Chapter 2
Riding the Wave: More on Wave Mechanics

2.1 Units of Measure

Many quantum mechanics (QM) references ignore the units of measure of the com-
ponents of a calculation. For example, the most common element of QM calcula-
tions is the one-dimensional (1D) x-representation wave-function, w(x). What are
its units? Answer: m™"2, or per-square-root-meters. Surprised? So were we.

In the following, we use square brackets to mean “the units of.” For example, [x]
means “the units of x.”

Let us start with the basics: in the macroscopic universe there are exactly four
fundamental quantities: distance, mass, time, and charge. (One can reasonably ar-
gue for a fifth: angle.) In the MKSA system, the corresponding units are meters (m),
kilograms (kg), seconds (s), and coulombs (C). We stick mostly with MKSA in this
text. As is common, we use the terms “units” and “dimensions” interchangeably in
this context.

For the units of y/(x), recall that the dot product of a normalized wave-function
with itself is a dimensionless 1:

Jm w*(x)y(x)dx=1 (dimensionless)

Since dx is in meters (m) and the units of y* are the same as y, then y*y must
be in m™!, and thus ¥ is in m~'"2.
Equivalently, if x is in meters and we compute the average of x:

(=" vy dx,

then the units of  must be m™2,
What about the momentum representation, a(p)? The same normalization pro-
cess starts with

J.oo a*(p)a(p)dp=1 (dimensionless) where p isin k
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1/2
Then a(p) must be in [momentum]_l/2 :[ a :| , or s'2 kg™ m™12 or “inverse
square-root momentum.” kg -m

Recall that mathematically, exponentials and logarithms are dimensionless and
their arguments must be dimensionless. Also, the unit “radian” is equivalent to di-
mensionless, because it is defined as arc-length/radius =m/m=dimensionless.

What about three-dimensional (3D) wave-functions? Given y(x,y,z), its units
are m~>2, Why? We refer again to the normalization integral, which says that the
particle must be somewhere in the universe, i.e.,

Pr (particle is somewhere in the universe) = 1

= _Uj _ y*ydxdydz (dimensionless).
universe

The units of dx dy dz are m?, so w must be in m=2. Often, for spherically symmetric

potentials, ¥ is a function of r, ¢, and 6: ¥ (r, 6, ¢). Then it must have units of
m? rad™:

J.” -y l//r2 sinf@drdpdf@=1 and 2 dr d¢ dfisin m?>-rad?.
universe
However, since rad is dimensionless, this is the same as before: m=>2. Thus, as ex-

pected, the units of ¥ are independent of the units of its arguments.
The unit of two-dimensional (2D) w(x,y) is left as an exercise for the reader.

2.1.1 Dimensions of Operators

Operators also have dimensions.

Let us consider the momentum operator. o s like dividing by x, so it has units
X

of (1/m), or m~'. Planck’s constant A, or /i = h/27, is a quantum of action, (energy)
(time), or of angular momentum (distance) (momentum); the units are thus joule-
seconds (J-s), or in purely fundamental terms, kg-m?/s. Then:

. hd , kg-m® \(1) kg- , ,
p=—— = unitsof (MJ (—) = ﬂ, consistent with p = mv.
m s

The momentum operator has units of momentum.
In fact, all observable operators have the units of the observable. We can see this
from the average value formula:

<5> = L y*oydyx, and [y*ydx]=dimensionless = [6]=]o].
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2
When composing operators, their units multiply. Thus, we see that iz has units

of m™2, etc. dx

Commutators are compositions of other operators, so the units of commutators
are the composition of the units of the constituent operators. (More on commutators
elsewhere.) Perhaps the most famous quantum commutator is:

[x,p]=%p - px=ih.
The units of % are m. (Note that the units of fy(x) = m(m "?)=m'?, not m.)
The units of p are kg-m/s. 12‘he units of x p are simply the product of the units of
xand p: (m)(kg-m/s) = kng This must be, because the commutator in this case

works out to a constant, i%i, with those units.
Note that the units of operators do not change with the representation basis. For
example, x in the momentum representation is still meters:

kgm2
~ . d . S
x=ih— = units of | ———|[=m
dp kgm
S

2.2 The Dirac Delta Function

The Dirac delta function is used heavily all over physics, engineering, and math-
ematics. Thoroughly understanding it is essential for anyone in those fields. Read
more about the d-function in Funky Mathematical Physics Concepts (http://physics.
ucsd.edu/~emichels/FunkyMathPhysics.pdf). The §-function is also called an “im-
pulse” or “impulse function.”

