/21/ntvi = /N,

i=N*
which implies that N* = 2(n* Vv 1). This estimator is rather intuitive in
that E[n™|N,p] = pN: since the expectation of p is 1/2, E[n*|N] = N/2 and
N* =2n" is a moment estimator of N.

5.2 Under the same prior as in Section 5.2.1, derive the marginal posterior
density of N in the case where nj” ~ %(N,p) and
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iid
ng,...,n ~ B(nf,p)
are observed (the later are in fact recaptures). Apply to the sample
(nf,ng,...,nf) = (32,20,8,5,1,2,0,2,1,1,0),

which describes a series of tag recoveries over 11 years.

In that case, if we denote nt = nf +-- ~+n; the total number of captures,
the marginal posterior density of N is

N!
+ + -1

1

/ pn;rJrJrnzr(l _p)an;rnL(nlJrfn;rJr---Jrn;rfnzdp
0

(N =1)! ! 7+ it

O( (N—nJr)' ]IN>n1 " (1 _p)N+k LR dp
1
(N —1)! (N+1m1 — )

I ;
(N—ni)l (N+knf + 1)1 N2mivt

which does not simplify any further. Note that the binomial coefficients

() 6=

J

are irrelevant for the posterior of N since they only depend on the data.
The R code corresponding to this model is as follows:

n1=32
ndo=sum(32,20,8,5,1,2,0,2,1,1,0)

# unnormalised posterior

post=function(N){
exp(1lfactorial (N-1)+1factorial (N+11*nl-ndo)-
1factorial (N-n1)-1factorial (N+11*n1+1))
}

# normalising constant and
# posterior mean

posv=post ((n1:10000))
cons=sum(posv)

pmean=sum( (n1:10000) *posv)/cons
predi=sum(cumsum(posv)<.5*cons)
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The posterior mean is therefore equal to 282.4, while the posterior median is
243. Note that a crude analysis estimating p by p = (ng +...4+n11)/(10n]) =

0.125 and N by nf/p would produce the value N = 256.

5.3 Show that the conditional distribution of msy conditional on both sample

sizes ny and ny is given by (5.2) and does not depend on p. Deduce the expectation
E”[m2|n1, na, N}

Since
nlN‘@(Nap)7 m2|n1~93(n1,p)

and
ng —ma|ni, mg ~ B(N —ni,p),

the conditional distribution of ms is given by
N —
f(malni,ma) o (m )pm2(1 —p)mm ( " )PnZ_mQ(l —p) T
mo N2 — M2
(o) ()
X p
ma
(o) o)
x
(o) G =)/ )
0.8 )
mo Ng — M2 Uu»)

which is the hypergeometric J#(N,na,ni/N) distribution. Obviously, this
distribution does not depend on p and its expectation is

mo+ng— m2 ni—ma+N—ni—n2+ma

(1-p)

ning

E[m2|n17ng] = N

5.4 In order to determine the number N of buses in a town, a capture—recapture
strategy goes as follows. We observe n; = 20 buses during the first day and keep
track of their identifying numbers. Then we repeat the experiment the following
day by recording the number of buses that have already been spotted on the
previous day, say mo = 5, out of the ny = 30 buses observed the second day. For
the Darroch model, give the posterior expectation of N under the prior w(N) =
1/N.

Using the derivations of the book, we have that
N \nt

(N -1 (N —n)!
CIN — ) 2N+ 1) N

1 /N
m(Nny, ne, ma) < — ( ) B(n®+1,2N —n°+ 1)Iy>p+
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with nT = 45 and n¢ = 50. For nt = 45 and n¢ = 50, the posterior mean is
equal to 130.91.

5.5 Show that the maximum likelihood estimator of IV for the Darroch model
is N =nq/(mga/na), and deduce that it is not defined when mg = 0.

The likelihood for the Darroch model is proportional to
(N —ny)! (N —n™)!

(N) = (N—n2)l NI Inznt .
Since UN+1)  (N+1—m)(N+1—ny)

(N)  (N+1—-nt)(N+1) =
for

(N+1)2 = (N +1)(n1 +n2) +ning > (N +1)2 = (N + 1)n"
(N +1)(n1 +n2 —n") >ning
(N+1)< nin2

)

ma2

the likelihood is increasing for N < mnjng/m2 and decreasing for N >
ning/m2. Thus N = ning/m2 is the maximum likelihood estimator [assum-
ing this quantity is an integer|. If mq = 0, the likelihood is increasing with N
and therefore there is no maximum likelihood estimator.

5.6 Give the likelihood of the extension of Darroch’'s model when the capture—
recapture experiments are repeated K times with capture sizes and recapture
observations n; (1 < k < K) and my, (2 < k < K), respectively. (Hint: Exhibit
first the two-dimensional sufficient statistic associated with this model.)

The likelihood for the Darroch model is proportional to
(N —ny)! (N —n™)!

N = Ny w1 vzt
Since (N +1) _ (N+1—n)(N+1-n)

(N)  (N+1-nt)(N+1) =
for

(N+1)2 = (N +1)(ny +ng) +ning > (N+1)2 — (N +1)n*
(N +1)(ny +ng —nt) > ning
(N +1) < "2

)

ma
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the likelihood is increasing for N < mning/m2 and decreasing for N >
ning/m2. Thus N = ning/m2 is the maximum likelihood estimator [assum-
ing this quantity is an integer|. If mg = 0, the likelihood is increasing with N
and therefore there is no maximum likelihood estimator.

5.7 Give both conditional posterior distributions involved in Algorithm 5.8 in
the case n™ = 0.

When n* = 0, there is no capture at all during both capture episodes.
The likelihood is thus (1 — p)?Y and, under the prior w(N,p) = 1/N, the
conditional posterior distributions of p and N are

p|N,nt =0~ Be(1,2N +1),

(1—p*

N t =0~
lp,n" =0 N

That the joint distribution m(N,p|n™ = 0) exists is ensured by the fact that
7(N|nt =0) < 1/N(2N + 1), associated with a converging series.

5.8 Show that, for the two-stage capture model with probability p of capture,
when the prior on N is a Z2()) distribution, the conditional posterior on N —n*
is Z(\(1 —p)?).

The posterior distribution of (N, p) associated with the informative prior
7(N,p) = ANe™*/N! is proportional to

(N—]Xir)'N' AN p (1 — p)2N Insp+ -
The corresponding conditional on N is thus proportional to
ANV I AN=mT N e
mp (1-p) ]INzn+ X mp (1-p) HN2n+
which corresponds to a Poisson Z(A(1 — p)?) distribution on N —n.

5.9 Reproduce the analysis of eurodip summarized by Figure 5.1 when switching
the prior from 7(N,p) oc AN /N! to n(N,p) ox N~L.

The main purpose of this exercise is to modify the code provided in the
book (p.151) and in the demo for Chapter 5, since the marginal posterior
distribution of N is given in the book as
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(N —1)! (TN —ne)!

+ cC
T(NIn" ) o S TN D) Ve

(The conditional posterior distribution of p does not change.) This distribution
being non-standard, it makes direct simulation awkward and we prefer to use
a Metropolis-Hastings step, using a modified version of the previous Poisson
conditional as proposal ¢(N'|N,p). We thus simulate

N* —nt ~ 5 (N(t—l)(l _ p(tfl))T>

and accept this value with probability

T(N*[nt,n®)  g(NCVIN* ptD)

AN D[+, ne) g(NA NG, -0y

The corresponding modified R function is

gibbsli=function(nsimu,T,nplus,nc)
{
# conditional posterior
rati=function(N){
lfactorial (N-1)+1factorial (T*N-nc)-
1factorial (N-nplus)-1factorial (T*N+1)
}

N=rep(0,nsimu)
p=rep(0,nsimu)

N[1]=2*nplus
plil=rbeta(l,nc+1,T*N[1]-nc+1)
for (i in 2:nsimu){

# MH step on N
N[i]=N[i-1]
prop=nplus+rpois(1,N[i-1]*(1-p[i-1]1)"T)
if (log(runif (1))<rati(prop)-rati(N[i])+
dpois(N[i-1]-nplus,prop*(1-p[i-1]1)"T,log=T)-
dpois(prop-nplus,N[i-1]*(1-p[i-1])"T,log=T))
N[i]=prop
plil=rbeta(l,nc+1,T*N[i]-nc+1)
}
list (N=N,p=p)
}

The output of this program is given in Figure 5.1.
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Fig. 5.1. eurodip: MCMC simulation under the prior (N, p) oc N~ *.

5.10 An extension of the T-stage capture—recapture model of Section 5.2.3
is to consider that the capture of an individual modifies its probability
of being captured from p to g for future recaptures. Give the likelihood
K(N7p3q|n17n27m2'")nTamT)'

When extending the T-stage capture-recapture model with different prob-
abilities of being captured and recaptured, after the first capture episode,
where n; ~ Z(N,p), we observe T' — 1 new captures (i =2,...,T)

N —mgni, ng, Ma, ..., Ni—1,mi—1 ~ BN —ny —ng+ma +...+m;_1,p),
and T — 1 recaptures (¢ = 2,...,T),
mi|n1,n2,m2,...,ni_l,mi_lN%(ﬂq +ﬂ2—m2+...—mi_1,q).

The likelihood is therefore

T
<N) pnl(l —p)N*”I H <N —nmt...— mi_l)pnimi(l — p)N*Tllereri

ny ” ng —my
=2

d N+ N2 = o =M1\ 4y, nit...—m;
<11 ¢"(1— g™ :

i=2 mi
N!

nt —n* mt n*—n
XN ahi? 1=-p)™ " g™ (1—g" ™,

where nT =ny — my + - -+ — myp is the number of captured individuals,
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T
n* =Tn; + Z(T —J+1)(n; —my)

=2

and where mt = m; +- - -+my is the number of recaptures. The four statistics
(n1,n*,n*,m%) are thus sufficient for this version of the T-stage capture-
recapture model.

5.11 Another extension of the 2-stage capture—recapture model is to allow for
mark loss. If we introduce ¢ as the probability of losing the mark, r as the proba-
bility of recovering a lost mark and k as the number of recovered lost marks, give
the associated likelihood 4(N, p, ¢, 7|n1, ng, ma, k).

There is an extra-difficulty in this extension in that it contains a latent
variable: let us denote by z the number of tagged individuals that have lost
their mark. Then z ~ %(n1, q) is not observed, while k ~ 2(z,r) is observed.
Were we to observe (n1,ng, ma, k, ), the [completed] likelihood would be

N n
EWparimmma k) = ()= ¥ o () g g

Z\ & a—k (T — 2\ o ni—z—m
1— 2(1 — 1 2
. <k) ™ ") < ma > P ?)

