Chapter 2
Celestial Mechanics

Patterns of motion in the sky played a significant role in the historical development
of mechanics. Briefly reviewing the history lets us see how physical concepts and
models emerged from the empirical facts.

2.1 Motions in the Sky

Science often begins when people notice patterns in nature and try to understand
what causes them. One well-known pattern is the daily rising and setting of the Sun,
Moon, and stars. As the stars move across the sky each night, they look for all the
world like points of light on some kind of crystalline sphere rotating around Earth.
The Sun seems to move around Earth as well, although the relative positions of
the Sun and stars vary throughout the year (the collection of visible stars changes
with the season) so there must be two different crystalline spheres. The Moon is a
little more complicated because its position and phase both change throughout the
month, but both effects can be explained by placing the Moon on a sphere of its
own. In other words, most of the obvious motions in the sky can be explained with
the intuitive notion that Earth is fixed and objects in the sky move around us. This
is the classic geocentric model of the universe.

Problems arise, though, when we notice another set of motions in the sky: planets
are points of light that seem to “wander” among the stars.! Ancient societies knew
of five planets (the discovery of others had to await the invention of the telescope).
Mercury and Venus always stay fairly close to the Sun, appearing either in the west
after sunset or in the east before sunrise. Jupiter and Saturn can be seen across a
much wider range of positions, moving from west to east relative to the stars from
one night to the next. Mars is a bit like Jupiter and Saturn, but with a twist. Most of

The term “planet” comes from the ancient Greek term aster planetes, or “wandering star.”
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Fig. 2.1 Pictures taken across several months have been combined to illustrate Mars’s retrograde
motion. Relative to the background stars, Mars usually moves from right to left. However, from
November 15, 2007 to January 30, 2008 the planet moved from left to right, producing the loop
pattern shown here. In other cases retrograde motion can create a zigzag pattern. (Credit: Tung
Tezel (TWAN), reproduced by permission)

the time it moves from west to east, but every once in a while Mars appears to stop,
turn around and go from east to west for a few weeks, then turn around again and
resume its “normal” motion (relative to the stars). Today we can see this retrograde
motion very clearly in composite photographs, as shown in Fig. 2.1.

When scholars in ancient Greece tried to explain the apparent motions of
planets, they started with the assumption that the intrinsic motions involve circles.
Apollonius (c. 200 BC) constructed a model in which a planet moves on a small
circle (called an “epicycle”) that itself moves along a larger circle (called the
“deferent”). As shown in Fig.2.2, the composite motion can allow the planet to
move backward at certain points in its orbit (depending on the relative sizes and
speeds of the epicycle and deferent; see Problem 2.1). As the measurements became
more precise, Ptolemy (c. 100 AD) refined the model by shifting the center of the
deferent away from Earth and introducing yet a different point (called the “equant”)
around which the angular speed was defined.’

While Ptolemy’s model was admittedly complex, its quantitative success kept it
successful well into the Renaissance. Nicolaus Copernicus (1473—1543) introduced
the first mathematically detailed alternative with the Sun at the center of motion.”

>There is a common misconception that Ptolemy and his successors added more and more
epicycles. They couldn’t; even one was hard enough to compute. See Chap. 4 of The Book Nobody
Read by Owen Gingerich [1].
3The geocentric model had been questioned much earlier by Aristarchus (c. 300 BC), but without
a fully developed alternative.
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Fig. 2.2 In the geocentric model, a planet moves on an epicycle (dotted) whose center moves
along a curve called the deferent (dashed). The combined motion (solid) can cause the planet to
move backward as viewed from Earth. In the full Ptolemaic model, the deferent was not perfectly
centered on Earth

In this heliocentric model, retrograde motion is an illusion that occurs when
fast-moving Earth overtakes a slower-moving outer planet (see Problem 2.2);
planets never actually move backward in space. Offering a simple explanation
of retrograde motion is not all that Copernicus’s model had going for it. The
heliocentric model also explained why the observed planets fall into two categories:
Mercury and Venus are never seen far from the Sun because their orbits are smaller
than Earth’s; while Mars, Jupiter, and Saturn can be seen near the Sun, on the
opposite side of the sky, or anywhere in between because their orbits are larger
than Earth’s. Last but not least, Copernicus’s model revealed a simple pattern in the
quantitative relation between a planet’s distance from the Sun and its orbital period.
To Copernicus, this was a striking success: “In no other way,” he wrote, “do we find
a wonderful commensurability and a sure harmonious connection between the size
of the orbit and the planet’s period” (quoted by Gingerich [1, p. 54]).

