
Chapter 2
Renewable Energy Sources—Modeling
and Forecasting

2.1 Introduction

Forecasts are essential to the integration of renewable power generation in electric-
ity markets operations, since markets ought to be cleared in advance, while market
participants shall then make decisions even before that. This is true for all types of
electricity markets, that is, from real-time to futures markets, via the more classical
day-ahead (forward) ones. For the reference case of conventional generators, power
production forecasts are straightforward since, except for unit failures, one actually
controls future electricity generation. In such a case, forecasts directly consist of
potential schedules, which then translate to supply offers in the market. When it
comes to renewable power generation, one is mostly left with Nature deciding on
the future schedule of the power plants: wind power is only there when the wind
blows and solar energy when the sun shines. Only hydro power is more dispatch-
able as the water originating from rainfall and snow melt can be stored in gigantic
reservoirs. The nonstorability of other types of renewable energy sources, at least in
a technologically and economically efficient manner today, magnifies this need for
appropriate forecasts of renewable power generation. Here emphasis will be mainly
placed on wind energy, which has so far been the leading form of renewable energy.
The ideas and concepts presented could be extended to the case of, e.g., solar and
wave energy since, from a mathematical point of view, the modeling and forecast-
ing problems share a high level of similarity. Solar energy is becoming increasingly
popular and present in a number of countries like Spain and Germany, among others.
Wave energy is finally envisaged to become a natural complement to wind energy in
the offshore energy mix, based on a number of demonstration projects today in the
UK and Portugal, for instance.

It is sometimes argued that forecasts are there mainly to comfort decision-
makers—here, the market and network operators, as well as power producers, and
potentially end-consumers—while they are not really used or at least not used in an
optimal manner in daily operations. However, employing the appropriate forecasts
in a well-defined decision-making problem can tremendously improve the decisions
to be made, while allowing controlling the risk brought in by unforeseen events.
Indeed, a crucial starting point of this chapter is that forecasts are always wrong to
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a certain extent. This should be accounted for in the various operational problems
considered.

All aspects of renewable power forecasting cannot be covered within a single
chapter of this book, nor can the necessary theoretical background on, e.g., stochas-
tic processes, modeling, and estimation. Forecasting of renewable power generation
relies on cross-disciplinary approaches taking roots in mathematics, statistics, me-
teorology, and power systems engineering. Most importantly, we aim at discussing
here the various types of forecasts that exist for renewable power generation, being
wind, solar or wave energy, and that are to be used as input to operational problems
for electricity markets.

In Sect. 2.2, we introduce some of the necessary notation and definitions while
placing ourselves in a stochastic process modeling framework. Necessary concepts
related to stochastic processes are further developed inAppendixA. Subsequently, the
various types of renewable energy forecasts that may be issued as input to decision-
making problems are introduced in Sect. 2.3 based on examples, giving a pragmatic
view of their characteristics. Emphasis is then placed in Sect. 2.4 on the quality of
these forecasts, by covering their required and necessary properties, as well as some
key scores and diagnostic tools for their evaluation. It is of utmost importance to
fully appraise the quality of forecasts before to use them as input to decision-making
and general operational problems. The way these forecasts may be generated from
various sets of input data is then discussed in Sect. 2.5. Further readings are suggested
at the end of this chapter.

2.2 Renewable Power Generation as a Stochastic Process

Even though referring to either renewable energy or power modeling and forecasting,
focus is always placed on the power variable. This is because it is actually power
which is measured at renewable energy generation plants. It is then straightforward
to obtain energy values for given periods of time if necessary, by integrating power
observations over these time periods.

Owing to the combination of a large number of complex physical processes, also
mixed with additional uncertainties in our understanding of these processes, there
may always be a part of randomness in our knowledge of energy generation from
renewable energy sources. For instance, for a wind farm, even if having a perfect
picture of the theoretical power curve of each and every turbine (as provided by the
turbine manufacturer), it is close to impossible to know for sure what the power
curve of the wind farm composed by all these turbines may be. This uncertainty
originates from shadowing effects among the set of turbines, turbulence effects, dust
and insects on the blades, etc.

