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           Introduction 

 Basic and translational research has played a critical 
role in the understanding of human structure and 
function and essentially all human diseases. 
This is certainly true of the aging process. Basic 
research has advanced our knowledge about ana-
tomic and physiologic alterations that occur natu-
rally as part of aging of the genitourinary tract. In 
addition, this type of research has led to the 
development of treatments for a wide spectrum 
of clinical conditions which predominantly affect 
older adults. This chapter will focus on basic and 
translation research related to prostate disease 
and bladder dysfunction in the elderly population. 
This includes analysis of benign prostatic 

hyperplasia (BPH), prostatic fi brosis, and prostate 
cancer (PCa), and both storage and voiding 
dysfunction related to the bladder.  

    Prostate Disorders 

    Prostatic Enlargement 

    Benign Prostatic Hyperplasia 
and Androgens 
 BPH is a noncancerous enlargement of the prostate 
and is a common condition associated with aging 
in men [ 1 – 3 ]. Normal prostate development is 
dependent on dihydrotestosterone (DHT), which 
is converted from testosterone by 5α-reductase 
enzymes. DHT is the major growth factor of 
adult prostate tissue [ 4 ]. In male rodents, castra-
tion results in prostatic involution due to massive 
apoptosis of the luminal epithelium and quies-
cence of the basal cell population. However, the 
prostate regenerates in castrate mice supple-
mented with DHT, showing that the adult pros-
tate is highly sensitive and responsive to androgen 
[ 5 – 7 ]. Similarly, men who are castrated prior to 
puberty, have 5α-reductase-type 2 defi ciencies, 
or have naturally occurring or clinically induced 
hypogonadism, do not develop a fully formed 
prostate and do not go on to develop BPH later in 
life [ 8 ]. 

 BPH comprises a gradual increase in prostatic 
volume that occurs over decades of life. Studies 
have estimated that BPH develops consequent to 
a low-level, but cumulative, cellular proliferation 
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that increases post-pubertal prostatic volume by 
approximately 0.8–1.6 %, equivalent to only 0.2–
0.4 mL, per year [ 9 ,  10 ]. Studies both in vivo and 
in vitro have reported higher proliferative and 
lower apoptotic rates for epithelial cells from 
hyperplastic compared to normal prostates, sug-
gesting that some proportion of increased pros-
tate volume with age is attributable to increased 
epithelial cell densities [ 11 – 13 ]. Work accom-
plished using rodent and rodent/human in vivo 
and in vitro models have suggested that paracrine 
interactions between glandular epithelial cells 
and adjacent fi broblastic stromal cells play an 
important role in the development of benign 
prostatic proliferative diseases [ 14 – 19 ]. These 
studies show that epithelial–stromal interactions 
are crucial for the regulation of epithelial cell 
growth and suggest that changes in such interac-
tions consequent to aging likely contribute to the 
etiologies of BPH and PCa.  

    BPH and Estrogens 
 Serum levels of both total and free testosterone 
decrease with age as documented in both the 
Massachusetts Male Aging Study [ 20 ] and the 
Baltimore Longitudinal Study of Aging [ 21 ]. 
Correlative fi ndings show that intraprostatic and/
or serum estrogen levels either do not change or 
are elevated consequent to aging in men [ 22 ,  23 ]. 
Recent studies have suggested that estrogenic 
hormones may promote prostatic enlargement in 
older men in a manner that largely correlates with 
the expression levels of the two primary estrogen 
cellular receptors, ERα and ERβ, which are 
expressed in different cellular compartments of 
the prostate gland. ERβ is primarily expressed by 
the prostate epithelium (Fig.  2.1a, b ), whereas 
ERα is primarily expressed (often heteroge-
neously) by fi broblastic and epithelial prostate 
stromal cells (Fig.  2.1c ). ERβ normally functions 
to help maintain prostate luminal epithelial cells 

  Fig. 2.1    BPH and estrogens. ( a ) High androgen levels 
and ERβ expression levels in prostate epithelial luminal cells 
( pink ) maintain luminal cell differentiation and quiescent 
basal epithelial ( yellow ) cell proliferation. ( b ) In the aging 
prostate, androgen levels decrease, aromatase activity 
increases, and androgens are increasingly converted to 
estradiols. These events can be countered by normal ERβ 
function, which helps maintain prostate luminal epithelial 
cells in a non- or low-proliferative, secretory state by 
facilitating estrogen-mediated antiproliferative and anti-
infl ammatory effects. This mechanism maintains tissue 

and organ homeostasis under normal physiological condi-
tions. ( c ) In the aging prostate, differential methylation of 
the ERβ and ERα promoters consequent to aging pro-
motes estradiol-stimulated activation of ERα receptors in 
the basal prostate epithelium ( yellow ) and stromal fi bro-
blast ( blue ) cells and consequent homeostatic disruption. 
( d ) Increased expression and activation of ERα receptors in 
the aging prostate promotes both basal epithelial and stro-
mal fi broblast cellular proliferation, facilitating BPH and 
prostatic enlargement       
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in a non- or low-proliferative, secretory state by 
facilitating estrogen-mediated antiproliferative and 
anti-infl ammatory effects. This mechanism main-
tains tissue and organ homeostasis under normal 
physiological conditions. However, differential 
methylation of the ERβ and ERα promoters 
consequent to processes that are not entirely 
elucidated (but are likely related to aging) medi-
ates decreased ERβ expression levels in prostate 
epithelium and increased ERα  expression levels, 
particularly in the prostatic stroma. Thus, com-
pared to normal prostate tissues, BPH tissues 
exhibit a high stromal ERβ/ERα ratio in associa-
tion with stromal and epithelial hyperplasia 
(Fig.  2.1d ) and tissue infl ammation [ 8 ,  24 ,  25 ]. 
In addition, aromatase, the enzyme that converts 
testosterone to estradiol, is expressed and active in 
adipose tissue, adrenal glands, the testicles, and 
prostatic stroma, which suggests that local con-
version of androgens to estrogens may promote 
estrogen signaling within the prostate [ 26 ,  27 ]. 
Aromatase expression and activity increase with 
the accumulation of obesity-related adipose tissue, 
resulting in reduced testosterone concentrations 
and concurrent increased estradiol production 
[ 28 ]. Obesity itself increases in incidence with 
age [ 29 ], suggesting that aging, obesity, increased 
aromatase expression and activity, and increased 
estradiol:testosterone ratios may play complex 
and intertwined roles in the development of pros-
tatic enlargement and lower urinary tract symp-
toms (LUTS).

