Chapter 2
Infinite-Horizon Theorems

2.1 Introduction

In this chapter, we give infinite-horizon theorems using the tools of the previous
chapter. In Sect. 2.2 we present several weak maximum principles which are
obtained through the method of reduction to finite horizon. We successively use
two additional conditions to obtain results in the infinite-horizon setting from
results of the finite-horizon setting. In Sect. 2.3 we present several strong maximum
principles which are obtained through the method of reduction to finite horizon.
We successively use three additional conditions which permit the extension of
finite-horizon results into infinite-horizon results. In Sect. 2.4 we study constrained
problems and in Sect. 2.5 multiobjective problems.

2.2 Weak Pontryagin Principles in Infinite Horizon

The first establishment of a Pontryagin principle in infinite horizon in the framework
of the continuous time is due to Halkin [34]. The major difficulty to adapt the
proof of Halkin to the discrete-time framework is the following one: whereas
integrating an ordinary differential equation forward or integrating it backward is
the same thing, it is not the same for a difference equation. And the so-called
adjoint equations, p; = Dy H; (X, it;, pr+1, Ao), are backward difference equations.
To overcome this difficulty, we propose several solutions. Each of the following
subsections provides a solution to this difficulty.
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32 2 Infinite-Horizon Theorems
2.2.1 A Condition of Invertibility

This condition concerns the partial differential with respect to the state variable
of the vector field of the equation of motion. It is the following: the invertibility
of Dy f;(X;,1,). This invertibility allows to transform the adjoint equation into a
forward difference equation. In this context, this condition appears for the first time
in the paper of Blot and Chebbi [16].

We need two lemmas to prove the theorems of this section. First, the following
lemma is a way to express the Diagonal Process of Cantor.

Lemma 2.1. Let Z be a real finite-dimensional normed vector space. For all
(t,T) € Ny x Ny such that t < T we consider z,T € Z. We assume that, for all
t € Ny, the sequence T — th is bounded. Then there exists an increasing function
0 : Ny — Ny such that, for all t € Ny, — Ny such that, for all t € Ny, there exists
zr € N,

A precise proof of this lemma is given in Theorem A.1 in Appendix A. The second
lemma expresses a relation between a property related to the norm and an algebraic

property.
Lemma 2.2. Let Z be a real finite-dimensional normed vector space. Let zi, ...,
2k be linearly independent vectors in Z, and for all j € {1,...,k}, let (r] );en be a

ko
real sequence. If the vector sequence ( >orlv j> is bounded in Z, then the real
i=1 teN

sequence (r,j)tEN is bounded in R forall j € {1,...,k}.

A precise proof of this lemma is given in [13] p. 48.
First we use the multiplier rule of Halkin to obtain the following result.

Theorem 2.1. Let (X, it) be a solution of (P)), or of (P3), or of (P2), or of (Z2Y))
fora € {e,i}. We assume that the following conditions are fulfilled:

(a) Forallt € N, X; is a nonempty open subset of R".
(b) Forallt € N,

Kt k¢
U=|Nuer! :gf@=0}|n|ueR: h ) =0}

a=1 p=1

where g7 - RY — R and hf : RY — R are continuous on a neighborhood
of it, and they are differentiable at i, for all « € {1,...,k'} and for all B €
{1,...,k°}, and we assume that U; # @. ‘

(c) Forallt € N, the differentials Dg (i), ..., Dg (&), Dh! (i), ..., Dh* (i)
are linearly independent.

(d) Forallt € N, ¢, and f; are continuous on a neighborhood of (x,, i) and they
are differentiable at (X, it;).

(e) Forallt € N, the partial differential D1 f,(X,, it;) is invertible.
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Then there exist Ay € R, (p1)ien, € R™)N*, (A1,)ien € RY, ..., (Akif)ren € RN
(U10)ren € RN, .0, (ke s )ren € RY which satisfy the following conditions:

(i) (Ao, p1) # (0,0).

(ii) Ao > 0.
(iii) Forallt €N, p,+1 > 0and (pi+1, fi (X, 0;) — X;41) = Owhena = i.
(iv) Forallt €N, foralla € {1,...,k'}, dgs > 0.

(v) Forallt €N, foralla € {1,...,k'}, Ao g%(it) = 0.

(vi) Forallt € Ny, p, = pi+10 Dy fi (X, 1;) + Ao D1, (X, ity).
(vii) Forallt € N,

K ke
DoHi (R, prvs 3o) + 3 D D) + ﬁzl 11g, DhY (i) = 0.
o= =

Proof. Using Proposition 1.2 we know that for all T € N, T > 2, the restriction
(X5 ..., X7—1,Ug,...,Ur—1) is a solution of (F*(T,n,xXr)) for a € {e,i}. And
consequently the conclusions of Proposition 1.3 hold when a = e, and the
conclusions of Proposition 1.4 hold when a = i. Using the assumption (e), the
conclusion (iv) of Proposition 1.3 or of Proposition 1.4 which is

pl = pL o Dy fiGe i) + AL Doy (R, i),

forallt € {0,...,T — 1}, becomes

pley = pl o (D1 fiRe @)™ = Ag Dag (R i) o (D1 fi(Rr )™ (2.1
Using (2.1), we see that (Al, pl) = (0,0) implies (A],pl.....pH) =
(0,0,...,0). And so by contraposition we obtain the following relation.

Ag. Pl pp) #(0,0,...,00 = (A7, p{) # (0,0). (2.2)

Using assumption (c) and the last assertion of Proposition 1.3 or of Proposition 1.4
we obtain (A7, pT') # (0,0). Since the set of all lists of multipliers is a cone, we
can normalize these lists of multipliers, and so we can choose:

VT € Ni, (A5, pDI = 1. (2.3)

From (2.1) the sequence T+ p! is bounded in R"*, and the sequence 7 > A is
bounded in R. From (2.1) we obtain

123 Il < I 1D At G @)™ Ag I D G i) (D1 fi (R ) ™|
which implies

sup Ipa | < (D1 fiGr )7+ D1 (Br, i) || (Dy fi Ry i) 7| < oo,
>
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and proceeding by induction, we obtain

sup || p/sill < supllp] I.1(D1 fiRe. i) I+ D1 (e i) |- 1(Dy £ (B )™
T>1+1 T>t

which implies
vVt e N, sup ||pIT|| < +o0. 2.4)
T>t

From (2.2) we deduce that the sequence T+ D, H;(X;, i, ptTH, )Lg) is bounded
and using the conclusion (v) of Proposition 1.3 or of Proposition 1.4 we obtain that

K k¢
the sequence 7 — Y. AT Dg¥(ii,) + Y ugchf (#1;) is bounded, and by using
a=1 g=1 "’

the assumption (c) and Lemma 2.2 we obtain the following relations:

vVt €N, sup|Al,| < +o0. (2.5)
T>t

Vi eN, sup|up,| < +oc. (2.6)
T>t

After (2.1)—-(2.4), using Lemma 2.1 we know that there exist an increasing function
0:Ny > Ny, eR, p e R Ay € R, ug; € Rforallz € N, forall ¢ €
{1,...,k"}, forall B € {1,...,k¢} such that, forallt € N, foralla € {1,...,k'},
forall 8 € {1,...,k¢}, the following equalities hold:

lim A7% = 1,

T—+o00
lim plY) = piry

T—+o00 1+1 i+ (2 7)
. o(T) _ :
lim AO{I = Aq.t

T—+oc0
lim 5" = g

T—+ B

From (2.3), (2.7), and the continuity of the norm we obtain ||(A¢, p1)|| = 1, which
implies the conclusion (i). From (2.7) and the conclusions of Proposition 1.3 or
of Proposition 1.4, we obtain the conclusions (ii), (iii), (iv), and (v) by taking
T — 4o0. O

When we have &, € intU, for all + € N, using Corollary 1.1 instead of
Proposition 1.3 and Corollary 1.2 instead of Proposition 1.4, a similar reasoning
allows to establish the following result.

Theorem 2.2. Let (X, it) be a solution of (P2), or of (P5), or of (P2), or of (ZY))
fora € {e,i}. We assume that the following conditions are fulfilled:

(a) Forallt € N, X, is a nonempty open subset of R".
(b) Forallt € N, i, € intU,.
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(c) Forallt € N, ¢; and f; are continuous on a neighborhood of (X;, ;) and they
are differentiable at (X, ii,).
(d) Forallt € N, the partial differential D1 f;(X;, it;) is invertible.

Then there exist Ay € R, (pi)ien, € R™)N* which satisfy the following
conditions:

(i) (Ao, p1) # (0,0).

(ii) Ao > 0.
(iii) Forallt €N, piy1 > 0and (p;41. fi (X, 6;) — Xi41) = O whena = i.
(lV) For allt € N*, p[ == p[+1 o Dlﬁ()’e[,'}[) + ),()Dl(ﬁ[(.%[,i/\l[).

(v) Forallt €N,  DyH, (X, U, pr1,Ao) = 0.

After the use of the multiplier rule of Halkin, we use the multiplier rule of Clarke.

Theorem 2.3. Let (X, it) be a solution of (P2), or of (P3), or of (P2), or of (ZY))
fora € {e,i}. We assume that the following conditions are fulfilled:

(a) Forallt € N, ¢, is Lipschitzian on a neighborhood of (X, it;) and regular at
(%r, ).

(b) Forallt €N, f; is strictly differentiable at (X;, ii,).

