Chapter 2
Compilation Tool Chains and Intermediate
Representations

Julien Mottin, Francois Pacull, Ronan Keryell, and Pascal Schleuniger

2.1 Introduction

In SMECY, we believe that an efficient tool chain could only be defined when
the type of parallelism required by an application domain and the hardware

architecture is fixed. Furthermore, we believe that once a set of tools is available, it is

possible with reasonable effort to change hardware architectures or change the type

of parallelism exploited.

2.1.1 Application Domains

In the SMECY consortium, the application providers have selected more than 15

applications. These have been clustered into the following three sets:

Radar Signal Processing

¢ Passive coherent location, PCL, radar
* Space-time adaptive processing, STAP

J. Mottin (2<)) « F. Pacull
CEA, LETI, DACLE/LIALP, F-38054, Grenoble, France
e-mail: julien.mottin@cea.fr; francois.pacull @cea.fr

R. Keryell
SYLKAN Wild Systems 4962 El Camino Real 201 Los Altos, CA 94022, USA
e-mail: Ronan.Keryell @silkan.com

P. Schleuniger
DTU Compute, Technical University of Denmark, Matematiktorvet, 2800 Lyngby, Denmark
e-mail: pass@dtu.dk

M. Torquati et al. (eds.), Smart Multicore Embedded Systems,
DOI 10.1007/978-1-4614-8800-2_2,
© Springer Science+Business Media New York 2014

21

mailto:julien.mottin@cea.fr
mailto:francois.pacull@cea.fr
mailto:Ronan.Keryell@silkan.com
mailto:pass@dtu.dk

22 J. Mottin et al.

* Active electronically scanned array, AESA, radar
* Measurement and analysis of time-varying targets

Radar applications reconstruct a view of the world from echoes of radio signals.
In the SMECY project, both active and passive radar approaches have been studied.
The structure of the radar applications varies but generally consists of an input
filtering stage followed by a stage which correlates echoes to real-world features.
The correlation phase tends to be very computational intensive but also requires
high memory performance.

Multimedia, Mobile, and Wireless Transmission

* Orthogonal frequency division multiplexing, OFDM, modem

* Audio decoding

* Software spectrum sniffer for cognitive radio systems in the ISM Band.
* Mobile network protocol analyzer

* Video processing on mobile nodes

The applications in this set are more diverse than the applications in the radar
set. Three applications address radio communication. These three range from
data coding applications to a spread spectrum radio sniffer. The mobile aspect is
represented with an application which performs distributed video processing on
mobile devices. The final application in the set is an analyzer for network protocols
with high demands on throughput.

Stream Processing (Video Surveillance)

* Video surveillance

* Video encoding

* Object detection

* Wavelet image processing

* High dynamic range image processing
* 3D graphics particle rendering

* Time-space features processing

The final set of applications focus on high performance image and video pro-
cessing. All the applications have strict requirements on latency and are commonly
used in a data-streaming fashion. While the algorithms used in the applications are
diverse, they are all computational intense due to high image resolutions and strict
latency requirements.

2.1.2 Target Platforms

For each application set, we have chosen, as target, one of the two platforms
provided by the project partners: P2012, also known as STHORM, provided

2 Compilation Tool Chains and Intermediate Representations 23

by STMicroelectronics and EdkDSP, and its last version ASVP, provided by
the academic partner UTIA, Institute of Information Theory and Automation in
Czech Republic. These two targets are very different and so require different
tool chains. The main difference between the platforms is that P2012 is based
on replicated patterns interconnected by a NoC, network on chip, while EdkDSP
utilizes heterogeneous hardware accelerators.

The two first sets of applications used P2012 and the third EdkDSP.

2.2 The Tool Chains

One of the major outcomes of the SMECY project is the interaction of the different
tools provided by the partners as assets at the beginning of the project and the ones
developed on purpose during the project. The former have been adapted to use the
defined intermediate representation.