The Dirac delta function is really a pseudofunction: it implies taking a limit, but
without the bother of writing A]:TO” all the time. The Dirac delta function is often
formally defined as the limit of a Gaussian curve of (a) infinitesimal width, (b) unit

integral ( Jf; o(x)dx = 1), and thus (c) infinite height. This is somewhat overkill for

our purposes, and it may be simpler to think of the delta function as a rectangular
pulse of (a) infinitesimal width, (b) unit area, and thus (c) infinite height, located at
zero (Fig. 2.1, left):

Mathematically, we could write this simplified (asymmetric) delta function as

simplified 6(x) = Aliglo f(x) where f(x)=0, x<0
f(x)=1/Ax, 0<x<Ax
f(x)=0, x> Ax.

Though the previous works for any well-behaved (i.e., continuous) function, the
delta function is usually considered an even function (symmetric about 0), so it is
sometimes better to write (Fig. 2.1, right):
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simplified
even d(x)

simplified
5(x)

area = 1

area =1

0 Ax —Ax/2 Ax/2

Fig. 2.1 (Left) The 6-function can be written as one-sided in most cases. However, (right) it is
usually considered even. In any case, we take the limit as Ax — 0

simplified &(x) = 1’16130 f(x) where f(x)=0, x<-Ax/2

f(x)=1/Ax, -Ax/2<x<Ax/2
f(x)=0, x>Ax/2.

However, in spherical polar coordinates, the radial delta function at zero requires
the asymmetric form, and cannot use the symmetric form (see Funky Mathematical
Physics Concepts).

Both of the previous simplified versions of the delta function require special
handling for more advanced applications where we need to take derivatives of &(x);
we will not use such derivatives in this book.

2.2.1 Units of the Delta Function

Another surprise: the §-function is not dimensionless.

The Dirac delta function has units!

Usually, such mathematically abstract functions are dimensionless, but the key
property of the delta function is that its area is 1 and dimensionless. This means:

J._w O(x)dx=1 (dimensionless).

So if x (and thus dx) is in m, 6(x) must be in m™'. But we use the delta function for
all sorts of measures, not just meters: radians, momentum, etc. So by definition, the
delta function assumes units of the inverse of its argument. Given a radian, the units
of &( 0) are inverse radians (rad™!, equivalent to dimensionless); given a momentum,
the units of &(p) are p . and so on. Also, §®(r) has units of the inverse cube of
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the units of r (r in m = §®(r) in m=3), and §®(x*) has units of the inverse fourth
power of the units of x*.

An important consequence of the definition of &(x) is that, because 6(x)=0
except near x=0,

j_ggo‘(x) dx=1, Ve>0.

Note that §(x) is not square integrable, because

© 9 T ar (1Y i x _ 1
J. O°(x)dx= lim — | dx=lim |[——=| = lim — — oo,
—eo A—070  \ Ax Ax—0 (Ax)2 . Av—0 Ax

Interestingly, though the delta function is often given as a Gaussian curve, the pre-
cise form does not matter, so long as it is analytic (i.e., infinitely differentiable or
has a Taylor series), unit integral, and infinitely narrow [15, p. 479b]. Other valid
forms are:

5(x) = lim -

1 oo
Sx)=—/| ™dk.
A=0T 12 4 2 ) Zﬂ'[—we

This latter form is extremely important in quantum field theory, and QM in the
momentum representation.

2.2.2 Integrals of o-Functions of Functions

When changing variables, we sometimes need to know what is J.dx o ( f (x)) ?

Let wu=f(x), du= f’(x)dx anddefine x; st. f(x;)=0.

Then | : dx 8(f(x)) = j: du S(u) =

1 1
/7 (x)| /()
We must take the magnitude of the derivative, because 6(x) is always positive, and
always has a positive integral. The magnitude of the derivative scales the area under
the delta function.

If the interval of integration covers multiple zeros of f(x), then each zero
contributes to the integral:

Let x;=zerosof f,ie f(x;)=0, i=1...n

Then j dx 8(f (x)) = ZV( 5
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2.2.3 3D o-function in Various Coordinates

See Funky Mathematical Physics Concepts for a more complete description, but
note that 63(r) has a simple form only in rectangular coordinates:

8 (x,,2) = 8(x)8(»)8(2),

8 (r,0,0) % 8(r)5(0)8(¢). (It is more complicated than this.)

2.3 Dirac Notation

Dirac notation is a way to write the algebra of QM bras, kets, and operators. It is
widely used, and essential to all current QM. It applies to both wave-mechanics and
discrete-state mechanics (discussed in a later chapter).

You are familiar with the ordinary algebra of arithmetic. You may be familiar
with Boolean algebra. There are also algebras of modular arithmetic, finite fields,
matrix algebra, vector spaces, and many others. All algebras are similar to arith-
metic algebra in some ways, but each is also unique in some ways. In general,
an algebra is a set of rules for manipulating symbols, to facilitate some kind of
calculations. We here describe Dirac notation and its associated Dirac algebra. In-
cluded in Dirac algebra is the algebra of operators (covered in a later section). Dirac
algebra also brings us closer to the concept of kets and bras as vectors in a vector
space (see p. 81).