(c) Forallt € N, U, is closed and Clarke-regular at ii,.

(d) Forallt € N, the partial differential D1 f;(X;, ;) is invertible.

Then there exist Ay € R, (p)ien, € RN+ which satisfy the following
conditions:

(i) (Ao, p1) # (0,0).
(ii) Ao > 0.
(iii) Forallt €N, p,41 > 0and (p,41, fi (X¢, ) — X+1) = Owhena = i.
(iv) Forallt € Ny, p; € 82H[()%,,Ijt[,pt+1,ko).
(v) Forallt € N, 0,H,(X;, 1, pi+1,r0) N Ny, (it;) # @, where Ny, (i) is the
normal cone of U, at ui;.

Proof. Using Proposition 1.2, the restriction (Xo,..., X7—1, Ug,..., Ur—1) 1S a
solution of (% (T, n, X7)), fora € {e,i}. Consequently using Proposition 1.5 when
a = e and Proposition 1.6 when a = i, we know that, forall T € N, T > 2, there
exist Al € R, pIT+1 € R™, when t € {0,...,T — 1}, which satisfy the following
conditions:

(AL, pl, ..., pl) #(0,0,...,0) (2.8)

A(j)" >0 2.9)

vVt e{0,...,T — 1},E|g0tT € 01 (X, 1) s.t. pIT = )Lg(pf + ptT-‘rl o Dy fi (X, 1)
(2.10)

Vie{0.....T — 15,3y € 0x¢p (1. 11) sit. 2.11)

Vv, € TU, (ﬁt)» (Aglﬁf + P,Z:;.l o DZ,ft()%ta ﬁz)» Ut) <0
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Using assumption (d) we can transform (2.10) into the following relation:
Pl = pl o (D1fiGe i)™ = Age] o (D1 fiRi )™ (2.12)

Reasoning as in the proof of Theorem 2.2, from (2.8) and (2.12) we deduce that
(AL, pI) # (0.0) and we can choose (Al pT) such that ||(A], pl)|| = 1. And so
the sequences T +—> )&g and T — plT are bounded, and from (2.12) we deduce by
induction that, for all # € N, all the sequences 7' +> p,T 41 are bounded. Since the
Clarke differentials at a point are compact [38], we obtain that, for all # € N, the
sequences 7' +— go,T and 7 +— w,T are bounded. Using Lemma 2.1, there exist an
increasing function ¢ : Ny, — Ny, A9 € R, p,y1 € R"™, ¢, € 91¢,(%;, 1) and
Y, € 026 (X, ;) such that the following equalities hold for all # € N:

lim P;T.(FTI) = DPi+1

Taking T — oo, from ||(Ag(T),pf(T))|| = 1 and from (2.13), we obtain
Il(A0, p1)|| = 1 that ensures the conclusion (i).

From (2.9) and (2.13) we obtain the conclusion (ii). From (2.10) and (2.13) we
obtain the conclusion (iii). From (1.13) and (2.13) we obtain

Pi+1 = pr o (Dy fi (X, ’Alt))_l — do@r o (D fi (X, ﬁz))_l

which implies the conclusion (iv).
From (2.11) and 2.13) we obtain, for all v, € Ty, (&;),

(AoW: + pr1 0 Do fi(Re i), v,) <0

which implies Aoy, + pr41 0 D2 fi (X¢, i) € Ny, (it;) with ¥, € 020, (X, &t;), which
implies the conclusion (v). O

When &; € int Uy, using Corollary 1.3 instead of Proposition 1.5 and Corollary 1.4
instead of Proposition 1.6 and proceeding as in the proof of Theorem 2.3 we obtain
the following result.

Theorem 2.4. Let (X, it) be a solution of (P2!), or of (P3), or of (P2), or of (ZY))
fora € {e,i}. We assume that the following conditions are fulfilled:

(a) Forallt € N, ¢, is Lipschitzian on a neighborhood of (X, it;) and regular at
(),et ’ i'\tt)

(b) Forallt €N, f; is strictly differentiable at (X,, i,).

(c) Forallt € N, i; € intU,.
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(d) Forallt € N, the partial differential D1 f,(X;, it;) is invertible.

Then there exist Ay € R, (pi)ien, € R™)N* which satisfy the following
conditions:

(i) (Ao, p1) # (0,0).

(ii) Ao > 0.
(iii) Forallt €N, p,41 > 0and (pr+1, [ (Xs, 0:) — Xi41) = Owhena = i.
(iv) Forallt € Ny, p, € 03H (X¢, 0y, Pr41, Ao)-

(v) Forallt €N, 0 € 0, H,(X;, s, pr+1, Ao)-

2.2.2 A Condition of Positivity

All the weak Pontryagin principles of the previous subsection use the condition
of invertibility of D, f;(X;, ;). In this subsection, to avoid this condition of
invertibility, we introduce the following positivity condition:

o Grdu)
o oxl 7 (2.14)
of Goin) _
dx/ '

Vi,j e{l,...,n},

Vje{l,...,n},

Note that this condition does not imply the invertibility of Dy f;(%;,#) whenn > 1.

To see that it suffices to consider the case where W = 1 for all 7, j, the
condition (2.14) is fulfilled, and D f;(X;, it,) is not invertible since its rank is equal
to 1. In this context, this condition was introduced for the first time in the paper of
Blot [11].

The following elementary lemma will be very useful.
Lemma 2.3. Under (2.14), setting o; = 1m‘in W > 0, the following

<jsn ¥

assertions hold:
(i) Forally € R, Dy f;(X;,0).y = 0:.
(ii) Forall w € R, w o Dy f; (%, 11;) > o, 7.

Proof. (e;)1<i<n denotes the canonical basis of R”, and (e}")|<; <, its dual basis.

(1) When y e R” ,and j € {1,...,n} we have

7 +0> 0y,

e e S Of R O i)
(e, D1 fiGa, i) y) = Y ==y = =y

i=1

that means D1 f;(X;, ).y > o;y for the natural order of R”.
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(ii) Letw € R*. Forall y € R’} after (i), we have D f;(%;,4,).y > oy, and since
w > 0, we have

oDy fi(X.i;).y = n(Dy fi (R, 14).y) = mw(0:y) = 0 (y),

that means 7 o Dy f;(X;,1t;) > o, 7 for the order of R"*, |

The following remark contains elementary facts on the orders of R” and of R"*
which will be very useful.

Remark 2.1. When ||.|| is one of the usual norms of R", ||x||c := [max |xi],
<i<n

n n
lxli:= >0 1x' ], lxlla := [ D |xi|?, it satisfies the following property:
i=1 V i=1

Vx,y eR'.0<x <y= x| <[yl

It is easy to verify this property by using elementary calculations.
When R” is endowed with the norm ||.||00, and R"* is endowed with the norm
loll« = sup{|{p,x)| : x € R",|x]loc < 1}, it is easy to see that ||¢|«+ =
n

> |{g, ei)]. The following property holds:
i=1

Vo, eR™0<9 <y = [l¢l« < [¥]l«.

To verify that, noting that e; > 0 for all i € {1,...,n}, and then we have 0 < ¢ <
Y= 0<ogp(e;) < V¥(e),foralli € {l,...,n}, which implies

lols = 3 lgeedl = Y gy < 3 twned = 3 e = 1.
i=1

i=1 i=1 i=1
Now we can establish a weak Pontryagin principle.

Theorem 2.5. Let (X, it) be a solution of (2F), or of (2}), or of (Z77), or of (P}').
We assume that the following conditions are fulfilled:

(a) Forallt € N, X, is a nonempty open subset of R".
(b) Forallt € N,

K ke
(ueR : gf@ =0} | n | ({ueR! :hf ) =0}
a=1 B=1

where g : RY — R and hf : RY — R are continuous on a neighborhood
of ii; and they are differentiable at @, for all o € {1,...,k'} and for all B €
{1,...,k°}, and we assume that U; # @.
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(c) Forallt € N, the differentials Dg! (i), ..., Dg (&), Dh! (i), ..., Dh¥ (i)
are linearly independent.

(d) Forallt € N, ¢, and f; are continuous on a neighborhood of (X, i;), and they
are differentiable at (X;, ii;).

(e) Forallt € N, the positivity condition (2.14) is fulfilled.

Then there exist Ay € R, (p/)ien, € (R™)MN*, (A1)ien € RY, ..., (Agi )ren € RY

(U10)ren € RY, ..., (ke s)ien € RY which satisfy the following conditions:
(i) (Ao, p1) # (0,0).
(ii) Ao > 0.

(iii) Forallt € N, py1 > 0and (p+1, fi (%, i) — X141) = 0.
(iv) Forallt €N, foralla € {1,...,k'}, Aas = 0.

(v) Forallt €N, foralla € {1,...,k'}, Ay 8% (i) = 0.

