
Chapter 2
Infinite-Horizon Theorems

2.1 Introduction

In this chapter, we give infinite-horizon theorems using the tools of the previous
chapter. In Sect. 2.2 we present several weak maximum principles which are
obtained through the method of reduction to finite horizon. We successively use
two additional conditions to obtain results in the infinite-horizon setting from
results of the finite-horizon setting. In Sect. 2.3 we present several strong maximum
principles which are obtained through the method of reduction to finite horizon.
We successively use three additional conditions which permit the extension of
finite-horizon results into infinite-horizon results. In Sect. 2.4 we study constrained
problems and in Sect. 2.5 multiobjective problems.

2.2 Weak Pontryagin Principles in Infinite Horizon

The first establishment of a Pontryagin principle in infinite horizon in the framework
of the continuous time is due to Halkin [34]. The major difficulty to adapt the
proof of Halkin to the discrete-time framework is the following one: whereas
integrating an ordinary differential equation forward or integrating it backward is
the same thing, it is not the same for a difference equation. And the so-called
adjoint equations, pt D D1Ht. Oxt ; Out ; ptC1; �0/, are backward difference equations.
To overcome this difficulty, we propose several solutions. Each of the following
subsections provides a solution to this difficulty.
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32 2 Infinite-Horizon Theorems

2.2.1 A Condition of Invertibility

This condition concerns the partial differential with respect to the state variable
of the vector field of the equation of motion. It is the following: the invertibility
of D1ft . Oxt ; Out /. This invertibility allows to transform the adjoint equation into a
forward difference equation. In this context, this condition appears for the first time
in the paper of Blot and Chebbi [16].

We need two lemmas to prove the theorems of this section. First, the following
lemma is a way to express the Diagonal Process of Cantor.

Lemma 2.1. Let Z be a real finite-dimensional normed vector space. For all
.t; T / 2 N� � N� such that t � T we consider zTt 2 Z. We assume that, for all
t 2 N�, the sequence T 7! zTt is bounded. Then there exists an increasing function
� W N� ! N� such that, for all t 2 N� ! N� such that, for all t 2 N�, there exists
zt 2 N�.

A precise proof of this lemma is given in Theorem A.1 in Appendix A. The second
lemma expresses a relation between a property related to the norm and an algebraic
property.

Lemma 2.2. Let Z be a real finite-dimensional normed vector space. Let z1, . . . ,
zk be linearly independent vectors in Z, and for all j 2 f1; : : : ; kg, let .rjt /t2N be a

real sequence. If the vector sequence
� kP
jD1

r
j
t vj

�
t2N is bounded in Z, then the real

sequence .rjt /t2N is bounded in R for all j 2 f1; : : : ; kg.

A precise proof of this lemma is given in [13] p. 48.
First we use the multiplier rule of Halkin to obtain the following result.

Theorem 2.1. Let . Ox; Ou/ be a solution of .Pn
a ), or of (Ps

a), or of (Po
a ), or of (Pw

a )
for a 2 fe; ig. We assume that the following conditions are fulfilled:

(a) For all t 2 N, Xt is a nonempty open subset of Rn.
(b) For all t 2 N,

Ut D
0
@

ki\
˛D1

fu 2 R
d W g˛t .u/ � 0g

1
A \

0
@

ke\
ˇD1

fu 2 R
d W hˇt .u/ D 0g

1
A

where g˛t W R
d ! R and hˇt W R

d ! R are continuous on a neighborhood
of Out and they are differentiable at Out , for all ˛ 2 f1; : : : ; kig and for all ˇ 2
f1; : : : ; keg, and we assume that Ut ¤ ;.

(c) For all t 2 N, the differentials Dg1t .Out /; : : : ;Dgkit .Out /, Dh1t .Out /; : : : ;Dhket .Out /
are linearly independent.

(d) For all t 2 N, �t and ft are continuous on a neighborhood of . Oxt ; Out / and they
are differentiable at . Oxt ; Out /.

(e) For all t 2 N, the partial differential D1ft . Oxt ; Out / is invertible.
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Then there exist �0 2 R, .pt /t2N�
2 .Rn�/N� , .�1;t /t2N 2 R

N, . . . , .�ki ;t /t2N 2 R
N

.�1;t /t2N 2 R
N, . . . , .�ke;t /t2N 2 R

N which satisfy the following conditions:

(i) .�0; p1/ ¤ .0; 0/.
(ii) �0 � 0.

(iii) For all t 2 N, ptC1 � 0 and hptC1; ft . Oxt ; Out / � OxtC1i D 0 when a D i .
(iv) For all t 2 N, for all ˛ 2 f1; : : : ; kig, �˛;t � 0.
(v) For all t 2 N, for all ˛ 2 f1; : : : ; kig, �˛;tg˛t .Out / D 0.

(vi) For all t 2 N�, pt D ptC1 ıD1ft . Oxt ; Out /C �0D1�t . Oxt ; Out /.
(vii) For all t 2 N,

D2Ht. Oxt ; Out ; ptC1; �0/C
kiP
˛D1

�˛;tDg
˛
t .Out /C

keP
ˇD1

�ˇ;tDh
ˇ
t .Out / D 0.

Proof. Using Proposition 1.2 we know that for all T 2 N, T � 2, the restriction
. Ox0; : : : ; OxT�1; Ou0; : : : ; OuT�1/ is a solution of (F a.T; �; OxT /) for a 2 fe; ig. And
consequently the conclusions of Proposition 1.3 hold when a D e, and the
conclusions of Proposition 1.4 hold when a D i . Using the assumption (e), the
conclusion (iv) of Proposition 1.3 or of Proposition 1.4 which is

pTt D pTtC1 ıD1ft . Oxt ; Out /C �T0 D1�t . Oxt ; Out /;

for all t 2 f0; : : : ; T � 1g, becomes

pTtC1 D pTt ı .D1ft . Oxt ; Out //�1 � �T0 D1�t . Oxt ; Out / ı .D1ft . Oxt ; Out //�1: (2.1)

Using (2.1), we see that .�T0 ; p
T
1 / D .0; 0/ implies .�T0 ; p

T
1 ; : : : ; p

T
T / D

.0; 0; : : : ; 0/. And so by contraposition we obtain the following relation.

.�T0 ; p
T
1 ; : : : ; p

T
T / ¤ .0; 0; : : : ; 0/ H) .�T0 ; p

T
1 / ¤ .0; 0/: (2.2)

Using assumption (c) and the last assertion of Proposition 1.3 or of Proposition 1.4
we obtain .�T0 ; p

T
1 / ¤ .0; 0/. Since the set of all lists of multipliers is a cone, we

can normalize these lists of multipliers, and so we can choose:

8T 2 N�; k.�T0 ; pT1 /k D 1: (2.3)

From (2.1) the sequence T 7! pT1 is bounded in R
n�, and the sequence T 7! �T0 is

bounded in R. From (2.1) we obtain

kpT2 k � kpT1 k:k.D1f1. Ox1; Ou1//�1k C j�T0 j:kD1�1. Ox1; Ou1/k:k.D1f1. Ox1; Ou1//�1k

which implies

sup
T�2

kpT2 k � k.D1f1. Ox1; Ou1//�1k C kD1�1. Ox1; Ou1/k:k.D1f1. Ox1; Ou1//�1k < C1;
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and proceeding by induction, we obtain

sup
T�tC1

kpTtC1k � sup
T�t

kpTt k:k.D1ft . Oxt ; Out //�1kCkD1�t . Oxt ; Out /k:k.D1ft . Oxt ; Out //�1k

which implies

8t 2 N; sup
T�t

kpTt k < C1: (2.4)

From (2.2) we deduce that the sequence T 7! D2Ht. Oxt ; Out ; pTtC1; �T0 / is bounded
and using the conclusion (v) of Proposition 1.3 or of Proposition 1.4 we obtain that

the sequence T 7!
kiP
˛D1

�T˛;tDg
˛
t .Out / C

keP
ˇD1

�Tˇ;tDh
ˇ
t .Out / is bounded, and by using

the assumption (c) and Lemma 2.2 we obtain the following relations:

8t 2 N; sup
T�t

j�T˛;t j < C1: (2.5)

8t 2 N; sup
T�t

j�Tˇ;t j < C1: (2.6)

After (2.1)–(2.4), using Lemma 2.1 we know that there exist an increasing function
� W N� ! N�, �0 2 R, pt 2 R

n�, �˛;t 2 R, �ˇ;t 2 R for all t 2 N, for all ˛ 2
f1; : : : ; kig, for all ˇ 2 f1; : : : ; keg such that, for all t 2 N, for all ˛ 2 f1; : : : ; kig,
for all ˇ 2 f1; : : : ; keg, the following equalities hold:

lim
T!C1�

�.T /
0 D �0

lim
T!C1p

�.T /
tC1 D ptC1

lim
T!C1�

�.T /
˛;t D �˛;t

lim
T!C1�

�.T /

ˇ;t D �ˇ;t :

9
>>>>>>=
>>>>>>;

(2.7)

From (2.3), (2.7), and the continuity of the norm we obtain k.�0; p1/k D 1, which
implies the conclusion (i). From (2.7) and the conclusions of Proposition 1.3 or
of Proposition 1.4, we obtain the conclusions (ii), (iii), (iv), and (v) by taking
T ! C1. �

When we have Out 2 intUt for all t 2 N, using Corollary 1.1 instead of
Proposition 1.3 and Corollary 1.2 instead of Proposition 1.4, a similar reasoning
allows to establish the following result.

Theorem 2.2. Let . Ox; Ou/ be a solution of .Pn
a ), or of (Ps

a), or of (Po
a ), or of (Pw

a )
for a 2 fe; ig. We assume that the following conditions are fulfilled:

(a) For all t 2 N, Xt is a nonempty open subset of Rn.
(b) For all t 2 N, Out 2 intUt .
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(c) For all t 2 N, �t and ft are continuous on a neighborhood of . Oxt ; Out / and they
are differentiable at . Oxt ; Out /.

(d) For all t 2 N, the partial differential D1ft . Oxt ; Out / is invertible.

Then there exist �0 2 R, .pt /t2N�
2 .Rn�/N� which satisfy the following

conditions:

(i) .�0; p1/ ¤ .0; 0/.
(ii) �0 � 0.

(iii) For all t 2 N, ptC1 � 0 and hptC1; ft . Oxt ; Out / � OxtC1i D 0 when a D i .
(iv) For all t 2 N�, pt D ptC1 ıD1ft . Oxt ; Out /C �0D1�t . Oxt ; Out /.
(v) For all t 2 N, D2Ht. Oxt ; Out ; ptC1; �0/ D 0.

After the use of the multiplier rule of Halkin, we use the multiplier rule of Clarke.

Theorem 2.3. Let . Ox; Ou/ be a solution of .Pn
a ), or of (Ps

a), or of (Po
a ), or of (Pw

a )
for a 2 fe; ig. We assume that the following conditions are fulfilled:

(a) For all t 2 N, �t is Lipschitzian on a neighborhood of . Oxt ; Out / and regular at
. Oxt ; Out /.

(b) For all t 2 N, ft is strictly differentiable at . Oxt ; Out /.
(c) For all t 2 N, Ut is closed and Clarke-regular at Out .
(d) For all t 2 N, the partial differential D1ft . Oxt ; Out / is invertible.

Then there exist �0 2 R, .pt /t2N�
2 .Rn�/N� which satisfy the following

conditions:

(i) .�0; p1/ ¤ .0; 0/.
(ii) �0 � 0.