Figure 2.1 illustrates the big picture with the three application sets: green
for radar signal processing on P2012, red for multimedia, mobile, and wireless
transmission also on P2102, and finally blue for stream processing on EdkKDSP. We
call the application sets, clusters.

Cluster 1 Cluster 2 Cluster 3
.!T-STAF- TAESA] mmxl ¥ oFpm 1

\(1 rmi ’
.L:"%-:»“‘” - ﬁ

i OMPI \ PARAALLIINE Cosyd

CEA/ST
. Back-end

o

Fig. 2.1 The three tool chains

24 J. Mottin et al.

On top, in orange, we can find the applications from the three application sets
previously are introduced. On the bottom, in light green, we have the two target
platforms: EdkDSP and P2012, plus some other platform used as reference and
some simulators for the P2012 platforms. In the middle, in blue, we have all the
tools we considered in the project:

* Front-end tools that guide the programmer in his/her work of mapping the
application on a multicore system. This part is independent of a given physical
architecture and considers only an abstraction of the actual hardware.

» Back-end tools, that are dedicated to a given hardware in order to obtain the best
performances out of a given multicore platform.

In between the front-end and back-end tools, in red, is a key result of the project:
the two level intermediate representations presented into more details hereafter.

2.3 Intermediate Representations

The SMECY intermediate representations have been developed to be sufficiently
generic to allow expressiveness and be compatible with various programming
models or model of computation. We decided on two intermediate representations,
both capitalizing on existing standards:

* A high-level intermediate representation, called SME-C, based on standard C
with pragmas similar to OpenMP.

* A low-level intermediate representation, called /R2, meant to be used by
back-end tools for target platform code generation. The representation is based
on standard C with a set of APIs based on a standard proposed by the Multicore
Association.

We decided on this multitiered approach because a single intermediate
representation is not a good match for the different levels of abstraction used
by the tools in the tool chains. Furthermore, we have developed tools that can
transform between the two intermediate representations. Examples include Par4All,
by SILKAN-project, and CoSy, by ACE, which can transform SME-C source files
to the low-level intermediate representation.

We will now describe the two intermediate representations.

2.3.1 High Level Intermediate Representation: SME-C

The SME-C representation is a #pragma-based language extending C and C++
to allow heterogeneous computing with several accelerators and memory spaces.
SME-C is based on OpenMP to express parallelism on a main host, extended with
some specific #pragma to invoke accelerated functions on a given accelerator or

2 Compilation Tool Chains and Intermediate Representations 25

to pipeline loops. The programming model is based on C processes, with a virtual
shared memory and threads a la OpenMP. SME-C includes mapping information
stating on which hardware part a function is to be placed and run.

An important part of SME-C is the support for describing memory dependencies
at the function call level. Memory dependencies are approximated with rectan-
gles, more generally hyperparallelepipede in any dimension, in multidimensional
arrays. The hyperparallelepipede is tagged as read, written, or both. With this
information, the tools can infer the memory communication. This approach is
similar to XMP pragmas and high performance Fortran, HPF.

SME-C leverages the TR 18037 Embedded C standard to express detailed
hardware properties such as hardware register names and precision of fixed-point
arithmetic computations.

In several of the SMECY applications, data is processed in a pipelined fash-
ion however with strong data dependencies that require data to be processed
sequentially at specific points in the pipeline. This is opposed to a data-parallel
model, where such dependencies do not exist. A streaming model is a suitable
parallel computation model for such programming patterns.

Streaming models can exploit both a coarse-grained level of parallelism and
parallelism at a fine-grained level. At the fine-grained level, the overhead of passing
data between processing nodes in the pipeline must of course be minimized.
For fine-grained parallelism, this may require hardware support. To achieve good
load balancing, it is important that the processing nodes have a comparable grain
size. If one node required much more processing than the others, it becomes the
bottleneck and no parallelism can be exploited.