(vi) Forallt €N, p; = p;410 D]f;(f(l,l:tt) + AoD](ﬁ[()??[,Ijt;).
(vii) Forallt € N,

Dth(xt»Mt’ Pr+1, Ao) + Z )kMDg, (”t) + Z l/vﬁch (ut) =0.
a=1
Proof. Using Proposition 1.2 and Proposition 1.4, we obtain, forall T € N, T > 2,
the existence of )LOT € Rand, forall t € {0,...,T — 1}, the existence of a list of
elements of p’. +1 € R" and the existence of two lists of real numbers (A.z;t)lﬁaski ,
(ug, )1<p<ke Which satisfy the following conditions:

s Pl pr A A e ) #£0....0). (2.15)

AL =o. (2.16)

Pl = 0. 2.17)

Abs = 0,40 g (@) = 0. (2.18)

pl = ply oDy fi(Re i) + AL Dighy Ry, ). (2.19)

P,+1 o Dy fi (X, 1ty) + A Do (R4, )

+ Z A Dgt (i) + Z H’ﬂzDhﬁ(ut) =0. (2.20)

From (2.19) we obtain pl, | o (X.,i) = pl — A} Di¢(%.0,), and after
Lemma 2.3 we have p/, | o Dy fi(X,, i) = o/ p[,,. And so we have

0= QtPtT-H = pr - Ang¢t(£t»i‘r)v
which implies (cf. Remark 2.1)

Qt”P;T-H”*: ||QtP[T+1||* < |Ipl=A§ Doy Gr i)l < ol N5+AG | D1 (R i) || -
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And so we obtain, forallt € {0,...,T — 1},

1 1 n
121l < =P/ N+ A — D16y G ) |- (2.21)
O O
We set
a; 1= — € (0, +00)
FIQS
s=1
and

t

1 A
b=y  ———IIDigs (s, fiy)l|« € (0, +00)
s=1 ] ok
k=s

and we proceed by induction to obtain from (2.21) the following assertion:

V¢ € N,3a, € (0, +00),3b, € (0, +00), VT > 1,

(2.22)
P ells < allp] lls + biAg -

From this last assertion we obtain that (A7, pT) = (0,0) implies (AL, pT',..., pI) =
(0,0,...,0), and using (2.20) we obtain

k! ke
Y AL Dgli) + Y uh, Dhf (i) =0,
a=1 B=1

and using assumption (c), this last equality implies that Ag’t = 0 and ug’t = 0 for
alla € {1,...,k'}, forall B € {1,...,k}andforallt € {0,...,T —1}. And so we
have proven that (A}, p) = (0, 0) implies the negation of (2.15). Then using (2.15)
and the contraposition we have proven that (A], p7) # (0, 0). Using the property of
cone of the set of all lists of multipliers, we can normalize and obtain, forall 7 € N,
T >2:

IAg, pDIl = 1. (2.23)
Then, from (2.22) and (2.23) we obtain

vt € N,3a, € (0,400),3b; € (0,400), VT > ¢, | p/ 1|« < ar + b,
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which implies

< +o0. (2.24)

Vi eN, sup ||P1T+1||*

T>t

From (2.20) we obtain

kKt k¢
Y AL Dge(i) + Yl Dhf (i)
a=l1 p=1

= _PtT_H o Dy fi (X, 1ty) — ng2¢t(£t’ i),

ki
and using (2.23) and (2.24) we deduce that the sequence T — Y )Lg’thf‘ (i) +
a=l1

k¢
> ug’chf} (it;) is bounded for all + € N, and then using assumption (c¢) and
p=1

Lemma 2.2, we obtain

VieN,Vae{l,....k'},VB e{l,....k sup|Al,| < +oo,sup|ug’l| < 4o00.
T>t T>t

(2.25)
And then we can conclude as in the proof of Theorem 2.1. |

When 4, € intU,, using Corollary 1.2 instead of Proposition 1.4, we obtain the
following result.

Theorem 2.6. Let (X, it) be a solution of (Z!'), or of (P}), or of (7 ), or of (P}).
We assume that the following conditions are fulfilled:

(a) Forallt € N, X, is a nonempty open subset of R".

(b) Forallt € N, u, € intU,.

(c) Forallt € N, ¢, and f, are continuous on a neighborhood of (X;, i) and they
are differentiable at (X,, ii;).

(d) Forallt € N, the condition (2.14) holds.

Then there exist Ay € R, (p)ien, € R"™)N+ which satisfy the following
conditions:

(i) (Ao, p1) # (0,0).

(ii) Ao > 0.
(iii) Forallt €N, p,y1 > 0and {p;+1, f; (X, 0;) — X,+1) = 0.
(ZV) Forallt € N, Pt = Pr+10°© D]f}()%[,lfi[) + AOD[¢[(5&[,£{[).
(v) Forallt €N, D,H, (X, 1, pi41,A0) = 0.

After the use of the multiplier rule of Halkin, we use the multiplier rule of Clarke.

Theorem 2.7. Let (X, it) be a solution of (2F), or of (2}), or of (Z7?), or of (P}).
We assume that the following conditions are fulfilled:
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(a) For allt € N, ¢, is Lipschitzian on a neighborhood of (X;, ;) and regular at
(X7, 1ty).

(b) Forallt € N, f; is strictly differentiable at (X;, ;).

(c) Forallt € N, U, is closed and Clarke-regular at u,.

(d) Forallt € N, the positivity condition (2.14) holds.

Then there exist Ay € R, (pi)ien, € R™)N* which satisfy the following
conditions:

(i) (Ao, p1) # (0,0).
(ii) Ao > 0.
(iii) Forallt €N, p;41 > 0and (pr+1, fr (X, 0y — Xs41) = 0.
(iv) Forallt € Ny, p, € 03H (X¢, 0y, Pr41, Ao)-
(v) Forallt € N, 02H; (X, U, pr+1.Ao) N Ny, (i) # @, where Ny, (i) is the
normal cone of U, at ui;.

Proof. Using Proposition 1.2 and Proposition 1.6 we obtain the assertions (2.15),
(2.16), and (2.17) inside the proof of Theorem 2.5 and the assertions (2.10) and
(2.11) inside the proof of Theorem 2.3.

Since the Clarke differentials d;¢; (X;, &;) and d¢, (X;, it;) are compact sets, they
are bounded sets, and so we have

¢ o = sup{|lgll«: ¢ €01 (X, 1)} < +00
dy o= sup{[|¥[l« : ¥ € Dapy (R, i)} < +o00.

Then, from (2.10), we obtain p/, | o D; fi(%,, &) = p! — Ale! which implies
opl, < pl — Alg!, where g, is defined in the proof of Theorem 2.5, which
implies (cf. Remark 2.1) o/ [| Ly ll« < Ip] s + Ad sy e,

1 Ctoyr
Ipleille < =l Il + =27
t+11* 0 t = o 0

And after that, we can proceed as in the proof of Theorem 2.5. |

When i, € int U;, using Corollary 1.4 instead of Proposition 1.6 and proceeding as
in the proof of Theorem 2.7 we obtain the following result.

Theorem 2.8. Let (X, it) be a solution of (2!), or of (2}), or of (Z7), or of (P}').
We assume that the following conditions are fulfilled:

(a) Forallt € N, ¢, is Lipschitzian on a neighborhood of (X, ;) and regular at
(%, dt).

(b) Forallt € N, f; is strictly differentiable at (X,, ii,).

(c) Forallt € N, it; € intUj,.

(d) Forallt € N, the positivity condition (2.14) holds.

Then there exist Ay € R, (p)ien, € R"™)N+ which satisfy the following
conditions:
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(i) (Ao, p1) # (0,0).

(ii) Ao = 0.
(iii) Forallt €N, piyy > 0and (p;41. fi(%:,8;) — X41) = 0.
(iv) Forallt € Ny, P € azH,()et,I}[,pt_{_l,Ao).

(v) Forallt e N, 0 € 82Ht(),(\'l,l’/\t[,p,+1,l()).

2.3 Strong Pontryagin Principles in Infinite Horizon

In this section, to establish strong Pontryagin principles in infinite horizon, in a first
subsection, we use the invertibility condition, in a second subsection we use the
positivity condition, and in a third subsection, we use a new condition that we call a
condition of partial submersion.

2.3.1 The Invertibility Condition

In a first time we use a consequence of a result of Michel, Proposition 1.7 and
Proposition 1.8.

Theorem 2.9. Let (X, it) be a solution of (P2), or of (P3), or of (P2), or of (Z2)))
when a € {e,i}. We assume that the following conditions are fulfilled:

(a) Forallt € N, X, is a nonempty open convex subset of R* and U, is a nonempty
subset of RY.

(b) Forallt € N, the functions ¢, and f; are differentiable with respect to the first
vector variable.

(c) Forallt €N, forall (x;, x;41) € X; X X;41, coA)(x;, x;41) C B/(X;, X, 41).

(d) Forallt € N, the partial differential D1 f;(X;, ;) is invertible.

Then there exist A\l € R and (pi11)ien € (R™)N which satisfy the following
conditions:

(i) (Ag, p1) # (0,0).

(i) AJ > 0.

(iii) Forallt € Ny, pI' = DyH (%, 8, pr41, Ao)-

(iv) Forallt € N, H (%, 0, pi1,A}) = max H (R, u, prg1, AD).

Proof. The case a = e. From Proposition 1.2 we can use Proposition 1.7 which
provides, forall 7 € N, T > 2, a real number )&g and elements of the dual space of
R", pT', ..., pL, which satisfy the following conditions:

(Ad.pl.....p7) #(0,0,....0). (2.26)
Al >o. (2.27)



44 2 Infinite-Horizon Theorems

Vie{l,....,T =1}, p] = pl oD\ fi(Ri. i) + A D1gpy (R 01).  (2.28)

Viel{l,....T—1},\Yue U, H (%.i.p/ . A) = H (%, u, pLi 1 A0)
(2.29)

Proceeding as in the proof of Theorem 2.1, we obtain the relations (2.3) and (2.4)
which say that the sequences T +— )&g and T — ptT 41 (forall ¢ € N) are bounded
with the additional condition [(AZ, pT)|| = 1. And so we can use Lemma 2.1
and we can assert that there exist an increasing function o : Ny, — Ny, 19 € R,
Pit1 € R™ forall t € N, such that the following relations hold:

li o(T) — li o(T) —
T—ir-{-loo AO AO’ T—lToo Pr Pr1

for all + € N. Using the continuity of the norm we obtain ||(4, p1)|| = 1. Using
the continuity of the functions inside the relations (2.27)—(2.29), we obtain the
conclusions of the theorem.