(iii) For all t 2 N, ptC1 � 0 and hptC1; ft . Oxt ; Out / � OxtC1i D 0 when a D i .
(iv) For all t 2 N�, pt 2 @2Ht. Oxt ; Out ; ptC1; �0/.
(v) For all t 2 N, @2Ht . Oxt ; Out ; ptC1; �0/ \ NUt .Out / ¤ ;, where NUt .Out / is the

normal cone of Ut at Out .
Proof. Using Proposition 1.2, the restriction ( Ox0,. . . , OxT�1, Ou0,. . . , OuT�1) is a
solution of (F a.T; �; OxT /), for a 2 fe; ig. Consequently using Proposition 1.5 when
a D e and Proposition 1.6 when a D i , we know that, for all T 2 N , T � 2, there
exist �T0 2 R, pTtC1 2 R

n�, when t 2 f0; : : : ; T � 1g, which satisfy the following
conditions:

�
�T0 ; p

T
1 ; : : : ; p

T
T

� ¤ .0; 0; : : : ; 0/ (2.8)

�T0 � 0 (2.9)

8t 2 f0; : : : ; T � 1g; 9'Tt 2 @1�t . Oxt ; Out / s:t: pTt D �T0 '
T
t C pTtC1 ıD1ft . Oxt ; Out /

(2.10)

8t 2 f0; : : : ; T � 1g; 9 T
t 2 @2�t . Oxt ; Out / s:t:

8vt 2 TUt .Out /; h�T0  T
t C pTtC1 ıD2ft . Oxt ; Out /; vt i � 0

�
(2.11)
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Using assumption (d) we can transform (2.10) into the following relation:

pTtC1 D pTt ı .D1ft . Oxt ; Out //�1 � �T0 'Tt ı .D1ft . Oxt ; Out //�1: (2.12)

Reasoning as in the proof of Theorem 2.2, from (2.8) and (2.12) we deduce that
.�T0 ; p

T
1 / ¤ .0; 0/ and we can choose .�T0 ; p

T
1 / such that k.�T0 ; pT1 /k D 1. And so

the sequences T 7! �T0 and T 7! pT1 are bounded, and from (2.12) we deduce by
induction that, for all t 2 N, all the sequences T 7! pTtC1 are bounded. Since the
Clarke differentials at a point are compact [38], we obtain that, for all t 2 N, the
sequences T 7! 'Tt and T 7!  T

t are bounded. Using Lemma 2.1, there exist an
increasing function � W N� ! N�, �0 2 R, ptC1 2 R

n�, 't 2 @1�t . Oxt ; Out / and
 t 2 @2�t . Oxt ; Out / such that the following equalities hold for all t 2 N:

lim
T!C1�

�.T /
0 D �0

lim
T!C1p

�.T /
tC1 D ptC1

lim
T!C1'

�.T /
t D 't

lim
T!C1 

�.T /
t D  t :

9
>>>>>>=
>>>>>>;

(2.13)

Taking T ! C1, from k.��.T /0 ; p
�.T /
1 /k D 1 and from (2.13), we obtain

k.�0; p1/k D 1 that ensures the conclusion (i).
From (2.9) and (2.13) we obtain the conclusion (ii). From (2.10) and (2.13) we

obtain the conclusion (iii). From (1.13) and (2.13) we obtain

ptC1 D pt ı .D1ft . Oxt ; Out //�1 � �0't ı .D1ft . Oxt ; Out //�1

which implies the conclusion (iv).
From (2.11) and 2.13) we obtain, for all vt 2 TUt .Out /,

h�0 t C ptC1 ıD2ft . Oxt ; Out /; vt i � 0

which implies �0 t CptC1 ıD2ft . Oxt ; Out / 2 NUt .Out / with  t 2 @2�t . Oxt ; Out /, which
implies the conclusion (v). �

When Out 2 intUt , using Corollary 1.3 instead of Proposition 1.5 and Corollary 1.4
instead of Proposition 1.6 and proceeding as in the proof of Theorem 2.3 we obtain
the following result.

Theorem 2.4. Let . Ox; Ou/ be a solution of .Pn
a ), or of (Ps

a), or of (Po
a ), or of (Pw

a )
for a 2 fe; ig. We assume that the following conditions are fulfilled:

(a) For all t 2 N, �t is Lipschitzian on a neighborhood of . Oxt ; Out / and regular at
. Oxt ; Out /.

(b) For all t 2 N, ft is strictly differentiable at . Oxt ; Out /.
(c) For all t 2 N, Out 2 intUt .
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(d) For all t 2 N, the partial differential D1ft . Oxt ; Out / is invertible.

Then there exist �0 2 R, .pt /t2N�
2 .Rn�/N� which satisfy the following

conditions:

(i) .�0; p1/ ¤ .0; 0/.
(ii) �0 � 0.

(iii) For all t 2 N, ptC1 � 0 and hptC1; ft . Oxt ; Out / � OxtC1i D 0 when a D i .
(iv) For all t 2 N�, pt 2 @2Ht. Oxt ; Out ; ptC1; �0/.
(v) For all t 2 N, 0 2 @2Ht . Oxt ; Out ; ptC1; �0/.

2.2.2 A Condition of Positivity

All the weak Pontryagin principles of the previous subsection use the condition
of invertibility of D1ft . Oxt ; Out /. In this subsection, to avoid this condition of
invertibility, we introduce the following positivity condition:

8i; j 2 f1; : : : ; ng; @f
j
t . Oxt ; Out /
@xi

� 0

8j 2 f1; : : : ; ng; @f
j
t . Oxt ; Out /
@xj

> 0:

9>>=
>>;

(2.14)

Note that this condition does not imply the invertibility ofD1ft . Oxt ; Out / when n > 1.

To see that it suffices to consider the case where @f
j
t . Oxt ;Out /
@xi

D 1 for all i; j , the
condition (2.14) is fulfilled, and D1ft . Oxt ; Out / is not invertible since its rank is equal
to 1. In this context, this condition was introduced for the first time in the paper of
Blot [11].

The following elementary lemma will be very useful.

Lemma 2.3. Under (2.14), setting %t WD min
1�j�n

@f
j
t . Oxt ;Out /
@xj

> 0, the following

assertions hold:

(i) For all y 2 R
nC, D1ft . Oxt ; Out /:y � %ty.

(ii) For all � 2 R
n�C , � ıD1ft . Oxt ; Out / � %t� .

Proof. .ei /1�i�n denotes the canonical basis of Rn, and .e�
i /1�i�n its dual basis.

(i) When y 2 R
nC, and j 2 f1; : : : ; ng we have

he�
j ;D1ft . Oxt ; Out /:yi D

nX
iD1

@f
j
t . Oxt ; Out /
@xi

yi � @f
j
t . Oxt ; Out /
@xj

yj C 0 � %ty
j ;

that means D1ft . Oxt ; Out /:y � %ty for the natural order of Rn.
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(ii) Let � 2 R
n�C . For all y 2 R

nC, after (i), we haveD1ft . Oxt ; Out /:y � %ty, and since
� � 0, we have

� ıD1ft . Oxt ; Out /:y D �.D1ft . Oxt ; Out /:y/ � �.%ty/ D %t�.y/;

that means � ıD1ft . Oxt ; Out / � %t� for the order of Rn�. �

The following remark contains elementary facts on the orders of R
n and of R

n�
which will be very useful.

Remark 2.1. When k:k is one of the usual norms of R
n, kxk1 WD max

1�i�n jxi j,

kxk1 WD
nP
iD1

jxi j, kxk2 WD
s

nP
iD1

jxi j2, it satisfies the following property:

8x; y 2 R
n; 0 � x � y H) kxk � kyk:

It is easy to verify this property by using elementary calculations.
When R

n is endowed with the norm k:k1, and R
n� is endowed with the norm

k'k� WD supfjh'; xij W x 2 R
n; kxk1 � 1g, it is easy to see that k'k� D

nP
iD1

jh'; ei ij. The following property holds:

8'; 2 R
n�; 0 � ' �  H) k'k� � k k�:

To verify that, noting that ei � 0 for all i 2 f1; : : : ; ng, and then we have 0 � ' �
 H) 0 � '.ei / �  .ei /, for all i 2 f1; : : : ; ng, which implies

k'k� D
nX
iD1

jh'; ei ij D
nX
iD1

h'; ei i �
nX
iD1

h ; ei i D
nX
iD1

jh ; ei ij D k k�:

Now we can establish a weak Pontryagin principle.

Theorem 2.5. Let . Ox; Ou/ be a solution of .Pn
i ), or of (Ps

i ), or of (Po
i ), or of (Pw

i ).
We assume that the following conditions are fulfilled:

(a) For all t 2 N, Xt is a nonempty open subset of Rn.
(b) For all t 2 N,

Ut D
0
@

ki\
˛D1

fu 2 R
d W g˛t .u/ � 0g

1
A \

0
@

ke\
ˇD1

fu 2 R
d W hˇt .u/ D 0g

1
A

where g˛t W R
d ! R and hˇt W R

d ! R are continuous on a neighborhood
of Out and they are differentiable at Out , for all ˛ 2 f1; : : : ; kig and for all ˇ 2
f1; : : : ; keg, and we assume that Ut ¤ ;.
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(c) For all t 2 N, the differentials Dg1t .Out /; : : : ;Dgkit .Out /, Dh1t .Out /; : : : ;Dhket .Out /
are linearly independent.

(d) For all t 2 N, �t and ft are continuous on a neighborhood of . Oxt ; Out /, and they
are differentiable at . Oxt ; Out /.

(e) For all t 2 N, the positivity condition (2.14) is fulfilled.

Then there exist �0 2 R, .pt /t2N�
2 .Rn�/N� , .�1;t /t2N 2 R

N, . . . , .�ki ;t /t2N 2 R
N

.�1;t /t2N 2 R
N, . . . , .�ke;t /t2N 2 R

N which satisfy the following conditions:

(i) .�0; p1/ ¤ .0; 0/.
(ii) �0 � 0.

(iii) For all t 2 N, ptC1 � 0 and hptC1; ft . Oxt ; Out / � OxtC1i D 0.
(iv) For all t 2 N, for all ˛ 2 f1; : : : ; ki g, �˛;t � 0.
(v) For all t 2 N, for all ˛ 2 f1; : : : ; ki g, �˛;tg˛t .Out / D 0.

(vi) For all t 2 N, pt D ptC1 ıD1ft . Oxt ; Out /C �0D1�t . Oxt ; Out /.
(vii) For all t 2 N,

D2Ht. Oxt ; Out ; ptC1; �0/C
kiP
˛D1

�˛;tDg
˛
t .Out /C

keP
ˇD1

�ˇ;tDh
ˇ
t .Out / D 0.

