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Introduction

Basic and translational research has played a critical
role in the understanding of human structure and
function and essentially all human diseases.
This is certainly true of the aging process. Basic
research has advanced our knowledge about ana-
tomic and physiologic alterations that occur natu-
rally as part of aging of the genitourinary tract. In
addition, this type of research has led to the
development of treatments for a wide spectrum
of clinical conditions which predominantly affect
older adults. This chapter will focus on basic and
translation research related to prostate disease
and bladder dysfunction in the elderly population.
This includes analysis of benign prostatic
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hyperplasia (BPH), prostatic fibrosis, and prostate
cancer (PCa), and both storage and voiding
dysfunction related to the bladder.

Prostate Disorders
Prostatic Enlargement

Benign Prostatic Hyperplasia

and Androgens

BPH is a noncancerous enlargement of the prostate
and is a common condition associated with aging
in men [1-3]. Normal prostate development is
dependent on dihydrotestosterone (DHT), which
is converted from testosterone by Sa-reductase
enzymes. DHT is the major growth factor of
adult prostate tissue [4]. In male rodents, castra-
tion results in prostatic involution due to massive
apoptosis of the luminal epithelium and quies-
cence of the basal cell population. However, the
prostate regenerates in castrate mice supple-
mented with DHT, showing that the adult pros-
tate is highly sensitive and responsive to androgen
[5-7]. Similarly, men who are castrated prior to
puberty, have Sa-reductase-type 2 deficiencies,
or have naturally occurring or clinically induced
hypogonadism, do not develop a fully formed
prostate and do not go on to develop BPH later in
life [8].

BPH comprises a gradual increase in prostatic
volume that occurs over decades of life. Studies
have estimated that BPH develops consequent to
a low-level, but cumulative, cellular proliferation
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Fig. 2.1 BPH and estrogens. (a) High androgen levels
and ERf expression levels in prostate epithelial luminal cells
(pink) maintain luminal cell differentiation and quiescent
basal epithelial (yellow) cell proliferation. (b) In the aging
prostate, androgen levels decrease, aromatase activity
increases, and androgens are increasingly converted to
estradiols. These events can be countered by normal ERp
function, which helps maintain prostate luminal epithelial
cells in a non- or low-proliferative, secretory state by
facilitating estrogen-mediated antiproliferative and anti-
inflammatory effects. This mechanism maintains tissue

that increases post-pubertal prostatic volume by
approximately 0.8—1.6 %, equivalent to only 0.2—
0.4 mL, per year [9, 10]. Studies both in vivo and
in vitro have reported higher proliferative and
lower apoptotic rates for epithelial cells from
hyperplastic compared to normal prostates, sug-
gesting that some proportion of increased pros-
tate volume with age is attributable to increased
epithelial cell densities [11-13]. Work accom-
plished using rodent and rodent/human in vivo
and in vitro models have suggested that paracrine
interactions between glandular epithelial cells
and adjacent fibroblastic stromal cells play an
important role in the development of benign
prostatic proliferative diseases [14—19]. These
studies show that epithelial-stromal interactions
are crucial for the regulation of epithelial cell
growth and suggest that changes in such interac-
tions consequent to aging likely contribute to the
etiologies of BPH and PCa.
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and organ homeostasis under normal physiological condi-
tions. (¢) In the aging prostate, differential methylation of
the ERp and ERa promoters consequent to aging pro-
motes estradiol-stimulated activation of ERa receptors in
the basal prostate epithelium (yellow) and stromal fibro-
blast (blue) cells and consequent homeostatic disruption.
(d) Increased expression and activation of ERa receptors in
the aging prostate promotes both basal epithelial and stro-
mal fibroblast cellular proliferation, facilitating BPH and
prostatic enlargement

BPH and Estrogens

Serum levels of both total and free testosterone
decrease with age as documented in both the
Massachusetts Male Aging Study [20] and the
Baltimore Longitudinal Study of Aging [21].
Correlative findings show that intraprostatic and/
or serum estrogen levels either do not change or
are elevated consequent to aging in men [22, 23].
Recent studies have suggested that estrogenic
hormones may promote prostatic enlargement in
older men in a manner that largely correlates with
the expression levels of the two primary estrogen
cellular receptors, ERa and ERf, which are
expressed in different cellular compartments of
the prostate gland. ERp is primarily expressed by
the prostate epithelium (Fig. 2.1a, b), whereas
ERa is primarily expressed (often heteroge-
neously) by fibroblastic and epithelial prostate
stromal cells (Fig. 2.1¢c). ER normally functions
to help maintain prostate luminal epithelial cells
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in a non- or low-proliferative, secretory state by
facilitating estrogen-mediated antiproliferative and
anti-inflammatory effects. This mechanism main-
tains tissue and organ homeostasis under normal
physiological conditions. However, differential
methylation of the ERP and ERa promoters
consequent to processes that are not entirely
elucidated (but are likely related to aging) medi-
ates decreased ERf expression levels in prostate
epithelium and increased ERa expression levels,
particularly in the prostatic stroma. Thus, com-
pared to normal prostate tissues, BPH tissues
exhibit a high stromal ERB/ERa ratio in associa-
tion with stromal and epithelial hyperplasia
(Fig. 2.1d) and tissue inflammation [8, 24, 25].
In addition, aromatase, the enzyme that converts
testosterone to estradiol, is expressed and active in
adipose tissue, adrenal glands, the testicles, and
prostatic stroma, which suggests that local con-
version of androgens to estrogens may promote
estrogen signaling within the prostate [26, 27].
Aromatase expression and activity increase with
the accumulation of obesity-related adipose tissue,
resulting in reduced testosterone concentrations
and concurrent increased estradiol production
[28]. Obesity itself increases in incidence with
age [29], suggesting that aging, obesity, increased
aromatase expression and activity, and increased
estradiol:testosterone ratios may play complex
and intertwined roles in the development of pros-
tatic enlargement and lower urinary tract symp-
toms (LUTS).