The case a = i. Our strategy is to use the first case. For all # € N we introduce
the function ﬁ : Xy x Uy — X, 4+ by setting

fAt(xta w) = fi(xeu) + (X1 — fi(Re,i1y)). (2.30)

We denote by Adm;( f ) the set of all processes (x,u) € [] X; x [] such that
teN teN

X1 = f;(x,, u,) for all ¢+ € N, and we denote by Admf7 the set of all processes

(x,u) € ] X; x ] such that x,41 < f;(x;,u;) for all t € N. Since %4 <
teN teN

fi(&:. 1), we have, for all (x,u) € AdmS(f), xi41 = fiCxw) < fixi.u),
which implies

Adm?(f) C Adm!. 2.31)

We denote by Domy(J, f ) the set of all (x,u) € Adm( f ) which belong to
Dom,’;(J) (cf. Sect. 1.2). Using (2.34), it is clear that we have

Dom¢(J, f) € Dom’(J). (2.32)

Note that (£,i) € Adm;( £), and consequently that (£, 1) € Dom; (/, #) when
(%, ) € Dom; (/).
We fix k € {n.s,0,w} and we denote by (2% ( f)) the problem (27%) where we

have replaced (DE) by x;4+; = f;(x,, ;). Note that the criterion of this problem is
the same as the criterion of (W!‘). And so, using the previous inclusions, we see that

if (£, @) is a solution of (2X) then it is also a solution of (2 (f)) We see that the
assumptions on f; imply the same assumptions on f;, and so we can apply the first
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case to (2% ( f )). After that, it suffices to translate the conclusions on (¥ ( f )) into
conclusions on (@ik ). If we denote by H, the Hamiltonian of (9{’,‘ ( f )), H; being
the Hamiltonian of (,@[k ), we see that the difference I:I, — H, is a constant which
is independent of x, and u,, which implies that the adjoint equation of (2% ( f )) is

exactly the adjoint equation of (Wik ), and the strong maximum principle of (@f ( f )
implies this one of (2F). O

This theorem was established in [16]. There exist other versions in [13]. In this last
paper an analogous version for systems governed by (DI) is stated. But the proof
given for the case of (DI) is not very explicative. And so, we provide an original
proof of the theorem in the case of (DI).

Theorem 2.10. Let (X,it) be a solution of (7)), or of (22)), or of (F72), or of
(), when a € {e,i}. We assume that the following conditions are fulfilled:

(a) Forallt € N, X, is a nonempty open subset of R", and U, is a nonempty subset
of RY.

(b) Forallt € N, ¢, € C°(X; x U;,R) and, for all (x,u) € R" x U,, the partial
differential D¢, (x, u) exists and D ¢, € C°(X; x U;, R"™).

(c) Forallt €N, f; € Co%X, x U;,R") and, for all (x,u) € R" x U,, the partial
differential D f;(x,u) exists and D1¢, € C*(X, x U;, L(R",R")).

(d) Forallt € N, for all x € Xy, for all u,v € Uy, for all r € [0, 1], there exists
w € U; such that

¢ (x,w) > (1 =r)p(x,u) + rey(x,v)
fi(x,w) = (1 =r) fi(x,u) + rfi(x,v).

Then there exist .o € R, (pis1)ien € (R™)N which satisfy the following
conditions:

(i) Ao and (pi+1):en are not simultaneously equal to zero.
(”) Pt = D]H[(.)’(\:[,ljll,p[+],k())f0rallt € N.
(lll) H[()’(\It, lj{l, DPt+1, )L(]) = m%x H[()’(\It, U, Pr+1, Ao)fOr allt € N.
uel,

Proof. The proof is similar to this one of Theorem 2.9 replacing the use of
Proposition 1.7 by the use of Proposition 1.9 when @ = e and the use of
Proposition 1.8 by the use of Proposition 1.10 whena = i. O

2.3.2 A Condition of Positivity

In this subsection, we use the positivity condition already used in Sect. 2.2 to obtain
weak Pontryagin principles, in order to obtain strong Pontryagin principles.
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Theorem 2.11. Let (X, i) be a solution of (Z!'), or of (Z}), or of (¥?), or of
(P)). We assume that the following conditions are fulfilled:

(a) Forallt € N, X, is nonempty and convex, X, € int X,, and U, is nonempty.

(b) For allt € N, the partial functions ¢, (., u;) and f;(., ;) are continuous on a
neighborhood of X, and differentiable at X,.

(c) Forallt €N, forall (x;, x;+1) € X; X X_t+b coA; (X, Xi+1) C By (x¢, X41).

(d) Forallt €N, foralli,j € {1,...,n}, % >0, and forall j € {1,...,n},

3fi(«\A’r_J:it) >0
ax/ ’
Then there exist Ay € R, (pis1)ien € R™N which satisfy the following
conditions:

(i) (Ao, p1) # (0,0).
(i) Ao > O.
(iti) Forallt €N, p;+1 > 0and (piy1, fi (%, 4) — X14+1) = 0.
(iv) Forallt € Ny, p, = D H;(X;, 0y, pr+1, o).
(v) Forallt € N, H (%, 0, pry1,A)) = max H (%, u, pr+1,Ao).

Proof. Using Propositions 1.2 and 1.8, we obtain the existence, for all T € N,
T >2,0f Al € Randof pT,..., pI' € R"™ which satisfy the conclusions of Propo-
sition 1.8. Then using Lemma 2.3 and reasoning as in the proof of Theorem 2.5, we
obtain the relations (2.22), (2.23), and (2.24). Then using Lemma 2.1, we obtain
the existence of a strictly increasing function o : N, — N,, of Ay € R and of a

in R"* such that _lim A3 = Ao, and _lim p?\) =
sequence (p;+1)reN in such that lim A, o-and lim p,}" = pi

for all + € N. And then, from the conclusions of Proposition 1.8, we obtain the
conclusion of this theorem by taking T — +o0. |

In the previous theorem, we have only considered problems which are governed by
(D). In the following theorems, we consider problems governed by (DE).

Theorem 2.12. Let (X, i) be a solution of (Z¢). We assume that the following
conditions are fulfilled:

(a) Forallt € N, X, is nonempty and convex, X, € int X;, and U, is nonempty.

(b) Forallt € N, the partial functions ¢, (., 4,) and f;(., ;) are continuous on a
neighborhood of X, and differentiable at x,.

(c) Forallt €N, forall (x;,x,+1) € X; X X 41, c0A; (X1, X141) C Br(Xy, X41).

(d) Forallt € N, foralli,j €{1,...,n}, W >0,andforall j € {1,...,n},
o Grin) o g, ’

ax]
(e) Forallt € N, for all u, € U,, the partial function ¢, (., u,) is increasing.
(f) Forallt € N, for all u, € U, the partial function f,(.,u,) is increasing.

Then there exist Ao € R, (pis1)ien € (R™)N which satisfy the following
conditions:
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(i) (Ao, p1) # (0,0).

(ii) Ao = 0.
(iii) Forallt €N, piy1 > 0and (p;41, fi(%:,8;) — X41) = 0.
(lV) Forallt € N*, Pt = D]H[()’(\It,lj{[,pl+1,)to).

(V) Forallt € N, H[(),(\fl,l’/\tt,pl_;_l,kg) = I:é%x Hl()?,,u,p,H,)Lo).

Proof. Noting that (CA1) = (e) and that (CA2) = (f), we can use Theorem 1.1 and
we can assert that (X, %) is a solution of (£?¢). And then we conclude by using
Theorem 2.11. O

Theorem 2.13. Let (X, &) be a solution of (). We assume that the following
conditions are fulfilled:

(a) Forallt € N, X, is nonempty and convex, X, € int X;, and U, is nonempty.

(b) Forallt € N, the partial functions ¢;(.,14,) and f;(., 1) are continuous on a
neighborhood of X, and differentiable at X,.

(c) Forallt €N, for all (x;,x,+1) € X; X X1, c0A; (X1, X141) C Bi(Xy, X41).

(d) Forallt €N, foralli,j €{1,...,n}, % >0, andforall j €{1,...,n},
x;

3fi()?t_~[4r) > 0.
ax;/
(e) Forallt € N, for all x, € X,, the partial function ¢,(x,,.) is increasing.
(f) Forallt € N, for all (y;+1, yi,u; € X;41 X X, xU; such that y,1 < fi(ye, uy),
there exists v, € U; such that v, > u; and y,+1 = fi(Ve, vy).

Then there exist .o € R, (pis1)ien € (R™)N which satisfy the following
conditions:

(i) (Ao, p1) # (0,0).

(ii) Ao > O.
(iti) Forallt €N, p;1 > 0and (piy1, fi (%, ) — X141) = 0.
(iv) Forallt € Ny, p; = D]H[()’(\I[,Ijtl,p[+1,lo).