Proof. Using Proposition 1.2 and Proposition 1.4, we obtain, for all T 2 N, T � 2,
the existence of �T0 2 R and, for all t 2 f0; : : : ; T � 1g, the existence of a list of
elements of pTtC1 2 R

n� and the existence of two lists of real numbers.�T˛;t /1�˛�ki ,
.�Tˇ;t /1�ˇ�ke which satisfy the following conditions:

.�T0 ; p
T
1 ; : : : ; p

T
T ; �

T
1;t ; : : : ; �

T
ki ;T�1; �

T
1;t ; : : : ; �

T
ke;T�1/ ¤ .0; : : : ; 0/: (2.15)

�T0 � 0: (2.16)

pTtC1 � 0: (2.17)

�T˛;t � 0; �T˛;tg
˛
t .Out / D 0: (2.18)

pTt D pTtC1 ıD1ft . Oxt ; Out /C �T0 D1�t . Oxt ; Out /: (2.19)

pTtC1 ıD2ft . Oxt ; Out /C �T0 D2�t . Oxt ; Out /
C

kiP
˛D1

�T˛;tDg
˛
t .Out /C

keP
ˇD1

�Tˇ;tDh
ˇ
t .Out / D 0:

9
>=
>;

(2.20)

From (2.19) we obtain pTtC1 ı . Oxt ; Out / D pTt � �T0 D1�t . Oxt ; Out /, and after
Lemma 2.3 we have pTtC1 ıD1ft . Oxt ; Out / � %tp

T
tC1. And so we have

0 � %tp
T
tC1 � pTt � �T0 D1�t . Oxt ; Out /;

which implies (cf. Remark 2.1)

%tkpTtC1k� D k%tpTtC1k� � kpTt ��T0 D1�t . Oxt ; Out /k� � kpTt k�C�T0 kD1�t . Oxt ; Out /k�:
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And so we obtain, for all t 2 f0; : : : ; T � 1g,

kpTtC1k� � 1

%t
kpTt k� C �T0

1

%t
kD1�t . Oxt ; Out /k�: (2.21)

We set

at WD 1
tQ

sD1
%s

2 .0;C1/

and

bt WD
tX

sD1

1
tQ

kDs
%k

kD1�s. Oxt ; Ous/k� 2 .0;C1/

and we proceed by induction to obtain from (2.21) the following assertion:

8t 2 N; 9at 2 .0;C1/; 9bt 2 .0;C1/;8T > t;
kpTtC1k� � atkpT1 k� C bt�

T
0 :

�
(2.22)

From this last assertion we obtain that .�T0 ; p
T
1 / D .0; 0/ implies .�T0 ; p

T
1 ; : : : ; p

T
T / D

.0; 0; : : : ; 0/, and using (2.20) we obtain

kiX
˛D1

�T˛;tDg
˛
t .Out /C

keX
ˇD1

�Tˇ;tDh
ˇ
t .Out / D 0;

and using assumption (c), this last equality implies that �T˛;t D 0 and �Tˇ;t D 0 for

all ˛ 2 f1; : : : ; kig, for all ˇ 2 f1; : : : ; keg and for all t 2 f0; : : : ; T �1g. And so we
have proven that .�T0 ; p

T
1 / D .0; 0/ implies the negation of (2.15). Then using (2.15)

and the contraposition we have proven that .�T0 ; p
T
1 / ¤ .0; 0/. Using the property of

cone of the set of all lists of multipliers, we can normalize and obtain, for all T 2 N,
T � 2:

k.�T0 ; pT1 /k D 1: (2.23)

Then, from (2.22) and (2.23) we obtain

8t 2 N; 9at 2 .0;C1/; 9bt 2 .0;C1/;8T > t; kpTtC1k� � at C bt
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which implies

8t 2 N; sup
T>t

kpTtC1k� � C1: (2.24)

From (2.20) we obtain

8̂
<
:̂

kiP
˛D1

�T˛;tDg
˛
t .Out /C

keP
ˇD1

�Tˇ;tDh
ˇ
t .Out /

D �pTtC1 ıD2ft . Oxt ; Out / � �T0 D2�t . Oxt ; Out /;

and using (2.23) and (2.24) we deduce that the sequence T 7!
kiP
˛D1

�T˛;tDg
˛
t .Out / C

keP
ˇD1

�Tˇ;tDh
ˇ
t .Out / is bounded for all t 2 N, and then using assumption (c) and

Lemma 2.2, we obtain

8t 2 N;8˛ 2 f1; : : : ; kig;8ˇ 2 f1; : : : ; keg; sup
T>t

j�T˛;t j < C1; sup
T>t

j�Tˇ;t j < C1:

(2.25)
And then we can conclude as in the proof of Theorem 2.1. �

When Out 2 intUt , using Corollary 1.2 instead of Proposition 1.4, we obtain the
following result.

Theorem 2.6. Let . Ox; Ou/ be a solution of .Pn
i ), or of (Ps

i ), or of (Po
i ), or of (Pw

i ).
We assume that the following conditions are fulfilled:

(a) For all t 2 N, Xt is a nonempty open subset of Rn.
(b) For all t 2 N, Out 2 intUt .
(c) For all t 2 N, �t and ft are continuous on a neighborhood of . Oxt ; Out / and they

are differentiable at . Oxt ; Out /.
(d) For all t 2 N, the condition (2.14) holds.

Then there exist �0 2 R, .pt /t2N�
2 .Rn�/N� which satisfy the following

conditions:

(i) .�0; p1/ ¤ .0; 0/.
(ii) �0 � 0.

(iii) For all t 2 N, ptC1 � 0 and hptC1; ft . Oxt ; Out / � OxtC1i D 0.
(iv) For all t 2 N, pt D ptC1 ıD1ft . Oxt ; Out /C �0D1�t . Oxt ; Out /.
(v) For all t 2 N, D2Ht. Oxt ; Out ; ptC1; �0/ D 0.

After the use of the multiplier rule of Halkin, we use the multiplier rule of Clarke.

Theorem 2.7. Let . Ox; Ou/ be a solution of .Pn
i ), or of (Ps

i ), or of (Po
i ), or of (Pw

i ).
We assume that the following conditions are fulfilled:
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(a) For all t 2 N, �t is Lipschitzian on a neighborhood of . Oxt ; Out / and regular at
. Oxt ; Out /.

(b) For all t 2 N, ft is strictly differentiable at . Oxt ; Out /.
(c) For all t 2 N, Ut is closed and Clarke-regular at Out .
(d) For all t 2 N, the positivity condition (2.14) holds.

Then there exist �0 2 R, .pt /t2N�
2 .Rn�/N� which satisfy the following

conditions:

(i) .�0; p1/ ¤ .0; 0/.
(ii) �0 � 0.

(iii) For all t 2 N, ptC1 � 0 and hptC1; ft . Oxt ; Out � OxtC1i D 0.
(iv) For all t 2 N�, pt 2 @2Ht. Oxt ; Out ; ptC1; �0/.
(v) For all t 2 N, @2Ht . Oxt ; Out ; ptC1; �0/ \ NUt .Out / ¤ ;, where NUt .Out / is the

normal cone of Ut at Out .
Proof. Using Proposition 1.2 and Proposition 1.6 we obtain the assertions (2.15),
(2.16), and (2.17) inside the proof of Theorem 2.5 and the assertions (2.10) and
(2.11) inside the proof of Theorem 2.3.

Since the Clarke differentials @1�t . Oxt ; Out / and @2�t . Oxt ; Out / are compact sets, they
are bounded sets, and so we have

ct W D supfk'k� W ' 2 @1�t . Oxt ; Out /g < C1
dt W D supfk k� W  2 @2�t . Oxt ; Out /g < C1:

Then, from (2.10), we obtain pTtC1 ı D1ft . Oxt ; Out / D pTt � �T0 '
T
t which implies

%tp
T
tC1 � pTt � �T0 '

T
t , where %t is defined in the proof of Theorem 2.5, which

implies (cf. Remark 2.1) %tkpTtC1k� � kpTt k� C �T0 ct , i.e.,

kpTtC1k� � 1

%t
kpTt k� C ct

%t
�T0 :

And after that, we can proceed as in the proof of Theorem 2.5. �

When Out 2 intUt , using Corollary 1.4 instead of Proposition 1.6 and proceeding as
in the proof of Theorem 2.7 we obtain the following result.

Theorem 2.8. Let . Ox; Ou/ be a solution of .Pn
i ), or of (Ps

i ), or of (Po
i ), or of (Pw

i ).
We assume that the following conditions are fulfilled:

(a) For all t 2 N, �t is Lipschitzian on a neighborhood of . Oxt ; Out / and regular at
. Oxt ; Out /.

(b) For all t 2 N, ft is strictly differentiable at . Oxt ; Out /.
(c) For all t 2 N, Out 2 intUt .
(d) For all t 2 N, the positivity condition (2.14) holds.

Then there exist �0 2 R, .pt /t2N�
2 .Rn�/N� which satisfy the following

conditions:
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(i) .�0; p1/ ¤ .0; 0/.
(ii) �0 � 0.

(iii) For all t 2 N, ptC1 � 0 and hptC1; ft . Oxt ; Out / � OxtC1i D 0.
(iv) For all t 2 N�, pt 2 @2Ht. Oxt ; Out ; ptC1; �0/.
(v) For all t 2 N, 0 2 @2Ht . Oxt ; Out ; ptC1; �0/.

2.3 Strong Pontryagin Principles in Infinite Horizon

In this section, to establish strong Pontryagin principles in infinite horizon, in a first
subsection, we use the invertibility condition, in a second subsection we use the
positivity condition, and in a third subsection, we use a new condition that we call a
condition of partial submersion.

2.3.1 The Invertibility Condition

In a first time we use a consequence of a result of Michel, Proposition 1.7 and
Proposition 1.8.

Theorem 2.9. Let . Ox; Ou/ be a solution of .Pn
a ), or of (Ps

a), or of (Po
a ), or of (Pw

a )
when a 2 fe; ig. We assume that the following conditions are fulfilled:

(a) For all t 2 N, Xt is a nonempty open convex subset of Rn and Ut is a nonempty
subset of Rd .

(b) For all t 2 N, the functions �t and ft are differentiable with respect to the first
vector variable.

(c) For all t 2 N, for all .xt ; xtC1/ 2 Xt �XtC1; coA0
t .xt ; xtC1/ � B 0

t .xt ; xtC1/.
(d) For all t 2 N, the partial differential D1ft . Oxt ; Out / is invertible.

Then there exist �T0 2 R and .ptC1/t2N 2 .Rn�/N which satisfy the following
conditions:

(i) .�T0 ; p1/ ¤ .0; 0/.
(ii) �T0 � 0.

(iii) For all t 2 N�, pTt D D1Ht. Oxt ; Out ; ptC1; �0/.
(iv) For all t 2 N, Ht. Oxt ; Out ; ptC1; �T0 / D max

u2Ut
Ht . Oxt ; u; ptC1; �T0 /.

Proof. The case a D e. From Proposition 1.2 we can use Proposition 1.7 which
provides, for all T 2 N, T � 2, a real number �T0 and elements of the dual space of
R
n, pT1 , . . . , pTT , which satisfy the following conditions:

�
�T0 ; p

T
1 ; : : : ; p

T
T

� ¤ .0; 0; : : : ; 0/: (2.26)

�T0 � 0: (2.27)
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8t 2 f1; : : : ; T � 1g; pTt D pTtC1 ıD1ft . Oxt ; Out /C �T0 D1�t . Oxt ; Out /: (2.28)

8t 2 f1; : : : ; T � 1g;8u 2 Ut ;Ht

� Oxt ; Out ; pTtC1; �T0
� � Ht

� Oxt ; u; pTtC1; �T0
�
:

(2.29)

Proceeding as in the proof of Theorem 2.1, we obtain the relations (2.3) and (2.4)
which say that the sequences T 7! �T0 and T 7! pTtC1 (for all t 2 N) are bounded
with the additional condition k.�T0 ; pT1 /k D 1. And so we can use Lemma 2.1
and we can assert that there exist an increasing function � W N� ! N�, �0 2 R,
ptC1 2 R

n� for all t 2 N, such that the following relations hold:

lim
T!C1�

�.T /
0 D �0; lim

T!C1p
�.T /
tC1 D ptC1

for all t 2 N. Using the continuity of the norm we obtain k.�0; p1/k D 1. Using
the continuity of the functions inside the relations (2.27)–(2.29), we obtain the
conclusions of the theorem.