       BPH and Nonsteroidal Growth Factors 
 In addition to androgenic and estrogenic hormones, 
nonsteroidal growth factors have been identifi ed 
that promote aging-associated prostatic enlarge-
ment. Most of these comprise small, soluble, 
secreted proteins, including basic fi broblast 
growth factor (bFGF, FGF-2) [ 30 ], insulin growth 
factors (IGFs) [ 31 ], and infl ammatory molecules 
[ 32 ,  33 ]. 

   bFGFs 
 bFGFs and their receptors are highly expressed in 
BPH tissues [ 34 ,  35 ], primarily in stromal fi bro-
blasts, smooth muscle, and endothelial cells [ 36 ], and 
promote the proliferation of stromal fi broblasts 

in vitro [ 30 ]. bFGF is also highly expressed by 
adipose tissues [ 37 ], suggesting another avenue 
through which obesity may promote prostatic 
enlargement. In vivo studies have shown that tar-
geted transgenic expression of bFGF in the 
mouse prostate exhibit epithelial hyperplasia and 
glandular enlargement [ 38 ]. Taken together, these 
studies consistently demonstrate one or more 
role(s) for bFGF in prostatic enlargement.  

   IGFs 
 IGF receptors are expressed in the epithelium 
[ 39 ] and stroma [ 40 ] of BPH tissues at elevated 
levels compared to normal prostate. Expression of 
the IGF-II gene is biallelic in histologically nor-
mal tissues and adjacent malignant glands, but 
demonstrates an imprinted, paternally imprinted 
allelic expression in BPH tissues [ 41 ]. Mice engi-
neered to overexpress IGF-1 in the mouse prostate 
exhibit denser, enlarged glands compared to non-
transgenic littermates [ 42 ]. Interestingly, IGF-1 
levels are upregulated by estradiol binding to the 
ERα receptor [ 43 ], suggesting a mechanism 
whereby increased aromatase activity in the 
aging prostate (especially in obese individuals) 
may promote IGF-1 expression and activity.  

   Infl ammatory Molecules 
 Infl ammatory molecules secreted in association 
with aging tissues that may promote prostatic 
enlargement include the interleukins and chemo-
kines. The interleukins comprise a large family of 
related proteins that function to control innate 
immune responses and as cytokines (growth fac-
tors) for many cell types [ 44 ]. The primordial inter-
leukins, Interleukin-1α (IL-1α) and Interleukin-1β 
(IL-1β), accomplish multiple functions in multiple 
cell types. Of importance to this discussion is that 
IL-1α and IL-1β activate the powerful NFĸB 
transcription factor which, in turn, promotes the 
transcription of scores of genes encoding infl am-
matory proteins, including TNFα, CC-type chemo-
kines, CXC-type chemokines, and interleukins 
(including IL-1α and IL-1β) [ 45 ]. Many of these 
same infl ammatory proteins (especially IL-6 and 
TNFα) are elevated in older adults, often in con-
junction with increased obesity and adiposity and 
with decreased testosterone in men [ 46 ]. 

2 The Biology of Aging and the Development of Lower Urinary Tract Dysfunction and Disease



16

 A recent study found that stromal fi broblast 
cells cultured from the prostates of older men 
(aged 63–81 at the time of prostatectomy) were 
less able to suppress the proliferation of nonma-
lignant prostate epithelial cells than those cul-
tured from the prostates of younger men (aged 
40–52 years) [ 47 ]. Moreover, these studies 
showed that the transcriptome of aging prostate 
stroma is characterized by the upregulation of 
several genes that encode secreted infl ammatory 
mediators, including CXC-type chemokines 
(CXCL1, CXCL2, CXCL5, CXCL6, CXCL12), 
interleukins (IL11, IL33), and transcripts with 
cytokine homology (CYTL1) [ 47 ,  48 ]. 

 Fibroblastic cells cultured from the prostates 
of older men secreted higher levels of CXCL1, 
CXCL5, CXCL6, and CXCL12 protein than 
those cultured from the prostates of younger men 
[ 47 ,  48 ]. Subsequent studies have confi rmed the 
secretion of CXCL5 , CXCL12 [ 49 ], CXCL8 [ 49 , 
 50 ], CXCL10, and IL-6 [ 50 ] by human prostate 
stromal fi broblastic cells. Fujita et al. [ 51 ] demon-
strated >2-fold higher levels of IL-1β, IL-7, 
CCL2, and IL-6 in the extraprostatic secretions 
(EPS) of large (>60 g) compared to small (<40 g) 
prostates and showed that the source of CCL2 
secretion was prostate stromal fi broblastic (but 
not epithelial) cells. High levels of CCL2 secre-
tion by prostate stromal fi broblast cells was also 
demonstrated by McDowell et al. [ 49 ]. Together, 
these studies suggest that a diverse and robust 
chemokine “secretome” is expressed by stromal 
fi broblast cells in the human aging and enlarged 
prostate.   

    Mechanisms that Promote the Secretion 
of Nonsteroidal Growth Factors 
in the Aging Prostate 
 With the exception of those cell types that com-
prise continually renewing tissues originating 
from particular types of stem cells, many types 
of mammalian cells become growth-arrested, or 
senescent, over time. By defi nition, senescent 
cells are nonreplicative. Cells may become 
senescent because they have reached their 
Hayfl ick limit, i.e., their chromosomal telomeres 
are too short to permit further DNA synthesis 

and cell division. Such cells have effectively 
reached replicative exhaustion and have entered 
replicative senescence. Cells may also become 
senescent because they have become stressed, 
often resulting in DNA damage and growth 
arrest. Although these cells have not reached 
their Hayfl ick limit, they are, nevertheless, non-
replicative and have entered cellular senescence. 
Many studies have shown that senescent cells 
accumulate with age in vivo [ 52 – 56 ]. Senescence 
is essentially controlled by tumor suppressor 
genes, including p16, Arf, p53, and RB1, that 
serve as checkpoints to prevent the proliferation 
of cells at risk for neoplastic transformation [ 57 , 
 58 ] (Fig.  2.2 ).