Streaming has the advantage of data locality. Data is passed around in the
distributed point-to-point network. Such networks can be implemented far more
efficiently than, for example, a shared memory connection between the processing
nodes.

SME-C supports streaming through annotations. The communication is derived
from the program source and generated by the compiler. This is very important
for the parallel performance tuning of the application because it allows for exper-
imentation with different load partitioning without having to reprogram process
communication.

2.3.2 Low-Level Intermediate Representation: IR2

The low-level intermediate representation, called IR2, is based on an API developed
by the Multi-core Association [1,2]. The Multi-core Association has developed APIs
for communication, resource management, and task management. In the SMECY
project, we have used the communication API called MCAPI. This improves
interoperability and allows us to leverage the effort the Multi-core Association has
put into developing the API. The low-level intermediate representation consists of
C source code with MCAPI calls. MCAPI is based on three main concepts:

26 J. Mottin et al.

Fig. 2.2 MCAPI main
concepts

MCAPI Domain 1

MCAPI Node 1

MCAPI Node 3

Endpoint <1,3,1>

Endpoint <1,3,2>

* A node is an independent thread of control that can communicate with other
nodes. The exact nature of a node is defined by the implementation of the
MCAPIL. It could, for example, be a process, a core, a thread, or an HW IP.

* An endpoint is a communication termination point and is therefore connected to
a node. One node can have multiple endpoints, but one endpoint belongs to a
single node.

* Domain is a set of MCAPI nodes that are grouped together for identification
or routing purpose. The semantics attached to a domain is given by the
implementation. Each node can only belong to a single domain.

Compared to MPI, MCAPI offers inter-core communication with low latency
with minimal footprint. MCAPI communication nodes are all statically predefined
by the implementation.

MCAPI offers three fundamental communication mechanisms:

* Messages are streams sent from one endpoint to another. No connection is
established between the two endpoints to send a message. This is the easiest
way of communicating between two nodes.

* A packet channel is a FIFO unidirectional stream of data packets of variable size,
sent from one endpoint to another.

* A scalar channel is similar to a packet channel, except that only fixed-length
word of data can be sent through the channel. A word may be 8§, 16, 32, or 64
bits of data.

Figure 2.2 presents an overview of MCAPI. The communication channels can
then be set up between two different endpoints.

Within the project, we have developed an implementation of MCAPI for the
STHORM platforms. The main objective of this implementation was to offer a
uniform level of abstraction and a homogeneous programming interface for the
whole platform.

2.3.3 Source-to-Source Compilers

In the project, we have developed two source-to-source compilers whose role
is to translate from the high-level intermediate representation to the low-level
intermediate representation. The two compilers are complementary and translate

2 Compilation Tool Chains and Intermediate Representations 27

different parts of SME-C. The first one is dedicated to the streaming annotation
outlined above. The second source-to-source compiler developed translates the rest
of SME-C.

In addition, a more general OpenMP source-to-source compiler has been
developed.

Source-to-Source for Streaming Annotation (ACE)

ACE has implemented a source-to-source compiler that accepts C programs with the
streaming annotation and produces a partitioned program with separate processes,
nodes, for each stage of the streaming pipeline. In addition, it implements the
communication links between the nodes.

The generated code includes library calls to implement the low-level tasks of
process creation and synchronization. This small library of about five calls is
currently implemented on top of, shared memory, POSIX pthreads. It is not hard
to retarget this library to different underlying runtime systems.

To be used, the streaming model requires a part of the target application to
be rewritten into a particular form, using a while loop and the SME-C stream
annotations. Only this part needs to be passed through the source-to-source com-
piler. Hence, large parts of the application remain unmodified and do not need to be
processed by the stream compiler.

Stream termination is currently not handled well. Stream termination has to be
mapped from a sequential to a distributed decision process and the design and
implementation of that is still to be done.

It is possible to stream a while loop in several pipeline stages that execute in
parallel and pass information between stages.

The two pragmas used here are:

#pragma smecy stream loop: this indicated the following while loop
must be turned into a stream of processes.