The case a D i . Our strategy is to use the first case. For all t 2 N we introduce
the function Oft W Xt � Ut ! XtC1 by setting

Oft .xt ; ut / WD ft .xt ; ut /C . OxtC1 � ft . Oxt ; Out //: (2.30)

We denote by Adme
�.

Of / the set of all processes .x; u/ 2 Q
t2N

Xt � Q
t2N

such that

xtC1 D Oft .xt ; ut / for all t 2 N, and we denote by Admi
� the set of all processes

.x; u/ 2 Q
t2N

Xt � Q
t2N

such that xtC1 � ft .xt ; ut / for all t 2 N. Since OxtC1 �
ft . Oxt ; Out /, we have, for all .x; u/ 2 Adme

�.
Of /, xtC1 D Oft .xt ; ut / � ft .xt ; ut /,

which implies

Adme
�.

Of / � Admi
�: (2.31)

We denote by Dome
�.J;

Of / the set of all .x; u/ 2 Adme
�.

Of / which belong to
Dome

�.J / (cf. Sect. 1.2). Using (2.34), it is clear that we have

Dome
�.J;

Of / � Domi
�.J /: (2.32)

Note that . Ox; Ou/ 2 Adme
�.

Of /, and consequently that . Ox; Ou/ 2 Dome
�.J;

Of / when
. Ox; Ou/ 2 Domi

�.J /.

We fix k 2 fn; s; o;wg and we denote by (Pk
e .

Of /) the problem (Pk
e ) where we

have replaced (DE) by xtC1 D Oft .xt ; ut /. Note that the criterion of this problem is
the same as the criterion of (Pk

i ). And so, using the previous inclusions, we see that
if . Ox; Ou/ is a solution of (Pk

i ) then it is also a solution of (Pk
e .

Of /). We see that the
assumptions on ft imply the same assumptions on Oft , and so we can apply the first
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case to (Pk
e .

Of /). After that, it suffices to translate the conclusions on (Pk
e .

Of /) into
conclusions on (Pk

i ). If we denote by OHt the Hamiltonian of (Pk
e .

Of /), Ht being
the Hamiltonian of (Pk

i ), we see that the difference OHt � Ht is a constant which
is independent of xt and ut , which implies that the adjoint equation of (Pk

e .
Of /) is

exactly the adjoint equation of (Pk
i ), and the strong maximum principle of (Pk

e .
Of /)

implies this one of (Pk
i ). �

This theorem was established in [16]. There exist other versions in [13]. In this last
paper an analogous version for systems governed by (DI) is stated. But the proof
given for the case of (DI) is not very explicative. And so, we provide an original
proof of the theorem in the case of (DI).

Theorem 2.10. Let . Ox; Ou/ be a solution of .Pn
a ), or of (Ps

a), or of (Po
a ), or of

(Pw
a ), when a 2 fe; ig. We assume that the following conditions are fulfilled:

(a) For all t 2 N, Xt is a nonempty open subset of Rn, and Ut is a nonempty subset
of Rd .

(b) For all t 2 N, �t 2 C0.Xt � Ut ;R/ and, for all .x; u/ 2 R
n � Ut , the partial

differential D1�t .x; u/ exists and D1�t 2 C0.Xt � Ut ;Rn�/.
(c) For all t 2 N, ft 2 C0.Xt � Ut ;Rn/ and, for all .x; u/ 2 R

n � Ut , the partial
differential D1ft .x; u/ exists and D1�t 2 C0.Xt � Ut ;L .Rn;Rn//.

(d) For all t 2 N, for all x 2 Xt , for all u; v 2 Ut , for all r 2 Œ0; 1�, there exists
w 2 Ut such that

�
�t .x;w/ � .1 � r/�t .x; u/C r�t .x; v/

ft .x;w/ D .1 � r/ft .x; u/C rft .x; v/:

Then there exist �0 2 R, .ptC1/t2N 2 .Rn�/N which satisfy the following
conditions:

(i) �0 and .ptC1/t2N are not simultaneously equal to zero.
(ii) pt D D1Ht. Oxt ; Out ; ptC1; �0/ for all t 2 N.

(iii) Ht. Oxt ; Out ; ptC1; �0/ D max
u2Ut

Ht . Oxt ; u; ptC1; �0/ for all t 2 N.

Proof. The proof is similar to this one of Theorem 2.9 replacing the use of
Proposition 1.7 by the use of Proposition 1.9 when a D e and the use of
Proposition 1.8 by the use of Proposition 1.10 when a D i . �

2.3.2 A Condition of Positivity

In this subsection, we use the positivity condition already used in Sect. 2.2 to obtain
weak Pontryagin principles, in order to obtain strong Pontryagin principles.
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Theorem 2.11. Let . Ox; Ou/ be a solution of .Pn
i ), or of (Ps

i ), or of (Po
i ), or of

(Pw
i ). We assume that the following conditions are fulfilled:

(a) For all t 2 N, Xt is nonempty and convex, Oxt 2 intXt , and Ut is nonempty.
(b) For all t 2 N, the partial functions �t .:; Out / and ft .:; Out / are continuous on a

neighborhood of Oxt and differentiable at Oxt .
(c) For all t 2 N, for all .xt ; xtC1/ 2 Xt �XtC1, coAt.xt ; xtC1/ � Bt.xt ; xtC1/.
(d) For all t 2 N, for all i; j 2 f1; : : : ; ng, @f

i . Oxt ;Out /
@x
j
t

� 0, and for all j 2 f1; : : : ; ng,

@f i . Oxt ;Out /
@x
j
t

> 0.

Then there exist �0 2 R, .ptC1/t2N 2 .Rn�/N which satisfy the following
conditions:

(i) .�0; p1/ ¤ .0; 0/.
(ii) �0 � 0.

(iii) For all t 2 N, ptC1 � 0 and hptC1; ft . Oxt ; Out / � OxtC1i D 0.
(iv) For all t 2 N�, pt D D1Ht. Oxt ; Out ; ptC1; �0/.
(v) For all t 2 N, Ht. Oxt ; Out ; ptC1; �T0 / D max

u2Ut
Ht . Oxt ; u; ptC1; �0/.

Proof. Using Propositions 1.2 and 1.8, we obtain the existence, for all T 2 N,
T � 2, of �T0 2 R and of pT1 , . . . , pTT 2 R

n� which satisfy the conclusions of Propo-
sition 1.8. Then using Lemma 2.3 and reasoning as in the proof of Theorem 2.5, we
obtain the relations (2.22), (2.23), and (2.24). Then using Lemma 2.1, we obtain
the existence of a strictly increasing function � W N� ! N�, of �0 2 R and of a
sequence .ptC1/t2N in R

n� such that lim
T!C1�

�.T /
0 D �0, and lim

T!C1p
�.T /
tC1 D ptC1

for all t 2 N. And then, from the conclusions of Proposition 1.8, we obtain the
conclusion of this theorem by taking T ! C1. �

In the previous theorem, we have only considered problems which are governed by
(DI). In the following theorems, we consider problems governed by (DE).

Theorem 2.12. Let . Ox; Ou/ be a solution of (Po
e ). We assume that the following

conditions are fulfilled:

(a) For all t 2 N, Xt is nonempty and convex, Oxt 2 intXt , and Ut is nonempty.
(b) For all t 2 N, the partial functions �t .:; Out / and ft .:; Out / are continuous on a

neighborhood of Oxt and differentiable at Oxt .
(c) For all t 2 N, for all .xt ; xtC1/ 2 Xt �XtC1, coAt.xt ; xtC1/ � Bt.xt ; xtC1/.
(d) For all t 2 N, for all i; j 2 f1; : : : ; ng, @f

i . Oxt ;Out /
@x
j
t

� 0, and for all j 2 f1; : : : ; ng,

@f i . Oxt ;Out /
@x
j
t

> 0.

(e) For all t 2 N, for all ut 2 Ut , the partial function �t .:; ut / is increasing.
(f) For all t 2 N, for all ut 2 Ut , the partial function ft .:; ut / is increasing.

Then there exist �0 2 R, .ptC1/t2N 2 .Rn�/N which satisfy the following
conditions:
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(i) .�0; p1/ ¤ .0; 0/.
(ii) �0 � 0.

(iii) For all t 2 N, ptC1 � 0 and hptC1; ft . Oxt ; Out / � OxtC1i D 0.
(iv) For all t 2 N�, pt D D1Ht. Oxt ; Out ; ptC1; �0/.
(v) For all t 2 N, Ht. Oxt ; Out ; ptC1; �T0 / D max

u2Ut
Ht . Oxt ; u; ptC1; �0/.

Proof. Noting that (CA1) = (e) and that (CA2) = (f), we can use Theorem 1.1 and
we can assert that . Ox; Ou/ is a solution of (Po

i ). And then we conclude by using
Theorem 2.11. �

Theorem 2.13. Let . Ox; Ou/ be a solution of (Po
e ). We assume that the following

conditions are fulfilled:

(a) For all t 2 N, Xt is nonempty and convex, Oxt 2 intXt , and Ut is nonempty.
(b) For all t 2 N, the partial functions �t .:; Out / and ft .:; Out / are continuous on a

neighborhood of Oxt and differentiable at Oxt .
(c) For all t 2 N, for all .xt ; xtC1/ 2 Xt �XtC1, coAt.xt ; xtC1/ � Bt.xt ; xtC1/.
(d) For all t 2 N, for all i; j 2 f1; : : : ; ng, @f

i . Oxt ;Out /
@x
j
t

� 0, and for all j 2 f1; : : : ; ng,

@f i . Oxt ;Out /
@x
j
t

> 0.

(e) For all t 2 N, for all xt 2 Xt , the partial function �t .xt ; :/ is increasing.
(f) For all t 2 N, for all .ytC1; yt ; ut 2 XtC1�Xt �Ut such that ytC1 � ft .yt ; ut /,

there exists vt 2 Ut such that vt � ut and ytC1 D ft .yt ; vt /.

Then there exist �0 2 R, .ptC1/t2N 2 .Rn�/N which satisfy the following
conditions:

(i) .�0; p1/ ¤ .0; 0/.
(ii) �0 � 0.

(iii) For all t 2 N, ptC1 � 0 and hptC1; ft . Oxt ; Out / � OxtC1i D 0.
(iv) For all t 2 N�, pt D D1Ht. Oxt ; Out ; ptC1; �0/.
(v) For all t 2 N, Ht. Oxt ; Out ; ptC1; �T0 / D max

u2Ut
Ht . Oxt ; u; ptC1; �0/.

Proof. Noting that (CA4) = (f) and that (CA5) = (e), we can use Theorem 1.2 and
we can assert that . Ox; Ou/ is a solution of (Po

i ). And then we conclude by using
Theorem 2.11. �

Theorem 2.14. Let . Ox; Ou/ be a solution of (Pn
e ). We assume that the following

conditions are fulfilled:

(a) For all t 2 N, Xt is nonempty and convex, Oxt 2 intXt , and Ut is nonempty.
(b) For all t 2 N, the partial functions �t .:; Out / and ft .:; Out / are continuous on a

neighborhood of Oxt and differentiable at Oxt .
(c) For all t 2 N, for all .xt ; xtC1/ 2 Xt �XtC1, coAt.xt ; xtC1/ � Bt.xt ; xtC1/.
(d) For all t 2 N, for all i; j 2 f1; : : : ; ng, @f

i . Oxt ;Out /
@x
j
t

� 0, and for all j 2 f1; : : : ; ng,

@f i . Oxt ;Out /
@x
j
t

> 0.