   Prostatic stromal fi broblasts induced to 
undergo senescence after achieving replicative 
exhaustion or after exposure to agents that caused 
oxidative stress or DNA damage demonstrate 
similar and signifi cant upregulation of transcripts 
encoding several infl ammatory mediator-type 
proteins, including the chemokines CXCL1, 
CXCL8, CXCL12, CCL2, CCL7, CCL11, 
CCL13, and CCL20 [ 59 ]. Fibroblasts induced to 
undergo replicative exhaustion or irradiation-
induced senescence secreted diverse infl amma-
tory mediator proteins, including the interleukins 
IL-1β, IL-6, IL-7, IL-11, IL-13, and IL-15; the 
CC-type chemokines CCL2, CCL3, CCL8, 
CCL13, CCL16, CCL20, and CCL26; and the 
CXC-type chemokines CXCL1, CXCL2, 
CXCL3, and CXCL8 [ 60 ]. Thus, fi broblastic 
cells derived from multiple organs, including the 
prostate, demonstrate senescence-associated 
secretory profi les (SASPs) that are remarkably 
similar to each other and to those isolated from 
aging and/or enlarged human prostates [ 47 ,  48 , 
 50 ,  51 ]. Moreover, normal human prostate epi-
thelial cells induced to undergo senescence sub-
sequent to ionizing radiation demonstrated a 
senescence-associated secretome that was very 
similar to that exhibited by senescent fi broblasts 
[ 60 ]. Taken together, these studies are consistent 
with the accumulation of senescent stromal fi bro-
blasts as a potential driving force behind infl am-
matory protein secretion in the aging and enlarged 
human prostate.  
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    Mechanisms Through Which 
Infl ammatory Proteins Promote 
Prostate Cell Proliferation 
 BPH/LUTS is pathologically characterized by 
the proliferation of fi broblast/myofi broblast and 
epithelial cell types within the periurethral, or 
transitional zone, region of the prostate gland [ 1 , 
 2 ,  61 ]. Previous studies have shown that BPH/
LUTS develops consequent to a gradual increase 
in prostatic volume that occurs over decades of 
life through a process of low-level, but cumula-
tive, cellular proliferation that increases post- 
pubertal prostatic volume by approximately 
0.8–1.6 %, equivalent to only 0.2–0.4 mL, per 
year [ 9 ,  10 ]. Therefore, the observed low-level 
secretion of multiple chemokines by prostatic 
stroma and resident infl ammatory cells may pro-
mote the concomitant low-level, but cumulative, 
overproliferation of both stromal fi broblastic and 
epithelial cell types associated with increased 
prostate volume in aging men. 

 In vitro studies have shown that nonmalignant 
prostate epithelial cells respond proliferatively 
when cocultured with senescent prostate stromal 
fi broblasts in vitro [ 59 ]. Many of the CC- and 
CXC-type chemokines identifi ed as secreted by 
senescent cells have been shown to induce prolif-
erative responses in vitro [ 47 – 49 ,  51 ,  59 ,  62 ] 
(Fig.  2.3b, c ). Transgenic mice engineered to over-

express keratinocyte-derived chemokine (KC), the 
functional murine homolog of CXCL8, exhibit 
hyperplastic prostatic epithelium, characterized by 
age-associated acinar infolding and signifi cant 
increases in acinar diameter in vivo [ 63 ]. Moreover, 
many of these same CC- and CXC-type chemo-
kines are highly angiogenic and promote tissue 
vascularization [ 64 ]. A small number of studies 
have demonstrated increased microvessel density 
(MVD) in BPH/LUTS compared to normal pros-
tate tissue [ 65 ] and even in BPH/LUTS compared 
to malignant tissue [ 66 ]. These studies provide 
some rationale for exploring chemokine-mediated 
angiogenesis as a contributing factor to BPH/
LUTS development and progression.

        Prostatic Fibrosis 

 Fibrosis is an aberrant version of the normal 
wound healing process and is characterized by 
myofi broblast accumulation, collagen deposition 
and extracellular matrix (ECM) remodeling, and 
increased tissue stiffness [ 67 – 70 ]. Numerous 
studies have demonstrated that aging- and 
infl ammation- associated fi brotic changes in tissue 
architecture contribute to dysfunction and disease 
in multiple organ systems. Examples include pan-
creatic dysfunction in type 2 diabetes [ 71 ,  72 ], 

  Fig. 2.2    Senescence and the cell cycle. Low-level DNA 
damage states in the cell include terminal telomere 
shortening at cellular replicative exhaustion or those 
produced by exposure to various stresses (oxidative 
stress, chemical insult, infl ammation). Consequently, 

p53 and p16 protein levels increase, and high p16 levels 
block progression of the affected cells at G0 in the cell 
cycle. The cells effectively exit the cell cycle and enter a 
proliferatively quiescent (but metabolically very active) 
state of senescence       
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chronic obstructive pulmonary diseases [ 73 ,  74 ], 
cirrhotic nonalcoholic fatty acid liver disease [ 75 , 
 76 ], Crohn’s Disease, and parts of the spectrum 
disorder termed infl ammatory bowel disease 
(IBS) [ 77 ,  78 ]. 

 Myofi broblast accumulation and  differentiation 
contributing to tissue fi brosis occurs through a 
sequence of events initiated by activated TGF-β 
(primarily TGF-β1; subsequent references to 
TGF-β are to TGF-β1). Activated TGF-β1 binds 
to the transmembrane TGF-βRII receptor, which 
then simultaneously heterodimerizes with and 
phosphorylates the TGF-βRI receptor, which, in 
turn, phosphorylates Smad2 or Smad3. Activated 
Smad2 or Smad3 then translocate as Smad2/
Smad3 or Smad3/Smad4 complexes into the 
nucleus to promote gene transcription. Initial 
events in myofi broblast differentiation include 
Smad-mediated expression of the alpha-smooth 

muscle actin (αSMA) and collagen I (COL1) 
genes [ 68 ,  70 ]. 

 Myofi broblast accumulation and differentia-
tion have been observed in the prostates of mouse 
models of BPH/LUTS. Targeted expression of a 
constitutively active TGF-β1 to the murine pros-
tate gland epithelium promotes fi broplasia and 
the development of collagenous micronodules in 
collapsed acini, phenotypes consistent with myo-
fi broblast accumulation, and tissue fi brosis [ 79 ]. 
Similarly, transgenic mice engineered to overex-
press keratinocyte-derived chemokine (KC), the 
functional murine homolog of CXCL8, exhibit 
hyperplastic prostatic epithelium, characterized 
by age-associated acinar infolding and signifi cant 
increases in acinar diameter. Moreover, overex-
pression of KC was associated with a prototypical 
reactive stromal phenotype characterized by 
myofi broblast accumulation [ 63 ]. 