2.3.1 Kets and Bras

For wave mechanics, kets and bras are complex-valued functions of space (spatial
functions), such as quantum states, and the results of operators on states. In Dirac
notation, kets are written as \name), where “name” identifies the ket. The ket is a
shorthand for the spatial wave-function, say (r). The “name” is arbitrary, much
like the choice of letters for variables in equations. However, there are some com-
mon conventions for choosing ket names, again similar to the conventions for using
letters in equations. In this section, we discuss only the spatial kets.

As a ket example, suppose we have a 1D spatial wave-function, w/(x). Since any
wave-function can be written as a ket, we might write the ket for y(x) as | l,//> (as-
suming some notational license for now):

|w) = w(x) = complex-valued function of x.

Note that the ket |l//> stands for the whole wave-function; it does not represent the
value of the wave-function at any particular point. One of the key benefits of Dirac
notation is that kets, bras, and operators are independent of any representation basis.
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Since they always represent the entire spatial function, there’s no question of “what is
the basis for a ket?”” More on representations (decomposition in different bases) later.

Some might object to equating a ket to a function, as we did previously:
|w) = w(x). More specifically, y(x) is a particular representation of the quantum
state | ), so it would perhaps be more explicit to say “|y) can be represented as
w(x),” but that seems pedantic. We all agree that “5=4+1,” yet the symbol “5” is
different than the symbol “441.” They are two representations of the same math-
ematical quantity, 5. Furthermore, since any function of position, say ., (x), can
be written as a function of momentum, ,.(x), our flexible notation would say that
¥, (x) = ¥, (p), which is OK with us. This simply means that y,(x) and y,(p) both
represent the same mathematical entity. I am therefore content to say:

| l//> =y, (x) = ¥, (p) = any other representation of the ket | l//).

Dual to kets are bras. Bras are written as (name|, where “name” identifies the bra.
Bras are also a shorthand for complex-valued functions of space. The same function
of space can be expressed as either a ket or a bra. The difference is the ket is short-
hand for the spatial function itself; the bra is shorthand for the complex conjugate
of the function. Thus (continuing our flexible notation),

(v]=y*(x) (complex conjugate).

For example, suppose we have two wave-functions over all space, w(x) (in one
dimension) and ¢(x). (The generalization to higher dimensions is straightforward.)
It is frequently useful to determine the dot product of two wave-functions, which
is a single complex number, defined as:

v-p= Jt; w*(x)p(x) dx (a complex number).

Notice that the first wave-function, ¥, is conjugated. Now the bra representation
of y* is just (y| and the ket representation of ¢ is |@). When written next to each
other, bra—ket combinations are defined as the dot product integral, i.e.,

(Wlo)=v-o=] y*ex) dx.
(A bra—ket combination is a bra—c—ket, < >. Get it?)

When writing a bra—ket combination, use only one vertical bar between them:
(wlo), not (v ).

As arelated example, using our new Dirac shorthand, we can write the “squared-
magnitude” (sometime called “squared-length”) of ¥ as the dot product of y with
itself:

magnitude2 = J._Z w*(x)w(x) dx = (l//| yl).
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2.3.1.1 Summary of Kets and Bras

The ket shorthand for y(x) is|y). The bra shorthand for y*(x) is (y|. Com-
bining a bra with a ket, (|¢), invokes the dot product operation.

Quite simply, a ket is a function of space; a bra is the complex conjugate of such a
function. A bra—ket is the dot product of the bra and ket, yielding a complex number.
Recall that the QM dot product is not commutative (discussed elsewhere):

(wlo) =] y*pc) dx=(g|y)*

(reversing the operands conjugates the dot product).

We have seen that kets and bras can be wave-functions which are quantum states,
but as noted earlier, kets and bras are more general than that. A ket or a bra can be
either a quantum state, or the result of operations on a state. In other words, a ket
or bra can be most any function of space. (Recall that a quantum state defines ev-
erything there is to know about a particle, including probabilities of finding it any-
where in space. A particle spatial quantum state (i.e., excluding its spin part), can
be expressed as a complex-valued function of position, say w(x, y,z).) Therefore,

All states are kets, but not all kets are states.

For example, a particle can be in a state |1//>, but no particle state can be given by
the ket p|y).

A note about spin: Wave-functions alone may not fully define a quantum state,
because they do not define the spin of a particle, i.e., its intrinsic angular momen-
tum. Therefore, a full quantum state, for a particle with spin, is a combination of the
wave-function (spatial state) and its spin-state. More on this later.