(e) For all t 2 N, for all ut 2 Ut , the partial function �t .:; ut / is increasing.
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(f) For all t 2 N, for all ut 2 Ut , the partial function ft .:; ut / is increasing.
(g) For all t 2 N, �t � 0.
(h) For all t 2 N, for all zt 2 Xt , there exists s 2 N� and there exists

.vt ; : : : ; vtCs�1/ 2
s�1Q
jD0

UtCj such that by setting ztCjC1 WD ftCj .ztCj ; vtCj /

for j 2 f0; : : : ; s � 1g we have ztCs D OxtCs .
Then there exist �0 2 R, .ptC1/t2N 2 .Rn�/N which satisfy the following
conditions:

(i) .�0; p1/ ¤ .0; 0/.
(ii) �0 � 0.

(iii) For all t 2 N, ptC1 � 0 and hptC1; ft . Oxt ; Out / � OxtC1i D 0.
(iv) For all t 2 N�, pt D D1Ht. Oxt ; Out ; ptC1; �0/.
(v) For all t 2 N, Ht. Oxt ; Out ; ptC1; �T0 / D max

u2Ut
Ht . Oxt ; u; ptC1; �0/.

Proof. Note that (CA 1) = (e), (CA 2) = (f), (CA 3) = (g), and (CA, . Ox; Ou/) = (h).
And then we can use Theorem 1.3 to assert that . Ox; Ou/ is also a solution of (Pn

i ).
We conclude by using Theorem 2.11. �

Theorem 2.15. Let . Ox; Ou/ be a solution of (Pn
e ). We assume that the following

conditions are fulfilled:

(a) For all t 2 N, Xt is nonempty and convex, Oxt 2 intXt , and Ut is nonempty.
(b) For all t 2 N, the partial functions �t .:; Out / and ft .:; Out / are continuous on a

neighborhood of Oxt and differentiable at Oxt .
(c) For all t 2 N, for all .xt ; xtC1/ 2 Xt �XtC1, coAt.xt ; xtC1/ � Bt.xt ; xtC1/.
(d) For all t 2 N, for all i; j 2 f1; : : : ; ng, @f

i . Oxt ;Out /
@x
j
t

� 0, and for all j 2 f1; : : : ; ng,

@f i . Oxt ;Out /
@x
j
t

> 0.

(e) For all t 2 N, �t � 0.
(f) For all t 2 N, for all .ytC1; yt ; ut / 2 XtC1�Xt�Ut such that ytC1 � ft .yt ; ut /,

there exists vt 2 Ut such that vt � ut and ytC1 D ft .yt ; vt /.
(g) For all t 2 N, for all xt 2 Xt , the partial function �t .xt ; :/ is increasing.
(h) For all t 2 N, for all zt 2 Xt , there exists s 2 N� and there exists

.vt ; : : : ; vtCs�1/ 2
s�1Q
jD0

UtCj such that by setting ztCjC1 WD ftCj .ztCj ; vtCj /

for j 2 f0; : : : ; s � 1g we have ztCs D OxtCs .
Then there exist �0 2 R, .ptC1/t2N 2 .Rn�/N which satisfy the following
conditions:

(i) .�0; p1/ ¤ .0; 0/.
(ii) �0 � 0.

(iii) For all t 2 N, ptC1 � 0 and hptC1; ft . Oxt ; Out / � OxtC1i D 0.
(iv) For all t 2 N�, pt D D1Ht. Oxt ; Out ; ptC1; �0/.
(v) For all t 2 N, Ht. Oxt ; Out ; ptC1; �T0 / D max

u2Ut
Ht . Oxt ; u; ptC1; �0/.
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Proof. Note that (CA 3) = (e), (CA 4) = (f), (CA 5) = (g), and (CA, . Ox; Ou/) = (h).
Then we can use Theorem 1.4 to assert that . Ox; Ou/ is also a solution of (Pn

i ). We
conclude by using Theorem 2.11. �

Remark 2.2. These theorems, from Theorem 2.11 until Theorem 2.15, appear in
the paper of Blot [11]. It is useful to note that in Theorems 2.12–2.15 the adjoint
variables ptC1 are positive although the problem is governed by (DE).

In all the results of this subsection, we have used the condition of Michel. If we use
the condition of Ioffe and Tihomirov, we obtain the following result which is new.

Theorem 2.16. Let . Ox; Ou/ be a solution of .Pn
i ), or of (Ps

i ), or of (Po
i ), or of

(Pw
i ). We assume that the following conditions are fulfilled:

(a) For all t 2 N, �t .:; Out / and ft .:; Out / are of class C1 at Ox.
(b) For all t 2 N, there exists a neighborhood Vt of Oxt in Xt such that, for all

x 2 Vt , for all u1; u2 2 Ut , for all 	 2 Œ0; 1�, there exists u3 2 Ut such that

�
�t .x; u3/ � .1 � 	/�t .x; u1/C 	�t .x; u2/
ft .x; u3/ � .1 � 	/ft .x; u1/C 	ft .x; u2/:

(c) For all t 2 N, for all i; j 2 f1; : : : ; ng, @f
i . Oxt ;Out /
@x
j
t

� 0, and

for all j 2 f1; : : : ; ng, @f
i . Oxt ;Out /
@x
j
t

> 0.

Then there exist �0 2 R, .ptC1/t2N 2 .Rn�/N which satisfy the following
conditions:

(i) .�0; p1/ ¤ .0; 0/.
(ii) �0 � 0.

(iii) For all t 2 N, ptC1 � 0 and hptC1; ft . Oxt ; Out / � OxtC1i D 0.
(iv) For all t 2 N�, pt D D1Ht. Oxt ; Out ; ptC1; �0/.
(v) For all t 2 N, Ht. Oxt ; Out ; ptC1; �T0 / D max

u2Ut
Ht . Oxt ; u; ptC1; �0/.

Proof. Using Propositions 1.2 and 1.10, we obtain, for all T 2 N, T � 2, �T0 2 R

and pT1 , . . . , pTT 2 R
n� which satisfy the conclusion of Proposition 1.10. Then we

conclude as in the proof of Theorem 2.11. �

Remark 2.3. Proceeding as we do to establish the results from Theorem 2.12 until
Theorem 2.15, we can obtain strong Pontryagin principles for the problems (Po

e )
and (Pn

e ) where the part of the assumption which comes from the result of Michel
is replaced by assumptions which come from Ioffe and Tihomirov.
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2.3.3 A Condition of Partial Submersion

To avoid the invertibility condition, beside the positivity condition, we introduce
another condition on the vector field of the dynamical system.

In this subsection, Rn is endowed with its usual inner product which is denoted
by .: j :/. Following [81] (p. 410), when E and F are two Hilbert spaces, and when
T 2 L .E; F /, the adjoint of T is T � 2 L .F;E/ characterized by .T:x j y/ D .x j
T �:y/. And so, in our problems, we will use D1ft . Oxt ; Out /� 2 L .Rn;R�/. When
� 2 R

n�, we associate to � the vector �� 2 R
n characterized by .�� j y/ D h�; yi

for all y 2 R
n. When � 2 R

n� and L 2 L .Rn;Rn/, for all y 2 R
n, we have

h� ı L; yi D �.L:y/ D h�;L:yi D .�� j L:y/ D .L�:�� j y/. Also recall
that the gradient of a real-valued differentiable function is the vector in the primal
space which represents the differential which belongs to the dual space. And so,
in our problems, we will use of the partial gradient of �t , .r1�t .xt ; ut / j y/ D
hD1�t .xt ; ut /; yi for all y 2 R

n. And so, using these notions, the adjoint equation
can be rewritten as

p�
t D D1ft . Oxt ; Out /�:p�

tC1 C �0r1�t . Oxt ; Out / (2.33)

and the Hamiltonian can be written as

Ht.xt ; ut ; ptC1; �0/ D �0�t .xt ; ut /C .p�
tC1 j ft .xt ; ut //: (2.34)

Assuming the existence of the partial differential with respect to the state
variable, we introduce the two following subspaces:

Mt WD ImD1ft . Oxt ; Out /
Nt WD M?

t D KerD1ft . Oxt ; Out /�
�

(2.35)

where ? denotes the orthogonal subspace. �Mt and �Nt denote the orthogonal
projectors on Mt and on Nt . We also use the notation SNt .x; 
/ WD fz 2 Nt W
kz � xk D 
g and BNt .x; 
/ WD fz 2 Nt W kz � xk � 
g.

Now we can introduce our new condition.

8t 2 N; 9Pt � Ut ; Pt ¤ ; s:t:
.˛/ 9%t > 0; �Nt .ft .f Oxtg � Pt// � .SNt .0; %t /C �Nt .ft . Oxt ; Out //
.ˇ/ �Mt .ft .f Oxtg � Pt// is bounded
.�/ �t .f Oxtg � Pt/ is bounded:

9>>=
>>;

(2.36)

We also consider another condition which is simpler than (2.36).
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8t 2 N;

.1/ �t . Oxt ; :/ and ft . Oxt ; :/ are continuous on Ut

.2/ D1ft . Oxt ; Out / exists

.3/ Out 2 intUt

.4/ ft . Oxt ; :/ is of class C1 at Out

.5/ Im�Nt ıD2ft . Oxt ; Out / D Nt

9
>>>>>>>=
>>>>>>>;

(2.37)

Remark 2.4. The condition (2.37) implies the condition (2.36). To justify that, note
that, using condition (5), sinceD2.�Nt ıft /. Oxt ; Out / D �Nt ıD2ft . Oxt ; Out / is surjective
from R

d onto Nt , using a theorem of Graves ([64] p. 397), there exists a closed ball
Pt D fu 2 Ut W ku � Outk � rtg such that

�Nt ı ft .f Oxtg � Pt/ � BNt .ft . Oxt ; Out /; %t / � SNt .0; %t /C ft . Oxt ; Out /;

and so the condition (˛) of (2.36) is fulfilled. Since dimR
d < C1, Pt is compact.

The continuities in condition (1) imply the conditions (ˇ) and (� ).

Theorem 2.17. Let . Ox; Ou/ be a solution of .Pn
a ), or of (Ps

a), or of (Po
a ), or of (Pw

a )
when a 2 fe; ig. We assume that the following conditions are fulfilled:

(a) For all t 2 N, Xt is a nonempty open convex subset of Rn and Ut is a nonempty
subset of Rd .

(b) For all t 2 N, the functions �t and ft are differentiable with respect to the first
vector variable.

(c) For all t 2 N, for all .xt ; xtC1/ 2 Xt �XtC1, coA0
t .xt ; xtC1/ � B 0

t .xt ; xtC1/.
(d) Condition (2.36) holds.

Then there exist �0 2 R and .ptC1/t2N 2 .Rn�/N which satisfy the following
conditions:

(i) .�0; p1/ ¤ .0; 0/.
(ii) �0 � 0.

(iii) For all t 2 N, ptC1 � 0 and hptC1; ft . Oxt ; Out / � OxtC1i D 0 when a D i .
(iv) For all t 2 N�, pt D D1Ht. Oxt ; Out ; ptC1; �0/.
(v) For all t 2 N, Ht. Oxt ; Out ; ptC1; �0/ D max

u2Ut
Ht . Oxt ; u; ptC1; �0/.