% (N —ni+ Z) an—mg(l _ p)N—n1+Z—n2+M2
Ng — M2

)

since, for the second round, the population gets partitioned into individuals
that keep their tag and are/are not recaptured, those that loose their tag
and are/are not recaptured, and those that are captured for the first time.
Obviously, it is not possible to distinguish between the last two categories.
Since z is not known, the [observed] likelihood is obtained by summation over
z:

N! 7 n —ni—mn
(N_nl)'p 1+ 2(1 7p)2N 1—"n2

M)

z=kVN—ni—ns+mso

N_n1+Z _ k —k
X F1—q)™ 2 r¥(1 —r)* ",
i PR

é(vaa Q7r|nlan2am2a k) X

Note that, while a proportionality sign is acceptable for the computation of the
likelihood, the terms depending on z must be kept within the sum to obtain
the correct expression for the distribution of the observations. A simplified
version is thus
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N!
(N — nl)' pn1+n2(1 _ p)QN—nl—ng C]nl (T/(l o T))k

(N —n1+2)![q(1 —7)/(1 - g)]*
Z 2(ny — 2z —ma) (N —ny —ng +msa + 2)!’

z=kVN—n1—ns+ms

E(Nap7q7r|n17n27m27 k) X

ny—ms

but there is no close-form solution for the summation over z.

5.12 Show that the conditional distribution of 1 in the open population model
of Section 5.3 is proportional to the product (5.4).

The joint distribution of D* = (nq, ¢, ¢3,7r1,72) is given in the book as

N _
< >pn1(1 _ p>N7n1 <le> qm(l _ q)nlfh (nl Tl) pCQ(l _ p)Tll*Tl*CQ

ni C2

ny—r L fni—Tr1—T
X ( 1T 1>q7‘2(1 _ q)nl—T1—72( 1 1 2) p(13<1 _ p)71,1—’l"1—'r‘2—(:3 .
2

C3
Therefore, if we only keep the terms depending on 1, we indeed recover

1 T ny—r (nli’rl)!
g

)nlfﬁfcz
7"1!(711—7‘1). (nl—Tl—Cg)!

(1-p

(n1 —r1)! (1—q)m—"1"2 (n1 —7r1—712)! (1 —p)m—ri—r2=cs
(Tll —7‘1—T2)! (n1 —T1—T2—C3)!

x (ng —m)! { q }”

ril(ny —r1 —e)l(ny —r1 —rp —c3)! | (1 —¢q)?(1 —p)?

(") G et

under the constraint that 7y < min(ny,ny—re,n; —rs—cs, n; —ce) = min(n; —
o —C3,N1 — 02)-

5.13 Show that the distribution of 75 in the open population model of Section
5.3 can be integrated out from the joint distribution and that this leads to the
following distribution on 71:

(n1 = rl)!(nl — 71 — 03)!
7"1!(711 — T — Cg)!
q "
X(u—mu—@m+u—ma—@0 |

Compare the computational cost of a Gibbs sampler based on this approach with
a Gibbs sampler using the full conditionals.

7(ri|p, g, n1, c2,3)
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Following the decomposition of the likelihood in the previous exercise, the
terms depending on ro are

1 q "2 (ny =1y —1o)!
rol(ng —ry —r2)! ((1 -p)(1— q)} (n1 —r1 —re —c3)!

~ nl(m —7‘11— T2 — c3)! <(1 —p)q(l —Q)}Tz '

If we sum over 0 <7y < nj —r1 — c3, we get

k=0

e S

that we can agregate with the remaining terms in rq

(n—mr)! { q }Tl
ril(ni —ri—e2)! (1 —¢)*(1—p)?
to recover

(n1 — rl)!(nl -7 — 63)!
7‘1!(77,1 — T —02)!

7 (r1|p, g, n1, c2, c3)

( q )
(1-pA-9lg+1-pQA-q])

5.14 Show that the likelihood associated with an open population as in Section
5.3 can be written as

T N
K(N,p|@*) - Z HHQEZ(ttfl)(l B qfi(tfl))lieit

(€it,0i¢)s¢ t=11=1

« p(l—En)éit(l _ p)(l—eit)(l—éu,) ,
where g0 = ¢, g1 = 1, and §;; and ¢;; are the capture and exit indicators,
respectively. Derive the order of complexity of this likelihood; that is, the number
of elementary operations necessary to compute it.

This is an alternative representation of the model where each individual
capture and life history is considered explicitely. This is also the approach
adopted for the Arnason-Schwarz model of Section 5.5. We can thus define
the history of individual 1 < ¢ < N as a pair of sequences (€;;) and (d;),
where €;; = 1 at the exit time ¢ and forever after. For the model given at
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the beginning of Section 5.3, there are n; d;1’s equal to 1, r1 €;1’s equal to 1,
c2 d;2’s equal to 1 among the ¢’s for which ¢;; = 1 and so on. If we do not
account for these constraints, the likelihood is of order O(3N7T) [there are three
possible cases for the pair (e;;, d;¢) since d;; = 0 if €;; = 1]. Accounting for the
constraints on the total number of d;;’s equal to 1 increases the complexity of
the computation.

5.15 In connection with the presentation of the accept-reject algorithm in Sec-
tion 5.4, show that, for M > 0, if g is replaced with Mg in . and if (X,U) is
uniformly distributed on .#, the marginal distribution of X is still g. Deduce that
the density g only needs to be known up to a normalizing constant.

The set
S ={(z,u): 0 <u< Mg(x)}

has a surface equal to M. Therefore, the uniform distribution on .# has density
1/M and the marginal of X is given by

1 Mg(z)
/]Im,Mg(x)) = = 9@

This implies that uniform simulation in .% provides an output from g no mat-
ter what the constant M is. In other words, g does not need to be normalised.

5.16 For the function g(z) = (1+sin?(z))(2+cos*(4z)) exp[—z*{1+sin’(z)}]
on [0,27], examine the feasibility of running a uniform sampler on the set .
associated with the accept-reject algorithm in Section 5.4.

The function ¢ is non-standard but it is bounded [from above] by the
function g(z) = 6 exp[—z?] since both cos and sin are bounded by 1 or even
g(x) = 6. Simulating uniformly over the set . associated with g can thus be
achieved by simulating uniformly over the set .% associated with g until the
output falls within the set .% associated with g. This is the basis of accept-
reject algorithms.

5.17 Show that the probability of acceptance in Step 2 of Algorithm 5.9 is
1/M and that the number of trials until a variable is accepted has a geometric
distribution with parameter 1/M. Conclude that the expected number of trials
per simulation is M.

The probability that U < g(X)/(M f(X)) is the probability that a uniform
draw in the set
S ={(z,u): 0 <u< Mg(x)}
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falls into the subset
o ={(z,u) : 0 <u< f(x)}.

The surfaces of . and . being M and 1, respectively, the probability to fall
into % is 1/M.

Since steps 1. and 2. of Algorithm 5.2 are repeated independently, each
round has a probability 1/M of success and the rounds are repeated till the
first success. The number of rounds is therefore a geometric random variable
with parameter 1/M and expectation M.

5.18 For the conditional distribution of oy derived from (5.3), construct an
accept—reject algorithm based on a normal bounding density f and study its
performances for N = 532, n; = 118, u; = —0.5, and o2 = 3.

That the target is only known up to a constant is not a problem, as demon-
strated in Exercise 5.20. To find a bound on 7(a¢|N,ns) [up to a constant],
we just have to notice that

(1+ eo‘t)fN < e N

and therefore

_ 1
(1+e*)™N exp {atnt - T‘_Q(Olt Mt)Q}
1 2
< exp at(”t_N)_Q 5 (e — put)
o

2 2
ay at 2 Hi
= ——= +2—(us — o°(N — -
eXp{ 202 + 202 (ke = o™ ne)) 202}

1 1 9 9
= —exps ——— (g —p + 0*(N —n
Toro p{ 5,2 (e = ( t))}

1
X V2mo exp {—

s = [ = "V )}
The upper bound thus involves a normal A (u; — 0?(N —ny), 0?) distribution
and the corresponding constant. The R code associated with this decomposi-
tion is

# constants

N=53

nt=38

mut=-.5

sig2=3

sig=sqrt(sig2)
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# log target

ta=function(x){
-N*log(1l+exp(x))+x*nt-(x-mut) “2/(2*sig2)
}

#bounding constant
bmean=mut-sig2* (N-nt)
uc=0.5*1log(2*xpi*sig2)+(bmean~2-mut~2)/(2*sig2)

prop=rnorm(1,sd=sig)+bmean
ratio=ta(prop)-uc-dnorm(prop,mean=bmean,sd=sig,log=T)

while (log(runif(1))>ratio){

prop=rnorm(1,sd=sig)+bmean
ratio=ta(prop)-uc-dnorm(prop,mean=bmean,sd=sig,log=T)

3

The performances of this algorithm degenerate very rapidly when N — n; is
[even moderately] large.

5.19 When uniform simulation on the accept-reject set . of Section 5.4 is
impossible, construct a Gibbs sampler based on the conditional distributions of u
and z. (Hint: Show that both conditionals are uniform distributions.) This special
case of the Gibbs sampler is called the slice sampler (see Robert and Casella,
2004, Chapter 8). Apply to the distribution of Exercise 5.16.

Since the joint distribution of (X, U) has the constant density
t((E, u) = HOSuSg(m) )

the conditional distribution of U given X = x is % (0,¢(x)) and the condi-
tional distribution of X given U = u is % ({x; g(x) > u}), which is uniform
over the set of highest values of g. Both conditionals are therefore uniform
and this special Gibbs sampler is called the slice sampler. In some settings,
inverting the condition g(x) > u may prove formidable!

If we take the case of Exercise 5.16 and of g(x) = exp(—x?), the set
{z;g(x) > u} is equal to

{2:9(2) > u} = {2 < (~log(e))'/*},

which thus produces a closed-form solution.
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5.20 Show that the normalizing constant M of a target density f can be deduced
from the acceptance rate in the accept-reject algorithm (Algorithm 5.9 under the
assumption that g is properly normalized.

This exercise generalises Exercise 5.17 where the target f is already nor-
malised.
If f(z) = M f(x) is a density to be simulated by Algorithm 5.9 and if g is
a density such that R }
f(@) < Mg(x)

on the support of the density g, then running Algorithm 5.9 with an ac-
ceptance probability of g(z)/M f(z) produces simulations from f since the
accepted values have the marginal density proportional to

f(z)

1
I, - ~ u)dug(x) = —— x f(x).
/0 (0,F(2)/ 3Tg (] (W) du g(@) i f(z)

In that case, the average probability of acceptance is

[l [ 0,
x M x MM MM’

Since the value of M is known, the average acceptance rate over simulations,

0, leads to estimate M as
N 1

M=—.
oM

5.21 Reproduce the analysis of Exercise 5.20 for the marginal distribution of r;
computed in Exercise 5.13.

The only change in the codes provided in demo/Chapter.5.R deals with
thresh, called by ardipper, and with gibbs2 where the simulation of ry is
no longer required.