BPH and Nonsteroidal Growth Factors

In addition to androgenic and estrogenic hormones,
nonsteroidal growth factors have been identified
that promote aging-associated prostatic enlarge-
ment. Most of these comprise small, soluble,
secreted proteins, including basic fibroblast
growth factor (bFGF, FGF-2) [30], insulin growth
factors (IGFs) [31], and inflammatory molecules
[32, 33].

bFGFs

bFGFs and their receptors are highly expressed in
BPH tissues [34, 35], primarily in stromal fibro-
blasts, smooth muscle, and endothelial cells [36], and
promote the proliferation of stromal fibroblasts

in vitro [30]. bFGF is also highly expressed by
adipose tissues [37], suggesting another avenue
through which obesity may promote prostatic
enlargement. In vivo studies have shown that tar-
geted transgenic expression of bFGF in the
mouse prostate exhibit epithelial hyperplasia and
glandular enlargement [38]. Taken together, these
studies consistently demonstrate one or more
role(s) for bFGF in prostatic enlargement.

IGFs

IGF receptors are expressed in the epithelium
[39] and stroma [40] of BPH tissues at elevated
levels compared to normal prostate. Expression of
the IGF-II gene is biallelic in histologically nor-
mal tissues and adjacent malignant glands, but
demonstrates an imprinted, paternally imprinted
allelic expression in BPH tissues [41]. Mice engi-
neered to overexpress IGF-1 in the mouse prostate
exhibit denser, enlarged glands compared to non-
transgenic littermates [42]. Interestingly, IGF-1
levels are upregulated by estradiol binding to the
ERa receptor [43], suggesting a mechanism
whereby increased aromatase activity in the
aging prostate (especially in obese individuals)
may promote IGF-1 expression and activity.

Inflammatory Molecules

Inflammatory molecules secreted in association
with aging tissues that may promote prostatic
enlargement include the interleukins and chemo-
kines. The interleukins comprise a large family of
related proteins that function to control innate
immune responses and as cytokines (growth fac-
tors) for many cell types [44]. The primordial inter-
leukins, Interleukin-la (IL-1a) and Interleukin-1
(IL-1pB), accomplish multiple functions in multiple
cell types. Of importance to this discussion is that
IL-loe and IL-1f activate the powerful NFxB
transcription factor which, in turn, promotes the
transcription of scores of genes encoding inflam-
matory proteins, including TNFa, CC-type chemo-
kines, CXC-type chemokines, and interleukins
(including IL-1a and IL-1p) [45]. Many of these
same inflammatory proteins (especially IL-6 and
TNFa) are elevated in older adults, often in con-
junction with increased obesity and adiposity and
with decreased testosterone in men [46].



A recent study found that stromal fibroblast
cells cultured from the prostates of older men
(aged 63-81 at the time of prostatectomy) were
less able to suppress the proliferation of nonma-
lignant prostate epithelial cells than those cul-
tured from the prostates of younger men (aged
40-52 years) [47]. Moreover, these studies
showed that the transcriptome of aging prostate
stroma is characterized by the upregulation of
several genes that encode secreted inflammatory
mediators, including CXC-type chemokines
(CXCL1, CXCL2, CXCLS, CXCL6, CXCL12),
interleukins (IL11, IL33), and transcripts with
cytokine homology (CYTL1) [47, 48].

Fibroblastic cells cultured from the prostates
of older men secreted higher levels of CXCLI,
CXCL5, CXCL6, and CXCLI12 protein than
those cultured from the prostates of younger men
[47, 48]. Subsequent studies have confirmed the
secretion of CXCL5 , CXCL12 [49], CXCLS [49,
50], CXCL10, and IL-6 [50] by human prostate
stromal fibroblastic cells. Fujita et al. [51] demon-
strated >2-fold higher levels of IL-1p, IL-7,
CCL2, and IL-6 in the extraprostatic secretions
(EPS) of large (>60 g) compared to small (<40 g)
prostates and showed that the source of CCL2
secretion was prostate stromal fibroblastic (but
not epithelial) cells. High levels of CCL2 secre-
tion by prostate stromal fibroblast cells was also
demonstrated by McDowell et al. [49]. Together,
these studies suggest that a diverse and robust
chemokine “secretome” is expressed by stromal
fibroblast cells in the human aging and enlarged
prostate.

Mechanisms that Promote the Secretion

of Nonsteroidal Growth Factors

in the Aging Prostate

With the exception of those cell types that com-
prise continually renewing tissues originating
from particular types of stem cells, many types
of mammalian cells become growth-arrested, or
senescent, over time. By definition, senescent
cells are nonreplicative. Cells may become
senescent because they have reached their
Hayflick limit, i.e., their chromosomal telomeres
are too short to permit further DNA synthesis
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and cell division. Such cells have effectively
reached replicative exhaustion and have entered
replicative senescence. Cells may also become
senescent because they have become stressed,
often resulting in DNA damage and growth
arrest. Although these cells have not reached
their Hayflick limit, they are, nevertheless, non-
replicative and have entered cellular senescence.
Many studies have shown that senescent cells
accumulate with age in vivo [52-56]. Senescence
is essentially controlled by tumor suppressor
genes, including pl16, Arf, p53, and RB1, that
serve as checkpoints to prevent the proliferation
of cells at risk for neoplastic transformation [57,
58] (Fig. 2.2).