That said, the original heliocentric model was not without fault. Like the Greeks,
Copernicus assumed that planetary motion involved circles. While he was able to
eliminate equants and large epicycles, he still needed small epicycles to make the
model fit the data. That made Copernicus’s model about as mathematically complex
as Ptolemy’s, even if it was conceptually simpler.

Copernicus’s model made an important prediction: Earth moves in space. If that
is true, then our perspective on the stars should change as Earth travels from one
side of its orbit to the other (e.g., from January to July). Tycho Brahe (1546—-1601),
who was perhaps the world’s greatest naked-eye astronomer, set out to test this
prediction. He amassed years’ worth of careful measurements of planet and star
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Fig. 2.3 Illustration of Kepler’s first and second laws of planetary motion. I. The ellipse indicates
the orbit, and the dot indicates the Sun at one focus. II. The time it takes the planet to travel from
A to B is the same as the time to travel from C to D, so the areas of the two shaded regions are
the same. This is a rather extreme example; the orbits of planets in our Solar System are much less
elongated

positions in an attempt to measure parallax, or small shifts in the apparent positions
of stars that should arise when we look from different sides of Earth’s orbit. Tycho
failed to find clear evidence for parallax, although now we know that stars are so far
away that parallax can only be detected with a good telescope. Tycho’s efforts did
ultimately provide support for the heliocentric model, although not in the way he
expected.

Shortly before he died, Tycho hired Johannes Kepler (1571-1630) as an assistant.
Kepler combed through Tycho’s measurements of planet positions and tried to
find a geometric model to explain the motion. He initially adopted Copernicus’s
heliocentric model with circular orbits modified by epicycles. Kepler found, though,
that the model could not quite reproduce Tycho’s high-quality data, notably for
Mars. Once he considered more general forms of motion, Kepler discovered that he
could fit the data using elliptical orbits. Working through the details, he eventually
extracted three laws of planetary motion:

I. Planets move in elliptical orbits, with the Sun at one focus.
II. A line that connects a planet to the Sun sweeps out equal areas in equal times
(see Fig. 2.3).
III. A planet’s orbital period P (in years) and average distance from the Sun a
(in AU) are related by P2 = a>.

Suddenly the heliocentric model had an attractive and powerful quantitative frame-
work. Still, people continued to struggle with the notion of a moving Earth.

That situation finally began to change thanks to the work of Galileo Galilei
(1564-1642), who was arguably the first great experimental physicist. Using the
newly-invented telescope, Galileo made two key discoveries related to planetary
motion. First, he observed that Venus has phases just like the Moon. In the
geocentric model, Venus would always stay between Earth and the Sun so it could
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Fig. 2.4 Phases of Venus in the heliocentric model (not to scale). Full and gibbous phases can
occur only if Venus travels to the far side of the Sun

only have new and crescent phases. Galileo saw that Venus has quarter and gibbous
phases as well, which implies that Venus can go “behind” the Sun (as seen from
Earth; see Fig. 2.4). In other words, if we know that Venus is closer to the Sun than
Earth is, and the planet has a full cycle of phases, then it must orbit the Sun. Second,
Galileo discovered four moons orbiting Jupiter. While this did not directly prove
that planets orbit the Sun, it did demonstrate that objects can orbit something other
than Earth. On the basis of his evidence, Galileo argued strongly in favor of the
heliocentric model, most famously in his book Dialogue on the Two Chief World
Systems. The work violated dictates from the Catholic Church, causing the book to
be banned by the Roman Inquisition and Galileo to be placed under house arrest.
More than three and a half centuries later, Pope John Paul II renounced the Church’s
condemnation of Galileo.

2.2 Laws of Motion

All of those ideas set the stage for Isaac Newton (1642—-1727) to devise the fields
we now know as theoretical physics and calculus (among other accomplishments).
In 1665, Newton graduated from Cambridge but the university then closed because
of the plague. He went home and, working alone, entered a period of remarkable
intellectual creativity. Newton started with mathematics, inventing the idea of

“Historical aside: In 1665-1666 Newton solved the problems of motion and gravity to his
satisfaction, keeping a detailed notebook but not publishing his work. In 1684, Edmund Halley
visited Newton to pose the question: If gravity has an inverse square force law, what curve
will a planet follow? Newton knew the answer was an ellipse (see Sect.3.1), but only after
battling Robert Hooke for some time did he finally decide to write his famous work Philosophiae
Naturalis Principia Mathematica, or “Mathematical Principles of Natural Philosophy.” Newton’s
introduction of mathematical principles was profoundly important for the further development of
physics and astrophysics. See Isaac Newton by James Gleick [2] for more about the life and work
of this fascinating figure.
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plotting solutions of equations as curves (a topic now known as algebraic geometry).
He developed calculus so he could analyze curves, using derivatives to represent
tangent lines and integrals to compute areas. Then Newton began to think about
curves representing trajectories of objects in motion. Before he could apply his
mathematical tools to motion, though, Newton had to introduce some new physical
concepts that became his famous laws of motion:

I. Inertia. An object will remain at rest or in uniform motion in a straight line
unless acted on by an unbalanced force.