5.22 Modify the function ardipper used in Section 5.4 to return the acceptance
rate as well as a sample from the target distribution.

As provided in Section 5.4, the function ardipper is defined by

ardipper=function(nsimu=1,n1,c2,c3,r2,q92){

barr=min(nl-c2,n1-r2-c3)
boundM=thresh(0,n1,c2,c3,r2,barr)
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echan=1:nsimu
for (i in 1:nsimu){
test=TRUE
while (test){
y=rbinom(1,size=barr,prob=q2)
test=(runif (1) >thresh(y,n1,c2,c3,r2,barr))
}
echan[i]=y
}
echan

3

The requested modification consists in monitoring the acceptance rate and
returning a list with both items:

ardippest=function(nsimu=1,n1,c2,c3,r2,q92){

barr=min(nl-c2,nl1-r2-c3)
boundM=thresh(0,n1,c2,c3,r2,barr)
echan=1:nsimu
acerate=-nsimu
for (i in 1:nsimu){
test=TRUE
while (test){
y=rbinom(1,size=barr,prob=q2)
test=(runif (1)>thresh(y,n1,c2,c3,r2,barr))
acerate=acerate+1
¥
echan[i]=y
}

list(sample=echan,reject=acerate/nsimu)

3

5.23 Show that, given a mean and a 95% confidence interval in [0, 1], there
exists at most one beta distribution %Be(a,b) with such a mean and confidence
interval.

If 0 < m < 1is the mean m = a/(a + b) of a beta Be(a,b) distribution,
then this distribution is necessarily a beta ZBe(am,a(l — m)) distribution,
with o > 0. For a given confidence interval [¢,u], with 0 < /< m < u < 1, we
have that

h I'()

1. am—1 1— a(l—m)—l d —
I ) Femrea—m® 49 v=0

[since, when « goes to zero, the mass of the beta Be(am, a(1—m)) distribution
gets more and more concentrated around 0 and 1, with masses (1 — m) and
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m, respectively] and

lim ' [(e)
a—oo [, I'(am)I'(a(l —m))

xam—l(l o x)a(l—m)—l de =1

[this is easily established using the gamma representation introduced in Ex-
ercise 4.17 and the law of large numbers]. Therefore, due to the continuity [in
a] of the coverage probability, there must exist one value of « such that

B¢, ula,m) = /é F(ozm)ll:gco)i)(l — ) 21— g)*d=m =l qe = 0.9.

Figure 5.2 illustrates this property by plotting B(¢, u|la, m) for £ = 0.1, u =
0.6, m = 0.4 and « varying from 0.1 to 50.

Coverage
08

>

Fig. 5.2. Coverage of the interval (¢,u) = (0.1,0.6) by a ZBe(0.4c, 0.6cx) distribution
when o varies.

5.24 Show that, for the Arnason—-Schwarz model, groups of consecutive un-
known locations are independent of one another, conditional on the observations.
Devise a way to simulate these groups by blocks rather than one at a time; that is,
using the joint posterior distributions of the groups rather than the full conditional
distributions of the states.

As will become clearer in Chapter 7, the Arnason-Schwarz model is a very
special case of [partly] hidden Markov chain: the locations z(;4) of an indi-
vidual ¢ along time constitute a Markov chain that is only observed at times
t when the individual is captured. Whether or not z(; ) is observed has no
relevance on the fact that, given z(; ), (z(iyt,l),z(i’t,g),...) is independent
from (2(; 441), 2(i,t+2) - - -). Therefore, conditioning on any time ¢ and on the
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corresponding value of z(; ;) makes the past and the future locations indepen-
dent. In particular, conditioning on the observed locations makes the blocks
of unobserved locations in-between independent.

Those blocks could therefore be generated independently and parallely,
an alternative which would then speed up the Gibbs sampler compared with
the implementation in Algorithm 5.3. In addition, this would bring additional
freedom in the choice of the proposals for the simulation of the different blocks
and thus could further increase efficiency.
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Mixture Models

6.1 Show that a mixture of Bernoulli distributions is again a Bernoulli distribu-
tion. Extend this to the case of multinomial distributions.

By definition, if
k
e~ Zpr@ (a:),
i=1

then x only takes the values 0 and 1 with probabilities

k k k
S opil—g)=1-Y pigi and > pigi,
i=1 i=1 i=1

respectively. This mixture is thus a Bernoulli distribution
k
% (Z pz’%‘) :
i=1
When considering a mixture of multinomial distributions,
k
x~ Y pidl(qi),
i=1

with q; = (¢i1,. - -, qik), © takes the values 1 < j < k with probabilities

k
Zpi%jj
i=1

and therefore this defines a multinomial distribution. This means that a mix-
ture of multinomial distributions cannot be identifiable unless some restric-
tions are set upon its parameters.
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6.2 Show that the number of nonnegative integer solutions of the decomposition
of n into k parts such that n; + ...+ ng is equal to

(n-l—k—l)
t= .
n

Deduce that the number of partition sets is of order O(n*~1). (Hint: This is a
classical combinatoric problem.)

This is a usual combinatoric result, detailed for instance in Feller (1970).
A way to show that v is the solution is to use the “bottomless box” trick:
consider a box with k cases and n identical balls to put into those cases. If we
remove the bottom of the box, one allocation of the n balls is represented by
a sequence of balls (O) and of case separations (]) or, equivalently, of 0’s and
1’s, of which there are n and k — 1 respectively [since the box itself does not
count, we have to remove the extreme separations|. Picking n positions out of
n+ (k —1) is exactly t.

This value is thus the number of “partitions” of an n sample into k£ groups
[we write “partitions” and not partitions because, strictly speaking, all sets
of a partition are non-empty]. Since

n+k—1\ (n+k-1)! = nF!
( )‘ (k=1 = (k—1)"

n

when n > k, there is indeed an order O(n*~!) of partitions.

6.3 For a mixture of two normal distributions with all parameters unknown,
pA (p1,07) + (1 = p)A (n2,03)
and for the prior distribution (j = 1, 2)
wiloj ~ W(gj,aﬁ/nj) , JJ2- ~ f%(z/j/2,s?/2) , p~PBela,B),

show that
p|X7Z ~ <%e(a +€17ﬁ +£2)7
o2
,uj‘O'j,X,ZN./V (51(Z)’ - ) ) Ug2'|xvajg((yj+£j)/278j(z)/2)v

n; +fj
where /; is the number of z; equal to j, Z;(z) and 47(z) are the empirical mean
and variance for the subsample with z; equal to j, and
n;&; —l—Ejg’cj(z)
n; +fj

n;t;
n; + Kj

§i(z) = , si(z) =83 +£;55(z) + (& —z5(2))%.

Compute the corresponding weight w(z).
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If the latent (or missing) variable z is introduced, the joint distribution of
(x,2) [equal to the completed likelihood] decomposes into

szi Fail6=) =TT TI »s f(xil6))

j,l Gzi=j

(zruj)2/2o"f~

ocl_[pj H o (6.1)

i2i=]

where p; = p and pa = (1 —p). Therefore, using the conjugate priors proposed
in the question, we have a decomposition of the posterior distribution of the
parameters given (x,z) in

e~ (wi—p;)? /207

U Rl | )] )

j=1li;z;,=j

This implies that p|x,z ~ Ze(a + £, 5 + ¢3) and that the posterior distri-
butions of the pairs (,uj,ajz) are the posterior distributions associated with
the normal observations allocated (via the z;’s) to the corresponding compo-
nent. The values of the hyperparameters are therefore those already found in
Chapter 2 (see, e.g., Exercises 2.7 and 2.15).

The weight w(z) is the marginal [posterior] distribution of z, since

(0, plx) = Y w(@)m(6,plx, 2).
Therefore, if p; = p and ps =1 — p,

—(wi—py)? /207

2
27’ (& J
oc/Hpj' 11 TW(G,p)dep
j=1

I'a+ El)F(B +05)
I'(a+p+n)

2
[ e
j=1

I(a+ )T (B + L) 13[ (45 + v)/2)(s(z) /2) V3072

(Oé+ﬁ+n =1 \/nj+€j

and the proportionality factor can be derived by summing up the rhs over all
z’s. (There are 2" terms in this sum.)

6.4 For the normal mixture model of Exercise 6.3, compute the function Q (6o, 6)
and derive both steps of the EM algorithm. Apply this algorithm to a simulated
dataset and test the influence of the starting point 6.
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Starting from the representation (6.1) above,

n

log £(6,p|x,z) = > {I1(z;) log(p f(x;]61) + Iz (i) log((1 — p) f(:]62)} ,

i=1

which implies that

QL(6W p®), (8,p)} = Egr pory [log £(6,p|x, z) |X]
= Z {P o pv) (2 = 1[x) log(p f(x:|61)
P (g0 oo (20 = 20) log((1 — p) f(x1162) }

= log(p/al) ZP(G(t),P(t)) (Z7 == 1|X)

i=1

n
+ 10g((1 - p)/02) Z P(e(t),p(t)) (Zi = 2|X)
i=1

- (zi — p1)?
- ;P(mﬂ,p(w) (2 = 1]x) T
- (zi — p2)?
- ;P(mw,p(t)) (2 = 2[x) 202

If we maximise this function in p, we get that

1 n
(t+1) — =
p = Z ION (f)) = 1|x)
iy P01 (:[63")
U= |e“ )+ (1= p0) f(:]63")
while maximising in (uj,0;) (j = 1,2) leads to

(t+1 Zp(em pM) = j|X /ZP 9(t) (1)) - ]|X)

)
lp] ("L"L|0 )
= Z J

np] * p® f(as]0) + (1 — p®) f(x,]65)

2 1 1

oyt prm pon (22 = 31%) (s = /prm p) (2 = J1x)
=1

k2 ugﬂ 0 f(z,104)
p® f(2:101) + (1 — p®) f(a,105))

(t+1) Z
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where pgt) = p®) and pét) = (1—pW®).
A possible implementation of this algorithm in R is given below:

# simulation of the dataset

n=324

tz=sample(1:2,n,prob=c(.4,.6) ,rep=T)
tt=c(0,3.5)

ts=sqrt(c(1.1,0.8))
x=rnorm(n,mean=tt [tz] ,sd=ts[tz])

para=matrix(0,ncol=50,nrow=5)
likem=rep(0,50)

# initial values chosen at random

paral,1]=c(runif (1) ,mean(x)+2*rnorm(2)*sd(x) ,rexp(2)*var(x))

likem[1]=sum(log( parall,1]*dnorm(x,mean=paral2,1],
sd=sqrt(para[4,1]))+(1-para[1l,1])*dnorm(x,mean=paral3,1],
sd=sqrt(paral5,1])) ))

# 50 EM steps
for (em in 2:50){

# E step

postprob=1/( 1+(1-para[l,em-1])*dnorm(x,mean=paral[3,em-1],
sd=sqrt(para[5,em-1]))/( paral[l,em-1]*dnorm(x,
mean=paral[2,em-1],sd=sqrt(paral[4,em-1]))) )

# M step

paral[l,em]=mean(postprob)

para[2,em]=mean(x*postprob) /paral[l,em]

paral[3,em]=mean (x*(1-postprob))/(1l-parall,em])
paral4,em]=mean((x-para[2,em]) "2*postprob) /paral1l,em]
paral[5,em]=mean((x-paral3,em]) ~2*(1-postprob))/(1-parall,em])

# value of the likelihood
likem[em]=sum(log(paral[l,em]*dnorm(x,mean=paral[2,em],
sd=sqrt(paral4,em]))+(1-parall,em])*dnorm(x,mean=paral3,em],
sd=sqrt (para[5,em])) ))
}

Figure 6.1 in this manual in this manual represents the increase in the
log-likelihoods along EM iterations for 20 different starting points [and the
same dataset x]. While most starting points lead to the same value of the log-
likelihood after 50 iterations, one starting point induces a different convergence
behaviour.
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Fig. 6.1. Increase of the log-likelihood along EM iterations for 20 different starting
points.