Prostatic stromal fibroblasts induced to
undergo senescence after achieving replicative
exhaustion or after exposure to agents that caused
oxidative stress or DNA damage demonstrate
similar and significant upregulation of transcripts
encoding several inflammatory mediator-type
proteins, including the chemokines CXCLI,
CXCL8, CXCL12, CCL2, CCL7, CCLI11,
CCL13, and CCL20 [59]. Fibroblasts induced to
undergo replicative exhaustion or irradiation-
induced senescence secreted diverse inflamma-
tory mediator proteins, including the interleukins
IL-1p, IL-6, IL-7, IL-11, IL-13, and IL-15; the
CC-type chemokines CCL2, CCL3, CCLS,
CCL13, CCL16, CCL20, and CCL26; and the
CXC-type chemokines CXCL1, CXCL2,
CXCL3, and CXCLS8 [60]. Thus, fibroblastic
cells derived from multiple organs, including the
prostate, demonstrate  senescence-associated
secretory profiles (SASPs) that are remarkably
similar to each other and to those isolated from
aging and/or enlarged human prostates [47, 48,
50, 51]. Moreover, normal human prostate epi-
thelial cells induced to undergo senescence sub-
sequent to ionizing radiation demonstrated a
senescence-associated secretome that was very
similar to that exhibited by senescent fibroblasts
[60]. Taken together, these studies are consistent
with the accumulation of senescent stromal fibro-
blasts as a potential driving force behind inflam-
matory protein secretion in the aging and enlarged
human prostate.
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Fig.2.2 Senescence and the cell cycle. Low-level DNA
damage states in the cell include terminal telomere
shortening at cellular replicative exhaustion or those
produced by exposure to various stresses (oxidative
stress, chemical insult, inflammation). Consequently,

Mechanisms Through Which
Inflammatory Proteins Promote

Prostate Cell Proliferation

BPH/LUTS is pathologically characterized by
the proliferation of fibroblast/myofibroblast and
epithelial cell types within the periurethral, or
transitional zone, region of the prostate gland [1,
2, 61]. Previous studies have shown that BPH/
LUTS develops consequent to a gradual increase
in prostatic volume that occurs over decades of
life through a process of low-level, but cumula-
tive, cellular proliferation that increases post-
pubertal prostatic volume by approximately
0.8-1.6 %, equivalent to only 0.2-0.4 mL, per
year [9, 10]. Therefore, the observed low-level
secretion of multiple chemokines by prostatic
stroma and resident inflammatory cells may pro-
mote the concomitant low-level, but cumulative,
overproliferation of both stromal fibroblastic and
epithelial cell types associated with increased
prostate volume in aging men.

In vitro studies have shown that nonmalignant
prostate epithelial cells respond proliferatively
when cocultured with senescent prostate stromal
fibroblasts in vitro [59]. Many of the CC- and
CXC-type chemokines identified as secreted by
senescent cells have been shown to induce prolif-
erative responses in vitro [47-49, 51, 59, 62]
(Fig. 2.3b, c). Transgenic mice engineered to over-

p53 and pl6 protein levels increase, and high p16 levels
block progression of the affected cells at GO in the cell
cycle. The cells effectively exit the cell cycle and enter a
proliferatively quiescent (but metabolically very active)
state of senescence

express keratinocyte-derived chemokine (KC), the
functional murine homolog of CXCLS, exhibit
hyperplastic prostatic epithelium, characterized by
age-associated acinar infolding and significant
increases in acinar diameter in vivo [63]. Moreover,
many of these same CC- and CXC-type chemo-
kines are highly angiogenic and promote tissue
vascularization [64]. A small number of studies
have demonstrated increased microvessel density
(MVD) in BPH/LUTS compared to normal pros-
tate tissue [65] and even in BPH/LUTS compared
to malignant tissue [66]. These studies provide
some rationale for exploring chemokine-mediated
angiogenesis as a contributing factor to BPH/
LUTS development and progression.

Prostatic Fibrosis

Fibrosis is an aberrant version of the normal
wound healing process and is characterized by
myofibroblast accumulation, collagen deposition
and extracellular matrix (ECM) remodeling, and
increased tissue stiffness [67-70]. Numerous
studies have demonstrated that aging- and
inflammation-associated fibrotic changes in tissue
architecture contribute to dysfunction and disease
in multiple organ systems. Examples include pan-
creatic dysfunction in type 2 diabetes [71, 72],
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Fig. 2.3 Senescence can promote cellular proliferation
and tissue fibrosis. (a) High levels of androgen help main-
tain tissue homeostasis in the prostate. (b) Aging-
associated replicative exhaustion, exposure to various
stresses, and declines in androgen levels induce the senes-
cence of some stromal fibroblasts (green) in the prostate.
Senescent stromal fibroblasts are secretory cells and pro-
duce high levels of inflammatory mediators (purple dots).
(c) Inflammatory mediators secreted by senescent cells may
act as cytokines to promote the proliferation of epithelial
(yellow) as well as fibroblast (blue) cells, promoting

chronic obstructive pulmonary diseases [73, 74],
cirrhotic nonalcoholic fatty acid liver disease [75,
76], Crohn’s Disease, and parts of the spectrum
disorder termed inflammatory bowel disease
(IBS) [77, 78].

Myofibroblast accumulation and differentiation
contributing to tissue fibrosis occurs through a
sequence of events initiated by activated TGF-f
(primarily TGF-f1; subsequent references to
TGF-p are to TGF-p1). Activated TGF-p1 binds
to the transmembrane TGF-BRII receptor, which
then simultaneously heterodimerizes with and
phosphorylates the TGF-BRI receptor, which, in
turn, phosphorylates Smad2 or Smad3. Activated
Smad2 or Smad3 then translocate as Smad2/
Smad3 or Smad3/Smad4 complexes into the
nucleus to promote gene transcription. Initial
events in myofibroblast differentiation include
Smad-mediated expression of the alpha-smooth

Fibrosis

luminal epithelial cell
basal epithelial cell

(ARSI stromal fibroblast

senescent stromal

AR fibroblast

myofibroblast

extracellular

prostatic enlargement. (d) Inflammatory mediators
(purple dots) secreted by senescent cells (green) may also
promote resident fibroblast (blue) or other (fibrocytes,
pericytes) cell types to undergo myofibroblast differentia-
tion (red stars). Myofibroblasts accumulate and secrete
extracellular matrix (ECM) components such as fibronec-
tin and collagen (black fibers). If these changes occur in
periurethral tissues, the subsequent increased stiffness
may reduce urethral compliance and thereby contribute to
obstructive symptoms

muscle actin (aSMA) and collagen I (COL1)
genes [68, 70].