#pragma smecy stage: this acts as a separator between groups of
statements and defines the boundary of pipeline stages. Only data passing over
these separators is turned into communication.

Smecc Source-to-Source (SILKAN)

Smecc is a source-to-source translator from SME-C pragma-oriented C and C++
to OpenMP and IR2. It is based on the ROSE compiler. The translator is intended to
be used as a front-end to the Par4 All compiler.

Par4 All is an automatic parallelizing and optimizing compiler developed notably
by SILKAN (HPC Project). Par4All uses a set of macros and API functions
collectively called Par4All Accel runtime to ease parallelized code generation by
masking implementation-dependent or hardware-dependent details. Par4All can
parallelize to several CPUs, using OpenMP, or GPUs, using Cuda and OpenCL.

28 J. Mottin et al.

OMPi Source-to-Source (UOI)

OMPi is a lightweight source-to-source OpenMP compiler and runtime system
for C, conforming to version 3.0 of the specifications. The OMPi compiler takes
C source code annotated with OpenMP #pragmas and produces transformed
multithreaded C code, ready to be compiled by the native compiler of the system. It
provides a multitude of runtime libraries for supporting efficient execution. OMPi
supports shared memory systems, threads, or processes, with loop or task-based par-
allelism. Task-based parallelism can be combined with message passing for a hybrid
model. OMPi yields a performance improvement through OpenMP parallelization
and sophisticated dynamic runtime scheduling.

2.4 The Tools

We conclude with brief descriptions of each tool in the tool chains.

2.4.1 Front-End Tools

BIP (VERIMAG)

BIP (Behavior, Interaction, Priority) is a formal component-based framework,
which allows building complex systems by coordinating the behavior of a set of
atomic components [3]. Atomic components are described as Petri-nets extended
with data and functions described in C. The BIP toolbox includes translators from
various programming models into BIP, source-to-source transformers for BIP, as
well as a configurable compiler for generating code executable by a dedicated
middle-ware engine. The BIP framework and toolbox aims to support the design
flow for embedded applications. The tool accepts input in BIP language and
outputs debugging functionalities, deadlock analysis, performance analysis based
on simulation, and C/C++ implementation for general purpose platforms, according
to different options (real-time, single/multithreaded, monolithic, distributed, ...).

ABSOLUT (VTT)

ABSOLUT is a tool to perform system-level performance exploration. It considers
standard multithreaded C code as input programming language. ABSOLUT creates
an abstract workload model and simulates the workload model on performance

2 Compilation Tool Chains and Intermediate Representations 29

capacity model of the target platform. The approach enables early performance
evaluation, exhibits light modeling effort, allows fast exploration iteration, and
reuses application and platform models. It also provides performance results that
are accurate enough for system-level exploration.

BlueBee (TUDelft)

BlueBee is a tool chain that allows (embedded systems) developers to port their
applications to heterogeneous multicore platforms. It consists of a portioning and
mapping toolbox that determines on the basis of performance driven profiling
information what parts of the application should be mapped on what particular
computing element. Once the kernels identified, the necessary code transformations
are performed to insert the necessary instructions to start and stop the different
kernels and to transfer the parameters to the different computing elements. The
appropriate back-end tools compile the identified kernels for the different HW units
to which they are mapped. The HW units can be FPGAs, DSPs, and GPPs. The
partitioning toolbox and the back-end tools can be used independently. BlueBee
aims to improve performance through (semi)automatic partitioning and mapping
on a heterogeneous multicore platform. BlueBee supports ANSI C as input language
and outputs ANSI C with pragmas or binary.

Code Comment (DTU)

DTU has explored the use of tools which provide code comments to the
programmer. The tools help the programmers make better use of compilers
optimization features. For many parallel applications, performance relies not on
instruction-level parallelism, but on loop-level parallelism. Unfortunately, many
modern applications are written in ways that obstruct automatic loop parallelization.
The aforementioned generated comments guide the programmer in iteratively
modifying application source code to exploit the compiler’s ability to generate
loop-parallel code.