II. Force and acceleration. A net force acting on an object produces an acceler-
ation in the same direction as the applied force. The acceleration and force are
related by

d
F = ma = v

=m o 2.1)

III. Equal/opposite reaction. If object #1 exerts a force on object #2, then object
#2 exerts an equal and opposite force back on object #1: F, = —F5;.

These laws are general; they are not specific to planets. In fact, to explain planetary
motion Newton had to add one more law specifying the force. We will come to the
law of gravity in Sect. 2.3.

While they are often introduced as above, Newton’s laws of motion can be
restated in terms of quantities that do not change with time. Think of a rod: the
(x, y,7) coordinates of the endpoints depend on whether the rod is moving or
rotating, but the distance between the two endpoints is always the same. A quantity
that is “conserved” is usually thought to represent some fundamental property of
a system (such as the length of the rod). Stating physical theories in terms of
conservation laws can often help us find the simplest expressions of those theories.
Let’s see a few examples that are probably familiar but nonetheless valuable.

Momentum is defined by

p =mv

We can use this to rewrite Eq. (2.1) as

O
dr
While this might seem trivial, it is actually a nice generalization of Newton’s
second law. It helps us see that when there is no net force, momentum does not
change. Thus, Newton’s first law is fundamentally a statement of conservation of
momentum.
Angular momentum is defined by

L =rxp = m(rxv) (2.2)
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We will sometimes use the specific angular momentum, defined to be the angular
momentum per unit mass:

Nlle

=rxv (2.3)

Let’s take the derivative of angular momentum with respect to time:

dL_er +r><dp
a dat P dt

vx(mv) + rxF

rxF

(The cross product of a vector with itself is zero, so the first term vanishes.) Clearly
if there is no net force then angular momentum is conserved. More interesting is a
situation in which the force is purely radial, F = F(r) t. In this case,

dL .
T = rx[F(r)r] = 0
We see that if a force is applied but there is no angular component to the force, then
angular momentum is conserved.

Energy. If a force acts on an object, it takes “work” to move the object against
the force. The amount of work required to go from some initial position r; to final
position r ¢ can be calculated as

ry
AU = —/ F.dr 2.4)
r;

We call this potential energy because it is energy that would be released if the
object were to move back to the initial position. We include a minus sign because
the work acts against the force F, and we write AU to emphasize that this is an
energy difference. If desired, we can pick a reference point at which the potential is
defined to be zero and thus obtain a potential energy function U(r). Then Eq. (2.4)
can be inverted to say the force is obtained by differentiating the potential energy:

F=-VU (2.5)
(This is independent of the choice of zeropoint because any additive constant

vanishes in the derivative.) Now let’s return to Eq. (2.4) and use Newton’s second
law along with v = dr/d¢ to see what we can learn:

’y dv
AU = _/t,' (m a)-(vdz)
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Toward the end we identify K = (1/2)mv? as the kinetic energy, or energy of
motion. Trivially rewriting the final equation gives

AU+ AK =0
or
AE[O[ =0 where EtOl =U + K

This is the statement of conservation of energy. Note that potential and kinetic
energy are not separately conserved; in fact, one can be traded for the other. But
the combination—the total energy—is conserved. This is true for any force, at least
in the context of Newtonian physics.

2.3 Law of Gravity

In order to apply his general laws of motion to planets, Newton had to specify
the force that acts on planets to generate their motion. We saw in Chap. I how he
used Kepler’s third law to motivate the inverse square law form. To give a precise
formulation, let’s suppose that an object of mass M exerts a gravitational force on
a second object of mass m whose position relative to the first object is given by
the vector r. If the objects are both point masses, Newton’s law of gravity in vector
form reads

M
GMm (2.6)

Fgrav(r) =- 2
where T reminds us that the force is radial, and the minus signs indicates that gravity
is an attractive force.