Proof. The case a D e. Using Propositions 1.2 and 1.7, we can assert that, for all
T 2 N, T � 2, there exist �T0 2 R and pT1 , . . . , pTT 2 R

n� which satisfy the
conclusions of Proposition 1.8.

Since Mt is the orthogonal to KerD1ft . Oxt ; Out /�, for all z 2 Mt , we have
D1ft . Oxt ; Out /�:z ¤ 0. Using the compactness of the unit sphere of Mt and the
continuity of D1ft . Oxt ; Out /�, we have at WD inffkD1ft . Oxt ; Out /�:zk W z 2 Mt; kzk D
1g > 0. And so we have

9at 2 .0;C1/;8z 2 Mt; kD1ft . Oxt ; Out /�:zk � at :kzk: (2.38)
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Using the vector translation (2.33) of the third conclusion of Proposition 1.7, we
obtain

pT�
t D D1ft . Oxt ; Out /�:pT�

tC1 C �T0 r1�t . Oxt ; Out /
D D1ft . Oxt ; Out /�:�Mt .p

T�
tC1/CD1ft . Oxt ; Out /�:�Nt .pT�

tC1/C �T0 r1�t . Oxt ; Out /
D D1ft . Oxt ; Out /�:�Mt .p

T�
tC1/C �T0 r1�t . Oxt ; Out /

which implies pT�
t � �T0 r1�t . Oxt ; Out / D D1ft . Oxt ; Out /�:�Mt .p

T�
tC1/, and therefore,

using (2.38), we obtain

kpT�
t k C �T0 kr1�t . Oxt ; Out /k � kpT�

t � �T0 r1�t . Oxt ; Out /k
D kD1ft . Oxt ; Out /�:�Mt .p

T�
tC1/k � at :k�Mt .p

T�
tC1/k

from which we have

8T > t; k�Mt .p
T�
tC1/k � 1

at
kpT�

t k C �T0
1

at
kr1�t . Oxt ; Out /k: (2.39)

Now we introduce the following notation:

�
��t.ut / WD �t . Oxt ; Out / � �t . Oxt ; ut /
�ft .ut / WD ft . Oxt ; Out / � ft . Oxt ; ut /:

Using (2.34), the fourth conclusion of Proposition 1.7 implies, for all ut 2 Ut ,
�T0 ��t .ut / C .pT�

tC1 j �ft.ut // � 0, which implies by using the orthogonality
between Mt and Nt ,

�T0 ��t .ut /C .�Mt .p
T�
tC1/ j �Mt .�ft .ut ///C .�Nt .p

T�
tC1/ j �Nt .�ft .ut /// � 0

which implies

�
�T0 ��t .ut /C .�Mt .p

T�
tC1/ j �Mt .�ft .ut ///

� .�Nt .p
T�
tC1/ j �Nt .ft . Oxt ; ut /// � .�Nt .pT�

tC1/ j �Nt .ft . Oxt ; Out ///:

Using the Cauchy–Schwarz–Buniakovski inequality, we obtain

�
�T0 j��t.ut /j C k�Mt .p

T�
tC1/k:k�Mt .�ft .ut //k

� .�Nt .p
T�
tC1/ j �Nt .ft . Oxt ; ut /// � .�Nt .pT�

tC1/ j �Nt .ft . Oxt ; Out ///:

Using conditions (ˇ) and (� ) of the assumption (2.36) and the fact that the norm of
an orthogonal projector is less than 1, we know that


t WD sup
ut2Ut

j��t.ut /j < C1; �t WD sup
ut2Ut

k�Mt .�ft .ut //k < C1:
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And then using the previous inequalities, we obtain by taking the sup on the ut 2 Ut ,

�T0 :
t C �t :k�Mt .p
T�
tC1/k

� sup
ut2Ut

.�Nt .p
T�
tC1/ j �Nt .ft . Oxt ; ut /// � .�Nt .pT�

tC1/ j �Nt .ft . Oxt ; Out ///
� sup

zt2SNt .0;%t /
.�Nt .p

T�
tC1/ j zt C �Nt .ft . Oxt ; Out /// � .�Nt .pT�

tC1/ j �Nt .ft . Oxt ; Out ///
D sup

zt2SNt .0;%t /
.�Nt .p

T�
tC1/ j zt /C .�Nt .p

T�
tC1/ j �Nt .ft . Oxt ; Out ///

� .�Nt .pT�
tC1/ j �Nt .ft . Oxt ; Out ///

D sup
zt2SNt .0;%t /

.�Nt .p
T�
tC1/ j zt /

D %t : sup
wt2SNt .0;1/

.�Nt .p
T�
tC1/ j wt /

D %t :k�Nt .pT�
tC1/k;

and so we have proven the following property:

8T > t; k�Nt .pT�
tC1/k � 
t

%t
�T0 C �t

%t
k�Mt .p

T�
tC1/k: (2.40)

Using (2.39) in (2.40), we obtain the following inequalities, for all T > t :

8̂
<̂
ˆ̂:

k�Mt .p
T�
tC1/k � kr1�t . Oxt ; Out /k

at
�T0 C 1

at
kpT�

t k

k�Nt .pT�
tC1/k �

�

t

%t
C �t :kr1�t . Oxt ; Out /k

%t :at

	
�T0 C �t

%t :at
kpT�

t k;

from which we deduce

kpTtC1k� D kpT�
tC1k D k�Mt .p

T�
tC1/C �Nt .p

T�
tC1/k D k�Mt .p

T�
tC1/k C k�Nt .pT�

tC1/k
�

�

t

%t
C .�t C %t /kr1�t . Oxt ; Out /k

%t :at

	
�T0 C �t C %t

%t :at
kpT�

t k

and so using the normalization k.�T0 ; pT1 /k D 1, from the previous inequality, by
induction we obtain that, for all t 2 N, the sequence T 7! pTt is bounded, and we
can conclude as in the proof of Theorem 2.1.

The case a D i. The reasoning is similar using Proposition 1.8 instead of
Proposition 1.7. �

To finish this subsection, we use the condition of Ioffe and Tihomirov.

Theorem 2.18. Let . Ox; Ou/ be a solution of .Pn
i ), or of (Ps

i ), or of (Po
i ), or of

(Pw
i ). We assume that the following conditions are fulfilled:

(a) For all t 2 N, �t .:; Out / and ft .:; Out / are of class C1 at Ox.
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(b) For all t 2 N, there exists a neighborhood Vt of Oxt in Xt such that, for all
x 2 Vt , for all u1; u2 2 Ut , for all 	 2 Œ0; 1�, there exists u3 2 Ut such that

�
�t .x; u3/ � .1 � 	/�t .x; u1/C 	�t .x; u2/
ft .x; u3/ � .1 � 	/ft .x; u1/C 	ft .x; u2/:

(c) The condition (2.36) holds.

Then there exist �0 2 R, .ptC1/t2N 2 .Rn�/N which satisfy the following
conditions:

(i) .�0; p1/ ¤ .0; 0/.
(ii) �0 � 0.

(iii) For all t 2 N, ptC1 � 0 and hptC1; ft . Oxt ; Out / � OxtC1i D 0.
(iv) For all t 2 N�, pt D D1Ht. Oxt ; Out ; ptC1; �0/.
(v) For all t 2 N, Ht. Oxt ; Out ; ptC1; �T0 / D max

u2Ut
Ht . Oxt ; u; ptC1; �0/.

Proof. Using Propositions 1.2 and 1.9 when a D e or Proposition 1.10 when
a D i , we obtain �T0 2 R , pT1 , . . . , pTT 2 R

n� which satisfy the conclusions of
Proposition 1.9 when a D e or of Proposition 1.10 when a D i . And then we
conclude as in the proof of Theorem 2.17. �

Remark 2.5. Proceeding as we do to establish the results from Theorem 2.12 until
Theorem 2.15, we can obtain strong Pontryagin principles for the problems (Po

e )
and for (Pn

e ) where the part of the assumption which comes from the result of
Michel is replaced by assumptions which come from Ioffe and Tihomirov.

2.4 Constrained Problems

In this section we still consider systems governed by (DE) or (DI). We consider
constraints which possess the following form, for all t 2 N, when xt 2 Xt :

Ut .xt / WD fut 2 Ut W 8j 2 f1; : : : ; d ig; gjt .xt ; ut /
� 0;8k 2 f1; : : : ; d eg; hkt .xt ; ut / D 0g: (2.41)

The terminology varies when we speak of such constraints. Following [6] (p. 221)
these constraints represent a “feedback perfect state information”: the value of the
state variable xt modifies the set of all admissible values of the control variable ut .
We define the admissible processes which satisfy these constraints, when a 2 fe; ig.

Adma
�;c WD f.x; u/ 2 Adma

� W 8t 2 N; ut 2 Ut .xt /g: (2.42)

We define the problems where these constraints are present, when a 2 fe; ig.
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(C n
a ) Maximize J.x; u/ when .x; u/ 2 Doma

�.J / \ Adma
�;c .

(C s
a ) Find . Ox; Ou/ 2 Doma

�.J / \ Adma
�;c such that, for all .x; u/ 2 Adma

�;c ,

J. Ox; Ou/ � lim sup
T!C1

TX
tD0

�t .xt ; ut /:

(C o
a ) Find . Ox; Ou/ 2 Adma

�;c such that, for all .x; u/ 2 Adma
�;c ,

lim inf
T!C1

TX
tD0
.�t . Oxt ; Out / � �t .xt ; ut // � 0:

(C w
a ) Find . Ox; Ou/ 2 Adma

�;c such that, for all .x; u/ 2 Adma
�;c ,

lim sup
T!C1

TP
tD0
.�t . Oxt ; Out / � �t .xt ; ut // � 0.

Besides the HamiltonianHt defined in Chap. 1, we consider the Lagrangian Lt W
Xt � Ut � R

n� � R � R
d i� � R

de� ! R by setting

Lt.x; u; p; �; �; �/ WD Ht.x; u; p; �/C h�; gt .x; u/i C h�; ht .x; u/i: (2.43)

where gt WD .g1t ; : : : ; g
di

t / and ht WD .h1t ; : : : h
de

t /.

Theorem 2.19. Let . Ox; Ou/ be a solution of (C n
a ), or of (C s

a ), or of (C o
a ), or of (C w

a )
where a 2 fe; ig. We assume that the following conditions are fulfilled:

(1) For all t 2 N, Xt is nonempty open and convex, and the functions �t , ft , gt , ht
are continuous on a neighborhood of . Oxt ; Out / and differentiable at . Oxt ; Out /.

(2) For all t 2 N, D1ft . Oxt ; Out / is invertible.
(3) Setting Sjt WD D1g

j
t . Oxt ; Out / ı .D1ft . Oxt ; Out //�1 ı D2ft . Oxt ; Out / � D2g

j
t . Oxt ; Out /

and Mk
t WD D1h

k
t . Oxt ; Out / ı .D1ft . Oxt ; Out //�1 ıD2ft . Oxt ; Out / �D2h

k
t . Oxt ; Out / for

all t 2 N, the family ..Sjt /1�j�d i ; .Mk
t /1�k�de / is linearly independent.