Myofibroblast accumulation and differentia-
tion have been observed in the prostates of mouse
models of BPH/LUTS. Targeted expression of a
constitutively active TGF-p1 to the murine pros-
tate gland epithelium promotes fibroplasia and
the development of collagenous micronodules in
collapsed acini, phenotypes consistent with myo-
fibroblast accumulation, and tissue fibrosis [79].
Similarly, transgenic mice engineered to overex-
press keratinocyte-derived chemokine (KC), the
functional murine homolog of CXCLS, exhibit
hyperplastic prostatic epithelium, characterized
by age-associated acinar infolding and significant
increases in acinar diameter. Moreover, overex-
pression of KC was associated with a prototypical
reactive stromal phenotype characterized by
myofibroblast accumulation [63].
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Fig.2.4 Evaluation of periurethral prostate tissue stiffness
and collagen content. (a) Stress/strain curves of periure-
thral prostate tissues from four patients. A high tangent
modulus of 2,390 kilopascals (kPa) was obtained for tis-
sue from a 70 year old man with progressive LUTS and
self-reporting an American Urological Association
Symptom Index (AUASI) score of 19, whereas a low
tangent modulus of 200 kPa was obtained for tissue from
a 51 year old man self-reporting an AUASI score of 0.
(b) Masson’s Trichrome stained section of tissue tested

In the human prostate, myofibroblast accumu-
lation and tissue fibrosis were recently shown to
be associated with LUTS. Periurethral prostate
tissues from men with self-reported high
American Urological Association Symptom
Index (AUASI) scores in the moderate-severe
range were mechanically stiffer and exhibited
significantly higher collagen content compared to
men with lower AUASI scores in the absent/mild
range (Fig. 2.4). Among tissues from 21 patients,
measures of tissue stiffness for 9 with AUASI
scores in the moderate/severe range were signifi-
cantly higher than for those tissues from the 12
patients with scores in the absent/mild range
(r=0.82). This indicates that higher levels of tis-
sue stiffness are directly correlated with moder-
ate/severe LUTS (Fig. 2.5a) and also with higher
levels of collagen content (r=0.60) (Fig. 2.5b).
This study clearly demonstrated direct associa-
tions between high levels of tissue stiffness, with
increased collagen content and fibrosis, and the
further association of all of these measures with

from the 70 year old man reporting an AUASI score of 19
in (a) demonstrates dense collagen fibrils (blue) and a
total collagen content of 58 %. (¢) Masson’s Trichrome
stained section of tissue tested from the 51 year old man in
a. reporting an AUASI of 0 demonstrates few collagen
fibrils (blue) and a total collagen content of 26 % (Reprinted
from Ma J, Gharaee-Kermani M, Kunju L, Hollingsworth
J, Adler J, Arruda E, et al. Prostatic Fibrosis is Associated
with Lower Urinary Tract Symptoms. The Journal of
Urology. 2012)

LUTS [80]. Increased periurethral tissue stiffness
consequent to aging likely reduces urethral com-
pliance and thereby contributes to obstructive
symptoms.

Prostate Cancer

Prostate Cancer Epidemiology

Prostate cancer is a significant public health
issue in the USA. Prostate cancer is the leading
cause of newly diagnosed cancers, the second
leading cause of cancer-related deaths in
American men [81], and is the most commonly
diagnosed non-skin cancer. The American
Cancer Society estimates that in 2011, approxi-
mately 240,890 men were diagnosed with pros-
tate cancer and 33,720 men died of the disease.
In Europe, there are about 80,000 deaths a year
from PCa, whereas in the USA 27,050 deaths
and 218,890 new cases were reported in 2007
(http://www.cancer.gov).
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Fig.2.5 AUASI scores correlate with tissue stiffness and
collagen content. (a) Among tissues from 21 patient tests,
measures of tissue stiffness for 9 with AUASI scores in
the moderate/severe range were significantly higher than
for those tissues from the 12 patients with scores in the
absent/mild range (r=0.82), indicating that higher levels

PCa and Aging

Older age, African American race, and a family
history of the disease can all increase the likeli-
hood of a man being diagnosed with prostate can-
cer. PCa is strongly age dependent. As men
increase in age, their risk of developing prostate
cancer increases exponentially. Although only 1
in 10,000 under age 40 will be diagnosed, the rate
shoots up to 1 in 39 for ages 40-59, and 1 in 14
for ages 60—-69. More than 65 % of all prostate
cancers are diagnosed in men over the age of 65
(http://www.pcf.org). The relationship between
PCa incidence and aging is consistent across
ethnic and racial groups.

Androgen/Androgen Receptor (AR)
Signaling and Aging

Prostate tumors are initially dependent on andro-
gen signaling and can be successfully controlled
by a series of strategies that deplete endogenous
androgen expression or interfere with AR-mediated
signaling. However, several studies document a
progressive decline in the production and tissue
levels of the major androgen, testosterone, with
age. In contrast, the AR itself is upregulated with

% Collagen

of tissue stiffness directly correlated with moderate/severe
LUTS. (b) Higher levels of tissue stiffness directly corre-
lated with higher levels of collagen content (r=0.60).
These data show that high levels of tissue stiffness corre-
late with collagen content and fibrosis, and further corre-
late with LUTS

age in men and promotes continued proliferation
and differentiation of the prostate [82, 83].
Therefore, therapeutic approaches that directly tar-
get androgen and/or the AR are only effective for
early stage androgen-dependent prostate cancer,
as progressive prostate tumors develop alterna-
tive strategies to survive and grow despite anti-
androgen therapy. Eventually, such tumors
develop into lethal, metastatic castration resistant
prostate cancers [84] (Fig. 2.6).