2.3.2 Operators in Dirac Notation

This section repeats much of the information in the previous “Operators” section,
but in Dirac notation.

An operator acting on a ket |l//> produces another ket. The given ket | l//> may
or may not be a state, and the resulting ket may or may not be a state, i.e., it may
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or may not represent a quantum state that a system could be in. If a result ket is not
a state, then what is it? It may be a linear combination (superposition) of results,
computed from operators acting on a superposition of states. It may be represented
as a sum (superposition) of basis vectors:

Given  [y)= ¢,[@,). then 6|y)=3 c,i[4,)
n=1 n=1

In any case, it is a vector in the ket vector-space that contains information of inter-
est.

An operator acts on a ket to produce another ket. Either one or both kets may or
may not be “states.”

A linear operator acting on a state |1//> produces a superposition of results
based on the superposition of states composing | ).

! Some references do not properly distinguish between a “ket” and a “state.” !
 Some even go so far as to define an “operator” as acting on a “state” to pro- !
¢ duce another “state.” This is wrong. !

A linear operator acting on a nonstate ket produces a superposition of new results
based on the superposition of prior results composing the given ket.

Recall that in Dirac notation, kets and bras are independent of the representation
basis. For Dirac algebra to work, operators must also be independent of representa-
tion. Therefore, Dirac operators never have things like 0/dx, because that implies a
specific representation basis. Instead, Dirac operators are just labels that describe
their function, but the actual implementation of an operator in any basis is not speci-
fied. That is the beauty of Dirac algebra: much of the tedium of complicated opera-
tors is eliminated. The algebra works by universal identities and properties of kets,
bras, and operators.

Dirac operators may be written three ways: preceding a ket, between a bra and a
ket, and less often, following a bra with nothing to the right:

o|y) means the operator ““ $” acting on the ket “ l//).”
(pld|w) means the dot product of (¢| with the result of “6” acting on |y).
(w|o means the operator acting to the left, (5T l//))', which is a bra.

This last case of a lone operator following a bra is interpreted as the left-action of
the operator on the bra. We usually think of operators as acting on the ket to the
right, but there is also a way of defining the action of an operator on the bra to the
left [16, p. 15m]. Adjoints and left-action are discussed on p. 66.
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Here is an example of Dirac algebra using operator algebra and kets and
bras. Consider the energy eigenstates (stationary states) of a harmonic oscillator,
|ug), ) |us), ..., and the lowering operator, 3. What is the result of “4” on a
ket |u, )‘? In other words, what is a|u,, )‘? We can answer that question with Dirac
algebra, by starting with an identity for the lowering operator:

Given: <un_1|d|un>=«/;, Vn,  and <uj|[z|un>=0, j#En-1.

This implies that &\un> is a multiple of ‘”n—1>. Then from the first identity, we must
have:

<Un—1 |&|un> = \/;<un_1 |un_1> since (un_l |un_1> =1 (basis functions normalized).
Now “divide” both sides by (u, |

un> = \/E|un—l>‘

a

The “divide” is only possible because all other inner products are zero in the “giv-
ens.” Note that non-Hermitian operators such as this are calculation aids and noth-
ing more.

Composition of Operators: Two operators may be composed, i.e., the first acts
on a ket to produce another ket, then the second acts on the result of the first. For
example, gé\ ) means g acts on the result of h acting on | l//). The combination g/
“looks like” multiplying g and /, but it is not. It is the composition of g on j . Some-

times, references even call such a composition “ ¢ times j,” but there may not be
any multiplication involved.

For scalar multiplication, such as ab| y/), where “ ¢” and ““ b” are complex numbers,
then “ a” and “ b” are, in fact, multiplied. Also, for finite state spaces, where g and
h are matrices, the composition is, indeed, matrix multiplication.

Summary: An operation on a quantum state is not necessarily a quantum state, but
the result is a function of space. Therefore, it can be represented by a ket (or bra). In
other words, the result of an operator on a ket is another ket, e.g., 5| yf) is the opera-
tor “ 6” on the ket | 1//) and is itself a ket. This resulting ket is often not a quantum
state (i.e., it does not completely define all the properties of any particle), but it is
still a useful function of all space. A linear operator acting on a state | l//) produces
a superposition of results based on the superposition of states which compose | l//).

In the case of operators for observables, as we have seen, an operator “brings
out” some physical property from a quantum state, such as the energy of the par-
ticle, or its position, or its momentum. But the computation can only be completed
by taking a relevant inner product of a bra with the result of the operator acting on
the state.

In some cases, however, an operator converts a state into another state, such as the
time evolution operator, a translation operator, or a rotation operator. In other cases,
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