Then there exist �0 2 R, .ptC1/t2N 2 .Rn�/N, .�t /t2N 2 .Rd
i�/N and .�t /t2N 2

.Rd
e�/N which satisfy the following conditions:

(i) .�0; p1; �0; �0/ ¤ .0; 0; 0; 0/.
(ii) �0 � 0, �t � 0 and h�t ; gt . Oxt ; Out /i D 0 for all t 2 N.

(iii) For all t 2 N, ptC1 � 0 and hptC1; ft . Oxt ; Out / � OxtC1i D 0 when a D i .
(iv) For all t 2 N, pt D D1Lt. Oxt ; Out ; ptC1; �0; �t ; �t /.
(v) For all t 2 N, D2Lt. Oxt ; Out ; ptC1; �0; �t ; �t / D 0.

Proof. We do the proof in the case a D e. The case a D i is similar. We use the
method of reduction to the finite horizon. For all T 2 N, T � 2, the restriction
. Ox0; : : : ; OxT ; Ou0; : : : ; OuT�1/ is a solution of the problem
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.FCe.T; �; OxT //

8̂
<̂
ˆ̂:

maximize JT .x0; : : : ; xT ; u0; : : : ; uT�1/
when 8t 2 f0; : : : ; T � 1g; xtC1 D ft .xt ; ut /

8t 2 f0; : : : ; T � 1g; ut 2 Ut .xt /

x0 D �; xT D OxT :

Note that x0 and xT are not variables of this problem. As in Sect. 1.4, we translate
this problem into a problem of static optimization on which we can use the multiplier
rule of Halkin that permits to obtain �T0 2 R, pT1 , . . . , pTT 2 R

n�, �T0 , . . . , �TT�1 2
R
d i�, �T0 , . . . , �TT�1 2 R

de� such that the following properties hold:

.�T0 ; p
T
1 ; : : : ; p

T
T ; �

T
0 ; : : : ; �

T
T�1; �T0 ; : : : ; �TT�1/ ¤ 0: (2.44)

�T0 ;8t 2 f0; : : : ; T � 1g; �Tt � 0; h�Tt ; gt . Oxt ; Out i D 0: (2.45)

8t 2 f1; : : : ; T � 1g; pTt D D1Lt. Oxt ; Out ; pTtC1; �T0 ; �Tt ; �Tt /: (2.46)

8t 2 N;D2Lt . Oxt ; Out ; pTtC1; �T0 ; �Tt ; �Tt / D 0: (2.47)

We want to prove the following assertion:

.�T0 ; p
T
1 ; �

T
0 ; �

T
0 / ¤ 0: (2.48)

To abridge the writing, we set O�t WD �t . Oxt ; Out /, Oft WD ft . Oxt ; Out /, Ogt WD gt . Oxt ; Out /,Oht WD ht . Oxt ; Out /. We proceed by contradiction, we assume that .�T0 ; p
T
1 ; �

T
0 ; �

T
0 / D

0. Then using (2.46) and (2.47) for t D 1 we obtain 0 D pT2 ı D1
Oft C �T1 ı

D1 Ogt C �T1 ıD1
Oht and 0 D pT2 ıD2

Oft C �T1 ıD2 Ogt C �T1 ıD2
Oht from which we

deduce �pT2 D �T1 ıD1 Ogt ı .D1
Oft /�1 C �T1 ıD1

Oht ı .D1
Oft /�1 and �pT2 ıD2

Oft D
�T1 ıD2 Ogt C �T1 ıD2

Oht , which implies

�pT2 ıD2
Oft D �T1 ıD1 Ogt ı .D1

Oft /�1 ıD2
Oft C �T1 ıD1

Oht ı .D1
Oft /�1 ıD2

Oft
D �T1 ıD2 Ogt C �T1 ıD2

Oht

Denoting St WD .S1t ; : : : ; S
di

t / andMt WD .M1
t ; : : : ;M

de

t /, we deduce from the last
relation

�T1 ı St C �T1 ıMt D 0;

and using the coordinates and the assumption (3) we obtain �T1 D 0 and �T1 D 0.
Then (2.46) for t D 1 implies pT2 ıD1

Oft D 0, and assumption (2) implies pT2 D 0.
And so we have proven that .�T0 ; p

T
1 ; �

T
0 ; �

T
0 / D 0 implies .�T0 ; p

T
2 ; �

T
1 ; �

T
1 / D 0.

Iterating this reasoning we obtain, for all t 2 N, pTtC1 D 0, �Tt D 0, and
�Tt D 0, which is a contradiction with (2.44). And so (2.48) is proven. Using a
normalization, i.e., multiplying all the multipliers by k.�T0 ; pT1 ; �T0 ; �T0 /k, we can
assume that k.�T0 ; pT1 ; �T0 ; �T0 /k D 1. Consequently the sequences T 7! �T0 ,
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T 7! pT1 , T 7! �T0 , and T 7! �T0 are bounded. Then from (2.46) we obtain
pT2 D .pT1 � �T0 D1

O�1 � �T1 ı D1 Og1 � �T1 ı D1
Oh1/ ı .D1

Of1/�1 which implies
pT2 ı D2

Of1 D .pT1 � �T0 D1
O�1 � �T1 ı D1 Og1 � �T1 ı D1

Oh1/ ı .D1
Of1/�1 ı D2

Of1,
and from (2.47) we obtain pT2 ıD2

Of1 D ��T0 D2
O�1��T1 ıD2 Og1��T1 ıD2

Oh1. From
these two equalities we deduce

�T1 ıS1C�T1 ıM1 D pT1 ı .D1
Of1/�1 ıD2

Of1C�T0 .D2
O�1�D1

O�1 ı .D1
Of1/�1 ıD2

Of1:

The right-hand term is bounded as function of T , and consequently T 7! �T1 ıS1C
�T1 ıM1 is bounded. Then, translating this expression in terms of coordinates, using
assumption (3) and Lemma 2.2, we obtain that the sequences T 7! �T1 and T 7! �T1
are bounded. And then, from pT2 D .pT1 � �T0 D1

O�1 � �T1 ıD1 Og1 � �T1 ı D1
Oh1/ ı

.D1
Of1/�1, we obtain that T 7! pT2 is bounded. Iterating this reasoning, we obtain

that, for all t 2 N, the sequences T 7! pTt , T 7! �Tt and T 7! �Tt are bounded.
And then we can use Lemma 2.1 and conclude as in the proof of Theorem 2.3. �

This result appears in the paper of Blot [12]. To finish this section we give a strong
Pontryagin principle. We consider the following simplified constraints:

U 1
t .xt / WD fut 2 Ut W 8j 2 f1; : : : ; d ig; gjt .xt ; ut / � 0g: (2.49)

For ` 2 fn; s; o;wg, we denote by (C `;1
e ) the problem obtained by replacing Ut .xt /

by U 1
t .xt / into (C n

a ). For these simplified constraints, the Lagrangian becomes
L1t .x; u; p; �; �/ WD ��t .x; u/C hp; ft .x; u/i C h�; gt .x; u/i. To use the condition
of Michel, we ought to consider At.xt ; xtC1/ as the set of all .rt ; �t ; 
t / 2 Ut �R

n �
R
d i for which there exists ut 2 Ut satisfying rt � �t .xt ; ut /, �t D ft .xt ; ut /� xtC1

and 
t � gt .xt ; ut /. Bt.xt ; xtC1/ is the set of all .rt ; �t ; 
t / 2 Ut � R
n � R

d i

for which there exists .ut ; ˛t ; ˇt / 2 Ut � R
n � R

d i satisfying rt � �t .xt ; ut /,
˛kt �

k
t D f k

t .xt ; ut / � xktC1 for all k 2 f1; : : : ; ngand ˇjt 

j
t � g

j
t .xt ; ut / for all

j 2 f1; : : : ; d ig.

Theorem 2.20. Let . Ox; Ou/ be a solution of (C n;1
e ), or of (C s;1

e ), or of (C o;1
e ), or of

(C w
e ). We assume that the following conditions are fulfilled:

(1) For all t 2 N, Xt is nonempty open and convex, the functions �t , ft , gt are
continuous on a neighborhood of . Oxt ; Out / and differentiable at . Oxt ; Out /.

(2) For all t 2 N, D1ft . Oxt ; Out / is invertible.
(3) For all t 2 N, for all .xt ; xtC1/ 2 Xt �XtC1, coAt.xt ; xtC1/ � Bt.xt ; xtC1/.
(4) For all t 2 N, there exists Qut 2 Ut. Oxt / such that ft . Oxt ; Qut / D ft . Oxt ; Out / and

g
j
t . Oxt ; Qut / > 0, for all j 2 f1; : : : ; d ig.

Then there exist �0 2 R, .ptC1/t2N 2 .Rn�/N, .�t /t2N 2 .Rd i�/N which satisfy the
following conditions:

(i) .�; p1/ ¤ .0; 0/.
(ii) �0 � 0, �t � 0 and h�t ; gt . Oxt ; Out /i D 0 for all t 2 N.
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(iii) For all t 2 N, pt D D1L
1
t . Oxt ; Out ; ptC1; �0; �t /.

(iv) For all t 2 N, L1t . Oxt ; Out ; ptC1; �0; �t / D max
ut2Ut

L1t . Oxt ; ut ; ptC1; �0; �t /.
This result appears in the paper of Blot and Hayek [23] where a proof is given. This
paper contains other results on the constrained problems.

2.5 Multiobjective Problems

Results of the previous sections are extended to multiobjective problems by using
similar methods. All the results of this section are due to Hayek [51] and [50].
The controlled dynamical systems are still (DE) and (DI). The difference with the
previous sections is that we replace �t by several functions �1;t ; : : : ; �m;t from

Xt � Ut into R. We define Jj .x; u/ WD
C1P
tD0

�j;t .xt ; ut / when the series converges

in R. And we define Doma
�.Jj / as the set of all .x; u/ 2 Adm� such that the series

C1P
tD0

�j;t .xt ; ut / converges in R. We introduce the notation Doma
�..Jj /1�j�m/ WD

mT
jD1

Doma
‘�.Jj /. The notions of optimality are notions of Pareto optimality and of

weak Pareto optimality. Precisely the considered problems are the following ones.

(V n
a ) Find . Ox; Ou/ 2 Doma

�..Jj /1�j�m/ such that there does not exist any .x; u/ 2
Doma

�..Jj /1�j�m/ such that Jj .x; u/ � Jj . Ox; Ou/ for all j 2 f1; : : : ; mg and
Jh.x; u/ > Jh. Ox; Ou/ for some h 2 f1; : : : ; mg.

(V n;w
a ) Find . Ox; Ou 2 Doma

�..Jj /1�j�m/ such that there does not exist any .x; u/ 2
Doma

�..Jj /1�j�m/ such that Jj .x; u/ > Jj . Ox; Ou/ for all j 2 f1; : : : ; mg.
(V o
a ) Find . Ox; Ou/ 2 Adma

� such that there does not exist any .x; u/ 2 Adma
� such

that lim sup
T!C1

TP
tD0
.�j;t .xt ; ut / � �j;t . Oxt ; Out // � 0 for all j 2 f1; : : : ; mg and

lim sup
T!C1

TP
tD0
.�h;t .xt ; ut / � �h;t . Oxt ; Out // > 0 for some h 2 f1; : : : ; mg.

(V o;w
a ) Find . Ox; Ou/ 2 Adma

� such that there does not exist any .x; u/ 2 Adma
� such

that lim sup
T!C1

TP
tD0
.�j;t .xt ; ut / � �j;t . Oxt ; Out // > 0 for all j 2 f1; : : : ; mg.

