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Chapter 2
Flow and Functional Models for Rheological 
Properties of Fluid Foods
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A flow model may be considered to be a mathematical equation that can describe 
rheological data, such as shear rate versus shear stress, in a basic shear diagram, and 
that provides a convenient and concise manner of describing the data. Occasionally, 
such as for the viscosity versus temperature data during starch gelatinization, more 
than one equation may be necessary to describe the rheological data. In addition to 
mathematical convenience, it is important to quantify how magnitudes of model 
parameters are affected by state variables, such as temperature, and the effect of 
structure/composition (e.g., concentration of solids) of foods and establish widely 
applicable relationships that may be called functional models.

Rheological models may be grouped under the categories: (1) empirical, (2) the-
oretical, and (3) structural. Obviously, an empirical model, such as the power law 
(Eq. 2.3), is deduced from examination of experimental data. A theoretical model 
is derived from fundamental concepts and it provides valuable guidelines on un-
derstanding the role of structure. It indicates the factors that influence a rheological 
parameter. The Krieger–Dougherty model (Krieger 1985) (Eq.  2.26) for relative 
viscosity is one such model. Another theoretical model is that of Shih et al. (1990) 
that relates the modulus to the fractal dimension of a gel.

A structural model is derived from considerations of the structure and often ki-
netics of changes in it. It may be used, together with experimental data, to esti-
mate values of parameters that help characterize the rheological behavior of a food 
sample. One such model is that of Casson (Eq. 2.6) that has been used extensively 
to characterize the characteristics of foods that exhibit yield stress. Another struc-
tural model is that of Cross (1965) (Eq. 2.14) that has been used to characterize 
flow behavior of polymer dispersions and other shear-thinning fluids. While ap-
plication of structure-based models to rheological data provides useful information, 
structure-based analysis can provide valuable insight in to the role of the structure 
of a dispersed system. For example, as discussed in Chap. 5, it allows for estimat-
ing the contributions of interparticle bonding and network of particles of dispersed 
systems.

Flow models have been used also to derive expressions for velocity profiles and 
volumetric flow rates in tube and channel flows, and in the analysis of heat transfer 
phenomenon. Numerous flow models can be encountered in the rheology literature 
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and some from the food rheology literature are listed in Table 2.1. Also, here those 
models that have found extensive use in the analysis of the flow behavior of fluid 
foods are discussed. Models that account for yield stress are known as viscoplastic 
models (Bird et al. 1982). For convenience, the flow models can be divided in to 
those for time-independent and for time-dependent flow behavior.

Time-Independent Flow Behavior

Newtonian Model

The model for a Newtonian fluid is described by the equation:

	 .σ ηγ= � (2.1)
As per the definition of a Newtonian fluid, the shear stress, σ, and the shear rate, γ̇ , 
are proportional to each other, and a single parameter, η, the viscosity, characterizes 
the data. For a Bingham plastic fluid that exhibits a yield stress, σ0, the model is:

0
.σ σ η γ− = ′� (2.2)

Table 2.1   Some two- and three-parameter flow models for describing shear rate (γ� ) versus shear 
stress ( σ) data
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where, η′ is called the Bingham plastic viscosity.
As shown in Fig. 2.1, the Newtonian model and the Bingham plastic model can 

be described by straight lines in terms of shear rate and shear stress, and the former 
can be described by one parameter η and the latter by two parameters: η′ and σ0, 
respectively. However, the shear rate–shear stress data of shear-thinning and shear-
thickening fluids are curves that require more than one parameter to describe their 
data. Given that the equation of a straight line is simple, it is easy to understand 
attempts to transform shear rate–shear stress data in to such lines. An additional 
advantage of a straight line is that it can be described by just two parameters: the 
slope and the intercept.

Power Law Model

Shear stress–shear rate plots of many fluids become linear when plotted on double 
logarithmic coordinates and the power law model describes the data of shear-thin-
ning and shear thickening fluids:

	 nKσ γ= � � (2.3)
where, K the consistency coefficient with the units: Pa sn is the shear stress at a shear 
rate of 1.0 s−1 and the exponent n, the flow behavior index, is dimensionless that re-
flects the closeness to Newtonian flow. The parameter K is sometimes referred to as 
consistency index. For the special case of a Newtonian fluid ( n = 1), the consistency 
index K is identically equal to the viscosity of the fluid, η. When the magnitude of 
n < 1 the fluid is shear-thinning and when n > 1 the fluid is shear-thickening in na-
ture. Taking logarithms of both sides of Eq. 2.3:

log log logK nσ γ= + �� (2.4)