  Fig. 2.3    Senescence can promote cellular proliferation 
and tissue fi brosis. ( a ) High levels of androgen help main-
tain tissue homeostasis in the prostate. ( b ) Aging-
associated replicative exhaustion, exposure to various 
stresses, and declines in androgen levels induce the senes-
cence of some stromal fi broblasts ( green ) in the prostate. 
Senescent stromal fi broblasts are secretory cells and pro-
duce high levels of infl ammatory mediators ( purple dots ). 
( c ) Infl ammatory mediators secreted by senescent cells may 
act as cytokines to promote the proliferation of epithelial 
( yellow ) as well as fi broblast ( blue ) cells, promoting 

prostatic enlargement. ( d ) Infl ammatory mediators 
( purple dots ) secreted by senescent cells ( green ) may also 
promote resident fi broblast ( blue ) or other (fi brocytes, 
pericytes) cell types to undergo myofi broblast differentia-
tion ( red stars ). Myofi broblasts accumulate and secrete 
extracellular matrix (ECM) components such as fi bronec-
tin and collagen ( black fi bers ). If these changes occur in 
periurethral tissues, the subsequent increased stiffness 
may reduce urethral compliance and thereby contribute to 
obstructive symptoms       
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 In the human prostate, myofi broblast accumu-
lation and tissue fi brosis were recently shown to 
be associated with LUTS. Periurethral prostate 
tissues from men with self-reported high 
American Urological Association Symptom 
Index (AUASI) scores in the moderate-severe 
range were mechanically stiffer and exhibited 
signifi cantly higher collagen content compared to 
men with lower AUASI scores in the absent/mild 
range (Fig.  2.4 ). Among tissues from 21 patients, 
measures of tissue stiffness for 9 with AUASI 
scores in the moderate/severe range were signifi -
cantly higher than for those tissues from the 12 
patients with scores in the absent/mild range 
( r  = 0.82). This indicates that higher levels of tis-
sue stiffness are directly correlated with moder-
ate/severe LUTS (Fig.  2.5a ) and also with higher 
levels of collagen content ( r  = 0.60) (Fig.  2.5b ). 
This study clearly demonstrated direct associa-
tions between high levels of tissue stiffness, with 
increased collagen content and fi brosis, and the 
further association of all of these measures with 

LUTS [ 80 ]. Increased periurethral tissue stiffness 
consequent to aging likely reduces urethral com-
pliance and thereby contributes to obstructive 
symptoms.

        Prostate Cancer 

    Prostate Cancer Epidemiology 
 Prostate cancer is a signifi cant public health 
issue in the USA. Prostate cancer is the leading 
cause of newly diagnosed cancers, the second 
leading cause of cancer-related deaths in 
American men [ 81 ], and is the most commonly 
diagnosed non- skin cancer. The American 
Cancer Society estimates that in 2011, approxi-
mately 240,890 men were diagnosed with pros-
tate cancer and 33,720 men died of the disease. 
In Europe, there are about 80,000 deaths a year 
from PCa, whereas in the USA 27,050 deaths 
and 218,890 new cases were reported in 2007 
(  http://www.cancer.gov    ).  

  Fig. 2.4    Evaluation of periurethral prostate tissue stiffness 
and collagen content. ( a ) Stress/strain curves of periure-
thral prostate tissues from four patients. A high tangent 
modulus of 2,390 kilopascals (kPa) was obtained for tis-
sue from a 70 year old man with progressive LUTS and 
self-reporting an American Urological Association 
Symptom Index (AUASI) score of 19, whereas a low 
tangent modulus of 200 kPa was obtained for tissue from 
a 51 year old man self-reporting an AUASI score of 0. 
( b ) Masson’s Trichrome stained section of tissue tested 

from the 70 year old man reporting an AUASI score of 19 
in ( a ) demonstrates dense collagen fi brils ( blue ) and a 
total collagen content of 58 %. ( c ) Masson’s Trichrome 
stained section of tissue tested from the 51 year old man in 
 a . reporting an AUASI of 0 demonstrates few collagen 
fi brils ( blue ) and a total collagen content of 26 % ( Reprinted 
from Ma J ,  Gharaee - Kermani M ,  Kunju L ,  Hollingsworth 
J ,  Adler J ,  Arruda E , et al.  Prostatic Fibrosis is Associated 
with Lower Urinary Tract Symptoms .  The Journal of 
Urology .  2012 )       
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    PCa and Aging 
 Older age, African American race, and a family 
history of the disease can all increase the likeli-
hood of a man being diagnosed with prostate can-
cer. PCa is strongly age dependent. As men 
increase in age, their risk of developing prostate 
cancer increases exponentially. Although only 1 
in 10,000 under age 40 will be diagnosed, the rate 
shoots up to 1 in 39 for ages 40–59, and 1 in 14 
for ages 60–69. More than 65 % of all prostate 
cancers are diagnosed in men over the age of 65 
(  http://www.pcf.org    ). The relationship between 
PCa incidence and aging is consistent across 
ethnic and racial groups.  

    Androgen/Androgen Receptor (AR) 
Signaling and Aging 
 Prostate tumors are initially dependent on andro-
gen signaling and can be successfully controlled 
by a series of strategies that deplete endogenous 
androgen expression or interfere with AR-mediated 
signaling. However, several studies document a 
progressive decline in the production and tissue 
levels of the major androgen, testosterone, with 
age. In contrast, the AR itself is upregulated with 

age in men and promotes continued proliferation 
and differentiation of the prostate [ 82 ,  83 ]. 
Therefore, therapeutic approaches that directly tar-
get androgen and/or the AR are only effective for 
early stage androgen- dependent prostate cancer, 
as progressive prostate tumors develop alterna-
tive strategies to survive and grow despite anti-
androgen therapy. Eventually, such tumors 
develop into lethal, metastatic castration resistant 
prostate cancers [ 84 ] (Fig.  2.6 ).

       Nonsteroidal Growth Factor/AR 
Signaling and Aging 
 Despite reduced levels of androgen with aging, 
the AR is constitutively active and plays an 
important role in progressive castration resistant 
disease. Several studies have reported hormone- 
independent AR signaling in prostate cancer cells 
by nonsteroidal growth factors such as peptide 
growth factors [ 85 – 90 ]; neuropeptides, including 
neurotensin and bombesin [ 91 – 94 ]; infl amma-
tory mediators such as interleukins IL-4 and IL-6 
[ 95 – 107 ]; and chemokines CXCL8 [ 108 – 111 ] 
and CXCL12 [ 112 ] (Fig.  2.6 ). Several of these 
nonsteroidal growth factors are secreted in excess 

  Fig. 2.5    AUASI scores correlate with tissue stiffness and 
collagen content. ( a ) Among tissues from 21 patient tests, 
measures of tissue stiffness for 9 with AUASI scores in 
the moderate/severe range were signifi cantly higher than 
for those tissues from the 12 patients with scores in the 
absent/mild range ( r  = 0.82), indicating that higher levels 

of tissue stiffness directly correlated with moderate/severe 
LUTS. ( b ) Higher levels of tissue stiffness directly corre-
lated with higher levels of collagen content ( r  = 0.60). 
These data show that high levels of tissue stiffness corre-
late with collagen content and fi brosis, and further corre-
late with LUTS       
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by the aging prostate and promote prostate cancer. 
As noted earlier in this chapter, CXCL5 and 
CXCL12 are secreted at high levels by aging 
prostate stroma [ 47 ,  113 ], and both CXCL5 and 
CXCL12 have been shown to promote prostate 
cancer progression [ 113 – 115 ]. Another study has 
also found that the serum levels of CXCL8 are 
elevated in aged men with prostate cancer and 
bone metastasis [ 116 ]. These nonsteroidal growth 
factors activate different signal transduction 
pathways like PI3K/Akt, MAPK, PKC, PKA, 
and JAK/STAT (Table  2.1 ) [ 93 – 96 ,  99 ,  101 ,  104 –
 106 ,  108 – 110 ,  112 ,  117 – 120 ], which further acti-
vates the AR, drives AR target genes, and 
promotes PCa growth and progression (Fig.  2.6 ).