(v) Forallt € N, Hy (%, i, pry1.A)) = max H (X, u, pr+1, Ao).

Proof. Noting that (CA4) = (f) and that (CAS) = (e), we can use Theorem 1.2 and
we can assert that (X, %) is a solution of (£??). And then we conclude by using
Theorem 2.11. O

Theorem 2.14. Let (X, it) be a solution of (£7)). We assume that the following
conditions are fulfilled:

(a) Forallt € N, X, is nonempty and convex, X, € int X,, and U, is nonempty.
(b) Forall t € N, the partial functions ¢;(.,4,) and f;(., ;) are continuous on a
neighborhood of X, and differentiable at X,.
(c) Forallt €N, forall (x;,x,+1) € X; X X 41, c0A; (X1, X141) C Br(xXy, X41).
(d) Forallt € N, foralli,j €{1,...,n}, % >0,andforall j € {1,...,n},
oG < ’
ax]

(e) Forallt € N, for all u, € U,, the partial function ¢, (., u,) is increasing.



48 2 Infinite-Horizon Theorems

(f) Forallt € N, for all u, € U, the partial function f(.,u,) is increasing.
(g) Forallt e N, ¢, > 0.
(h) For all t € N, for all z; € X,, there exists s € N, and there exists

s—1

(Vs ..o Vigg—1) € [ Uiy such that by setting z;4j+1 := figj(Zij,Vitj)
J=0
for j €{0,...,5s — 1} we have z; 45 = X145

Then there exist oo € R, (piy1)ien € (R™)N which satisfy the following
conditions:

(i) (Ao, p1) # (0,0).
(i) o > 0.
(iii) Forallt € N, p;+1 > 0 and (piy1, fi (%, ) — X141) = 0.
(iv) Forallt € Ny, p, = D H,(X;, 0, pr+1, Ao)-
(v) Forallt € N, H, (i, . prar, A5) = max H, (G, , pris, Ao)

Proof. Note that (CA 1) = (e), (CA 2) = (), (CA 3) = (g), and (CA, (%, 1)) = (h).
And then we can use Theorem 1.3 to assert that (X, &) is also a solution of (Z}').
We conclude by using Theorem 2.11. |

Theorem 2.15. Let (X.it) be a solution of (27)). We assume that the following
conditions are fulfilled:

(a) Forallt € N, X, is nonempty and convex, X, € int X,, and U, is nonempty.

(b) Forall t € N, the partial functions ¢;(.,4,) and f;(., ;) are continuous on a
neighborhood of X, and differentiable at x,.

(c) Forallt €N, forall (x;,x,+1) € X; X X 41, c0A; (X1, X141) C Br(Xy, X41).

(d) Forallt € N, foralli,j €{1,...,n}, W > 0,andforall j € {1,...,n},
oG < ’

ax]

(e) Forallt € N, ¢, > 0.

(f) Forallt € N, forall (Yi+1, yi,u;) € Xi41 X X, XU, suchthat y,1 < fi(Ve, uy),
there exists v, € U, such that v, > u; and y,+1 = fi(Vs, v;).

(g) Forallt € N, for all x, € X,, the partial function ¢,(x,, .) is increasing.

(h) For all t € N, for all z; € X;, there exists s € N, and there exists
s—1

(U[, ey U[+s_1) € 1_[ U[+j such that by setting Zi+j+1 = ft+j (Zl+j7 U,+j)
J=0
for j €{0,...,5s — 1} we have z;45 = X145

Then there exist Ay € R, (pis1)ien € R™N which satisfy the following
conditions:

(i) (Ao, p1) # (0,0).

(ii) Ao > 0.
(iti) Forallt €N, p;+1 > 0and (piy1, fi (%, ) — X141) = 0.
(iv) Forallt € Ny, p, = D H,;(X;, 0y, pr+1, o).

(v) Forallt € N, H,(%;, 1, pt+1,/\§) = Igé%x Hy (%, u, pr+1, Ao)-
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Proof. Note that (CA 3) = (e), (CA 4) = (), (CA 5) = (), and (CA, (%, #)) = (h).
Then we can use Theorem 1.4 to assert that (X, &) is also a solution of (Z]'). We
conclude by using Theorem 2.11. O

Remark 2.2. These theorems, from Theorem 2.11 until Theorem 2.15, appear in
the paper of Blot [11]. It is useful to note that in Theorems 2.12-2.15 the adjoint
variables p, | are positive although the problem is governed by (DE).

In all the results of this subsection, we have used the condition of Michel. If we use
the condition of loffe and Tihomirov, we obtain the following result which is new.

Theorem 2.16. Let (X, i) be a solution of (P!'), or of (Z}), or of (F?), or of
(P)). We assume that the following conditions are fulfilled:

(a) Forallt €N, ¢,(., 1) and f,(., ;) are of class C' at X.
(b) For all t € N, there exists a neighborhood V; of X, in X, such that, for all
x € Vi, forall uy,uy € U, forall 0 € [0, 1], there exists uz € U, such that

bi(x,u3) = (1 = 0)y (x, 1) + O (x, u2)
Ji(x,uz) = (1= 0) fi(x,ur) + 0 (x, u2).

(c) Forallt €N, foralli,j € {l,....n}, % > 0, and
X

forall j €{1,...,n}, af'i;g[/,a,) <0

Then there exist Ay € R, (pis1)ien € R™N which satisfy the following
conditions:

(i) (Ao, p1) # (0,0).

(ii) Xo > 0.
(iti) Forallt €N, p;+1 > 0and (piy1, fi (%, ) — X141) = 0.
(iv) Forallt € Ny, p, = D H,;(X;, 0y, pr+1, o).

(v) Forallt €N, H/(X;. 0, pi1.A)) = max H, (X, u, pr1, Ao)-

Proof. Using Propositions 1.2 and 1.10, we obtain, forall T € N, 7 > 2, AOT e R
and pT, ..., pL € R"™ which satisfy the conclusion of Proposition 1.10. Then we
conclude as in the proof of Theorem 2.11. O

Remark 2.3. Proceeding as we do to establish the results from Theorem 2.12 until
Theorem 2.15, we can obtain strong Pontryagin principles for the problems (77)
and (7)) where the part of the assumption which comes from the result of Michel
is replaced by assumptions which come from loffe and Tihomirov.
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2.3.3 A Condition of Partial Submersion

To avoid the invertibility condition, beside the positivity condition, we introduce
another condition on the vector field of the dynamical system.

In this subsection, R" is endowed with its usual inner product which is denoted
by (. | .). Following [81] (p. 410), when E and F are two Hilbert spaces, and when
T € Z(E, F),theadjointof T is T* € Z(F, E) characterized by (T.x | y) = (x |
T*.y). And so, in our problems, we will use D f; (X, it;)* € Z(R",R*). When
7 € R™, we associate to 7 the vector 7* € R” characterized by (7* | y) = (7, y)
for all y € R". When # € R" and L € Z(R",R"), for all y € R", we have
(moL,y) = n(L.y) = (n,L.y) = (&* | L.y) = (L*.w* | y). Also recall
that the gradient of a real-valued differentiable function is the vector in the primal
space which represents the differential which belongs to the dual space. And so,
in our problems, we will use of the partial gradient of ¢,, (Vi¢,(x;, ;) | y) =
(D¢ (x;,uy), y) for all y € R". And so, using these notions, the adjoint equation
can be rewritten as

pt* = D]ﬁ(}%l, I”\tl)*p;il,-] + AOV](P;(}%[, il[) (233)

and the Hamiltonian can be written as

H;(x;,uy, Pt+1,10) = Aot (X, 1) + (Pt*+1 | fl(-xt» u)). (2.34)

Assuming the existence of the partial differential with respect to the state
variable, we introduce the two following subspaces:

Mt = Imflﬁ(xts ut) J (235)
N; = M~ = KerD, f; (%, i)
where L denotes the orthogonal subspace. my, and sy, denote the orthogonal
projectors on M; and on N,. We also use the notation Sy,(x,p) = {z € N, :
lz— x| = p}and By, (x,p) :=={z € N, : [z — x| < p}.
Now we can introduce our new condition.

Vi eN,3P, C U, P, #90 st
(o) Jor > 0, 7wy, (fi({Xi} X Py)) D (S, (0,0:) + 7w, (fi (R, b))
(B) 7u, (fi(4%,} x P,)) is bounded
(y) ¢, (4%} x P,) is bounded.

(2.36)

We also consider another condition which is simpler than (2.36).
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vVt e N,
(1) ¢:(%;,.) and f,(%;,.) are continuous on U,
(2) Dy fi (X, i) exists
(3) i, € intU;
(4) fi(%,.) is of class C' at &
(5) Immy, o Dy f;(R/,11;) = N,

(2.37)

Remark 2.4. The condition (2.37) implies the condition (2.36). To justify that, note
that, using condition (5), since D, (7y, 0 f;)(X;, ;) = 7y, 0Dy f; (X4, ;) is surjective
from R? onto N, using a theorem of Graves ([64] p. 397), there exists a closed ball
P, ={ueU, :|u—iy| <r} such that

7, o fi{Xi} X P) D By, (fi(Xi, i), 00) D Sy, (0,0/) + fi (s, 1),

and so the condition () of (2.36) is fulfilled. Since dimR?¢ < +oo0, P is compact.
The continuities in condition (1) imply the conditions (8) and (y).