Fig. 2.1   Plot of log shear 
rate (γ̇ ) versus log shear 
stress ( σ) for a 2.6 % Tapioca 
starch dispersion heated at 
67 °C for 5 min (Tattiyakul 
1997) to illustrate applicabil-
ity of the power law model
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The parameters K and n are determined from a plot of log σ versus log .γ , and the 
resulting straight line’s intercept is log K and the slope is n. If a large number of σ 
versus .γ  data points, for example, > 15 (it is easy to obtain large number of points 
with automated viscometers) are available, linear regression of log .γ  versus log σ 
will provide statistically best values of K and n. Nevertheless, a plot of experimental 
and predicted values of log .γ  and log σ is useful for observing trends in data and 
ability of the model to follow the data. Figure 2.1 illustrates applicability of the 
power law model to a 2.6 % tapioca starch dispersion heated at 67 °C for 5 min. 
Linear regression techniques also can be used for determination of the parameters 
of the Herschel–Bulkley (when the magnitude of the yield stress is known) and the 
Casson models discussed later in this chapter.

Because it contains only two parameters ( K and n) that can describe shear rate–
shear stress data, the power law model has been used extensively to characterize 
fluid foods. It is also the most used model in studies on handling of foods and 
heating/cooling of foods. Extensive compilations of the magnitudes of power law 
parameters can be found in Holdsworth (1971, 1993). Because it is convenient to 
group foods in to commodities, a compilation of magnitudes of power law param-
eters of several food commodities are given in Chap. 5. In addition, the influence of 
temperature in quantitative terms of activation energies, and the effect of concentra-
tion of soluble and insoluble solids on the consistency index are given.

Although the power law model is popular and useful, its empirical nature should 
be noted. One reason for its popularity appears to be due to its applicability over the 
shear rate range: 101 – 104 s−1 that can be obtained with many commercial viscom-
eters. Often, the magnitudes of the consistency and the flow behavior indexes of a 
food sample depend on the specific shear rate range being used so that when com-
paring the properties of different samples an attempt should be made to determine 
them over a specific range of shear rates. One drawback of the power law model is 
that it does not describe the low-shear and high-shear rate constant-viscosity data 
of shear-thinning foods.

Herschel–Bulkley Model

When yield stress of a food is measurable, it can be included in the power law model 
and the model is known as the Herschel–Bulkley model:

	 H0H H nK γσ σ− = � � (2.5)

where, .γ  is shear rate (s−1), σ is shear stress (Pa), nH is the flow behavior index, KH 
is the consistency index, and σ0H is yield stress. It is noted here that the concept of 
yield stress has been challenged (Barnes and Walters 1989) because a fluid may 
deform minutely at stress values lower than the yield stress. Nevertheless, yield 
stress may be considered to be an engineering reality and plays an important role in 
many food products.

If the yield stress of a sample is known from an independent experiment, KH 
and nH can be determined from linear regression of log σ—σ0H versus log( .γ ) as 
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the intercept and slope, respectively. Alternatively, nonlinear regression technique 
was used to estimate σ0H, KH, and nH (Rao and Cooley 1983). However, estimated 
values of yield stress and other rheological parameters should be used only when 
experimentally determined values are not available. In addition, unless values of the 
parameters are constrained a priori, nonlinear regression provides values that are the 
best in a least squares sense and may not reflect the true nature of the test sample.

Casson Model

The Casson model (Eq. 2.6) is a structure-based model (Casson 1959) that, although 
was developed for characterizing printing inks originally, has been used to charac-
terize a number of food dispersions:

	 0.5 0.5
0c c ( )K Kσ γ= + � � (2.6)

For a food whose flow behavior follows the Casson model, a straight line results 
when the square root of shear rate, ( .γ )0.5, is plotted against the square root of shear 
stress, ( σ)0 5, with slope Kc and intercept K0c (Fig. 2.2). The Casson yield stress is 
calculated as the square of the intercept, σ0c = (K0c)

2 and the Casson plastic viscosity 
as the square of the slope, ηca = ( Kc)

2. The data in Fig. 2.2 are of Steiner (1958) on a 
chocolate sample. The International Office of Cocoa and Chocolate has adopted the 
Casson model as the official method for interpretation of flow data on chocolates. 
However, it was suggested that the vane yield stress would be a more reliable mea-
sure of the yield stress of chocolate and cocoa products (Servais et al. 2004).