What if the two objects are not point masses? One of Newton’s triumphs was to
show that the gravitational force outside a spherically symmetric object of mass
M is the same as that from a point mass M at the center of the object. Also,
the gravitational force inside a spherical shell is zero. To understand these results,
consider the setup in Fig.2.5. Let’s use spherical coordinates® but modify them

See Sect. A.2 for a review.
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Fig. 2.5 Setup for computing the gravitational force from an extended spherical object

so 6 is measured from the x-axis while ¢ is in the direction perpendicular to the
page. Then complete the triangle by defining the side s and angle o as shown.
By symmetry, the net force on m is in the x-direction. The contribution to F from
a small volume element dV at r and 0 is

GmpdV

dF, = ———

cos« 2.7)

We would like to rewrite this in terms of R and 6. From the law of cosines,

s> =r?>+ R*—2rRcos6 (2.8)
and from the law of sines,
sin & sin 6 N . Rsin 6
= sina =
R s (r2 4+ R? —2rR cos 0)1/2

Then the familiar trigonometric identity cos? o + sin’ @ = 1 yields

r— Rcos6
(r2 + R?2 —2rRcos 9)!/2

coso =

Putting the pieces together, we can write Eq. (2.7) as

r —Rcos0

dF, = -G
. " ("2 + R2—2rRcos 0)Y/

s pdV

We obtain the net force by integrating, using the spherical volume element dV =
R?sin 6 dr df d¢:

r — Rcos6
(r2 4+ R? — 2rR cos 0)3/2

b4 21
F, = —Gm/dR Rzp(R)/ do sin@/ d¢
0 0
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(We discuss the limits for the R integral below.) The ¢ integral gives 2. To evaluate
the 6 integral, change integration variables to s using Eq. (2.8). This yields

r+R 2 _ R2 2
F, = —27Gm / dR R*p(R) s T2
|r—R| 2Rr?s
G 2 _ 2 s=r+R
AL / dR R p(R) [—r ~|—s:| (2.9)
r § s=|r—R|

Because of the absolute value, the value of the quantity in square brackets depends
on whether r — R is positive or negative:

}"2 _ R2 s=r+R
R<r = [— + s] = 4R
s s=r—R
r2 _ Rz s=r+R
R>r = [— + s] =0
s S=R-—r

The second result says there is no contribution to the integral in Eq. (2.9) from the
region with R > r. In other words, mass outside of r does not contribute to the
gravitational force at r (given spherical symmetry). Using the first result in Eq. (2.9)
lets us write

G r
F, = ——’2"/ 47R? p(R) dR (2.10)
r= Jo

This integral gives M(r), or the total mass enclosed within radius r, Thus, we can
write the gravitational force from an extended, spherically-symmetric object (now
in vector form) as

GM(rym
——r

Fgrav (l’) = 2

@2.11)

Using Eq. (2.4), we can now determine the gravitational potential energy for
point masses:

ry
AUgrav = _/ Fgrav -dr
r;

ry
r

i

ry
= GMm[ — dr

i
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This is also the potential energy outside any spherical object with total mass M.
As noted above, we must pick a reference point in order to define the full potential
energy function. The most common choice in astrophysics is to put the reference
point at infinity and define the potential energy to be zero there. This yields

GMm
r

U(r) = —

2.12)

It can be valuable to factor out m:

ur)y GM
m r

@(r) = (2.13)
This function is independent of m, so it describes the gravitational field around M
in a general way. We call it the gravitational potential of M. To see its utility,
consider:

ma=F=-VU=-mV®d = a=-Vo

All objects at a given position in the gravitational field of M experience the same
acceleration, regardless of their mass.

If we focus attention near the surface of Earth (as in introductory physics
courses), it may be convenient to adopt a different convention and let the reference
point for the potential be Earth’s surface. Then the potential energy at a height A
above the surface is written as

1 1
Uh)=-GM - —
@ ®m(R®+h Rea)

If h < Rg, we can make a Taylor series expansion and find
_ GMg

U(h) ~ mgh where g=—
Rg

=9.80ms2

Remember that this is valid only near the surface of Earth.

Application: Escape

In the next chapter we will see how Newton’s laws of motion and gravity come
together to explain Kepler’s laws. First, though, it is useful to do a short example
that illustrates how conservation laws can help us analyze certain problems quickly
and easily.

“What goes up must come down,” according to the common saying, but Newton
begged to differ. He discerned that the force causing an apple to fall from a tree is
the same force keeping the Moon in orbit around Earth; the key difference is that
the Moon’s forward motion keeps it from crashing into the ground. In principle,
if we could throw an apple hard enough we could give it enough motion to go up
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Fig. 2.6 The solid curve shows the gravitational potential energy; the dashed horizontal line
shows the total energy (which is conserved); and the difference between the two gives the kinetic
energy. Since kinetic energy cannot be negative, the object can never go beyond 7yax

and never come back down. (This works better with rockets than apples.) How hard
would we have to throw it?