(V w
a ) Find . Ox; Ou/ 2 Adma

� such that there does not exist any .x; u/ 2 Adma
� such

that lim inf
T!C1

TP
tD0
.�j;t .xt ; ut / � �j;t . Oxt ; Out // � 0 for all j 2 f1; : : : ; mg and

lim inf
T!C1

TP
tD0
.�h;t .xt ; ut / � �h;t . Oxt ; Out // > 0 for some h 2 f1; : : : ; mg.
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(V w;w
a ) Find . Ox; Ou/ 2 Adma

� such that there does not exist any .x; u/ 2 Adma
� such

that lim inf
T!C1

TP
tD0
.�j;t .xt ; ut / � �j;t . Oxt ; Out // > 0 for all j 2 f1; : : : ; mg.

A solution of (V n
a ) (respectively (V o

a ), respectively (V w
a )) is called a Pareto

optimal solution (respectively an overtaking Pareto optimal solution, respectively
a weak overtaking Pareto optimal solution ). For the solutions of (V n;w

a ), (V o;w
a ),

(V w;w
a ) we replace Pareto by weak Pareto optima.
We start with a first result of necessary conditions for weak Pareto optima in the

form of a weak Pontryagin principle.

Theorem 2.21. Let . Ox; Ou/ be a solution of (V n;w
a ), or of (V o;w

a ), or of (V w;w
a ) when

a 2 fe; ig. We assume that the following conditions are fulfilled:

(a) For all t 2 N, Out 2 intUt , �j;t , and ft are of class C1 at . Oxt ; Out / for all j 2
f1; : : : ; mg.

(b) For all t 2 N, D1ft . Oxt ; Out / is invertible.

Then there exist .�1; : : : ; �m/ 2 R
m and .ptC1/t2N 2 .Rn�/N which satisfy the

following conditions:

(i) .�1; : : : ; �m; p1/ ¤ .0; : : : ; 0; 0/.
(ii) For all j 2 f1; : : : ; mg, �j � 0, and when a D i , for all t 2 N, ptC1 � 0 and

hptC1; ft . Oxt ; Out / � OxtC1i D 0.

(iii) For all t 2 N�, pt D
mP
jD1

�jD1�j;t . Oxt ; Out /C ptC1 ıD1ft . Oxt ; Out /.

(iv) For all t 2 N,
mP
jD1

�jD2�j;t . Oxt ; Out /C ptC1 ıD2ft . Oxt ; Out / D 0.

The proof of this result uses the method of reduction to finite horizon. Since the
associated finite-horizon problems are now multiobjective problems while they were
single-objective problems in the previous sections, the multiplier rules of static
optimization (of Halkin or Clarke) are replaced by a multiplier rule which is special
to static multiobjective problems and based on a theorem of Motzkin [51]. After
that, the question is to extract the multipliers of the infinite-horizon problem from
the sequences of multipliers of the finite-horizon problems, and the reasoning is
similar to the reasoning of the previous sections.

Remark 2.6. When a D i , there exists in [51] a theorem where the condition of
invertibility is replaced by the positivity condition as defined in Sect. 2.1.2 for
single-objective problems. Moreover in the previous theorem, if in addition we
assume that D2f0.�; Ou0/ is onto, we have .�1; : : : ; �m/ ¤ .0; : : : ; 0/.

After a weak Pontryagin principle, we state a result in the form of a strong
Pontryagin principle.

Theorem 2.22. Let . Ox; Ou/ be a solution of (V n;w
a ), or of (V o;w

a ), or of (V w;w
a ) when

a 2 fe; ig. We assume that the following conditions are fulfilled:
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(a) For all t 2 N,Xt is convex, and for all j 2 f1; : : : ; mg, for all ut 2 Ut , �j;t .:; ut /
and ft .:; ut / are of class C1 at Oxt .

(b) For all t 2 N, D1ft . Oxt ; Out / is invertible.
(c) For all t 2 N, for all xt 2 Xt , for all u0

t ; u
00
t 2 Ut , for all 	 2 Œ0; 1�, there exists

ut 2 Ut such that, for all j 2 f1; : : : ; mg, �j;t .xt ; ut / � .1 � 	/�j;t .xt ; u0
t / C

	�j;t .xt ; u00
t / and ft .xt ; ut / D .1 � 	/ft .xt ; u0

t /C 	ft .xt ; u00
t /.

Then there exist .�1; : : : ; �m/ 2 R
m and .ptC1/t2N 2 .Rn�/N which satisfy the

following conditions:

(i) .�1; : : : ; �m; p1/ ¤ .0; : : : ; 0; 0/.
(ii) For all j 2 f1; : : : ; mg, �j � 0, and when a D i , for all t 2 N, ptC1 � 0 and

hptC1; ft . Oxt ; Out / � OxtC1i D 0.

(iii) For all t 2 N�, pt D
mP
jD1

�jD1�j;t . Oxt ; Out /C ptC1 ıD1ft . Oxt ; Out /.

(iv) For all t 2 N, for all ut 2 Ut ,
mP
jD1

�j �j;t . Oxt ; Out / C hptC1; ft . Oxt ; Out /i �
mP
jD1

�j �j;t . Oxt ; ut /C hptC1; ft . Oxt ; ut /i.

The proof of this result also uses the method of the reduction to finite horizon. The
tool of static multiobjective optimization which is used is a theorem of Khanh and
Nuong (Theorem 2.2 in [58]). We recognize in assumption (c) a generalization of
the condition of Ioffe and Tihomirov. The end of the proof is similar to this one of
strong Pontryagin principles of the previous sections.

Remark 2.7. If moreover we assume that d � n and that f0.f�g � U0/ � Ox1 is a
neighborhood of 0 in R

n or that there exists u0
0 2 U0 such that Oxk1 < f k

0 .�; u
0
0/

for all k 2 f1; : : : ; mg, then we have .�1; : : : ; �m/ ¤ .0; : : : ; 0/. In the previous
theorem, when a D i , we can replace the invertibility condition by the positivity
condition as in Sect. 2.2.2.

The following result is a result of sufficient conditions.

Theorem 2.23. Let . Ox; Ou/ 2 Dome
�..Jj /1�j�m/. We assume that there exist

.�1; : : : ; �m/ 2 R
m and .ptC1/t2N 2 .Rn�/N which satisfy the following

conditions:

(i) .�1; : : : ; �m; p1/ ¤ .0; : : : ; 0; 0/.
(ii) For all j 2 f1; : : : ; mg, �j � 0.

(iii) For all t 2 N�, pt D
mP
jD1

�jD1�j;t . Oxt ; Out /C ptC1 ıD1ft . Oxt ; Out /.

(iv) For all t 2 N, for all ut 2 Ut ,
mP
jD1

�j �j;t . Oxt ; Out / C hptC1; ft . Oxt ; Out /i �
mP
jD1

�j �j;t . Oxt ; ut /C hptC1; ft . Oxt ; ut /i.
(v) For all t 2 N, Xt � Ut is convex and the function



2.5 Multiobjective Problems 61

.xt ; ut / 7!
mP
jD1

�j �j;t .xt ; ut /C hptC1; ft .xt ; ut /i is concave.

(vi) For all xt 2 Xt , lim
t!C1hptC1; xt � Oxt i D 0.

Then . Ox; Ou/ is a solution of (V n;w
e ), and moreover if �j > 0 for all j 2 f1; : : : ; mg

then . Ox; Ou/ is a solution of (V n
e ).

The proof of this result uses the well-known fact that is: if . Ox; Ou/ maximizes the

weighted functional
mP
jD1

	j Jj .x; u/ where 	j � 0 for all j 2 f1; : : : ; mg, then

. Ox; Ou/ is a weak Pareto optimum, i.e., a solution of (V n;w
e ). The concavity condition

permits to transform necessary conditions of optimality on the weighted functional
into sufficient conditions of optimality. The assumption (vi) is called a sufficient
condition of transversality at infinity.

Remark 2.8. Using the function

.xt ; ptC1; �1; : : : ; �m/ 7! max
ut2Ut

0
@

mX
jD1

�j �j;t .xt ; ut /C hptC1; ft .xt ; ut /i
1
A

it is possible to state an additional theorem of sufficient conditions, [51].

To finish this section, we provide a strong Pontryagin principle in presence of
constraints in the form U 1

t .xt / as defined in (2.49). Adma
�;c is defined by replacing

Ut by U 1
t .xt / in Adma

� , Doma
�;c.Jj / is defined by replacing Ut by U 1

t .xt / in
Doma

�.Jj /, and Doma
�;c..Jj /1�j�m/ WD T

1�j�m
Doma

�;c.Jj /. When ` 2 fn; o;wg
and a 2 fe; ig, (V `;c

a ) and (V `;w;c
a ) are obtained by replacing Adma

� by Adma
�;c and

Doma
�..Jj /1�j�m/ by Doma

�;c..Jj /1�j�m/ in (V `
a ) and (V `;w

a ). In the conditions of
Michel, the setsAt.xt ; xtC1/ andBt.xt ; xtC1/ are defined as before in Theorem 2.20
in the previous section.

Theorem 2.24. Let . Ox; Ou/ be a solution of (V n;w;c
a ) or of (V o;w;c

a ) or of (V w;w;c
a ). We

assume that the following conditions are fulfilled:

(a) For all t 2 N, Xt is nonempty open and convex, and for all ut 2 Ut , for all
j 2 f1; : : : ; mg, �j;t .:; ut /, ft .:; ut / and gt .:; ut / are of class C1 on Xt .

(b) For all t 2 N, for all .xt ; xtC1/ 2 Xt �XtC1, coAt.xt ; xtC1/ � Bt.xt ; xtC1/.
(c) For all t 2 N, D1ft . Oxt ; Out / is invertible.
(d) For all t 2 N, there exists u0

t 2 Ut such that ft . Oxt ; u0
t / D ft . Oxt ; Out / and

ght . Oxt ; u0
t / > 0 for all h 2 f1; : : : ; d ig.

Then there exist .�1; : : : ; �m/ 2 R
m, .ptC1/t2N 2 .Rn�/N and .qt /t2N 2 R

d i� which
satisfy the following conditions:

(i) .�1; : : : ; �m; p1/ ¤ .0; : : : ; 0; 0/.
(ii) �j � 0 for all j 2 f1; : : : ; mg, and qt � 0 for all t 2 N.
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(iii) pt D
mP
jD1

�jD1�j;t . Oxt ; Out / C ptC1; ıD1ft . Oxt ; Out / C qt ı D1gt . Oxt ; Out / for all

t 2 N.

(iv)
mP
jD1

�j �j;t . Oxt ; Out /C hptC1; ft . Oxt ; Out /i C hqt ; gt . Oxt ; Out /i �
mP
jD1

�j �j;t . Oxt ; ut /C hptC1; ft . Oxt ; ut /i C hqt ; gt . Oxt ; ut /i for all ut 2 Ut , for all

t 2 N.

Moreover, if in addition we assume that f0.f�g � U0/ � Ox1 is a neighborhood of 0
in R

n, and if there exists u00
0 2 U0 such that f0.�; u00

0 / � Ox1 D 0 and ght .�; u
00
0 / > 0

for all h 2 f1; : : : ; d ig, then we have .�1; : : : ; �m/ ¤ .0; : : : ; 0/.

The proof of this theorem also uses the reduction to finite horizon. In addition it uses
a generalization of the parametrized static optimization Theorem 1.6 for single-
objective problems to the multiobjective case. This generalization to weak Pareto
optima can be found in Hayek [50].
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