6.5 In the mixture model with independent priors on the 6;'s, show that the
6;'s are dependent on each other given (only) x by summing out the z's.

The likelihood associated with model (6.2) being

n k

00,p1x) =TT [D_pi f(@:l6,)]

i=1 | j=

it is clear that the posterior distribution will not factorise as a product of
functions of the different parameters. It is only given (x,z) that the 6,’s are
independent.

6.6 Construct and test the Gibbs sampler associated with the (&, o) parame-
terization of (6.3), when py = o — & and pg = po + €.

The simulation of the z;’s is unchanged [since it does not depend on the
parameterisation of the components. The conditional distribution of (&, ug)
given (x,z) is

(& polx, 2) OCGXP_Ql{Z(%—MovLE)z-F Z(T/i—ﬂo—f)g} :

zi=1 z;=2

Therefore, £ and po are not independent given (x,z), with



6 Mixture Models 75

M0|£,X,Z ~N <
n

nT + ( /31—525 1)
<zzb_2< ) = T >,1>

£|,U'O,Xa z~N
n

The implementation of this Gibbs sampler is therefore a simple modifica-
tion of gibbsmean in the bayess: the MCMC loop is now

for (t in 2:Nsim){

# allocation
fact=.3*sqrt(exp(gul~2-gu2°2))/.7
probs=1/(1+fact*exp(sampl*(gu2-gul)))
zeds=(runif (N)<probs)

# Gibbs sampling

muO=rnorm(1) /sqrt (N)+(sum(sampl) +xi* (sum(zeds==1)
-sum(zeds==0)))/N

xi=rnorm(1)/sqrt(N)+(sum(sampl [zeds==0]-mu0)
-sum(sampl [zeds==1]-mu0)) /N

# reparameterisation
gul=mul0-xi
gu2=mul0+xi
muz[t,]1=(c(gul,gu2))

}

If we run repeatedly this algorithm, the Markov chain produced is highly
dependent on the starting value and remains captive of local modes, as illus-
trated on Figure 6.2 in this manual. This reparameterisation thus seems less
robust than the original parameterisation.

6.7 Show that, if an exchangeable prior 7 is used on the vector of weights
(p1,--.,pK), then, necessarily, E™[p;] = 1/k and, if the prior on the other pa-
rameters (61,...,6) is also exchangeable, then E™[p;|z1,...,z,] = 1/k for all

j's.

If
ﬂ-(ph s 7pk) = ﬂ-(po'(l)7 s 7po'(k))

for any permutation o € &y, then

Eﬂ[p]} :/pjﬁ(p177p]a7pk)dp:/pj7r(p]a7p177pk)dp:]ETr[pl]
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Fig. 6.2. Influence of the starting value on the convergence of the Gibbs sampler
associated with the location parameterisation of the mean mixture (10,000 itera-

tions).
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Given that Z?:l pj = 1, this implies E™[p,] = 1/k.
When both the likelihood and the prior are exchangeable in (p;,6;), the
same result applies to the posterior distribution.

6.8 Show that running an MCMC algorithm with target 7(6|x)” will increase

the proximity to the MAP estimate when « > 1 is large. (Note: This is a crude
version of the simulated annealing algorithm. See also Chapter 8.) Discuss the
modifications required in Algorithm 6.11 to achieve simulation from 7(6|x)” when
v € N* is an integer.

The power distribution 7, (#) o 7(6)” shares the same modes as 7, but the
global mode gets more and more mass as -y increases. If 8* is the global mode of
7 [and of 7, ], then {7 (0)/m(6*)}" goes to 0 as y goes to oo for all #’s different
from 6*. Moreover, for any 0 < a < 1, if we define the a neighbourhood 9i,,
of 6* as the set of #’s such that 7(6) > amx(6*), then m,(9,) converges to 1
as 7y goes to oo.

The idea behind simulated annealing is that, first, the distribution 7. (6)
7(0)7 is more concentrated around its main mode than m(9) if «y is large and,
second, that it is not necessary to simulate a whole sample from 7(6), then a
whole sample from 7(6)? and so on to achieve a convergent approximation of
the MAP estimate. Increasing « slowly enough along iterations leads to the
same result with a much smaller computing requirement.

When considering the application of this idea to a mean mixture as (6.3)
[in the book], the modification of Algorithm 6.2 is rather immediate: since
we need to simulate from 7(0,p|x)” [up to a normalising constant], this is
equivalent to simulate from £(0,p|x)Y x (0, p)7. This means that, since the
prior is [normal] conjugate, the prior hyperparameter A\ is modified into yA
and that the likelihood is to be completed ~ times rather than once, i.e.

0.11)" = ([ o ale.) dz)w - 1:I [ 62,10, .

Using this duplication trick, the annealed version of Algorithm 6.2 writes as

Algorithm 6.1 Annealed Mean Mixture Gibbs Sampler

Initialization. Choose ugo) and ugo),
Iteration ¢ (t > 1).
1. Fori=1,...,n,j=1,...,7, generate zz(f) from

1 N2
P(zijzl)ocpexp{—2 (:Ei—ugt 1)) }

=2 0-p en{ -} (-l ))
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2. Compute

-3

j=14

Hzﬁ;):l and T, (Z)Z E ]Izgt):ul’i

n n
-1 " j=1i=1

Ao+ Z 1
3. Generate ugt) from A4 <’Y +2.(2) )

YA+L T+ L
7)\5+E2(Z) 1
AAN+yn — L A+ yn—L )"

4. Generate ug’) from ¥ <

This additional level of completion means that the Markov chain will have
difficulties to move around, compared with the original Gibbs sampling algo-
rithm. While closer visits to the global mode are guaranteed in theory, they
may require many more simulations in practice.

6.9 Show that the ratio (6.7) goes to 1 when « goes to 0 when the proposal ¢
is a random walk. Describe the average behavior of this ratio in the case of an
independent proposal.

Since P 1 1 1
5gl080/(1=0)] =+ 1—0) 01-6)’

the Metropolis—Hastings acceptance ratio for the logit transformed random
walk is

6.10 If one needs to use importance sampling weights, show that the simul-
taneous choice of several powers a requires the computation of the normalizing
constant of 7.

If samples (0;n); from several tempered versions m, of 7 are to be
used simultaneously, the importance weights associated with those samples
7(0i0) /T (0ia) Tequire the computation of the normalizing constants, which
is most often impossible. This difficulty explains the appeal of the “pumping
mechanism” of Algorithm 6.5, which cancels the need for normalizing con-
stants by using the same 7, twice, once in the numerator and once in the
denominator.
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6.11 In the setting of the mean mixture (6.3), run an MCMC simulation exper-
iment to compare the influence of a .47(0, 100) and of a .47(0,10000) prior on
(i1, o) on a sample of 500 observations.

The power distribution 7, (#) o 7(6)” shares the same modes as 7, but the
global mode gets more and more mass as -y increases. If 8* is the global mode of
7 [and of 7, ], then {7(0)/m(6*)}7 goes to 0 as y goes to oo for all #’s different
from #*. Moreover, for any 0 < o < 1, if we define the a neighbourhood 9i,,
of 6* as the set of 0’s such that 7(6) > amx(6*), then m,(9M,) converges to 1
as y goes to oo.

The idea behind simulated annealing is that, first, the distribution 7. (6)
7(0)7 is more concentrated around its main mode than m(0) if «y is large and,
second, that it is not necessary to simulate a whole sample from 7(6), then a
whole sample from 7(6)? and so on to achieve a convergent approximation of
the MAP estimate. Increasing « slowly enough along iterations leads to the
same result with a much smaller computing requirement.

When considering the application of this idea to a mean mixture as (6.3)
[in the book], the modification of Algorithm 6.2 is rather immediate: since
we need to simulate from 7(0,p|x)” [up to a normalising constant], this is
equivalent to simulate from £(0,p|x)Y x (0, p)". This means that, since the
prior is [normal] conjugate, the prior hyperparameter A\ is modified into yA
and that the likelihood is to be completed ~ times rather than once, i.e.

(0, phx)" = ( [ seslo.p) dz)y - 1:I [ 62510 .

Using this duplication trick, the annealed version of Algorithm 6.2 writes as

Algorithm 6.2 Annealed Mean Mixture Gibbs Sampler

Initialization. Choose u(lo) and u(QO),

Iteration t (¢t > 1).
1. Fori=1,...,n,j=1,...,7, generate zz(;) from

1 —1)) 2

IED(zijzl)ocpexp{—2 (mi—ug )) }
1 t—1)) 2
P(zij:2)oc(1—p)exp{—2(xi—ué )>}

2. Compute




80 6 Mixture Models

3. Generate ugt) from

% YAS + barzy (z) 1 )
YA+ Y AN+ L

7/\54‘7)2() 1

7)\+7n—€’7)\+7n—€>'

4. Generate u;t) from A (

This additional level of completion means that the Markov chain will have
difficulties to move around, compared with the original Gibbs sampling algo-
rithm. While closer visits to the global mode are guaranteed in theory, they
may require many more simulations in practice.

6.12 Show that, for a normal mixture 0.5 .4°(0,1)40.5 .4 (11, o%), the likelihood
is unbounded. Exhibit this feature by plotting the likelihood of a simulated sample
using the R image procedure.