       Oxidative Stress and Aging 
 Aging is also characterized by an increase in 
intracellular oxidative stress and a decrease in 
intracellular reactive oxygen species (ROS) scav-
enging. The increased oxidative stress with aging 
activates various signal transduction pathways like 
PI3K/Akt, MAPK, PKA, PKC, and JAK/STAT 
which activates AR signaling and thus PCa 

growth and progression (Table  2.1 ). In addition, 
increased oxidative damage to cellular macro-
molecules in the prostate has been observed in 
aging [ 121 ] as well as during the development of 
prostatic malignancy [ 122 ,  123 ]. Specifi cally, 
the increase in oxidative damage to DNA, mea-
sured by the accumulation of nuclear 
8- hydroxydeoxyguanosine (8-OHdG), has been 
observed in aging prostate tissues [ 124 ]. 
Glutathione (GSH) is the most abundant antioxi-
dant in cells and tissues, and it plays a primary 
role in protection against oxidative stress [ 125 ]. 
Depletion of GSH with aging is responsible for 
increased risk for cancer in older adults [ 126 ]. 
Like glutathione, selenium blood levels decrease 
with age [ 127 – 129 ]. Selenium is protective 
against prostate cancer through the reduction of 
oxidative stress compounds [ 130 ,  131 ]. Clinical 
chemoprevention trials support the protective 
role of selenium against cancer development 
including prostate cancer [ 132 ,  133 ]. A role for 
oxidative stress in prostate cancer is supported 
by observations that foods high in antioxidants 
such as fruits and vegetables are protective [ 134 ], 

  Fig. 2.6    Aging promotes prostate cancer progression. 
Aging-associated decline in the androgen levels is accom-
panied by an increase in androgen receptor (AR), reactive 
oxygen species (ROS) and infl ammation, and a decrease 
in antioxidants and vitamin D. Infl ammatory molecules 
(Interleukins and chemokines) secreted by aged prostate 

activates different signal transduction pathways, also acti-
vated by an increased reactive species (ROS), which then 
activates the androgen receptor (AR). Activated AR drives 
the expression of AR target genes and thus promotes the 
prostate cancer growth and progression       
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and also by clinical studies which indicate that intake 
of antioxidants, such as selenium, α-tocopherol 
(vitamin E), and the carotenoid lycopene offers 
protection against prostate cancer.  

   Vitamin D and Aging 
 Vitamin D insuffi ciency and defi ciency are highly 
prevalent among adult men in the USA [ 135 ]. 
Vitamin D defi ciency is associated both with 
moderate-severe LUTS [ 135 ] and with an 
increase in risk for prostate cancer [ 136 ]. Low 
serum levels of 1,25-D, a vitamin D metabolite, 
were signifi cantly associated with an increased 
risk of clinically detected prostate cancer among 
older men, particularly in men with low levels of 
25-dihydroxyvitamin D (25-D) [ 137 ]. Therefore, 
high dose vitamin D alone or in combination with 
other agents has been shown to be effective in 
prevention of prostate cancer [ 138 ].   

    Prostate Summary 

 Aging-associated changes in prostate tissues are 
promoted by complex biological processes. 
Transitions in the expression levels and activities 
of steroidal hormones and nonsteroidal growth 
factors during the aging process disrupt tissue 
homeostasis within the prostate and facilitate 
cellular proliferation, organ enlargement, and 
malignant growth. The observed low-level secre-
tion of infl ammatory proteins within aging 
prostate tissues promotes the concomitant low-
level, but cumulative, overproliferation of both 

stromal fi broblastic and epithelial cell types. This is 
associated with increased prostatic volume in 
aging men and may promote hormone-indepen-
dent growth of prostate tumors. Many of these 
same proteins promote other cellular processes in 
the prostate, including myofi broblast accumula-
tion and tissue fi brosis. This can also contribute 
to the development and persistence of LUTS in 
aging men. Though far from complete, a picture 
is beginning to emerge for how the biology of 
aging promotes changes in prostatic tissue that 
contribute to LUTS and malignant growth. These 
fi ndings may point the way toward development 
of diagnostic and prognostic tools as well as pre-
ventive and therapeutic approaches that will be 
 useful for the detection and treatment of male 
LUTS and PCa.   

    Bladder Dysfunction 

 The prevalence of overactive bladder (OAB) and 
other LUTS increases with age and has a consid-
erable negative impact on quality of life. The 
International Continence Society (ICS) has 
defi ned OAB as a symptom complex with urinary 
urgency, with or without urinary incontinence, 
and nocturia [ 139 ]. Detrusor overactivity (DO) is 
a urodynamic diagnosis associated with demon-
stration of involuntary bladder contractions dur-
ing cystometry. Many studies have described the 
epidemiology and age-dependency of LUTS 
(Fig.  2.7 ). The EpiLUTS study surveyed a total 
of 30,000 women and men in the USA, UK, and 
Sweden between the age of 40 and 95 years of 
age, using an Internet-based self-administered 
data collection. LUTS were found to be highly 
prevalent in this population study and increased 
with advancing age in men. Increasing age in 
women was associated with a higher prevalence of 
only certain LUTS, such as urgency, urgency with 
fear of leaking, weak stream, urgency inconti-
nence, and nocturnal enuresis [ 140 ]. The National 
Overactive Bladder Evaluation (NOBLE) specifi -
cally assessed the prevalence of overactive bladder 
(OAB) symptoms in a US adult population over 18 
years of age. The prevalence of OAB symptoms 
was 16.9 % in women and 16.0 % in men and 

    Table 2.1    Non-steroidal growth factors and infl amma-
tory proteins mediate androgen receptor activation in 
prostate cancer cells   

 Infl ammatory 
protein 

 Signal transducing 
proteins 

 References 

 IL-4  Akt, NFkB, p300  [ 101 ,  104 ,  106 ] 
 IL-6  STAT3, SRC-1, 

p300, PI3K/AKT, 
STAT3, MAPK 

 [ 93 – 96 ,  99 , 
 105 ,  117 ,  120 ] 