Nonsteroidal Growth Factor/AR

Signaling and Aging

Despite reduced levels of androgen with aging,
the AR is constitutively active and plays an
important role in progressive castration resistant
disease. Several studies have reported hormone-
independent AR signaling in prostate cancer cells
by nonsteroidal growth factors such as peptide
growth factors [8§5-90]; neuropeptides, including
neurotensin and bombesin [91-94]; inflamma-
tory mediators such as interleukins IL-4 and IL-6
[95-107]; and chemokines CXCLS8 [108-111]
and CXCLI12 [112] (Fig. 2.6). Several of these
nonsteroidal growth factors are secreted in excess
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Fig. 2.6 Aging promotes prostate cancer progression.
Aging-associated decline in the androgen levels is accom-
panied by an increase in androgen receptor (AR), reactive
oxygen species (ROS) and inflammation, and a decrease
in antioxidants and vitamin D. Inflammatory molecules
(Interleukins and chemokines) secreted by aged prostate

by the aging prostate and promote prostate cancer.
As noted earlier in this chapter, CXCL5 and
CXCLI12 are secreted at high levels by aging
prostate stroma [47, 113], and both CXCLS and
CXCL12 have been shown to promote prostate
cancer progression [113—115]. Another study has
also found that the serum levels of CXCLS are
elevated in aged men with prostate cancer and
bone metastasis [116]. These nonsteroidal growth
factors activate different signal transduction
pathways like PI3K/Akt, MAPK, PKC, PKA,
and JAK/STAT (Table 2.1) [93-96, 99, 101, 104—
106, 108-110, 112, 117-120], which further acti-
vates the AR, drives AR target genes, and
promotes PCa growth and progression (Fig. 2.6).

Oxidative Stress and Aging

Aging is also characterized by an increase in
intracellular oxidative stress and a decrease in
intracellular reactive oxygen species (ROS) scav-
enging. The increased oxidative stress with aging
activates various signal transduction pathways like
PI3K/Akt, MAPK, PKA, PKC, and JAK/STAT
which activates AR signaling and thus PCa

activates different signal transduction pathways, also acti-
vated by an increased reactive species (ROS), which then
activates the androgen receptor (AR). Activated AR drives
the expression of AR target genes and thus promotes the
prostate cancer growth and progression

growth and progression (Table 2.1). In addition,
increased oxidative damage to cellular macro-
molecules in the prostate has been observed in
aging [121] as well as during the development of
prostatic malignancy [122, 123]. Specifically,
the increase in oxidative damage to DNA, mea-
sured by the accumulation of nuclear
8-hydroxydeoxyguanosine (8-OHdG), has been
observed in aging prostate tissues [124].
Glutathione (GSH) is the most abundant antioxi-
dant in cells and tissues, and it plays a primary
role in protection against oxidative stress [125].
Depletion of GSH with aging is responsible for
increased risk for cancer in older adults [126].
Like glutathione, selenium blood levels decrease
with age [127-129]. Selenium is protective
against prostate cancer through the reduction of
oxidative stress compounds [130, 131]. Clinical
chemoprevention trials support the protective
role of selenium against cancer development
including prostate cancer [132, 133]. A role for
oxidative stress in prostate cancer is supported
by observations that foods high in antioxidants
such as fruits and vegetables are protective [134],
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Table 2.1 Non-steroidal growth factors and inflamma-
tory proteins mediate androgen receptor activation in
prostate cancer cells

Inflammatory Signal transducing  References

protein proteins

IL-4 Akt, NFkB, p300 [101, 104, 106]

IL-6 STAT3, SRC-1, [93-96, 99,
p300, PI3K/AKT, 105, 117, 120]
STAT3, MAPK

CXCLS8 (IL-8)  EGFR, Src, Akt, [108-110, 119]
NFkB, ERK,
PI3K/Akt, Src

CXCL12 SRC-1, MAPK, [112]

(SDF-1) PI3K/Akt

and also by clinical studies which indicate that intake
of antioxidants, such as selenium, a-tocopherol
(vitamin E), and the carotenoid lycopene offers
protection against prostate cancer.

Vitamin D and Aging

Vitamin D insufficiency and deficiency are highly
prevalent among adult men in the USA [135].
Vitamin D deficiency is associated both with
moderate-severe LUTS [135] and with an
increase in risk for prostate cancer [136]. Low
serum levels of 1,25-D, a vitamin D metabolite,
were significantly associated with an increased
risk of clinically detected prostate cancer among
older men, particularly in men with low levels of
25-dihydroxyvitamin D (25-D) [137]. Therefore,
high dose vitamin D alone or in combination with
other agents has been shown to be effective in
prevention of prostate cancer [138].

Prostate Summary

Aging-associated changes in prostate tissues are
promoted by complex biological processes.
Transitions in the expression levels and activities
of steroidal hormones and nonsteroidal growth
factors during the aging process disrupt tissue
homeostasis within the prostate and facilitate
cellular proliferation, organ enlargement, and
malignant growth. The observed low-level secre-
tion of inflammatory proteins within aging
prostate tissues promotes the concomitant low-
level, but cumulative, overproliferation of both
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stromal fibroblastic and epithelial cell types. This is
associated with increased prostatic volume in
aging men and may promote hormone-indepen-
dent growth of prostate tumors. Many of these
same proteins promote other cellular processes in
the prostate, including myofibroblast accumula-
tion and tissue fibrosis. This can also contribute
to the development and persistence of LUTS in
aging men. Though far from complete, a picture
is beginning to emerge for how the biology of
aging promotes changes in prostatic tissue that
contribute to LUTS and malignant growth. These
findings may point the way toward development
of diagnostic and prognostic tools as well as pre-
ventive and therapeutic approaches that will be
useful for the detection and treatment of male
LUTS and PCa.