This follows from the decomposition of the likelihood

0(0|x) = HZO5f:cZ|0 ,

=1 | j=1

into a sum [over all partitions| of the terms

n

H (2:10.,) = H olz;) H (@i —p)/o} /U}

=1 132, =1 132, =2

In exactly n of those 2™ partitions, a single observation is allocated to the
second component, i.e. there is a single ¢ such that z; = 2. For those particular
partitions, if we choose p = z;, the second product reduces to 1/o which is
not bounded when o goes to 0. Since the observed likelihood is the sume of
all those terms, it is bounded from below by terms that are unbounded and
therefore it is unbounded.

An R code illustrating this behaviour is

# Sample construction
N=100
sampl=rnorm(N)+(runif (N)<.3)*2.7

# Grid

mu=seq(-2.5,5.5,1length=250)
sig=rev(1/seq(.001,.01,length=250)) # inverse variance
mol=mu’*%t(rep(l,length=length(sig)))
mo2=(rep(1,length=length(mu)))¥%*%t (sig)
cal=-0.5%mol1"2*mo2
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ca2=mol*mo2
ca3=sqrt(mo2)
ca4=0.5*%(1-mo2)

# Likelihood surface

like=0*mo1l

for (i in 1:N)
like=like+log(1+exp(cal+sampl[i]*ca2+sampl[i] "2*ca4)*ca3)

like=like-min(like)

sig=rev(1l/sig)

image (mu,sig,like,xlab=expression(mu),
ylab=expression(sigma~2),col=heat.colors(250))

contour (mu,sig,like,add=T,nlevels=50)

and Figure 6.3 in this manual exhibits the characteristic stripes of an explosive
likelihood as o approaches 0 for values of i close to the values of the sample.

0.004 0.006 0.008 0.010

0.002

-2 0 2 4

Fig. 6.3. Illustration of an unbounded mixture likelihood.
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Dynamic Models

7.1 Consider the process (x¢)¢cz defined by
Ty =a+ bt + Yt ,

where (y:)tez is an iid sequence of random variables with mean 0 and variance
o2, and where a and b are constants. Define

wy = (29 + 1)_123:7q$t+j :

Compute the mean and the autocovariance function of (w;)iez. Show that
(w¢)tez is not stationary but that its autocovariance function 7, (¢t + h,t) does
not depend on t.

We have

q
Elw] =E |(2¢+1)"" > @445
Jj==—q
q
= (@2¢+1)7" > Ela+b(t+4) + vl
Jj=—q
=a+0bt.

The process (w;)iez is therefore not stationary. Moreover
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1 q q
Elwiwiyp] =E | [ a4+ bt + 50+ 1 j;q Yttj a+ bt + bh + j;q Yethtj

q q
=(a+bt)(a+bt+bh) +E | > vy > Yerns

Jj=—q Jj=—q
= (a+bt)(a+ bt +bh) +Lp<.(g+1— |h])o>.
Then,
cov(wy, Weyn) = H\h\gq(q +1- |h‘)02

and,
Yot +hit) =Tij<q(q +1 = [hl)o”.

7.2 Suppose that the process (z;):cn is such that zo ~ .4(0,72) and, for all
teN,
Tiy1[Xow ~ A (21/2,0%), 0>0.

Give a necessary condition on 72 for (x4):en to be a (strictly) stationary process.

We have
E[z1] = E[E[z1]z0]] = E[zo/2] = 0.

Moreover,
V(z1) = V(E[z1]|z0]) + E[V(x1|20)] = 72/4 +02.

Marginaly, o1 is then distributed as a .47(0,72/4+0?) variable, with the same
distribution as zg only if 72/4 + 0% = 72, i.e. if 72 = 402 /3.

7.3 Suppose that (z;):en is a Gaussian random walk on R: 2o ~ 4(0,72) and,
for all t € N,
Tr1|xo ~ AN (34,07), o>0.

Show that, whatever the value of 72 is, (z;)ien is not a (strictly) stationary
process.

We have
E[z1] = E[E[z1]z0]] = E[zo] = 0.

Moreover,
V((El) = V(E[l’1|xo]) + E[V(l’1|xo)] = T2 + 0'2 .

The marginal distribution of z; is then a 4'(0,72 + 02) distribution which
cannot be equal to a .#(0,72) distribution.



7 Dynamic Models 85

7.4 Give the necessary and sufficient condition under which an AR(2) process
with autoregressive polynomial P(u) = 1 — g1u — gau? (with g5 # 0) is causal.

We have

Moreover,
V(l‘l) = V(E[x1|x0]) + E[V($1|$O)] = 7'2/4 + o2.

Marginaly, o, is then distributed as a .4 (0,72 /44 0?) variable, with the same
distribution as z only if 72/4 + 0% = 72, i.e. if 72 = 40?/3.

7.5 Consider the process (2+):en such that zp = 0 and, for all t € N,
Ty [Xow ~ A (021, 07).

Suppose that 7(p,0) = 1/0 and that there is no constraint on p. Show that the
conditional posterior distribution of o, conditional on the observations xg.7 and
on o2, is a A (ur,w?) distribution with

T T T
2 2 2 2
pr = g xtlxt/ E Ty, and wp=o0 / g T g .
=il =il t=1

Show that the marginal posterior distribution of ¢ is a Student 7 (T — 1, ur, v%)
distribution with

1 T T—-1
4 (et Dot )
t=1 t=0

Apply this modeling to the Aegon series in Eurostoxx50 and evaluate its predic-
tive abilities.

The posterior conditional density of g is proportional to
T
H exp {f(zt - gxt_1)2/202}
t=1

T—1 T—1
X exp { l—g2 Z xf + 20 Z a:tastH] /202} ,
t=0 t=0

which indeed leads to a A (ur,w?) conditional distribution as indicated
above.
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Given that the joint posterior density of (g, o) is proportional to

T
o Tt HeXP {—(z¢ — 0me_1)?/20%}
t=1

integrating out o leads to a density proportional to

T
/ (o) P P exp (Zm - pxt_nz/(?a?)) do

t=1

T
= / ()" e (Zm - pxt_n?/(za%) do®

t=1

T —T/2
= {Z(mt - thl)Q}

t=1

when taking into account the Jacobian. We thus get a Student (T —
1, pr,v3) distribution and the parameters can be derived from expanding
the sum of squares:

T T—1 T
D (e —ow1)’ = @ (0" —20pr) + )7}
t=1 t=0 t=1
into
T-1 T T-1
zi(o—pr)’+ ) i =Y ajuy
t=0 t=1 t=0

(0— MT)2 2
== 12
T-1 T
The main point with this example is that, when p is unconstrained, the
joint posterior distribution of (g, o) is completely closed-form. Therefore, the
predictive distribution of xp; is given by

1
/ Wor exp{—(z741 — ng)Q/QUZ} 7(o, o|xo.7)dodo

which has again a closed-form expression:
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1
/ N exp{ — (z74+1 — QxT)2/20'2}7T(O', o|x0.7)dodp

T
x /O'_T_2 exp{— Z(mt+1 — ox¢)?/20%}dodo

t=0

T —(T+1)/2
OC/{Z(IHJ - QIt)z} do

t=0

T —(T+1)/2 (0= pirs1)? —(T+2)/2
2 — KT+ 2
x x e e i Z d
S
T —(T+1)/2
u(fo) V;T_l
t=0

(T+1)/2

This is a Student T (T, ér,wr) distribution, with

T—1 T—1
S = 2=
T=T7 Y TTp1/ Y T = PpraT
t=0 t=0

and
T T T 2 T—1
2 2 2
wr = E Ty E Ty — E TiTy41 /T E Ty .
t=0  t=0 t=0 t—0

The predictive abilities of the model are thus in providing a point estimate for
the next observation Z71 = prar, and a confidence band around this value.

7.6 For Algorithm 7.13, show that, if the proposal on o2isa log-normal distribu-
tion £ (log(c?_1),72) and if the prior distribution on o is the noninformative
prior m(0?) = 1/0?, the acceptance ratio also reduces to the likelihood ratio
because of the Jacobian.

If we write the Metropolis—Hastings ratio for a current value o3 and a
proposed value o7, we get

m(07)l(07) exp (—(log(og — log(a1))?/272) /0§ _ 4(o7)
m(0§)l(0) exp (—(log(of —log(0?))?/272) Joi  L(oF)’

as indicated.
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7.7 Write down the joint distribution of (¢, z¢)ten in (7.19) and deduce that
the (observed) likelihood is not available in closed form.

Recall that yo ~ N(0,02) and, for t =1,...,T,

Yt = QY1 + o€l ,
Ty = 66%/2675 y

where both ¢ and € are iid M(0,1) random variables. The joint distribution
of (X1.7,¥yo0.7) is therefore

[ (xur,yo.r) = f (xurlyor) f (yor)

T
= (H f(%lzu)) fo)f(walyo) - f(yrlyr—1)
=1

1 T 1 <&
= 75 &P {— Zyt/2> exp <_252 Zaxf exp(—yt)>
) =1 t=1

(2732
X ;exp _L y2+i(yt_(pyt 1)2
(27T0'2)(T+1)/2 20-2 0 po

Due to the double exponential term exp <—2—é2 Zle x? eXp(—yt)), it is im-

possible to find a closed-form of the integral in yq.7.

7.8 Show that the stationary distribution of x_,._; in an AR(p) model is a
Ap(uly, A) distribution, and give a fixed point equation satisfied by the covari-
ance matrix A.

If we denote

Zy = (xt,fftfl, cee 7xt+1fp) ,
then
Zep1 = ply + B (2e — plp) + €ry1 -
Therefore,
E[z41]2e] = plp + B (z¢ — plp)
and
020...0
0 0...0
V(zipalze) = Vi) =1|. .. .| =V.
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Then,
zi11]ze ~ Np (ulp + B (2 — p1p), V) .

Therefore, if z_1 = xX_p._1 ~ Np (ulp,, A) is Gaussian, then z, is Gaussian.
Suppose that z; ~ N, (M, A), we get

Elzi41) = plp + B (M — pl,]
and E [z;41] = E[z] if
ply+ B(M —plp) = M,
which means that M = pl,. Similarly, V (z;41) = V (z,) if and only if
BAB' +V = A,

which is the “fixed point” equation satisfied by A.

7.9 Show that the posterior distribution on @ associated with the prior 7(6) =
1/02 and an AR(p) model is well-defined for T' > p observations.