 CXCL8 (IL-8)  EGFR, Src, Akt, 
NFkB, ERK, 
PI3K/Akt, Src 

 [ 108 – 110 ,  119 ] 

 CXCL12 
(SDF-1) 

 SRC-1, MAPK, 
PI3K/Akt 

 [ 112 ] 
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showed a steep increase with age in women when 
associated with urgency incontinence. A similar 
pattern was observed for OAB in men without 
urgency incontinence, with a threefold increase 
in individuals more than 55 years of age as com-
pared to those younger than 45 years [ 141 ]. OAB 
symptom prevalence increased with age in both 
men and women in the EpiLUTS study as well 
[ 142 ]. Wehrberger et al. [ 143 ] studied the preva-
lence of LUTS and UI in a population-based 
cohort analysis of men and women over 85 years 
of age in the Vienna Trans- Danube Aging Study 
(VITA). OAB was reported as 55 % in women 
and 50 % in men, and UI was found in 35 % of 
women and 24 % of men. Essentially all epide-
miological studies are in accordance and demon-
strate that LUTS and overall voiding dysfunction 
increase with age in both men and women. The 
proportion of individuals aged 80 years or older 
is currently the fastest growing sector of the pop-
ulation worldwide [ 144 ], and this implies that 
analysis of age- dependent factors contributing to 
bladder dysfunction will be urgently needed to 
develop strategies for managing the problem.

   Physiological aging affects lower urinary tract 
function at all levels of the organism, from 
changes in the central (CNS) and peripheral 
(PNS) nervous systems to biochemical and cel-
lular alterations within the detrusor and urothe-

lium of the bladder and urethra. These changes 
and their functional consequences are briefl y 
discussed in this overview. 

    Age-Related CNS Changes in Adults 
with Urinary Incontinence 

 Normal aging may affect neurons in the CNS at a 
cellular and synaptic level. Just as cognitive 
decline has been observed in older humans with-
out associated neurodegenerative disease, the 
age-associated myelin or neuronal loss can lead 
to impaired inhibitory control of micturition. 
Control of micturition involves several regions of 
the brain coordinating afferent and efferent sig-
naling of the storage and micturition refl exes 
[ 145 ]. Common changes in cortical pathways 
seen in older adults could involve the regions of 
the brain responsible for voiding control. Griffi ths 
et al. [ 146 ] used functional magnetic resonance 
imaging (fMRI) in 10 continent women aged 
30–79 years to study regional brain responses 
during bladder fi lling via urethral catheter. 
Activation of bilateral insula and dorsal anterior 
cingulate cortex decreased with age. The authors 
interpreted their results to suggest that with 
increasing age, weaker signals in the bladder 
control network as a whole and/or changes in 

  Fig. 2.7    Prevalence of OAB by age. Data from Milsom et al. BJU Int. 2001;87:760–766 and Irwin et al. Eur Urol. 2006 
Dec;50(6):1306–14       
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medial prefrontal cortex function, which exerts 
inhibitory control of the pontine micturition 
center (PMC), or connecting pathways may be 
responsible for the development of urgency 
incontinence. 

 White matter changes were associated with 
urinary complaints in a cohort of nondisabled 
elderly people in the Leukoaraiosis And 
DISability (LADIS) Study [ 147 ]. White matter 
hyperintensities (WMH) seen on MRI in the right 
inferior frontal region correlated with inconti-
nence, incontinence severity, and degree of 
bother in a cohort of 100 community-dwelling 
individuals [ 148 ]. In another study, Tadic et al. 
[ 149 ] demonstrated by fMRI that brain activity in 
25 women with UI during bladder fi lling was posi-
tively correlated with global WMH in the PMC. 
Their fi ndings provide some clues to the possible 
role of white matter damage in the genesis of 
urgency incontinence and to the cerebral mecha-
nisms of bladder control in older women.  

    PNS Alterations Can Occur 
with Age-Related LUTS 

 Parasympathetic and sympathetic preganglionic 
neurons project to the major pelvic ganglion to 
make contact with postganglionic neurons inner-
vating the bladder and urethra. Age-related 
changes in innervation leading to micturition 
disturbances have been extensively studies in 
animals and humans. In humans, Gilpin et al. 
[ 150 ] determined the effect of age on the auto-
nomic innervation of the urinary bladder in a 
group of 54 patients with an age range of 20–79 
years, all of whom had a normal urodynamic 
study. They reported a reduction in the number of 
nerves with progressing age, as did Hald and Horn 
[ 151 ]. In aged rats, voiding dysfunction was attrib-
uted to a loss of monoaminergic innervation of the 
lumbosacral spinal nuclei [ 152 ]. They found by 
quantitative image analysis signifi cant age-associ-
ated declines in the innervation of most regions, 
including the intermediolateral cell nucleus, sacral 
parasympathetic nucleus, dorsal gray commissure, 
and in the ventral horn, including the dorsolateral 
nucleus, which in the rat is one of the component 

nuclei homologous to Onuf’s nucleus in humans. 
Lesions in Onuf’s nucleus are associated with 
voiding dysfunction characteristic of Shy-Drager 
syndrome. Mohammed and Santer [ 153 ] found 
that the total neuronal numbers of rat lumbosa-
cral primary afferent neurons did not change with 
age (from 3 to 24 months of age). However, the 
effects of NO on the bladder and also its expres-
sion in dorsal root ganglion neurons were reduced 
in aged rats [ 139 ,  154 ]. Similarly, a reduction in 
vanilloid receptor type 1 in the lumbosacral 
dorsal root ganglia was found in older rats [ 155 ]. 
In anesthetized rats, Hotta et al. [ 156 ] showed 
that compared to young adult animals (2–3 
months), aged rats (26–29 months) exhibited (1) 
bladders with nearly six times higher volumes; 
these volumes were accommodated at lower 
pressures; (2) reduction of bladder contractions 
induced by pelvic nerve stimulation; and (3) a 
decrease of the pelvic afferent nerve activity 
sensing bladder volume. They attributed their 
fi ndings to (a) changes in the mechanical proper-
ties of the bladder, (b) changes in the contractile 
properties of the detrusor smooth muscle during 
efferent stimulation, and (c) changes in the abil-
ity of its afferent innervation to sense bladder 
volume. They also suggested that such changes 
could explain the increase in residual volume, the 
inability to postpone voiding, and the decrease in 
fl ow rate seen in elderly humans. 