To find out, suppose an object with mass m is at radius r and moving with speed
v in the gravitational field around mass M. Is there any limit on how far the small
object can go? If so, what is the maximum radius (ry.x) it can reach? How fast do
we need to make the object move if we want it to escape?

If we wanted to work with the original version of Newton’s laws of motion,
we would have to solve the differential equation d’*r/dt> = —(GM/r?)t for all
trajectories that originate at radius r with speed v, and then we would have to search
among those trajectories to find ry,x. That does not sound like a simple task. But the
analysis gets much easier if we turn to conservation of energy. At any given r, the
total energy is the sum of the potential and kinetic terms,

po_SMm 1, (2.14)
r 2
We can think about this in terms of an energy diagram as in Fig. 2.6. The total energy
must be independent of radius. Since the kinetic term is non-negative, the potential
energy can never exceed the total energy. The maximum allowed radius is the place
where the kinetic energy vanishes and the potential energy equals the total energy,

GMm

rmax

E=—

(2.15)

Equating (2.14) and (2.15) lets us solve for rp,x:

1 2o\
== — 2.16
Fma L 2GM) 2.16)
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Notice that we reached this answer in just three lines of algebra; we did not have to
specify the direction of motion or examine specific trajectories, or deal with vectors
and differential equations at all. Applying conservation of energy is a powerful
approach to this problem.

We can now ask how fast the object would have to be moving when it is at radius
r in order to escape the gravitational field altogether. This is the speed that allows
rmax to become infinity, and it is given by the value of v that causes the quantity in
parentheses in Eq. (2.16) to vanish:

2GMN\ 2
Vesc:( G ) 2.17)

r

We call this the escape velocity at a distance r from an object of mass M .

Problems

2.1. Consider a geocentric model for retrograde motion. Suppose the deferent has
radius R and angular speed 2, while the epicycle has radius a < R and angular
speed w (about its center). Find the velocity vector in polar coordinates centered on
Earth. By analyzing the tangential velocity at the innermost points, show that the
condition to have retrograde motion is aw > RS2.

2.2. Here is a way to understand retrograde motion in the heliocentric model using
geometric reasoning (no equations required). Consider a system with two planets
orbiting the Sun along circles in the same plane. Suppose the outer planet takes
twice as long as the inner planet to orbit the star. Let # = 0 be the time when the
two planets are lined up on one side of the star.

(a) Sketch the orbits, and add some distant stars. Suppose both planets orbit and
spin in the counterclockwise direction. Indicate the directions in the star field
that an observer on the inner planet would identify as “east” and “west.”

(b) Sketch the positions of the planets a little before and after t+ = 0. In which
direction across the sky does the outer planet appear to move, as viewed from
the inner planet?

(c) Repeat part (b) at times when the planets are not lined up (for example, when
the inner planet has completed 1/4 or 1/2 of its orbit).

2.3. To practice/review working with vectors, compute the specific angular momen-
tum for straight line motion r(#) = vt X + b ¥. Is angular momentum conserved?
Should it be?

2.4. Consider conservation of energy and angular momentum as applied to an
elliptical orbit.

(a) At what point in an elliptical orbit does a planet move fastest? Slowest?
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(b) Sketch the kinetic and potential energies as a function of time for a planet in an
elliptical orbit.

2.5. Consider a uniform sphere with mass M and radius R. Compute the gravita-
tional force on a particle of mass m at any radius 0 < r < oo. Then compute the
corresponding gravitational potential. You make take the potential to be zero at the
center of the sphere.

2.6. Consider a particle of mass m released from rest at a distance ry from a point
mass M (and assume M > m so M does not move). Use conservation of energy to
find the speed v, which is also dr/d¢. Then compute the acceleration and show that
the motion satisfies Newton’s laws.

2.7. For a sufficiently small object, compute the radius at which the escape velocity
equals the speed of light. Since nothing can go faster than the speed of light, this
is the “Schwarzschild radius” for the event horizon of a black hole. What is the
Schwarzschild radius of a black hole the mass of Earth? Of the Sun?

2.8. Could you jump off an asteroid? Let’s find out.

(a) Estimate the velocity you achieve when you jump straight up on Earth. Hint:
use the height you reach to estimate the change in your potential energy, and
then use conservation of energy to estimate your initial kinetic energy.

(b) Now estimate the size of the largest asteroid you could escape from by jumping.
You will need to make an assumption about the asteroid’s density; just explain
your reasoning.
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