Theorem 2.17. Let (X, it) be a solution of (), or of (%), or of (P2), or of (V)
when a € {e,i}. We assume that the following conditions are fulfilled:

(a) Forallt € N, X; is a nonempty open convex subset of R* and U, is a nonempty
subset of RY.

(b) Forallt € N, the functions ¢, and f; are differentiable with respect to the first
vector variable.

(c) Forallt €N, forall (x;,x14+1) € X; X Xi41, c0A; (X1, Xi41) C B/ (X, X141).

(d) Condition (2.36) holds.

Then there exist Ay € R and (p;+1)ien € (R™)N which satisfy the following
conditions:

(i) (Ao, p1) # (0,0).

(i) Ao = 0.
(iii) Forallt €N, p,41 > 0and (pr+1, [ (Xs, 0;) — Xi41) = Owhena = i.
(iv) Forallt € Ny, p, = D H,;(X;, 0y, pr+1, o).

(v) Forallt € N, H/(X;,1l;, pi+1,Ao) = Iulé?lljx H (%, u, pr+1. Ao)-

Proof. The case a = e. Using Propositions 1.2 and 1.7, we can assert that, for all
T € N, T > 2, there exist A\l € R and p!, ..., pl € R™ which satisfy the
conclusions of Proposition 1.8.

Since M; is the orthogonal to KerD; f;(x;,i;)*, for all z € M;, we have
Dy fi(X;,i,)*.z # 0. Using the compactness of the unit sphere of M, and the
continuity of D f;(X;, it;)*, we have a, := inf{|| D f; (X;, 4;)*.z|| : z € My, ||z|| =
1} > 0. And so we have

da, € (0,+00),Vz € M;, | D fi (R, 14;)" 2]l = a;.||z]. (2.38)
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Using the vector translation (2.33) of the third conclusion of Proposition 1.7, we
obtain

pl* = Dlﬁ(it,’:lr)*-PtTﬁ + AT Vig (3, i)
= Dy fi(Re i) * o, (P 1) + D fi Go i) n, (pfF) + A5 Vi (Re i)
= Dy fi(R i) * 7, (P + A§ Vigy (R i)

which implies p/* — AJ Vi, (X, i) = Dy fi(%;, i,)* .7, (pl)), and therefore,
using (2.38), we obtain

2!+ A5 Vi G i) | = I p™ = A5 Vign (R )|
= |D1 fi Res i) 7on, (P 5D = - llens, ()

from which we have
T * 1 T * T 1 A A
VT >t,  lmom (pi)I < a—llpt I+ Ao a—IIV1¢z(x,,ut)|I- (2.39)
t t

Now we introduce the following notation:

A (uy) = e (X4, 1) — e (X, ur)
Afi(u) = fi(Xe 1) — fi(Xe,uy).

Using (2.34), the fourth conclusion of Proposition 1.7 implies, for all u, € Uj,

AL AG (u) + (ptTf1 | Afi(u)) > 0, which implies by using the orthogonality
between M, and NN;,

Ao A () + (g, (p55) | 70, (A Sy ) + (ew, (p/5) | 7w (Afi(w))) = 0

which implies

{ Ay Ay (ur) + (eu, (P55 | 7o, (Afi (e))
> (v, () | 7w (i Goo ) = (o, (p[ED) | 7o, (i (R ).

Using the Cauchy—Schwarz—Buniakovski inequality, we obtain

{ AS1AG ()l + N, (p D 7as, (Afi )|
> oy, (P | 7ow (i Geo ) = (ow, (p[ED) | 7o, (S (R ).

Using conditions (f) and () of the assumption (2.36) and the fact that the norm of
an orthogonal projector is less than 1, we know that

& = sup [A¢(u)| < +oo, & = sup [l (Afi(u)) < +o0.

u €Uy u, €Uy
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And then using the previous inequalities, we obtain by taking the sup on the i, € Uj,

3 &+ Gl ()
> sup (o, (p) | 70w, G w) = G (pT5) | 7w, (fo G, 20))

u €Uy

= sup (”N, (P;T_:l |z + TN, (fi(Xe, 1)) — (7TN, (PtTfl | TN, (fi (xe, 1))

% €SN, (0.01)

= sup  (ww (P 120 + (v () | v (fi (R i)
2t ESN[ 0.0¢)

= (on, (P[5 | 7w, (e 1))

= sup (w, (P 1 2)
72 €SN, (0.01)

=0, sup (N, (pLF) | wo)

wi €SN, (0.1)

= o llmn, (PEDI

and so we have proven the following property:

& {z

VT > t. |y, (P[5 < ||7TM, (P

Using (2.39) in (2.40), we obtain the following inequalities, for all T > :

IVige (%:, i)l 1
# l”Pz*”

ét ||V1¢t(xl»ut)“) ;

0.4y

||7TM, (p;+1)||

e (T2 < (j e,

from which we deduce

(2.40)

Pl = PS5 = N, (5D + v (DN = Nlras, (PEDN A+ o, (D

< (S_t n & + Qt)”vl¢t(xt’ut)”) AT+ § + o 1p7* |
O¢ Or.a; Or.a;

and so using the normalization ||(A], pT)|| = 1, from the previous inequality, by
induction we obtain that, for all # € N, the sequence 7' +— plT is bounded, and we

can conclude as in the proof of Theorem 2.1.

The case a=i. The reasoning is similar using Proposition 1.8 instead of

Proposition 1.7.

To finish this subsection, we use the condition of Ioffe and Tihomirov.

O

Theorem 2.18. Let (X,it) be a solution of (Z!'), or of (Z}), or of (Z?), or of

(P)). We assume that the following conditions are fulfilled:
(a) Forallt € N, ¢,(.,1t,) and f,(.. 1) are of class C" at %.
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(b) For all t € N, there exists a neighborhood V; of X, in X, such that, for all
x € Vi, forall uy,uy € Uy, forall 6 € [0, 1], there exists us € U, such that

$i(x.uz) = (1= 0)g; (x, u1) + O; (x. u2)
ﬁ(x’u3) = (1 - G)ﬁ(x?ul) + eﬁ(xaMZ)'

(¢) The condition (2.36) holds.

Then there exist Ay € R, (pis1)ien € R™N which satisfy the following
conditions:

(i) (Ao, p1) # (0,0).

(ii) Ao > 0.
(iti) Forallt €N, p;+1 > 0and (piy1, fi (%, ) — X141) = 0.
(iv) Forallt € Ny, p, = D H;(X;, ly, pr+1, Ao).

(v) Forallt € N, H,(%;, 1, pt+1,/\§) = Igé%x H, (%, u, pr+1, Ao)

Proof. Using Propositions 1.2 and 1.9 when a = e or Proposition 1.10 when
a = i, we obtain /\g eR, plT, p; € R™ which satisfy the conclusions of
Proposition 1.9 when a = e or of Proposition 1.10 when a = i. And then we
conclude as in the proof of Theorem 2.17. O

Remark 2.5. Proceeding as we do to establish the results from Theorem 2.12 until
Theorem 2.15, we can obtain strong Pontryagin principles for the problems (27?)
and for (£?) where the part of the assumption which comes from the result of
Michel is replaced by assumptions which come from Ioffe and Tihomirov.

2.4 Constrained Problems

In this section we still consider systems governed by (DE) or (DI). We consider
constraints which possess the following form, for all # € N, when x; € X;:

Ux):={u, €U :Vje{l,....d"}, gl (. u)

>0,Vk e {l,....d°}, k¥ (x;,u;) = 0}. (2.41)

The terminology varies when we speak of such constraints. Following [6] (p. 221)
these constraints represent a “feedback perfect state information”: the value of the
state variable x; modifies the set of all admissible values of the control variable ;.
We define the admissible processes which satisfy these constraints, when a € {e,i}.

Admj = {(x,u) € Admj : V1 € N,u; € % (x)}. (2.42)

We define the problems where these constraints are present, when a € {e,i}.
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(¢7) Maximize J(x, u) when (x,u) € Domj(J) N Admy .
(¢;) Find (£, @) € Domj(J) N Admy such that, for all (x, u) € Adm; .,

J(X, i) > hmsupZsz(xnuz)

T—>+o00 =0

(¢?) Find (X, ) € Adm . such that, for all (x, u) € Admnc,

T
%}gilg X(;(tﬁt()%z, ;) — @i (X, 1)) = 0.
=

(¢)) Find (X, 0) € Adm . such that, for all (x,u) € Adm,] o

lim sup Z(¢t (Xr, i) — e (X, u)) > 0.

T—+o00 t=

Besides the Hamiltonian H, defined in Chap. 1, we consider the Lagrangian L, :
X, x Uy x R™ x R x R?* x R?* — R by setting

Li(x,u,p, A, 0, v) := H(x,u, p, A) + {u, g (x,u)) + (v, hy(x,u)). (2.43)

where g, := (g}, ..., g;ii) and h, := (h!,...h%%).

Theorem 2.19. Let (X, it) be a solution of (6), or of (€), or of (€7), or of (€))')
where a € {e,i}. We assume that the following conditions are fulfilled:

(1) Forallt € N, X, is nonempty open and convex, and the functions ¢y, fi, g, h;
are continuous on a neighborhood of (X;, ;) and differentiable at (X;, it,).

(2) Forallt €N, D ﬁ(x,, 1) is invertible.