Bladder Dysfunction

The prevalence of overactive bladder (OAB) and
other LUTS increases with age and has a consid-
erable negative impact on quality of life. The
International Continence Society (ICS) has
defined OAB as a symptom complex with urinary
urgency, with or without urinary incontinence,
and nocturia [139]. Detrusor overactivity (DO) is
a urodynamic diagnosis associated with demon-
stration of involuntary bladder contractions dur-
ing cystometry. Many studies have described the
epidemiology and age-dependency of LUTS
(Fig. 2.7). The EpiLUTS study surveyed a total
of 30,000 women and men in the USA, UK, and
Sweden between the age of 40 and 95 years of
age, using an Internet-based self-administered
data collection. LUTS were found to be highly
prevalent in this population study and increased
with advancing age in men. Increasing age in
women was associated with a higher prevalence of
only certain LUTS, such as urgency, urgency with
fear of leaking, weak stream, urgency inconti-
nence, and nocturnal enuresis [140]. The National
Overactive Bladder Evaluation (NOBLE) specifi-
cally assessed the prevalence of overactive bladder
(OAB) symptoms in a US adult population over 18
years of age. The prevalence of OAB symptoms
was 16.9 % in women and 16.0 % in men and
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showed a steep increase with age in women when
associated with urgency incontinence. A similar
pattern was observed for OAB in men without
urgency incontinence, with a threefold increase
in individuals more than 55 years of age as com-
pared to those younger than 45 years [141]. OAB
symptom prevalence increased with age in both
men and women in the EpiLUTS study as well
[142]. Wehrberger et al. [143] studied the preva-
lence of LUTS and UI in a population-based
cohort analysis of men and women over 85 years
of age in the Vienna Trans-Danube Aging Study
(VITA). OAB was reported as 55 % in women
and 50 % in men, and Ul was found in 35 % of
women and 24 % of men. Essentially all epide-
miological studies are in accordance and demon-
strate that LUTS and overall voiding dysfunction
increase with age in both men and women. The
proportion of individuals aged 80 years or older
is currently the fastest growing sector of the pop-
ulation worldwide [144], and this implies that
analysis of age-dependent factors contributing to
bladder dysfunction will be urgently needed to
develop strategies for managing the problem.
Physiological aging affects lower urinary tract
function at all levels of the organism, from
changes in the central (CNS) and peripheral
(PNS) nervous systems to biochemical and cel-
lular alterations within the detrusor and urothe-

lium of the bladder and urethra. These changes
and their functional consequences are briefly
discussed in this overview.

Age-Related CNS Changes in Adults
with Urinary Incontinence

Normal aging may affect neurons in the CNS at a
cellular and synaptic level. Just as cognitive
decline has been observed in older humans with-
out associated neurodegenerative disease, the
age-associated myelin or neuronal loss can lead
to impaired inhibitory control of micturition.
Control of micturition involves several regions of
the brain coordinating afferent and efferent sig-
naling of the storage and micturition reflexes
[145]. Common changes in cortical pathways
seen in older adults could involve the regions of
the brain responsible for voiding control. Griffiths
et al. [146] used functional magnetic resonance
imaging (fMRI) in 10 continent women aged
30-79 years to study regional brain responses
during bladder filling via urethral -catheter.
Activation of bilateral insula and dorsal anterior
cingulate cortex decreased with age. The authors
interpreted their results to suggest that with
increasing age, weaker signals in the bladder
control network as a whole and/or changes in
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medial prefrontal cortex function, which exerts
inhibitory control of the pontine micturition
center (PMC), or connecting pathways may be
responsible for the development of urgency
incontinence.

White matter changes were associated with
urinary complaints in a cohort of nondisabled
elderly people in the Leukoaraiosis And
DISability (LADIS) Study [147]. White matter
hyperintensities (WMH) seen on MRI in the right
inferior frontal region correlated with inconti-
nence, incontinence severity, and degree of
bother in a cohort of 100 community-dwelling
individuals [148]. In another study, Tadic et al.
[149] demonstrated by fMRI that brain activity in
25 women with Ul during bladder filling was posi-
tively correlated with global WMH in the PMC.
Their findings provide some clues to the possible
role of white matter damage in the genesis of
urgency incontinence and to the cerebral mecha-
nisms of bladder control in older women.

PNS Alterations Can Occur
with Age-Related LUTS

Parasympathetic and sympathetic preganglionic
neurons project to the major pelvic ganglion to
make contact with postganglionic neurons inner-
vating the bladder and urethra. Age-related
changes in innervation leading to micturition
disturbances have been extensively studies in
animals and humans. In humans, Gilpin et al.
[150] determined the effect of age on the auto-
nomic innervation of the urinary bladder in a
group of 54 patients with an age range of 20-79
years, all of whom had a normal urodynamic
study. They reported a reduction in the number of
nerves with progressing age, as did Hald and Horn
[151]. In aged rats, voiding dysfunction was attrib-
uted to a loss of monoaminergic innervation of the
lumbosacral spinal nuclei [152]. They found by
quantitative image analysis significant age-associ-
ated declines in the innervation of most regions,
including the intermediolateral cell nucleus, sacral
parasympathetic nucleus, dorsal gray commissure,
and in the ventral horn, including the dorsolateral
nucleus, which in the rat is one of the component
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nuclei homologous to Onuf’s nucleus in humans.
Lesions in Onuf’s nucleus are associated with
voiding dysfunction characteristic of Shy-Drager
syndrome. Mohammed and Santer [153] found
that the total neuronal numbers of rat lumbosa-
cral primary afferent neurons did not change with
age (from 3 to 24 months of age). However, the
effects of NO on the bladder and also its expres-
sion in dorsal root ganglion neurons were reduced
in aged rats [139, 154]. Similarly, a reduction in
vanilloid receptor type 1 in the lumbosacral
dorsal root ganglia was found in older rats [155].
In anesthetized rats, Hotta et al. [156] showed
that compared to young adult animals (2-3
months), aged rats (26-29 months) exhibited (1)
bladders with nearly six times higher volumes;
these volumes were accommodated at lower
pressures; (2) reduction of bladder contractions
induced by pelvic nerve stimulation; and (3) a
decrease of the pelvic afferent nerve activity
sensing bladder volume. They attributed their
findings to (a) changes in the mechanical proper-
ties of the bladder, (b) changes in the contractile
properties of the detrusor smooth muscle during
efferent stimulation, and (c) changes in the abil-
ity of its afferent innervation to sense bladder
volume. They also suggested that such changes
could explain the increase in residual volume, the
inability to postpone voiding, and the decrease in
flow rate seen in elderly humans.