SpearDE (Thales)

SpearDE is a code generation environment for custom parallel embedded
architectures. The graphical model-based environment provides the user with both
domain-specific application interfaces and a heterogeneous architecture description
interface, which help the implementation of data-streaming applications for parallel
architectures. Using SpearDE, the programmer should be able to fill the gap
between functional and implementation levels by using a seamless design flow
that includes modeling of both the application and the target architecture. If needed,

30 J. Mottin et al.

the programmer can try several mapping strategies by using the design space
exploration facility provided by Spear. SpearDE provides support to integrate
code generators for specific targets (e.g., Thales SIMD architecture on FPGA for
image processing), or it can be used to properly interface external tools from a more
domain-relevant point of view.

Ptolemy II and HAMMER (HH)

Ptolemy Il is a software system for modeling and simulation of concurrent real-time
embedded systems. It is developed at University of California, Berkley. The tool
has a thematic focus on system design through assembly of concurrent components,
which is relying on the use of well-defined models of computation to define the
interaction between the components. One of the main research areas on the Ptolemy
system concerns the use of heterogeneous mixture of models of computation.
However, Ptolemy II provides no direct support for multi- and many-core modeling,
scheduling, and code deployment. Ptolemy II’s code generator infrastructure got
modified and extended during the SMECY project by HH. The system is able
to generate input to the back-end tools in the form of the common SMECY IR
(intermediate representation).

HAMMER is a multi- and many core analysis and mapping tool. HAMMER
is built on top of the Ptolemy II system. It uses the Ptolemy II infrastructure for
programming and modeling concurrent functional data flow behavior of appli-
cations. HAMMER adds the functionality needed for mapping applications on
multi- and many-core systems and for analyzing nonfunctional behavior such as
timing analysis.

2.4.2 Back-End Tools

UTIA ASVP SDK (UTIA)

UTIA ASVP SDK consists of a C-compiler, assembler, and linker and two
application interfaces to the ASVP accelerators. The first part of the SDK contains
a C-compiler and assembler (binutils) for hardware accelerator’s microcontroller
in the used ASVP platform. The tools compile input C codes to microcontroller
firmware binaries. Two APIs represented by header files and libraries are the next
part of the SDK. The first API is called WAL (worker abstraction layer) and it
defines an interface between the host CPU and the accelerators. It offers functions
for data transfer and execution control between the host CPU and local accelerator’s
data memories. The second API defines an interface between the microcontroller
and data flow unit and between the accelerator and the host CPU from the side of the
accelerator. It offers functions for communication with the host CPU and functions
to parameterize and control basic operations in hardware. The UTIA ASVP SDK

2 Compilation Tool Chains and Intermediate Representations 31

provides target-independent interface between ASVP platform and the partner’s
tools, namely (1) C-compiler and linker—compilation of a control C code to binary
firmware for the accelerator microcontroller and (2) APIs—provide basic interface
functions.

BUT C-Compiler (BUT)

The Vecta is a C language compiler that generates code for architectures with
accelerator and was developed primarily for the EdkDSP platform. It is a fully
automatic compilation chain. This compilation chain can be used as back-end
compiler for code prepared by BlueBee and Par4All. The approach to compilation
is based on a view that the workers may have a predefined set of possible vector
operations that they can perform. This set of operations is based on the WAL
API provided by UTIA, where a complex operation may consist of a sequence of
provided basic operations defined by this API. Vecta allows using multiple BCEs
automatically and also legacy code without much modification can be quickly
ported to the EdkDSP. Description of BCEs for the BCE acceleration pass is
parameterizable and new operations can be simply added or removed. Also, the
operation tree obtained from the for-loop body can be analyzed in order to generate
application-specific dataflow units for BCEs. The overall design is prepared to
be modified for other architectures with external accelerators. The Vecta C-compiler
provides automatic off-loading of expensive for-loops to basic computing elements.