(3) Setting SJ = Dlgt (%1, ) o (Dlﬁ(xtaut)) Yo Dy fil&s, i) — Dth (%, ;)
and Mtk =D hz (%7, ut) (D1 fi (%, Mt)) o Dy fi (X, 1t;) — Dzh, (X, 1t,) for
allt € N, the family ((Stj)lsjsdi, (MF)i<k<ae) is linearly independent.

Then there exist Ao € R, (pi+1)ien € R™)Y, (w)ien € RN and (v,)1en €
(R *)N which satisfy the following conditions:

(i) (Ao, P1, Mo, vo) # (0,0,0,0).

(”) A,() > O, 127 > 0 and <I,Ll,g[()2[,i/\l[)> = Oforallt e N.
(iii) Forallt €N, p,41 > 0and (pi+1, [ (X, 0;) — X141) = Owhena = i.
(iv) Forallt € N, p, = D L;(X;,0;, pry1. Aos s Vy)-

(V) Forallt € N, Dle()%,,lftt,p[+1,/\o,/Lt, V[) =0.

Proof. We do the proof in the case @ = e. The case @ = i is similar. We use the
method of reduction to the finite horizon. For all T € N, T > 2, the restriction
(X0, ..., X7, U, ..., ur—1) is a solution of the problem
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maximize JT()C(), e, XT, U, . - »MT—I)
when Vre{0,...,T —1},x41 = fi(x;,uy)
Ve e{0,...,T —1},u; € % (x;)
X0 =N, X = )?TT.

(FC(T.n. %))

Note that x¢ and x7 are not variables of this problem. As in Sect. 1.4, we translate
this problem into a problem of static optimization on which we can use the multiplier

rul¢ of Halkin that permits to obtain )&g € R, plT, . p% e R™, /Lg;, . u;_l €
R * vl vI_ | € RY* such that the following properties hold:

Ao PLsees PTG s ey Bp—gs Vg 5o s V7o) 7 O, (2.44)

AL Ve {0, T — 1}, ul >0, (u!, g%, 0,) =0. (2.45)

Veel{l,....,T — 1}, p/ = DL, ite, pliy A5l ovl). (2.46)

Vi €N, DoLy (R, i, pliy A nlov]) =0. (2.47)

We want to prove the following assertion:
(A, pi s 1gsvg) # 0. (2.48)

To abridge the writing, we set ¢, := ¢, (£, ), ﬁ i), & = g, (X¢, 1),
ht := h (X, 4;). We proceed by contradiction, we assume that (/\0 . /LO Vo ) =
0. Then using (2.46) and (2.47) for 1 = 1 we obtain 0 = pl o D, f, +ul o
Dig +vl o Dih, and 0 = plo D> fi + uloDyg +vl o D,h, from which we
deduce —pI = uT o D1g,0 (D f)) ' +v7 o Dihyo (D f;) " and —pT o D, f; =
1! 0 Dy, + v! o Dyhy, which implies

—ploDyfi=puloDigo (le;)_lAO Dafi +v] o Dihy o (D f)™ o Dy f,
= /LIT o Dyg: + vlT o Dyh,

Denoting S; := (S}, ..., Sldi) and M, :== (M}, ..., M), we deduce from the last
relation

ul oS +vl oM =0,

and using the coordinates and the assumption (3) we obtain u7 = 0 and vI = 0.
Then (2.46) for t = 1 implies p2 o D1 f; = 0, and assumption (2) implies pJ = 0.
And so we have proven that (A], pT', uZ', vl') = 0 implies (A], pI', uT,v]T) = 0.
Iteratmg this reasoning we obtain, for all 1 € N, pl, 1 = 0, ul' = 0, and

= 0, which is a contradiction with (2.44). And so (2. 48) is proven. Using a
normahzatlon ie., multlplymg all the multipliers by [[(Al, pT', ud', vD)|, we can
assume that |(AL, pI', ul,vI)|| = 1. Consequently the sequences T +— A[,
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T — pl. T — ul',and T + vl are bounded. Then from (2.46) we obtain

pI = (pT —ATD1dy — uT o D1g — v o Dihy) o (D) f1)" which implies
Py o Dyfy = (pl — A({Dlé;l —uloDigy —vlo Dihy) o (Dy /i)~ o Da fi,
and from (2.47) we obtain pJ oDy fi = —)LgDszn —puloDyg—vl o Dyh;. From
these two equalities we deduce

pi oSi+v{ oM = P1T°(D1J;1)_1°szl +AOT(D2</31—D1<IA51°(D1J;1)_1002J;1-

The right-hand term is bounded as function of T, and consequently 7' +— u! o S| +
vl o M, is bounded. Then, translating this expression in terms of coordinates, using
assumption (3) and Lemma 2.2, we obtain that the sequences 7 +> ! and T+ v]
are bounded. And then, from pI = (pI — nglqA&l —puloDig—vlo Dihy) o
(D fl)_', we obtain that T +— pZT is bounded. Iterating this reasoning, we obtain
that, for all 7 € N, the sequences T + p!, T + pl and T + v are bounded.
And then we can use Lemma 2.1 and conclude as in the proof of Theorem 2.3. [

This result appears in the paper of Blot [12]. To finish this section we give a strong
Pontryagin principle. We consider the following simplified constraints:

U Nx,):={u, €U, :Vjef{l,....d"}. gl (xi.u)) = 0}. (2.49)

For £ € {n,s,o0,w}, we denote by (¢!) the problem obtained by replacing %; (x;)
by %,'(x,) into (¢). For these simplified constraints, the Lagrangian becomes
LG, u, p, A, ) i= Ay (x,u) + (p, fi(x,u)) + (i, g (x, u)). To use the condition
of Michel, we ought to consider 4, (x;, x,+1) as the set of all (r;, ¢, &) € U; xR" x
R? for which there exists u; € U, satisfying r, < ¢, (x;,u;), & = fi (X0, u;) — X141
and & < g;(xs,ur). Bi(x;, x¢41) is the set of all (r,,¢;,&) € Uy x R" x RY
for which there exists (u,,c;,8;) € U, x R* x R? satisfying r, < &, (x;, u;),
akek = fR(x,u) — xf_H for all k € {1,...,n}and B/& < g/ (x;,u,) for all
jed{l,...,d}.

Theorem 2.20. Let (£, i) be a solution of ('), or of (€°'), or of (€°!), or of
(6)"). We assume that the following conditions are fulfilled:

(1) For all t € N, X, is nonempty open and convex, the functions ¢, f;, g are
continuous on a neighborhood of (x,, ;) and differentiable at (X, i1;).

(2) Forallt € N, Dy f;(X;, ;) is invertible.

(3) Forallt €N, for all (x;, x;4+1) € X; X X;41, cOA; (x;, X1 +1) C B (X7, Xr41).

(4) Forallt € N, there exists i, € U;(X;) such that f;(X;,u;) = fi (%, ) and
gl (R i) >0, forall j € {1,...,d"}.

Then there exist Ay € R, (pi+1)ren € (R™)N, (1s)ren € (R“'i"‘)N which satisfy the
following conditions:

(i) (A, p1) # (0,0).
(ii) Ao =0, u; > 0and (u;, g (X;,it;)) = 0 forallt € N.
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(iii) Forallt €N, p, = DlLtl()Acz,l:it»PtH,ko,/it)-
(iv) Forallt € N, Ltl(ffz, U, pra1, Ao, ) = Ll;neal}( Ltl(ffu U, Pra1> Ao o).

This result appears in the paper of Blot and Hayek [23] where a proof is given. This
paper contains other results on the constrained problems.

2.5 Multiobjective Problems

Results of the previous sections are extended to multiobjective problems by using
similar methods. All the results of this section are due to Hayek [51] and [50].
The controlled dynamical systems are still (DE) and (DI). The difference with the
previous sections is that we replace ¢, by several functions ¢, ..., ¢, from

X, x U, into R. We define J; (x,u) := Z ¢;.(x;:,u;) when the series converges

in R. And we define Dom{ (/) as the set of all (x,u) € Adm, such that the series

+o0
XE) ¢;.(x:,u;) converges in R. We introduce the notation Dom‘,‘] ((Uj<j<m) =
1=

m

ﬂl Domf‘n(J ;). The notions of optimality are notions of Pareto optimality and of

j=

weak Pareto optimality. Precisely the considered problems are the following ones.

(77")  Find (£, &) € Dom{((J;)1<j<m) such that there does not exist any (x,u) €
Dom{ ((J;)1<j<m) such that J;(x,u) > J;(X,&) for all j € {I,...,m} and
Jn(x,u) > Jy(x,0) forsome h € {1,...,m}.

(7)) Find (X, & € Dom}((J;)1<;<m) such that there does not exist any (x,u) €
Dom{ ((J;)1<j<m) such that J; (x,u) > J; (£, u) forall j € {1,... ,m}.

(77) Find (£, 4) € Adm; such that there does not exist any (x, ) € Admj such

T
that limsup > (¢, (x;, u;) — ¢ (X, 1)) > Oforall j € {l,...,m} and

T—>+00 =0
T
limsup > (dn, (x;, 1) — Py (X4, 8,)) > 0 for some h € {1,...,m}.

T—+o00 =0
(77")  Find (X, ) € Admj such that there does not exist any (x, u) € Admj such

T
that limsup >~ (¢, (x;, u;) — ¢ (X, 4,)) > Oforall j € {l,...,m}.