The likelihood conditional on the initial values xq.(,_1) is proportional to

T » 2
07T+p71HeXP - <$t—N—ZQi(It—i—#)> /202
t=p i=1

A traditional noninformative prior is 7(y, 01, . . ., 0y, 02) = 1/o%. In that case,
the probability density of the posterior distribution is proportional to

T P ?
o T+p=3 H exp{ — (It e Z 0i(w—i — M)) /20°
=p i=1

And

T » 2
/(02)7(T7p+3)/2 [Texp< - (m —p = oilwii - u)) /202 do? < o0
i=1

t=p
holds for T —p+1 >0, i.e., T > p — 1. This integral is equal to

(p—T-1)/2

- (xt_li_ZQi(l'ti_ﬂ)) /20° ;
=1

which is integrable in u for T'— p > 0, i.e. T > p. The other parameters p;
(j =1,...,p0 being bounded, the remaining integrand is clearly integrable in
0.
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7.10 Show that the coefficients of the polynomial P in (7.15) associated with
an AR(p) model can be derived in O(p?) time from the inverse roots \; using the
recurrence relations (i =1,...,p,7=0,...,p)

where ¢0 = 1 and ¢} = 0 for j > i, and setting ¢; = —¢7 (j =1,...,p).

Since
p

J
H(l —Nz)=1- Zgjxj ,
j=1

i=1
we can expand the lhs one root at a time. If we set

[Ta=xa) =D via?,

j=1 j=0
then
1+1 [
[T = Na2) =0 = xipz) [ = Ajz)
j=1 j=1

= (1 - Xip17) Z%LCEJ
=0

7
=1+ (W) = N _1)a? = Ayl
j=1

which establishes the 1/);-“ = ¢;- — /\i+11/);-_1 recurrence relation.
This recursive process requires the allocation of ¢ variables at the ith stage;
the coefficients of PP can thus be derived with a complexity of O(p?).

7.11 Given the polynomial P in (7.5), the fact that all the roots are outside the
unit circle can be determined without deriving the roots, thanks to the Schur—
Cohn test. If A, = P, a recursive definition of decreasing degree polynomials is
(k=p,...,1)

uAp-1(u) = Ag-1(u) — pp A5 (u),

where A} denotes the reciprocal polynomial Af(u) = u* Aj_1(1/u).
1. Give the expression of y in terms of the coefficients of Ay.
2. Show that the degree of Ay, is at most k.

3. If am, i, denotes the m-th degree coefficient in Ay, show that ay; # 0 for
k=0,...,pif, and only if, ap 1 # ax for all k's.
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4. Check by simulation that, in cases when ay , # 0 for k =0, ..., p, the roots
are outside the unit circle if, and only if, all the coefficients a;, 1, are positive.

Note: The above exercise is somewhat of a mystery (!) in that we cannot
remember how it ended up in this exercise list, being incorrect and incomplete
as stated. A proper substitute is given below:

7.11 Given a polynomial P of degree £, its reciprocal polynomial P} is defined
as
P*(u) = u*Pr_1(1/u).

Assuming P(0) = 1, the Schur transform of P is defined by

P(2) = P*(0)P*(2)

TP(u) = =P (0)

Show that the roots of P and P;; are inverses.

Show that the degree of TP is at most k — 1.

Show that TP(0) = 1.

Check by a simulation experiment producing random polynomials the
property that, when TP(0) > 1, TP and TP have the same number of
roots inside the unit circle.

5. Denote T"P = T(T™ 1P), for d # k, and & the first index with T*P = 0.
Deduce from the above property that, if 7"P > 0 for n = 1,..., k, then
‘P has no root inside the unit circle.

g £0 9 =

1. If we write the inverse root decomposition of P as

k
Plu) = [0 = w),
i=1
since P(0) = 1, we have
P*(u) =¥ H(l — /\i’u_l) = H(u —\) = H(l _ )\Z—lu) .
i=1 i=1 i=1
2. By definition, if P(u) = Zf:o ;ul, then
k .
PHu) =Y apiu’,
i=0

P*(0) = ay, and
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k—1 k—1
P(u) — P*(0)P* (u) = apu® + Z au’ — apuf — ay Z ag—u’
i=1 i=1

k
= [a; — akak_i]ui
1

1

%

is at most of degree k — 1.
3. Since
P(0) = P*(0)P*(0) =1 - af
TP(0) = 1.
4. A simulation experiment can be designed around the following code:
k=10
# random coefficients
Coef=c(1,runif(k,-1,1))
Schur=Coef-Coef [k] *rev(Coef)
print (sum(Mod (polyroot (Coef))<1)-sum(Mod (polyroot (Schur))<1))

Repeating this code a large number of times does not produce anything

but zero’s.
5. By virtue of the above result, P,TP,..., T P have the same number
of roots inside the unit circle if 7"P > 0 forn =1,...,x — 1. Since

TP =1—{af}? =1- )\,

the last root is outside the unit disk and hence so are the others.
6. Extending the above code leads to

k=10
# Schur sequence
Coef=matrix(0,nrow=k+1,ncol=k+1)
# initial polynomial
Coef [,k+1]=c(1,rnorm(k,sd=1/k))
for (t in k:1)
Coef[1:t,t]=(Coef[1:(t+1),t+1]-Coef [t+1,t+1]*Coef [(t+1):1,
t+1])/(1-Coef [t+1,t+1]"2)
while (prod(diag(Coef[1,]172)<1)==0){
Coef=matrix(0,nrow=k+1,ncol=k+1)
Coef[,k+1]=c(1,rnorm(k,sd=1/k))
for (t in k:1)
Coef[1:t,t]=(Coef[1: (t+1),t+1]-Coef[t+1,t+1]*Coef[(t+1):1,
t+1]) /(1-Coef [t+1,t+1]"2)
}
print (min(Mod (polyroot (Coef [,k+11))))

Repeated calls to this code consistently exhibit root modules larger than
1.
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7.12 For an MA(q) process, show that (s < q)

q—|s|

Yo(8) =07 Y Diiyys) -
=0

We have
Va(s) = E [z120 ]
=Elet + €1+ ...+ Og€i—g] [€1—s + P1€—s—1 + ... + Tger—s—4]] -
Then, if 1 < s < gq,
Ve (8) = [0 + Ds191 + ... +9g04—s] 02

and
Y2 (0) = [L+ 07 +...+02] 0>.

Therefore, if (0 < s < ¢) with the convention that ¥y = 1

q—s
"}/I(S) = 02 2191‘19“_3 .

i=0
The fact that v,(s) = 7.(—s) concludes the proof.

7.13 Show that the conditional distribution of (eo, ..., €e_q4+1) given both x1.1
and the parameters is a normal distribution. Evaluate the complexity of computing
the mean and covariance matrix of this distribution.

The distribution of x3.7 conditional on (e, ...,€_q+1) is proportional to

2

T q
o T H exp — | xy —p+ Z Vi€ _j /202 ,
t=1

j=1
Take
(€0, €—qi1) ~ Ny (0g,0%1,) .

In that case, the conditional distribution of (eg,...,€_q+1) given x1.7 is pro-
portional to

0 T
H exp{—e§/202} Hexp{—€3/202} .
i=—q+1 t=1

Due to the recursive definition of é;, the computation of the mean and the
covariance matrix of this distribution is too costly to be available for realistic
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values of T'. For instance, getting the conditional mean of €; requires deriving
the coefficients of ¢; from all terms

2

q
Ty — [+ Zﬂj%\t,j
j=1
by exploiting the recursive relation

q
/E\t:xt_lj/'i_z,ﬂ]af]

j=1

If we write €, = 61 + B1€; and € = d; + B:€;, then we need to use the recursive
formula,

q q
So=mi—p+y 00,  Bi=Y B,
j=1 j=1

before constructing the conditional mean of ¢;. The corresponding cost for this
single step is therefore O(Tq) and therefore O(qT?) for the whole series of €;’s.
Similar arguments can be used for computing the conditional variances.

7.14 Give the conditional distribution of e_; given the other €_;'s, x;.7, and
the €’'s. Show that this distribution only depends on the other €_;'s, X1:q—¢+1,
and /G\lzqfﬂ,l.

The distribution of x;.7 conditional on (e, ...,€_q+1) is proportional to

2

T q
o T Hexp Nz —p+ Zﬂj@_j /202 ,
t=1

Jj=1

Take
(€0, s€—qr1) ~ Ny (04,0°1) .

In that case, the conditional distribution of (eg,...,e_q+1) given x1.7 is pro-
portional to

0 T
H exp{—e?/?aQ} Hexp{—?f/202} .
i=—g+1 t=1

Due to the recursive definition of é;, the computation of the mean and the
covariance matrix of this distribution is too costly to be available for realistic
values of T'. For instance, getting the conditional mean of €; requires deriving
the coefficients of ¢; from all terms
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2

q
ve—pt > i

Jj=1

by exploiting the recursive relation

q
E\t:xt_/f&'i_zﬂjgt—j-

j=1

If we write €, = 61 + B1€; and € = d; + SB;€;, then we need to use the recursive
formula

q q
So=mi—p+Y 905,  B=Y B,
j=1 j=1

before constructing the conditional mean of ¢;. The corresponding cost for this
single step is therefore O(T'q) and therefore O(qT?) for the whole series of ¢;’s.
Similar arguments can be used for computing the conditional variances.

7.15 Show that the (useful) predictive horizon for the MA(q) model is restricted
to the first ¢ future observations x4, ;.

Obviously, due to the lack of correlation between xr4q4; (j > 0) and x1.7
we have

E[rrygi1[x1r] = E[274441] =0
and therefore the M A(q) model has no predictive ability further than horizon
q.

7.16 Show that the system of equations given by (7.13) and (7.14) induces a
Markov chain on the completed variable (x;,y;). Deduce that state-space models
are special cases of hidden Markov models.

Given the time-dependence structure

x; = Gy; + &4,
yir1 = Fyi + &,

()= (0%) (5) (&)

Since the noises &, and &, are independent, the full vector (x;,y¢+1) is indeed
a Markov chain. The subchain (y;) is also a Markov chain on itd own. And
observing only x; means that we are observing a hidden Markov chain, in the
sense of Figure 7.7 in the book.

we can write
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7.17 Show that, for a hidden Markov model, when the support Y is finite and
when (y;)ten is stationary, the marginal distribution of z; is the same mixture
distribution for all ¢'s. Deduce that the same identifiability problem as in mixture
models occurs in this setting.

Since the marginal distribution of x; is given by

[ fadumton) du = 3 7o) ).

yey

where 7 is the stationary distribution of (y;), this is indeed a mixture distri-
bution. Although this is not the fundamental reason for the unidentifiability
of hidden Markov models, there exists an issue of label switching similar to
the case of standard mixtures.

7.18 Given a hidden Markov chain (x¢,y:) with both z; and y; taking a finite
number of possible values, k and «, show that the time required for the simulation
of T' consecutive observations is in O(kxT).

Note: The order indicated in the exercise should be O(x2T'), for the dis-
tribution conditional on the observed x;’s.