 The conduction velocity of myelinated and 
unmyelinated fi bers of the pelvic nerve in rats 
was found not to change with age. Only the num-
ber of unmyelinated fi bers was signifi cantly 
reduced in older rats, particularly those with a 
diameter smaller than 0.7 μm [ 157 ]. Further evi-
dence for an age-dependent reduction in sensory 
functions was presented by Smith et al. [ 158 ], 
who suggested that their calculations approxi-
mating wall stress during fi lling indicated loss of 
bladder volume sensitivity with increasing age. 
The fi ndings by Kenton et al. [ 159 ] support age- 
dependent reduction of sensory functions also in 
humans. They compared current perception 
thresholds (CPT) in the urethra and bladder of 
women with idiopathic overactive bladder to 
asymptomatic controls and demonstrated that the 
CPT was signifi cantly higher in older women. 

J.A. Macoska et al.



25

This suggests that sensory neuropathy in the lower 
urinary tract increases with age and may contribute 
to the increase in OAB/DO seen with aging.  

    Age-Related Bladder Remodeling: 
Structural Changes of the Bladder 
and Urethra 

 A morphometric study of human bladder speci-
mens from two different age groups revealed that 
the area density of smooth muscle to connective 
tissue ratio decreased with age in both men and 
women [ 160 ], suggesting that aging is associated 
with a relative increase in detrusor fi brosis. This 
is not in agreement with some reported fi ndings 
in rats, where morphometric analysis showed a 
signifi cant age-dependent increase in the mean 
thickness of the muscularis layer, whereas the 
collagen density signifi cantly decreased in the 
muscularis and in the lamina propria layers [ 161 ]. 
However, in another study, histological examina-
tion of the bladder of older Fisher rats revealed 
urothelial thinning, decreased muscle mass, and 
increased collagen content [ 162 ]. Thus, reports 
on the effects of aging on rat bladder morphology 
show confl icting results, suggesting that the 
aging process in animals may not reliably refl ect 
what is occurring in humans. 

 A reduced number of caveolae (invaginations 
of the plasma membrane) in bladder smooth 
muscle cells have been observed in human [ 163 ] 
and rat specimens [ 164 ]. Since the caveolae pro-
vide a mechanism for compartmentalization and 
integration of signal transduction, they play an 
important role in normal smooth muscle func-
tion. However, their precise role in age-related 
detrusor dysfunction remains to be established. 

 Levy and Wight [ 165 ] observed a signifi cant 
increase of collagen fi bers in the lamina propria 
and around the neurovascular bundles of human 
bladders, and Ewalt et al. [ 166 ] noticed a replace-
ment of elastin by collagen within the muscle 
fi bers accompanied by increased collagen depos-
its at the basal membrane. These fi ndings were 
suggested to explain the reduced elasticity and 
potentially the reduced bladder capacity of the 
aging detrusor. Strasser et al. [ 167 ] found that age 

was associated with apoptosis of striated muscle 
cells in a cadaver study of the rhabdosphincter of 
the urethra, which corresponds to an age-related 
decrease in maximal urethral pressure [ 168 ]. 
Thus, in humans, aging may be accompanied by 
structural LUT changes, including bladder fi bro-
sis and decreased functional musculature in the 
bladder and urethra [ 169 ] (Fig.  2.8 ).

       Biochemical and Receptor Alterations 
with Aging 

 The infl uence of age on muscarinic receptor den-
sity and sensitivity has been investigated in ani-
mal models with partly confl icting results. 
Age-related changes in muscarinic receptor func-
tion have been reported, but in vitro studies with 
bladder tissue from old vs. young rats have 
yielded contradictory results that partly may be 
strain specifi c. For example, in Fischer 344 rats, 
muscarinic receptor-mediated detrusor contrac-
tion was either increased [ 170 ], unchanged [ 171 , 
 172 ], or decreased [ 162 ,  173 ]. In Wistar rats 
[ 161 ,  174 ], unchanged muscarinic receptor- 
mediated bladder contraction was reported. 
However, many studies in Sprague–Dawley rats 
have demonstrated decreased muscarinic 
receptor- mediated detrusor contractions [ 175 –
 177 ]. In a study of estrogen on older rats, 
Watanabe et al. [ 178 ] found that M2 receptor 
mRNA expression, but not M3 receptors, was 
signifi cantly upregulated in older animals. This 
fi nding was corroborated by an increased voiding 
frequency in these two groups elicited by musca-
rine. Whatever age-related changes in muscarinic 
receptor functions have been demonstrated in 
animal bladder, they do not seem to be predictive 
for what is occurring in humans. Particularly, 
they do not seem to be associated with a change 
in the response to antimuscarinics, for there is no 
evidence for reduced therapeutic benefi ts from 
such treatment in older adult patients [ 179 ,  180 ]. 

 A study by Mansfi eld et al. [ 181 ], using 
radioligand- binding assay, showed that the total 
number of muscarinic receptors in the human 
male detrusor decreased with age. This study also 
found a decrease in mRNA expression of M3 
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receptors with age in both male and female 
subjects, but no change in M2 receptors. Due to 
the lack of highly specifi c antibodies for the 
 muscarinic receptor subtypes, it was not possible 
to decide if these changes in MRNA expression 
were accompanied by a change in protein expres-
sion. The functional consequences of the fi ndings 
were not reported. In contrast to these fi ndings, 
Wuest et al. [ 182 ] found that mRNA detected for 
M2, M3, P2X1, and P2X3 receptors did not 
change with age. 

 The mRNA expression of the purinergic P2X1 
receptor was negatively correlated with age in 
samples of detrusor muscle from normal control 
male individuals. This negative association was 
not observed in samples from obstructed patients 
[ 183 ]. Yoshida et al. [ 184 ,  185 ] found a signifi cant 
positive correlation between age and the puriner-
gic component of human bladder preparation 
contraction and a signifi cant negative correlation 

between age and the cholinergic component of 
human bladder preparation contraction [ 140 ]. 
The authors studied the neurotransmitter release 
from the detrusor during electrical fi eld stimula-
tion (EFS), using high-performance liquid chro-
matography. They found that acetylcholine 
release and age were signifi cantly negatively cor-
related, while ATP release and age were posi-
tively correlated. In the guinea pig, aging 
decreased the neurogenic contraction of isolated 
detrusor induced by EFS, but did not alter the 
cholinergic component of the contraction [ 186 ]. 
Contractile properties or excitability of human 
detrusor muscle preparations from normal individ-
uals did not vary with age, but declined in patho-
logical conditions such as bladder outlet obstruction 
and idiopathic or neurogenic detrusor overactivity 
[ 187 ]. Wuest et al. [ 182 ] studied the putative age-
dependence of concentration- response curves to 
the muscarinic agonist carbachol and the purinergic 

  Fig. 2.8    Light microscopy picture from human detrusor 
muscle. This image shows a combined muscle cell, collagen 
(yellow), and elastin stain (original magnifi cation × 150). 