T—+o00 =0
(7;")  Find (£, @) € Admj such that there does not exist any (x,u) € Adm; such

T
that liminf ) (¢, (x/, u;) — ¢pj (%, 1)) > Oforall j € {1,...,m} and
T—+o00 ;2 '

T
liminf Y (¢, (xr, ) — dns (X, 14,)) > 0 for some i € {1,...,m}.
T—+o00 /5
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(7;*")  Find (2, 1) € Admj such that there does not exist any (x, u) € Admj such
T
that liminf )" (¢; . (xr, u) — ¢pj (X, 1)) > Oforall j € {1,...,m}.
T—+00 ;5 '

A solution of (7") (respectively (7,), respectively (7)) is called a Pareto
optimal solution (respectively an overtaking Pareto optimal solution, respectively
a weak overtaking Pareto optimal solution ). For the solutions of (¥/""), (¥,°"),
(7") we replace Pareto by weak Pareto optima.

We start with a first result of necessary conditions for weak Pareto optima in the
form of a weak Pontryagin principle.

Theorem 2.21. Let (X, it) be a solution of (V."""), or of (V.2"), or of (¥,""*') when
a € {e,i}. We assume that the following conditions are fulfilled:

(a) Forallt € N, &, € intU,, ¢;,, and f; are of class C' at (%,,i) for all j €
{1,...,m}.
(b) Forallt € N, Dy f;(X;, 1) is invertible.

Then there exist (A1,...,An) € R" and (pis1)ien € R™)N which satisfy the
following conditions:

(i) Ar,..osAmp1) #(0,...,0,0).
(ii) Forall j € {1,...,m}, A; > 0, and whena =1, forallt € N, p,;1 > 0 and

(pr+1, i (Re i) — Xe41) = 0.

m

(iii) Forallt € Ny, p, = AiDij (X, 1) + pig1 © Dy fi(Re, i)
=1

(iv) Forallt € N, Y X; Do (%:. i) + prs1 0 Dafy (X, 8,) = 0.
j=1

The proof of this result uses the method of reduction to finite horizon. Since the
associated finite-horizon problems are now multiobjective problems while they were
single-objective problems in the previous sections, the multiplier rules of static
optimization (of Halkin or Clarke) are replaced by a multiplier rule which is special
to static multiobjective problems and based on a theorem of Motzkin [51]. After
that, the question is to extract the multipliers of the infinite-horizon problem from
the sequences of multipliers of the finite-horizon problems, and the reasoning is
similar to the reasoning of the previous sections.

Remark 2.6. When a = i, there exists in [51] a theorem where the condition of
invertibility is replaced by the positivity condition as defined in Sect. 2.1.2 for
single-objective problems. Moreover in the previous theorem, if in addition we
assume that D, fy(, iip) is onto, we have (A1,...,A,;) # (0,...,0).

After a weak Pontryagin principle, we state a result in the form of a strong
Pontryagin principle.

Theorem 2.22. Let (X, it) be a solution of (¥,)"*), or of (¥,2"), or of (¥, ) when
a € {e,i}. We assume that the following conditions are fulfilled:
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(a) Forallt € N, X, is convex, and forall j € {1,...,m}, forallu, € U;, ¢; (., u;)
and f;(.,u;) are of class C' at %;.

(b) Forallt € N, Dy f;(X;, ;) is invertible.

(c) Forallt €N, forall x, € X,, forall u,,u € Uy, forall 6 € [0, 1], there exists
u; € U; such that, forall j € {1,....m}, ¢j(xr,u;) = (1 —0);,(x;,u;) +
0. (xi,u’) and fi(x;,ur) = (1= 0) fi (xr, up) + 011 (xz, uf).

Then there exist (A1,...,An) € R" and (piy1)ien € (R™)N which satisfy the
following conditions:

(i) (A1,..., A, p1) #(0,...,0,0).
(ii) Forall j € {1,...,m}, A; >0, and whena =i, forallt € N, p; 1 > 0 and
(prt1, fi (X, ) — Xiq1) = 0.

m
(iii) Forallt € Ny, p, = Y AjDi¢j (X, 1) + pry1 o Dy fi (e, ).
j=1
m
(iv) For allt € N, for all u; € Uy, Y Ajp; (X, i) + (prsr. fi (Re i) >
j=1

Do Aidi(Reoue) + (prrrs fi (X ).
j=1

The proof of this result also uses the method of the reduction to finite horizon. The
tool of static multiobjective optimization which is used is a theorem of Khanh and
Nuong (Theorem 2.2 in [58]). We recognize in assumption (c) a generalization of
the condition of Ioffe and Tihomirov. The end of the proof is similar to this one of
strong Pontryagin principles of the previous sections.

Remark 2.7. If moreover we assume that d > n and that fy({n} x Uy) — X is a
neighborhood of 0 in R" or that there exists u), € Uy such that 5 < f(n, ul)
for all k € {1,...,m}, then we have (A,...,14,) # (0,...,0). In the previous
theorem, when a = i, we can replace the invertibility condition by the positivity
condition as in Sect. 2.2.2.

The following result is a result of sufficient conditions.

Theorem 2.23. Let (X,i1) € Dom;((J;)i<j<m). We assume that there exist

Al sAm) € R"™ and (pis1)ien € (R™)N which satisfy the following
conditions:

(l) (Al,--wAm,pl) # (0,,0,0)
(ii) Forall j €{1,...,m}, A; > 0.

(lll) Forallt S N*, p[ = Z A,jD](ﬁj,l(.)e[,i\tt) + p[+1 [e] Dlﬁ()’(\:[,ﬁ[)

j=1

(iv) For all t € N, for all u, € U, Y A;jd; (X, 1) + (pryr, fr (Ren lh)) >
=1

il Ajbji (Koo wr) + (pesrs fi (Brwr)).
=

(v) Forallt € N, X, x U; is convex and the function
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m
(o) = D A (X u) + (pegr, fi(Xe up)) is concave.
j=1

(vi) Forall x, € X;, lim {(p;41,x; —X;) = 0.
t—>+00

Then (X, it) is a solution of (V]"""), and moreover if A; > 0 forall j € {1,...,m}
then (X, it) is a solution of (V).

The proof of this result uses the well-known fact that is: if (X, #) maximizes the
m

weighted functional ) 6;J;(x,u) where 6; > 0 for all j € {l,...,mj}, then
j=1

(X, it) is a weak Pareto optimum, i.e., a solution of (¥,""). The concavity condition
permits to transform necessary conditions of optimality on the weighted functional
into sufficient conditions of optimality. The assumption (vi) is called a sufficient
condition of transversality at infinity.

Remark 2.8. Using the function

u €U

(xt7 pt+1vkla . "aA’m) = mal)/( ZA’_/¢j,I(-xtaul) + (pl+17 ﬁ(x[aul))
j=1

it is possible to state an additional theorem of sufficient conditions, [51].

To finish this section, we provide a strong Pontryagin principle in presence of
constraints in the form %, (x,) as defined in (2.49). Admj . is defined by replacing
U, by %' (x;) in Admg, Domj .(J;) is defined by replacing U; by %,'(x,) in
Domy (J;), and Domy .((J;)i1<j<m) = () Domy .(J;). When £ € {n,o,w}

I<j<m
and a € {e,i}, (¥,/) and (¥,*) are obtained by replacing Adm{, by Adm{ . and
Domy ((J;)1<j<m) by Domy .((J;)1<j<m) in (7%) and (#,“"). In the conditions of
Michel, the sets A;(x;, x;+1) and B;(x;, x,+1) are defined as before in Theorem 2.20
in the previous section.

Theorem 2.24. Let (X, it) be a solution of (V") or of (¥,2™¢) or of (¥,"¢). We
assume that the following conditions are fulfilled:

(a) Forallt € N, X, is nonempty open and convex, and for all u, € Uy, for all
je{l,...om}, ¢ (), fi(.,u) and g (., u;) are of class C' on X,.

(b) Forallt €N, forall (x;, x;41) € X; X X;41, cOA; (X, X +1) C B (x;, X141).

(c) Forallt € N, Dy f;(X;, it;) is invertible.

(d) For all t € N, there exists u, € U, such that f;(X;,u;) = fi(X;,8;) and
g, ul) > 0forallh e {1,...,d"}.

Then there exist (A, ..., Ay) € R™, (pi41)ien € R™)N and (q;)ien € R4 * which
satisfy the following conditions:

(i) Atyeovs Ay p1) #(0,...,0,0).
(ii) Aj > O0forall j €{1,...,m},andq, > 0 forallt € N.
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m
(iii) p; = Z Ale¢j.t(5et»&z‘) + pi+1.0D1 fi (X, 6) 4+ g1 0 Digi (%4, 1) for all
=1
tme N.
(v) 2 A i) + (potrs fi (Kes i) + (qrs & (Frn i) >
j=1

Z Aj‘ibj,t(fctv u;) + (Pz+1, fz(ft» Mt)) + (Cltv g,(fcl, Mt))fm’ all u, € U,, for all
j=l1
teN.

Moreover, if in addition we assume that fo({n} x Uy) — X1 is a neighborhood of 0
in R", and if there exists u € Uy such that fo(n,uy) — %1 = 0 and gh(n,uf) > 0
forallh € {1,...,d"}, then we have (A1, ..., Am) #(0,...,0).

The proof of this theorem also uses the reduction to finite horizon. In addition it uses
a generalization of the parametrized static optimization Theorem 1.6 for single-
objective problems to the multiobjective case. This generalization to weak Pareto
optima can be found in Hayek [50].
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