For direct simulation, given the hidden chain at time ¢, y;, simulating y;41
requires up to k comparisons with a uniform variate. Given y;41, simulating
Z¢y1 involves another maximum of k comparisons with a uniform variate.
Repeating those steps T times leads to a O({k + }T') time.

For inverse simulation, that is, after observing (z1,...,zr), the joint con-
ditional distribution of (y1,...,yr) is given by

Py, yrle, . xr) o< po(y)p(y2lyr) - - p(yrlyr—1)p(x1|yr) - - plar|yr)

which takes k7 values.

However, if we use the backward formula described in the book, we
could gain some time. If we get back to the defintion of the backward for-
mula, the distribution of yr given the past being only conditional on yr_,
p(yr|yr_1,Xo.1), takes k2 values. Then, for each previous hidden state, y;,
p(yt|yi—1,X0.7) involves a summation of x terms for all pairs (y¢—1,y:). But
the summation

K
Zp:+1(i|ytaX1:T)
i=1

only depends on y;, thus has to be computed  times, to be later multiplied
by Py, 1y, Therefore the cost of producing p(y:|yi—1,Xo.7) is again of order
k2. At last, p(yo|xo.7) requires k summations of x terms, thus is again of order
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k2. This confirms that the overall cost is in O(k27T) and that the number of
possible values of the z;’s is irrelevant.

7.19 Implement Chib’s method of Section 6.8 in the case of a doubly finite
hidden Markov chain. First, show that an equivalent to the approximation (6.9)
is available for the denominator of (6.8). Second, discuss whether or not the label
switching issue also rises in this framework. Third, apply this approximation to
Dnadataset.

In a hidden Markov model (x¢,y:), y; being the hidden part, when the
parameters are unknown, it is usually the case that the full posterior distri-
bution of the parameter 7(p, q|x,y) is available in closed form. In particular,
as shown in Algorithm 7.15, this full posterior distribution is a product of
k Beta distributions on the p;.’s and of k Dirichlet distributions on the ¢;.’s
(1=1,2).

As alluded to in the book, it is also a setting where label switching occurs.
Indeed, the introduction of states 1 and 2 in the hidden chain does not identify
which state is which. The posteriors on q' and q? should therefore be the same.
Since the Gibbs sampler does not produce such symmetry on Figure 7.9, it is
quite likely that Chib’s approximation will be biased in this setting.

The implementation for Dnadataset of the Chib involves picking the
highest likelihood value for § = (q!, g%, P) and averaging the full conditionals
of 6 given the hidden chain over the Gibbs iterations.

7.20 Show that the counterpart of the prediction filter in the Markov-switching
case is given by

t K
logp(x1:4) = Y _log | Y f(@r|zr_1,4r = D)r(i) | ,
r=1 =1
where ¢, (i) = P(y, = i|x1.-—1) is given by the recursive formula

or(i) o ijif(mr—ﬂxr—%yr—l = j)er-1(j) -
j=1

This exercise is more or less obvious given the developments provided in
the book. The distribution of y, given the past values x1.._1 is the marginal
of (yr,yr—1) given the past values xq.,.—1:
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K
P(Z/T - 7;‘Xl:t—l) - ZP(% = iayr—l - j|X1:7-—1)
Jj=1

K
=Y P(yr1 = jlx1r—1) P(yr = ilyr—1 = j)

=1
K
X ijiP(yr—l = j7 Lr—1 |x1:r—2)
j=1
K
= ijip(yr—l = j7 |X1:r—2)f(xr—1‘«rr—25 Yr—1 = ]) s
j=1

which leads to the update formula for the ¢,.(7)’. The marginal distribution
X1.¢ is then derived by

t
p(Xlzt) = H P(xr |X1:(r—1))
r=1

t K
= H ZP(QT—I = jy x7'|X1:r—1)

r=1j=1
t K
= H Z f(xr‘fola Yr = Z.)907’(2') s
r=1j=1
with the obvious convention (i) = m;, if (71,...,7:) is the stationary dis-

tribution associated with P = (p;;).
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Image Analysis

8.1 Find two conditional distributions f(x|y) and g(y|x) such that there is no
joint distribution corresponding to both f and g. Find a necessary condition for f
and g to be compatible in that respect; i.e., to correspond to a joint distribution

on (z,y).

As stated, this is a rather obvious question: if f(z|y) = 4y exp(—4yx) and if
g(ylx) = 6xexp(—6xy), there cannot be a joint distribution inducing these
two conditionals. What is more interesting is that, if f(z|y) = 4y exp(—4yx)
and g(ylr) = 4z exp(—4yzx), there still is no joint distribution, despite the
formal agreement between both conditionals: the only joint that would work
has the major drawback that it has an infinite mass!

8.2 Using the Hammersley—Clifford theorem, show that the full conditional dis-
tributions given by (8.3) are compatible with a joint distribution. Deduce that the
Ising model is a Markov random field.

Note: In order to expose the error made in the earlier printing of Bayesian
Core, namely using the size of the symmetrized neighborhood, N(i), in the
full conditoinal, we will compute here the potential joint distribution based
on the pseudo-conditional

P(y; = Cjly—i, X, B, k) o exp (5 > g, (ye)/Nk(i)> ;

bogi

even though it is defined for Ny (i) =1 in the book.
It follows from (8.4) that, if there exists a joint distribution, it satisfies

n—1
]P)(yile‘yT?' . 'ay$>yi+2a s aynvxaﬁa k)
P(y|X, 3, k) x - - - .
( | ) 1})]P(yi+l‘y1?'"ayi7yi+25"'aynaxaﬂak)

K2
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Therefore,

PX, A0 xexp AY o |30 [Ty~ Ly )] +

C<iflropi

Z [Ly, (i) — Ly, (y7)]

0>0,0r~ 0

is the candidate joint distribution. Unfortunately, if we now try to derive the
conditional distribution of y; from this joint, we get

1 L, (y;
Ply; = Cily—:i, X, B, k) x exp AO] E L, (y;) + § : ﬁ;((é})
RV s jton (<jlmp R
1 § : Ly; (y;)
+ ; Ly; (y;) — E :
Ni(@) <5 0<j bronj Ni()

which differs from the orginal conditional if the Ny (j)’s differ. In conclusion,
there is no joint distribution if (8.3) is defined as in the earlier edition. Taking
all the Ni(j)’s equal to 1 leads to a coherent joint distribution since the last
line in the above equation cancels.

8.3 If a joint density m(y1, ..., yn) is such that the conditionals 7(y_;|y;) never
cancel on the supports of the marginals m_;(y—;), show that the support of 7 is
equal to the Cartesian product of the supports of the marginals.

Let us suppose that the support of 7 is not equal to the product of the
supports of the marginals. (This means that the support of 7 is smaller than
this product.) Then the conditionals 7(y_;|y;) cannot be positive everywhere
on the support of m(y_;).

8.4 Describe the collection of cliques C for an 8 neighbor neighborhood structure
such as in Figure 8.2 on a regular n x m array. Compute the number of cliques.

If we draw a detailed graph of the connections on a regular grid as in
Figure 8.1 in this manual, then the maximal structure such that all members
are neighbors is made of 4 points. Cliques are thus made of squares of 4 points
and there are (n — 1) x (m — 1) cliques on a n X m array.

8.5 Draw the function Z() for a 3 x5 array. Determine the computational cost
of the derivation of the normalizing constant Z(3) of (8.4) for an m X n array.
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Fig. 8.1. Neighborhood relations between the points of a 4 x 4 regular grid for a
8 neighbor neighborhood structure.

The function Z(f) is defined by

Z(ﬂ)—l/Zexp BY laya, |

xeX gt

which involves a summation over the set X of size 215. The R code corre-
sponding to this summation is

neigh=function(i,j){ #Neighbourhood indicator function
(1==j+D | | (i==j-1) [ | (i==j+5) | | (1==j-5)
}

zee=function(beta)q{

val=0

array=rep(0,15)

for (i in 1:(2715-1)){
expterm=0
for (j in 1:15)

expterm=expterm+sum((array==array[j])*neigh(i=1:15,j=3))

val=val+exp(beta*expterm)
j=1
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while (array[jl==1){
array[j]=0
j=j+1 }
array[jl=1 }
expterm=0
for (j in 1:15)
expterm=expterm+sum( (array==array[j])*neigh(i=1:15,j=3))
val=val+exp(beta*expterm)
1/val }

It produces the (exact) curve given in Figure 8.2 in this manual.

()
-150 -100 -50
|

—-200

-250

-300

Fig. 8.2. Plot of the function Z(3) for a 3 x 5 array with a four neighbor structure.

In the case of a m x n array, the summation involves 2™*™ and each
exponential term in the summation requires (m x n)? evaluations, which leads
to a O((m x n)?2m*") overall cost.

8.6 Show that the joint distribution (8.5) is indeed compatible with the full
conditionals of the Potts model. Can you derive this joint distribution from the
Hammersley—Clifford representation (8.1)7?

If we defined the joint distribution as
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m(x) xexp | B Z Ipj=a; | - (8.5)

(4,5); 5~i

the full conditional distribution of x; is

m(z; = g[x—i) oc 7((g, X i)

xexp | B Z Ipp=z, + Z Ip,=g

(u,v); u~v u; i~y

w v
xexp | B Z [ Pp—
uj i~
= exp (Bnig)
Conversely, if we start from the full conditionals
m(x; = g|x_;) xexp(fn;q). 1€Z,1<g<G,

and apply the Hammersley—Clifford representation (8.1)

m(x) T m(@iclal, T T, )

7(x*) pals @y |2, .2 iy, 1)

)

we have

m(xy|ze, ... xn

m(x}|xo, ... (ﬁ Z P— H%—@])
W(xi|$zv T3y = exp <5H1~2 Hzf—mz Hmf:wg] + Z [qu:IQ — qu—z§]>

W(x2|x1,a:3,... e

which means that all terms involving both z; and 2 cancel out and that

m(x) xexp | B Z Ipj=z; | - (8.5)

(4,3); 3~i

This exercise is essentially the same as Exercise 8.9.
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8.7 For an nxm array Z, if the neighbourhood relation is based on the four near-
est neighbors, show that the z; ;'s for which (i + j) = 0(mod 2) are independent
conditional on the z; ;'s for which (i 4+ j) = 1(mod 2) (1 <i<n,1<j <m).
Deduce that the update of the whole image can be done in two steps by simu-
lating the pixels with even sums of indices and then the pixels with odd sums of
indices. (This modification of Algorithm 8.16 is a version of the Swendsen—Wang
algorithm.)

This exercise is simply illustrating in the simplest case the improvement
brought by the Swendsen-Wang algorithm upon the Gibbs sampler for image
processing.