deGoal (CEA)

deGoal is a tool designed to build specialized code generators (also known as
compilettes) customized for each computing kernel we want to accelerate in an
application. Such compilettes are designed with the aim to perform data- and
architecture-dependent code optimizations and code generation at runtime. Further-
more, compilettes provide very fast code generation and low memory footprint.
This approach is fundamentally different from the standard approach for dynamic
compilation as used, for example, in Java Virtual Machines or LLVM JIT. In order to
target computing architectures that include domain-specific accelerators and to raise
the level of abstraction of the source code of compilettes, deGoal uses a dedicated
programming language, which is later transformed to C language by an automatic
source-to-source translation in order to ease integration with standard compilation
tool chains.

CoSy Compiler Development System (ACE)

The CoSy compiler development system is a modular toolbox for compiler
construction. CoSy is a product that is used by many companies worldwide.

32 J. Mottin et al.

CoSy supports C, C+4, and extensions such as Embedded C. The CoSy
front-end also accepts OpenMP and can be programmed to accept arbitrary
pragma extensions to implement domain-specific programming models. For shared
memory multiprocessing, CoSy supports OpenMP’s relaxed memory consistency
model. CoSy is typically used to generate compilers that produce assembly code
from C. CoSy can also generate compilers that manipulate or transform source
code, and produce source code again. CoSy aims to create best-in-class compilers
in the embedded application domain. For this reason, it supports a wide variety of
extensions that are not found in other compilers or compiler systems.

References

1. The Multicore Association, “Industry standards to solve multicore challenges,” http://www.
multicore-association.org/, 2011.

2. The Multicore Association, “Multicore Communication APIs,” http://www.multicore-
association.org/workgroup/mcapi.php, 2011.

3. A. Basu, M. Bozga, and J. Sifakis, “Modeling heterogeneous real-time components in bip,” in
Proceedings of the Fourth IEEE International Conference on Software Engineering and Formal
Methods, ser. SEFM ’06. Washington, DC, USA: IEEE Computer Society, 2006, pp. 3-12.
[Online]. Available: http://dx.doi.org/10.1109/SEFM.2006.27

http://www.multicore-association.org/
http://www.multicore-association.org/
http://www.multicore-association.org/workgroup/mcapi.php
http://www.multicore-association.org/workgroup/mcapi.php
http://dx.doi.org/10.1109/SEFM.2006.27

2 Springer
http://www.springer.com/978-1-4614-8799-9

Smart Multicore Embedded Systems

Torquati, M.; Bertels, K.; Karlsson, 5.; Pacull, F. (Eds.)
2014, X0/, 175 p. 77 illus., 54 illus. in color., Hardcover
ISBN: 278-1-4614-8799-9

	2 Compilation Tool Chains and Intermediate Representations
	2.1 Introduction
	2.1.1 Application Domains
	Radar Signal Processing
	Multimedia, Mobile, and Wireless Transmission
	Stream Processing (Video Surveillance)

	2.1.2 Target Platforms

	2.2 The Tool Chains
	2.3 Intermediate Representations
	2.3.1 High Level Intermediate Representation: SME-C
	2.3.2 Low-Level Intermediate Representation: IR2
	2.3.3 Source-to-Source Compilers
	Source-to-Source for Streaming Annotation (ACE)
	Smecc Source-to-Source (SILKAN)
	OMPi Source-to-Source (UOI)

	2.4 The Tools
	2.4.1 Front-End Tools
	BIP (VERIMAG)
	ABSOLUT (VTT)
	BlueBee (TUDelft)
	Code Comment (DTU)
	SpearDE (Thales)
	Ptolemy II and HAMMER (HH)

	2.4.2 Back-End Tools
	UTIA ASVP SDK (UTIA)
	BUT C-Compiler (BUT)
	deGoal (CEA)
	CoSy Compiler Development System (ACE)

	References