Accepting the fact that there are uncertainties in the process of renewable energy
generation, it is hence considered as a stochastic process. Necessary basics related to
the definition of stochastic processes are introduced in Appendix A. Consequently,
power generation from renewable energy sources, such as wind and solar, will be
referred to as stochastic power generation in the subsequent chapters.
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Definition 2.1 (The Renewable Energy Generation Stochastic Process). In the
most general case,

{Yr ,s,t , r = r1, . . . , rm, s = s1, . . . , sn, t = 1, . . . , T }, (2.1)

is a multivariate stochastic process in space and in time, observed at a set of n

locations, s = s1, s2, . . . , sn, and for successive time points t = 1, . . . , T , describing
power generation from a number m of different renewable energy sources, r =
r1, r2, . . . , rm. The corresponding realizations of that stochastic process are denoted
by

{yr ,s,t , r = r1, . . . , rm, s = s1, . . . , sn, t = 1, . . . , T }. (2.2)

This stochastic process may be univariate (m = 1, in the above definition) if consider-
ing one type of renewable energy only, or multivariate (m > 1) if jointly considering
several forms of renewable energy generation, as for the example of wind and wave
energy generation offshore. In the former case, the notation for the stochastic process
may be simplified to {Y(s,t)}. Similarly, while both the time and space dimensions
may be jointly considered, it is often the case that (i) focus is on the spatial dimension
only, e.g., as input to a power flow calculation, or (ii) focus is on the time dimen-
sion only, e.g., if dealing with renewable energy generation for a given location in
an optimal storage operation problem. Notation would then simplify even more, by
using the relevant subscript only, that is, {Ys} and {Yt } for the space and time cases,
respectively.

This stochastic process can be normalized for simplification, hence taking values
between 0 and 1 at any time, any location and for all types of renewable energy,

Yr ,s,t ∈ [0, 1], ∀i, s, t. (2.3)

The above then also necessarily applies to all realizations yr ,s,t . The normalization
is done individually by the nominal capacity of that type of renewable energy at this
location and at this point in time. While it is fairly obvious that nominal capacity
depends upon the renewable energy plant and therefore its location, one should not
forget that nominal capacity can vary in time, e.g., due to maintenance planning and
decommissioning/recommissioning of renewable energy assets.

The concepts introduced in the above are illustrated in the following example
describing a univariate case, with wind power generation only, though observed at a
number of locations, and for a long period of time.

Example 2.1 (Wind Power Generation for 15 Control Zones in Western Denmark)
A dataset with wind power generation over the control area (split into 15 control
zones) of Western Denmark, operated by Energinet.dk for a total nominal capacity
of 2.515 GW, will be used as a basis for illustration in this chapter. This control
area is commonly referred to as DK-1. Wind power generation over these 15 control
zones can be considered as a univariate stochastic process {Ys,t } in space and in time,
in practice observed at 15 locations s = s1, s2, . . . , s15 only. Figure 2.1 depicts an
episode with two days in mid-February 2006 of wind power observations at these 15
control zones, with a hourly temporal resolution. These wind power observations for
every zone are normalized by the relevant nominal capacity values. The generation



18 2 Renewable Energy Sources—Modeling and Forecasting

po
w

er
 [p

.u
.]

po
w

er
 [p

.u
.]

po
w

er
 [p

.u
.]

po
w

er
 [p

.u
.]

po
w

er
 [p

.u
.]

0

1
zone 1 zone 2 zone 3

0

1
zone 4 zone 5 zone 6

zone 7

0

1
zone 8 zone 9

0

1
zone 10 zone 11 zone 12

time [h]
1 24 48

0

1
zone 13

time [h]
1 24 48

zone 14

time [h]
1 24 48

zone 15

a b

Fig. 2.1 Episode from mid-February 2006 with two days of wind power observations at the 15
control zones forming the control area DK-1 of Energinet.dk. These measurements have an hourly
temporal resolution and are normalized by the respective nominal capacities at every control zone.
a Normalized power observations. b 15 control zones

patterns for neighboring zones have similar characteristics, while there is also a clear
temporal dependence. These are important aspects when it comes to the modeling
and forecasting of such a stochastic process.

2.3 The Various Types of Renewable Power Forecasts

Predictions of renewable energy generation can be obtained and presented in a num-
ber of different manners. The choice for the type of forecasts and their presentation
somewhat depends upon the process characteristics of interest to the decision-maker,
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and also upon the type of operational problem. For instance, a wind farm operator
aiming to plan maintenance over the coming week may only be interested in simple
deterministic-type of forecasts for wind and power generation at the level of this
wind farm, and not in detailed space–time scenarios over the whole country.

The various types of renewable energy forecasts and their presentation are intro-
duced below, starting from the most common point forecasts and building up towards
the more advanced products that are probabilistic forecasts and scenarios. We finally
mention some of the more exotic forecasts that are currently being issued with focus
on predefined events.