The conduction velocity of myelinated and
unmyelinated fibers of the pelvic nerve in rats
was found not to change with age. Only the num-
ber of unmyelinated fibers was significantly
reduced in older rats, particularly those with a
diameter smaller than 0.7 pm [157]. Further evi-
dence for an age-dependent reduction in sensory
functions was presented by Smith et al. [158],
who suggested that their calculations approxi-
mating wall stress during filling indicated loss of
bladder volume sensitivity with increasing age.
The findings by Kenton et al. [159] support age-
dependent reduction of sensory functions also in
humans. They compared current perception
thresholds (CPT) in the urethra and bladder of
women with idiopathic overactive bladder to
asymptomatic controls and demonstrated that the
CPT was significantly higher in older women.
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This suggests that sensory neuropathy in the lower
urinary tract increases with age and may contribute
to the increase in OAB/DO seen with aging.

Age-Related Bladder Remodeling:
Structural Changes of the Bladder
and Urethra

A morphometric study of human bladder speci-
mens from two different age groups revealed that
the area density of smooth muscle to connective
tissue ratio decreased with age in both men and
women [160], suggesting that aging is associated
with a relative increase in detrusor fibrosis. This
is not in agreement with some reported findings
in rats, where morphometric analysis showed a
significant age-dependent increase in the mean
thickness of the muscularis layer, whereas the
collagen density significantly decreased in the
muscularis and in the lamina propria layers [161].
However, in another study, histological examina-
tion of the bladder of older Fisher rats revealed
urothelial thinning, decreased muscle mass, and
increased collagen content [162]. Thus, reports
on the effects of aging on rat bladder morphology
show conflicting results, suggesting that the
aging process in animals may not reliably reflect
what is occurring in humans.

A reduced number of caveolae (invaginations
of the plasma membrane) in bladder smooth
muscle cells have been observed in human [163]
and rat specimens [164]. Since the caveolae pro-
vide a mechanism for compartmentalization and
integration of signal transduction, they play an
important role in normal smooth muscle func-
tion. However, their precise role in age-related
detrusor dysfunction remains to be established.

Levy and Wight [165] observed a significant
increase of collagen fibers in the lamina propria
and around the neurovascular bundles of human
bladders, and Ewalt et al. [166] noticed a replace-
ment of elastin by collagen within the muscle
fibers accompanied by increased collagen depos-
its at the basal membrane. These findings were
suggested to explain the reduced elasticity and
potentially the reduced bladder capacity of the
aging detrusor. Strasser et al. [167] found that age

was associated with apoptosis of striated muscle
cells in a cadaver study of the rhabdosphincter of
the urethra, which corresponds to an age-related
decrease in maximal urethral pressure [168].
Thus, in humans, aging may be accompanied by
structural LUT changes, including bladder fibro-
sis and decreased functional musculature in the
bladder and urethra [169] (Fig. 2.8).

Biochemical and Receptor Alterations
with Aging

The influence of age on muscarinic receptor den-
sity and sensitivity has been investigated in ani-
mal models with partly conflicting results.
Age-related changes in muscarinic receptor func-
tion have been reported, but in vitro studies with
bladder tissue from old vs. young rats have
yielded contradictory results that partly may be
strain specific. For example, in Fischer 344 rats,
muscarinic receptor-mediated detrusor contrac-
tion was either increased [170], unchanged [171,
172], or decreased [162, 173]. In Wistar rats
[161, 174], unchanged muscarinic receptor-
mediated bladder contraction was reported.
However, many studies in Sprague—Dawley rats
have demonstrated decreased muscarinic
receptor-mediated detrusor contractions [175-
177]. In a study of estrogen on older rats,
Watanabe et al. [178] found that M2 receptor
mRNA expression, but not M3 receptors, was
significantly upregulated in older animals. This
finding was corroborated by an increased voiding
frequency in these two groups elicited by musca-
rine. Whatever age-related changes in muscarinic
receptor functions have been demonstrated in
animal bladder, they do not seem to be predictive
for what is occurring in humans. Particularly,
they do not seem to be associated with a change
in the response to antimuscarinics, for there is no
evidence for reduced therapeutic benefits from
such treatment in older adult patients [179, 180].

A study by Mansfield et al. [181], using
radioligand-binding assay, showed that the total
number of muscarinic receptors in the human
male detrusor decreased with age. This study also
found a decrease in mRNA expression of M3
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Fig. 2.8 Light microscopy picture from human detrusor
muscle. This image shows a combined muscle cell, collagen
(vellow), and elastin stain (original magnification x 150).

receptors with age in both male and female
subjects, but no change in M2 receptors. Due to
the lack of highly specific antibodies for the
muscarinic receptor subtypes, it was not possible
to decide if these changes in MRNA expression
were accompanied by a change in protein expres-
sion. The functional consequences of the findings
were not reported. In contrast to these findings,
Wuest et al. [182] found that mRNA detected for
M2, M3, P2X1, and P2X3 receptors did not
change with age.

The mRNA expression of the purinergic P2X1
receptor was negatively correlated with age in
samples of detrusor muscle from normal control
male individuals. This negative association was
not observed in samples from obstructed patients
[183]. Yoshida et al. [184, 185] found a significant
positive correlation between age and the puriner-
gic component of human bladder preparation
contraction and a significant negative correlation