( a ) Normal detrusor, ( b ) Male with prostatic obstruction, 
( c ) Elderly female without LUTS.  From :  Nordling J .  Exp 
Gerontol .  2002 Aug – Sep ; 37 (8, 9): 991 – 9        
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agonists ATP and α-β methylene-ATP in human 
detrusor muscle strips. They found, in accor-
dance with the results of Yoshida et al. [ 184 ] that 
the sensitivity to α-β -methylene-ATP increased 
with age. However, patient age did not infl uence 
(1) EFS evoked contractions and the effects of 
several antimuscarinic drugs, (2) concentration-
response curves for carbachol and their modula-
tion by antimuscarinic agents, and (3) expression 
levels of receptor subtype mRNA. It was con-
cluded that there was no evidence for age-related 
contractile deterioration in the detrusor. This is in 
contrast to fi ndings in functional in vivo studies 
in humans (see below).  

    Functional Micturition 
Changes with Aging 

 The aging process of both genders is associated 
with signifi cant changes in bladder function and 
clinical symptomatology. However, the patho-
physiology behind the dysfunctions is sometimes 
diffi cult to establish, since it is often diffi cult to 
separate what can be attributed to “normal aging” 
from what is caused by comorbidities. LUTS are 
divided into storage (irritative), voiding (obstruc-
tive), and postmicturition components. Storage 
symptoms are urgency, frequency, nocturia, and 
urgency incontinence; voiding symptoms include 
a reduced force of stream, hesitancy, inability to 
empty the bladder, and straining and postmicturi-
tion symptoms include feeling of incomplete 
emptying and postmicturition dribble [ 188 ]. 
Unfortunately, none of these symptoms is disease 
specifi c or has a high correlation to a specifi c 
urodynamic pattern. Most of these symptoms 
have been suggested to be age dependent and 
attributed to various factors including reduced 
bladder capacity, changes in bladder sensation, 
and DO. Early urofl ow studies demonstrated an 
age- dependent decrease in  Q  max  [ 189 ,  190 ], which 
was confi rmed and shown to be similar in both 
sexes [ 168 ,  191 ], however, not demonstrable in 
symptomatic elderly men with nonobstructive 
voiding dysfunction [ 192 ]. 

 Detrusor underactivity [ 193 ,  194 ], leading to 
emptying diffi culties and symptoms sometimes 

overlapping with those of detrusor overactivity, 
may have many underlying causes. Some of the 
most frequently discussed are impaired detrusor 
contractility and decreased sensation [ 195 ]. 
Urodynamic assessment in older patients of both 
sexes without overt neurological disease showed 
higher residual volumes and lower detrusor 
shortening velocities, but no changes in isometric 
detrusor function [ 196 ]. In a series of patients, 
where the bladder capacity at fi rst void was taken 
as measure of bladder sensation, this parameter 
showed a progressive increase with age, suggest-
ing an age-dependent decrease in bladder sensa-
tion [ 197 ], a fi nding confi rmed by several other 
investigators [ 159 ,  168 ]. In a clinical study of 
patients referred for LUTS or UI, Madersbacher 
et al. [ 191 ] found an increase in postvoid residual 
volume, along with a decrease of fl ow rates, 
voided volumes, and bladder capacity associated 
with increasing age. These fi ndings were similar 
in both genders. Pfi sterer et al. [ 168 ] assessed a 
group of 85 female volunteers aged between 20 
and 90 years with a bladder diary, urofl owmetry, 
and detailed videourodynamics. Bladder capacity 
did not change with age, but was smaller in 
women with detrusor overactivity (DO) on uro-
dynamics. Urine production and urine frequency 
did not differ signifi cantly with age. Bladder sen-
sation, detrusor contraction strength, maximal 
fl ow rate, and maximum urethral closure pressure 
were all negatively associated with age. It was 
concluded that there is a normal functional decline 
seen with aging in otherwise asymptomatic 
women. This study suggested a progressive 
decrease in detrusor contraction strength, which 
was in line with the fi ndings of van Mastrigt [ 198 ], 
who demonstrated a statistically signifi cant age-
related decrease of the detrusor contractility 
parameter,  W  max , in both sexes. Other investigators 
were unable to show any correlations between 
bladder contractility and age in symptomatic 
elderly men with nonobstructive bladder dysfunc-
tion [ 192 ] or between either maximum detrusor 
pressure or detrusor pressure at peak fl ow rate and 
age in LUTS patients of both sexes [ 191 ]. 

 Normal age-related changes in the bladder 
and lower urinary tract should be clearly differ-
entiated from pathological alterations seen with 
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conditions such as OAB or LUTS. Detrusor 
underactivity and the related condition, “detrusor 
hyperactivity with impaired contractile function” 
(DHIC) [ 199 ] can also present with advancing 
age and should be diagnosed adequately in 
elderly individuals. The current available data 
from animal and human studies demonstrate that 
aging impacts the lower urinary tract function 
through ultrastructural and physiological alterations. 
The reported age-related changes in animals do 
not always correspond to what is found in humans 
and should be interpreted with caution. Overall, 
in humans, bladder sensation and contractility 
seem to decrease with advancing age as a possi-
ble consequence of neuronal loss and remodeling 
of the bladder and urethra.  

    Bladder Summary 

 Changes in bladder structure and function are 
common with advancing age. These can infl uence 
a wide variety of features in older patients includ-
ing how they sense bladder fullness, whether they 
experience urinary urgency frequency, and the 
volume of urine they are able to hold. In addition, 
these changes can have signifi cant effects with 
regard to urinary incontinence and bladder empty-
ing effi ciency. Identifi cation of many of these 
changes has led to targets for therapy, particularly 
for OAB and urge urinary incontinence. Additional 
work will help to better defi ne additional changes 
associated with bladder aging and may lead to new 
therapies in the future.   

    Conclusions 

 Studies in molecular and cellular biology, bio-
chemistry, physiology, and biophysics have dra-
matically advanced our understanding of the 
genitourinary system across the human lifespan. 
Basic science and translational research hold the 
key to future advances in this fi eld, including 
identifi cation and development of new targets for 
clinical therapies. This chapter has focused on 
disease processes of the prostate and bladder, but 
similar advances have been made in other fi elds 

including kidney diseases, urolithiasis, sexual 
dysfunction, and urinary tract infection. 
Additional basic science concepts are addressed 
in other chapters as they relate to specifi c disor-
ders of the aging genitourinary system. Future 
research will certainly help advance the science 
and subsequent clinical care for older adults.     
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