2.3.1 Common Features of Renewable Power Forecasts

Forecasting is about foreseeing the future state of the process of interest, in this
case, renewable energy generation, at a given location s or for a set of n locations
s = s1, s2, . . . , sn, potentially with different forms of renewable energy sources at
every location. Even though several locations and renewable energy forms may be
considered, it is the temporal dimension that is of importance here. In contrast to
spatial forecasts, we do not aim in this chapter at predicting the dynamics of the
stochastic process at new locations. We do not attempt at issuing forecasts for new
types of renewable energy sources either. The set of locations s and the energy mix
are both fixed. Let us then place ourselves at time t and look at a future point in time
t + k. For ease of notation, we only use time indices in the following when referring
to values for the stochastic process. One should not forget that these may also be for
several locations and types of renewable energy sources.

Emphasis is placed in the following on model-based approaches to forecasting.
There exists a number of other approaches, e.g., based on expert judgments. For
the example case of forecasting the electric demand (commonly referred to as load),
it is often said that such expert judgments are very difficult to outperform by any
model-based approach. For renewable energy forecasting, however, model-based
approaches are to be preferred, since it would be much more difficult for experts to
sharply foresee weather developments and their impact on corresponding renewable
energy generation. Note that a difference should be made between a model, which
comprises a mathematical representation of the processes considered, and a fore-
casting method, which is, instead, the process of issuing a prediction, based or not
on a model.

Definition 2.2. A (model-based) forecast .̂t+k|t of renewable power generation is
an estimate of some of the characteristics of the stochastic process Yt+k (where Y

is for all locations and types of renewable energy sources) given a chosen model
g, an estimated set of parameters Θ̂t and the information set Ωt gathering all data
and knowledge about the processes of interest up to time t . That information set is
commonly employed to identify a model g and the set of parameters Θt .

In the above definition, k is the lead time, though sometimes also referred to as
forecast horizon. The ‘hat’ symbol expresses that .̂t+k|t is an estimate only: it reflects
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the presence of uncertainty both in our knowledge of the process and inherent to
the process itself. The notation ‘t + k|t’ is based on the conditional symbol ‘|’ in
probability theory. The forecast for time t + k is conditional on our knowledge of
the stochastic process up to time t , including the data used as input to the forecasting
process, as well as the models identified and parameters estimated.

Whatever the type of forecast, forecasting is to be seen as a form of extrapo-
lation. A model is built and fitted to a set of data, then applied for prediction
purposes on totally new data. This conditionality of forecasts makes that they
should implicitly be formulated as: “given the information set and assuming
that the identified dynamics continue in the future, we can predict that . . . ”. A
forecaster somewhat makes the crucial assumption that the future will be like
the past.

Forecasts are issued as series of consecutive values .̂t+k|t , k = 1, 2, . . . , K , that
is, for regularly spaced lead times up to the forecast length K . That regular spacing
is called the temporal resolution of the forecasts. This will be illustrated when in-
troducing the various types of renewable energy forecasts below. For instance, when
one talks of 48-hour ahead forecasts with hourly resolution, this means that forecasts
actually consist in forecast series gathering predicted power values for each of the
following 48 h. Similarly, if predictions were to be issued on a regular spatial grid,
one would talk of their spatial resolution. Here forecasts are for specific locations,
not uniformly distributed on a grid, and therefore, the concept of spatial resolution
does not make much sense.

2.3.2 Point Forecasts

When the renewable energy forecast issued at time t for t + k is single-valued,
it is referred to as a point prediction and denoted by ŷt+k|t . The fact this forecast
is single-valued makes that point forecasts issued in a deterministic or stochastic
process framework look similar. However, they are not in essence. In a deterministic
framework, the forecaster is somewhat sure that the prediction ought to realize—
there is no uncertainty involved. In a stochastic process framework, instead, ŷt+k|t is
an estimate only, hence acknowledging the presence of uncertainty.

Definition 2.3. A point forecast ŷt+k|t corresponds to the conditional expectation of
Yt+k given g, Θ̂, and the information set Ωt ,

ŷt+k|t = E[Yt+k|g, Ωt , Θ̂]. (2.4)

In everyday words, the conditional expectation is the mean of all that may happen
given our state of knowledge up to time t . Providing decision-makers with a forecast
in the form of a conditional expectation translates to acknowledging the presence of
uncertainty, even though it is not quantified and communicated.
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Fig. 2.2 Point forecasts of wind power generation issued on the 4th April 2007 at 00:00 UTC for
the whole onshore capacity of Western Denmark (for a nominal capacity of 2.515 GW on that day)

Example 2.2 (Point Forecasts of Wind Power Generation) Let us consider the exam-
ple of point forecasts issued on 4th April 2007 at 00:00 UTC1 for the whole onshore
capacity of Western Denmark (2.515 GW at the time, see Example 2.1, depicted
in Fig. 2.2, along with the corresponding observations obtained a posteriori. This
forecast series has a hourly temporal resolution up to 43 h ahead.