Fig. 2.2   Plot of ( .γ )0.5 versus 
( σ)0 5 for a food that follows 
the Casson model. The square 
of the intercept is the yield 
stress and that of slope is the 
Casson plastic viscosity
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The Casson plastic viscosity can be used as the infinite shear viscosity, η∞, (Metz 
et al. 1979) of dispersions by considering the limiting viscosity at infinite shear rate:
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Using the Casson equation the two terms in the right-hand side bracket can be 
written as:
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Combining the above two equations,

	 η∞ = ηCa = (KC)2� (2.10)

Quemada Model
Quemada et al. (1985) proposed a viscosity equation for dispersed systems based 
on zero-shear, η0, and infinite-shear, η∞, viscosities, and a structural parameter, λ, 
dependent on the shear rate, that may be written as:
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The time constant tc is related to the rate of aggregation of particles due to Brown-
ian motion. For highly concentrated dispersed systems, η∞ will be much lower than 
η0, so that ( η∞/η0) << l and the dispersion may have a yield stress, and Eq. (2.11) 
reduces to the Casson model (Eq. 2.6) (Tiu et al. 1992) with the Casson yield stress, 
σ0c = ( η∞/tc). Thus the Casson–Quemada models can be used to examine dispersions 
whose rheological behaviors range from only shear-thinning to shear thinning with 
yield stress. The Casson–Quemada models were used to study the role of cocoa sol-
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ids and cocoa butter on cocoa dispersions (Fang et al. 1996, 1997) to be discussed 
in Chap. 5.

A general model for shear rate–shear stress data that under specific assumptions 
reduces to the Herschel–Bulkley, the Casson, and other models was presented by 
Ofoli et al. (1987):

	 1 1 2
0

.( )n n nσ σ η γ∞= + � � (2.13)

where, n1 and n2 are constants, and η∞ is the infinite shear viscosity. It is important 
to note that one model may be applicable at low-shear rates and another at high-
shear rates (Dervisoglu and Kokini 1986). While applicability of the flow models 
themselves may be interesting, it is much more important to study the role of food 
composition on a model’s parameters and apply the model to better understand the 
nature of foods.

Apparent Viscosity—Shear Rate Relationships 
of Shear-Thinning Foods

At sufficiently high polymer concentrations, most shear-thinning biopolymer (also 
called a gum or a hydrocolloid) dispersions exhibit similar three-stage viscous re-
sponse when sheared over a wide shear rate range (Fig. 2.3): (1) at low-shear rates, 
they show Newtonian properties with a constant zero-shear viscosity ( η0) over a 
limited shear range that is followed by, (2) a shear-thinning range where solution 
viscosity decreases in accordance with the power law relationship; the reciprocal 
of the shear rate at which the transition from Newtonian to pseudoplastic behavior 
occurs is the characteristic time or the time constant, and (3) attains a limiting and 
constant infinite-shear-viscosity ( η∞). The three regions may be thought of being 

Fig. 2.3   Plot of shear rate 
versus apparent viscosity for 
shear thinning foods identify-
ing three separate regions: a 
zero-shear viscosity at low 
shear rates, a power law 
region at intermediate shear 
rates, and an infinite-shear 
viscosity at high-shear rates. 
Often, only data in the power 
law region are obtained
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due rearrangement in the conformation of the biopolymer molecules in the dis-
persion due to shearing. In stage 1 when the magnitude of γ�  is low, there is little 
rearrangement of the polymer chains, while in stage 2 the chains undergo gradual 
rearrangement with γ�  resulting in a power law behavior. In stage 3, the shear rate 
is sufficiently high that the polymer chains do not undergo much rearrangement.

Cross and Carreau Models

The apparent viscosity ( ηa) of the solution can be correlated with shear rate (γ� ) us-
ing the Cross (Eq. 2.14) or the Carreau (Eq. 2.15) equations, respectively.
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where, αc and λc are time constants related to the relaxation times of the polymer in 
solution and m and N are dimensionless exponents. Because magnitudes of η∞ of 
food polymer dispersions with concentrations of practical interest are usually very 
low in magnitude, they are difficult to determine experimentally. Therefore, to avoid 
consequent errors in estimation of the other rheological parameters in Eqs. 2.14 and 
2.15, often η∞ has been neglected (Abdel-Khalik et al. 1974; Lopes da Silva et al. 
1992). The Cross and Carreau models described well the shear dependence of aque-
ous dispersions of high methoxyl pectins and locust bean gum (Lopes da Silva et al. 
1992), konjac flour gum (Jacon et al. 1993), and mesquite gum solution (Yoo et al. 
1995), and other gums (Launay et al. 1986). In general, the model of Cross has been 
used in studies in Europe and that of Carreau in North America. In Chap. 4, the ap-
plicability of the Cross and Carreau models to locust bean gum dispersions will be 
discussed in more detail.