(a) Normal detrusor, (b) Male with prostatic obstruction,
(c) Elderly female without LUTS. From: Nordling J. Exp
Gerontol. 2002 Aug—Sep;37(8, 9):991-9

between age and the cholinergic component of
human bladder preparation contraction [140].
The authors studied the neurotransmitter release
from the detrusor during electrical field stimula-
tion (EFS), using high-performance liquid chro-
matography. They found that acetylcholine
release and age were significantly negatively cor-
related, while ATP release and age were posi-
tively correlated. In the guinea pig, aging
decreased the neurogenic contraction of isolated
detrusor induced by EFS, but did not alter the
cholinergic component of the contraction [186].
Contractile properties or excitability of human
detrusor muscle preparations from normal individ-
uals did not vary with age, but declined in patho-
logical conditions such as bladder outlet obstruction
and idiopathic or neurogenic detrusor overactivity
[187]. Wuest et al. [182] studied the putative age-
dependence of concentration-response curves to
the muscarinic agonist carbachol and the purinergic
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agonists ATP and o-p methylene-ATP in human
detrusor muscle strips. They found, in accor-
dance with the results of Yoshida et al. [184] that
the sensitivity to a-f -methylene-ATP increased
with age. However, patient age did not influence
(1) EFS evoked contractions and the effects of
several antimuscarinic drugs, (2) concentration-
response curves for carbachol and their modula-
tion by antimuscarinic agents, and (3) expression
levels of receptor subtype mRNA. It was con-
cluded that there was no evidence for age-related
contractile deterioration in the detrusor. This is in
contrast to findings in functional in vivo studies
in humans (see below).

Functional Micturition
Changes with Aging

The aging process of both genders is associated
with significant changes in bladder function and
clinical symptomatology. However, the patho-
physiology behind the dysfunctions is sometimes
difficult to establish, since it is often difficult to
separate what can be attributed to “normal aging”
from what is caused by comorbidities. LUTS are
divided into storage (irritative), voiding (obstruc-
tive), and postmicturition components. Storage
symptoms are urgency, frequency, nocturia, and
urgency incontinence; voiding symptoms include
a reduced force of stream, hesitancy, inability to
empty the bladder, and straining and postmicturi-
tion symptoms include feeling of incomplete
emptying and postmicturition dribble [188].
Unfortunately, none of these symptoms is disease
specific or has a high correlation to a specific
urodynamic pattern. Most of these symptoms
have been suggested to be age dependent and
attributed to various factors including reduced
bladder capacity, changes in bladder sensation,
and DO. Early uroflow studies demonstrated an
age-dependent decrease in Oy, [189, 190], which
was confirmed and shown to be similar in both
sexes [168, 191], however, not demonstrable in
symptomatic elderly men with nonobstructive
voiding dysfunction [192].

Detrusor underactivity [193, 194], leading to
emptying difficulties and symptoms sometimes

overlapping with those of detrusor overactivity,
may have many underlying causes. Some of the
most frequently discussed are impaired detrusor
contractility and decreased sensation [195].
Urodynamic assessment in older patients of both
sexes without overt neurological disease showed
higher residual volumes and lower detrusor
shortening velocities, but no changes in isometric
detrusor function [196]. In a series of patients,
where the bladder capacity at first void was taken
as measure of bladder sensation, this parameter
showed a progressive increase with age, suggest-
ing an age-dependent decrease in bladder sensa-
tion [197], a finding confirmed by several other
investigators [159, 168]. In a clinical study of
patients referred for LUTS or UI, Madersbacher
etal. [191] found an increase in postvoid residual
volume, along with a decrease of flow rates,
voided volumes, and bladder capacity associated
with increasing age. These findings were similar
in both genders. Pfisterer et al. [168] assessed a
group of 85 female volunteers aged between 20
and 90 years with a bladder diary, uroflowmetry,
and detailed videourodynamics. Bladder capacity
did not change with age, but was smaller in
women with detrusor overactivity (DO) on uro-
dynamics. Urine production and urine frequency
did not differ significantly with age. Bladder sen-
sation, detrusor contraction strength, maximal
flow rate, and maximum urethral closure pressure
were all negatively associated with age. It was
concluded that there is a normal functional decline
seen with aging in otherwise asymptomatic
women. This study suggested a progressive
decrease in detrusor contraction strength, which
was in line with the findings of van Mastrigt [198],
who demonstrated a statistically significant age-
related decrease of the detrusor contractility
parameter, W, in both sexes. Other investigators
were unable to show any correlations between
bladder contractility and age in symptomatic
elderly men with nonobstructive bladder dysfunc-
tion [192] or between either maximum detrusor
pressure or detrusor pressure at peak flow rate and
age in LUTS patients of both sexes [191].

Normal age-related changes in the bladder
and lower urinary tract should be clearly differ-
entiated from pathological alterations seen with
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conditions such as OAB or LUTS. Detrusor
underactivity and the related condition, “detrusor
hyperactivity with impaired contractile function”
(DHIC) [199] can also present with advancing
age and should be diagnosed adequately in
elderly individuals. The current available data
from animal and human studies demonstrate that
aging impacts the lower urinary tract function
through ultrastructural and physiological alterations.
The reported age-related changes in animals do
not always correspond to what is found in humans
and should be interpreted with caution. Overall,
in humans, bladder sensation and contractility
seem to decrease with advancing age as a possi-
ble consequence of neuronal loss and remodeling
of the bladder and urethra.

Bladder Summary

Changes in bladder structure and function are
common with advancing age. These can influence
a wide variety of features in older patients includ-
ing how they sense bladder fullness, whether they
experience urinary urgency frequency, and the
volume of urine they are able to hold. In addition,
these changes can have significant effects with
regard to urinary incontinence and bladder empty-
ing efficiency. Identification of many of these
changes has led to targets for therapy, particularly
for OAB and urge urinary incontinence. Additional
work will help to better define additional changes
associated with bladder aging and may lead to new
therapies in the future.

Conclusions

Studies in molecular and cellular biology, bio-
chemistry, physiology, and biophysics have dra-
matically advanced our understanding of the
genitourinary system across the human lifespan.
Basic science and translational research hold the
key to future advances in this field, including
identification and development of new targets for
clinical therapies. This chapter has focused on
disease processes of the prostate and bladder, but
similar advances have been made in other fields
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including kidney diseases, urolithiasis, sexual
dysfunction, and urinary tract infection.
Additional basic science concepts are addressed
in other chapters as they relate to specific disor-
ders of the aging genitourinary system. Future
research will certainly help advance the science
and subsequent clinical care for older adults.
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