As should be obvious from Figure 8.7 in the book, the dependence graph
between the nodes of the array is such that a given x; ; is independent from
all the other nodes, conditional on its four neighbours. When (i + j) = 0(2),
the neighbours have indices (7, ) such that (i + j) = 1(2), which establishes
the first result.

Therefore, a radical alternative to the node-by-node update is to run a
Gibbs sampler with two steps: a first step that updates the nodes z; ; with
even (i+j)’s and a step that updates the nodes z; ; with odd (i +j)’s. This is
quite a powerful solution in that it achieves the properties of two-stage Gibbs
sampling, as for instance the Markovianity of the subchains generated at each
step (see Robert and Casella, 2004, Chapter 9, for details).

8.8 Determine the computational cost of the derivation of the normalizing con-
stant of the distribution (8.5) for an n x m array and G different colors.

Just as in Exercise 8.5, finding the exact normalizing requires summing
over all possible values of x, which involves G™*™ terms. And each exponential
term involves a sum over (m x n)? terms, even though clever programing of
the neighborhood system may reduce the computational cost down to m x n.
Overall, the normalizing constant faces a computing cost of at least O(m x
n x GMX™m).

8.9 Use the Hammersley—Clifford theorem to establish that (8.5) is the joint
distribution associated with the conditionals above. Deduce that the Potts model
is an MRF.

Similar to the resolution of Exercise 8.2, using the Hammersley-Clifford
representation (8.5) and defining an arbitrary order on the set Z leads to the
joint distribution
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exp B ier Ej<i,j~i Ip=a; + Zj>i,j~i Ly =a }
exp {5 dieT Zj<i,j~i Loy=a; + Zj>i,j~i Hr?:@’}- }

exp{ﬂ Z Hzi:wj+ Z Ha:i:w_;f_ Z Hz;:m

i< Grving>i jrving>i

m(x)

=exp{ Y o=,

jri

So we indeed recover a joint distribution that is compatible with the initial full
conditionals of the Potts model. The fact that the Potts is a MRF is obvious
when considering its conditional distributions.

8.10 Derive an alternative to Algorithm 8.17 where the probabilities in the multi-
nomial proposal are proportional to the numbers of neighbors n,, , and compare
its performance with that of Algorithm 8.17.

In Step 2 of Algorithm 8.3, another possibility is to select the proposed
value of x,, from a multinomial distribution

Mg (1; n(lt) (ug), ... ,ng) (w))

where nét)(ue) denotes the number of neighbors of w; that take the value g.
This is likely to be more efficient than a purely random proposal, especially
when the value of g is high.

8.11 Show that the Swendsen—Wang improvement given in Exercise 8.7 also
applies to the simulation of 7 (x|y, 8,02, p).

This is kind of obvious when considering that taking into account the
values of the y;’s does not modify the dependence structure of the Potts model.
Therefore, if there is a decomposition of the grid Z into a small number of
sub-grids 7y, ...,Z; such that all the points in Z; are independent from one
another given the other Z;’s, a k step Gibbs sampler can be proposed for the
simulation of x.

8.12 Using a piecewise-linear interpolation of f(5) based on the values
FBY), ..., f(BM), with 0 < B < ... < Bar = 2, give the explicit value of
the integral

/ #(8)dp
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for any pair 0 < ag < ap < 2.

This follows directly from the R code in demo/Chapter.8.R as sumising,
with

[ierass T 160G -5,

i,a0<Bi<aq

with the appropriate corrections at the boundaries.

8.13 Show that the estimators X that minimize the posterior expected losses
E™[Ly(x,%)|y)] and E™[Ly(x,X)|y] are XMPM and xMAP | respectively.

Since

Ll(X,)?) = Z}Ix«ﬁéii )

€L

the estimator X associated with L is minimising

E [Z Hﬂﬂﬁﬁii

i€L

y

and therefore, for every i € Z, &; minimizes P(z; # #;), which indeed gives
the MPM as the solution. Similarly,

Ly (X7 i) = Hx;éi
leads to X as the solution to
minE []Ix;ﬁ’y} =minP (x # §‘y) ,

which means that X is the posterior mode.

8.14 Determine the estimators X associated with two loss functions that penalize
differently the classification errors,

L3(X, i) = Z ]Iaci=xj ]Li-i;éa"cj and L4(X, ﬁ) = Z Hxﬁ,éxj ]Igcizjjj .
i,JEL i,JEL

Even though L3 and L4 are very similar, they enjoy completely different
properties. In fact, L is basically useless because X = (1,--- ,1) is always an
optimal solution!

If we now look at L, we first notice that this loss function is invariant by
permutation of the classes in x: all that matters are the groups of components
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of x taking the same value. Minimizing this loss function then amounts to
finding a clustering algorithm. To achieve this goal, we first look at the dif-
ference in the risks when allocating an arbitrary Z; to the value a and when
allocating Z; to the value b. This difference is equal to

Z P(mi:wj)— Z P(xi:xj).

j,JﬁJ':CL ],ij=b

It is therefore obvious that, for a given configuration of the other z;’s, we
should pick the value a that minimizes the sum Zj@j:a P(z; = x;). Once z;
is allocated to this value, a new index £ is to be chosen for possible realloca-
tion until the scheme has reached a fixed configuration, that is, no Z; need
reallocation.

This scheme produces a smaller risk at each of its steps so it does neces-
sarily converge to a fixed point. What is less clear is that this produces the
global minimum of the risk. An experimental way of checking this is to run
the scheme with different starting points and to compare the final values of
the risk.

8.15 Since the maximum of 7(x|y) is the same as that of 7(x|y)" for every
k € N, show that

(xly)" :/w(x, D) e oee 5 /W(x,@@y)d@m (8.1)

where 0; = (B, ;,02) (1 < i < k). Deduce from this representation an opti-
mization scheme that slowly increases  over iterations and that runs a Gibbs
sampler for the integrand of (8.9) at each iteration.

The representation (8.10) is obvious since

(/W(X,9|y) de)m _ /w(x,9|y) 0 x -« /w(x,9|y) do
:/w(x,91|y)d01 ><~o></7r(x,0,§|y)d0,.€

given that the symbols ; within the integrals are dummies.
This is however the basis for the so-called SAME algorithm of Doucet,
Godsill and Robert (2001), described in detail in Robert and Casella (2004).

8.16 For the Ising model, show that the distribution (8.4) can be also defined
as

m(x) ocexp | 28 Io—a,=1

gri
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when the number of neighbors is constant.

Since
m(x) xexp | B ZHW:“ ,
jri

we have

W(X) X exp ﬁ Z Ha;j:;m:l + ﬁ Z Har:j:xi:—l

jei jri

= €Xp ﬁzﬂxj:aw:l +8|N - Zﬂwjzwi:l

i i

=exp (28 Toj—s—1 | exp(NB)

g

if N denotes the number of connected pairs ¢ ~ j.

8.17 Show that the joint distribution (8.4) can be obtained from the full con-
ditionals (8.3) by virtue of the Hammerseley-Clifford representation (8.1).

This is a special case of Exercise 8.9 since the Ising model is a Potts model
with only two modalities.

8.18 Show that the Ising distribution is symmetric in that inverting the color of
all pixels does not change the probability (8.4).

Given the definition of the Ising model as

m(x) o exp BZHI]:Ii , (8.3)

iri

switching 1’s and —1’s does not modify the right hand side and hence does
not change 7(x).

8.19 For the Ising model, run a simulation experiment that should locate the
limiting value of 8 above which almost all pixels are of the same color. Same
question for the (negative) limiting value of 5 below which the image is a perfect
checkerboard.
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A possible approach used in the following code is to resort to simulated an-
nealing, increasing progressively 8 until all sites are of the same color. Opting
for a four-neighbour structure, we slightly modify the R functions

xneigd4=function(x,a,b,col){
n=dim(x) [1] ;m=dim(x) [2]
nei=c(x[a-1,b]l==col,x[a,b-1]==col)

if (a'=n)
nei=c(nei,x[a+1,b]l==col)
if (b'!'=m)
nei=c(nei,x[a,b+1]==col)
sum(nei)
}
and

isingibbs=function(niter=10“2,n,m=n,beta=1,
x=matrix(sample(c(-1,1) ,n*m,rep=TRUE) ,n,m)){
for (i in 1:niter){
sampll=sample(1:n)
sampl2=sample(1:m)
for (k in 1:n){
for (1 in 1:m){
nO=xneigs(x,sampll (k] ,sampl2[1],-1)
nil=xneigé(x,sampll[k],sampl2[1],1)
x [sampl1[k],sampl2[1]]=sample(c(-1,1),1,
prob=exp (beta*c(n0,nl1)))
3}
X

}
defined in the book. Then the function

isinganeal=function(niter=10"3,precis=.1,n,m=n){
beta=precis
simu=isingibbs(niter,n,m,beta)
while (min(simu)<max(simu)){
beta=beta+precis
simu=isingibbs(niter,n,m,beta,x=simu)}
return(beta)

3

increases the coefficient § until all simulated entries are of the same color.
Figure 8.3 in this manual provides an histogram of the §’s returned by
the above code in the case of a 5 x 5 grid. It gives indications on the zone to
study more precisely the occurence of unicolor grids and the detection of the
cutoff point.
For the opposite case, the coefficient [ is decreased in isinganeal until
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Fig. 8.3. Empirical distribution of the ’s leading to a unicolor simulation of the
Ising model, for a (5,5) grid, based on 250 replications and a precision of 0.1.

sum(abs(simul,-1]+simul,-m]))+sum(abs(simu[-1,]+simu[-n,]))==0

Figure 8.4 in this manual provides an histogram of the ’s returned by the
above code in the case of a 5 x 5 grid. As for Figure 8.3 in this manual, it
only provide some indications on the zone of §’s for producing checker grids
almost surely.

8.20 Show that the ABC algorithm implemented with ¢ = 0 and a distance
between sufficient statistics is not approximate in that the output is truly simulated
from the posterior distribution 7(8|x) o< f(x|0)w(0).

When the ABC algorithm is used with a tolerance € = 0, the probability of
accepting 6 ~ 7(6) in Algorithm 8.18 is Py(S(Y) = S(z)) = f9(S(2)|0), the
probability mass function of the statistic S(X) when X ~ f(z|f). Therefore
the distribution of the accepted 6’s is

74P (0]z) oc m(0) £5(S(x)10)

which is the ezact posterior distribution of § when observing S(x). If S(-) is a
sufficient statistic, this posterior is also equal to the posterior distribution of
0 given the observation z. Therefore, an ABC simulation of the Potts model
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Fig. 8.4. Empirical distribution of the f’s leading to a checkerboard simulation of
the Ising model, for a (5,5) grid, based on 250 replications and a precision of 0.1.

posterior in Section 8.3.3 could be rerun with a tolerance of € = 0, albeit at a
higher computational cost.
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