For small values of η∞, the Cross exponent m tends to a value (1 – n), where n is 
the power law flow behavior index (Launay et al. 1986; Giboreau et al. 1994). For 
the shear rate, cγ�  where ηap = ( η0 + η∞)/2, the Cross time constant αc = 1/ cγ� . Gener-
ally, cγ�  gives an order of magnitude of the critical shear rate marking the end of 
the zero shear rate Newtonian plateau or the onset of the shear-thinning region. It 
is therefore important to recognize the shear rate dependence of the rheological be-
havior of polysaccharide polymers in solution and the difficulty involved in obtain-
ing experimental data over the applicable shear rate range of 10−6 – 104 s−1 (Barnes 
et al. 1989). The low-shear rate region of about 10−3 – 100 is often used for the char-
acterization and differentiation of structures in polysaccharide systems through the 
use of stress controlled creep and non destructive oscillatory tests. The shear rate 
range of about 101 – 104 s−1 falls within the operational domain of most commercial 
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rheometers, so that the range of 10−3 – 104 s−1 can sometimes be effectively covered 
by a combination of measuring procedures and instruments.

Both the Carreau and the Cross models can be modified to include a term due to 
yield stress. For example, the Carreau model with a yield term given in Eq. (2.16) 
was employed in the study of the rheological behavior of glass-filled polymers 
(Poslinski et al. 1988):

1 2pa 0 p 1 ( )
Nη σ γ η λ γ −−  

  = + +� �� (2.16)

where, σ0 is the yield stress, ηp is the plateau viscosity, and λp and N are constants 
to be determined from experimental data. Rayment et  al. (1998) interpreted the 
rheological behavior of guar gum dispersions containing raw rice starch in terms 
of the Cross model with yield stress (Eq. 2.17). We note that, when yield stress is 
exhibited, the term plateau viscosity is used instead of zero-shear viscosity:

1
a 0 cP 1 ( )

m
η σ γ η α γ

−−  
  = + +� �� (2.17)

Models for Time-Dependent Flow Behavior

Considerable care should be exercised in determining reliable time-dependent rheo-
logical data because of the often unavoidable modification in structure due to sam-
ple handling and during loading the sample in a viscometer or rheometer measuring 
geometry. Nevertheless, with careful attention to details, such as allowing a sample 
to relax in the rheometer measuring geometry, rheological data can be obtained to 
characterize time-dependent rheological behavior.

Weltman Model

The Weltman (1943) model has been used to characterize thixotropic (Paredes et al. 
1988) behavior and of antithixotropic behavior (da Silva et al. 1997) of foods:

	 logA B tσ = − � (2.18)

where, σ is shear stress (Pa), t is time (s), and A (value of stress at t = 1 s) and B are 
constants. A plot of σ versus log time should result in a straight line. In thixotropic 
behavior B takes negative values and in antithixotropic behavior it takes positive 
values. Table  2.2 shows typical magnitudes of the constants A and B for cross-
linked waxy maize starch dispersions.
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Tiu–Boger Model

A model to study thixotropic behavior of foods exhibiting yield stress was devised 
by Tiu and Boger (1974) who studied the time-dependent rheological behavior of 
mayonnaise by means of a modified Herschel–Bulkley model:

( ) H
0H H

nKσ λ σ γ + 
�=� (2.19)

where, σ is the shear stress (Pa), .γ  is the shear rate (s−1), λ is a time-dependent 
structural parameter that ranges from an initial value of unity to an equilibrium 
value λe, σ0H is the yield stress (Pa), KH is the consistency index (Pa sn), and nH is the 
flow behavior index. The decay of the structural parameter with time was assumed 
to obey a second-order equation:
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where, the constant k1 is a function of shear rate to be determined experimentally. 
While the determination of σ0H, and nH is straight forward, estimation of k1 and λe 
requires the use of values of apparent viscosities ( ηa) (Tiu and Boger 1974):
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Table 2.2   Weltman Equation parameters for cross-linked waxy maize gelatinized starch disper-
sions. (Da Silva et al. 1997)

Shear rate (s−1)
Weltman 
Parameter

Conc. (%) 50 100 200 300

A 3 6.97 × 10−2 5.76 × 10−2 4.22 × 10−2

4 2.97 × 10−1 2.08 × 10−1 1.72 × 10−1 9.54 × 10−2

5 5.39 × 10−1 3.88 × 10−1 3.55 × 10−1

B 3 1.58 × 10−3 5.71 × 10−4 1.66 × 10−5

4 3.15 × 10−3 2.07 × 10−3 5.29 × 10−3 7.83 × 10−3

5 8.30 × 10−5 1.06 × 10−2 8.79 × 10−3

Correlation 
coef.

3 1.00 1.00 1.00
4 1.00 1.00 1.00 1.00
5 1.00 1.00 1.00
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