It informs that the expected power generation on 5th April 2007 at 00:00 UTC
should be 1.32 GW. There what the forecaster really says is that the predicted mean of
all potential power production values is 1.32 GW. He or she is not telling about what
could really happen, however. The actual power generated 24 h after the forecast
is issued could range anywhere between 0 and 2.5 GW, and that would make a big
difference! This will all depend upon the forecaster’s skill and the inherent forecast
uncertainty. In this case, the forecast error made a posteriori appears fairly small,
since the observed power generation at that time was of 1.466 GW (still a 146 MW
difference).

2.3.3 Probabilistic Forecasts

This shortcoming of point predictions not giving the full picture about what could
happen is of crucial importance when it comes to operational problems, where the
costs potentially induced by the whole potential range of realizations that are likely

1 UTC actually stands for Coordinated Universal Time, which is a time standard by which we
regulate time and clocks.
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to occur is to be accounted for. This has therefore motivated the substantial research
effort invested in the development of probabilistic forecasting methodologies for
energy applications, with a strong emphasis on their optimal integration in operations
research problems.

In contrast to point predictions, probabilistic forecasts aim at providing decision-
makers with the full information about potential future outcomes. Let us use the
same notation as before while dropping out the subscripts for location and type of
renewable energy source. Recall that yt is the power production measured at time
t and corresponds to a realization of the random variable Yt . Then let ft and Ft be
the probability density function (abbreviated pdf) and related cumulative distribution
function (abbreviated cdf) of Yt , respectively.

Definition 2.4. A probabilistic forecast issued at time t for time t + k consists in a
prediction of the pdf (or equivalently, the cdf) of Yt+k , or of some summary features.

Deterministic forecasts may be reinterpreted in a probabilistic framework as prob-
ability masses of 1 placed on these values predicted for the future state of the
process—there is no uncertainty. The various types of probabilistic forecasts are
detailed below, from quantile to density forecasts, and through prediction intervals.

2.3.3.1 Quantile Forecasts

Let us now introduce the concept of quantile forecast based on the definition of the
quantile of a cumulative distribution function as given in Def. A.6 of Appendix A.

Definition 2.5. A quantile forecast q̂
(α)
t+k|t with nominal level α is an estimate, issued

at time t for lead time t + k, of the quantile q
(α)
t+k for the random variable Yt+k , given

a model g, its estimated parameters Θ̂t and the information set Ωt , i.e.,

P[Yt+k ≤ q̂
(α)
t+k|t | g, Ωt , Θ̂] = α. (2.5)

By issuing a quantile forecast q̂
(α)
t+k|t , the forecaster tells at time t that there is a

probability α that renewable energy generation will be less than q̂
(α)
t+k|t at time t + k.

Quantile forecasts are of interest for a number of operational problems, since for
a variety of loss functions (quantifying the cost of making a suboptimal decision, to
be further introduced and discussed in Sect. 2.5.3), optimal decisions always relate
to quantile forecasts with given nominal levels [2]. This is, for instance, the case for
the design of optimal offering strategies by wind power producers, where optimal
bids are quantile forecasts whose nominal level is a simple function of day-ahead and
balancing market prices (see Chap. 7). Furthermore, quantile forecasts also define
prediction intervals and, more generally, nonparametric probabilistic forecasts, as
will be explained more extensively in the following. The concept of quantile forecasts
is further illustrated below by building on the previous examples with wind power
generation in Western Denmark.

Example 2.3 (Quantile Forecasts of Wind Power Generation) Fig. 2.3 depicts an
example episode with quantile forecasts with a nominal level α = 0.5 (i.e., the
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Fig. 2.3 Quantile forecasts of wind power generation with a nominal level of 0.5 (i.e., the median)
issued on 4th April 2007 at 00:00 UTC for the whole onshore capacity of Western Denmark (for
a nominal capacity of 2.515 GW on that day). Point forecasts and the corresponding observations
are also shown

median), for the same period than in Fig. 2.2 and the same set-up as introduced in
Example 2.1. For each lead time, these forecasts tell that wind power generation has
a 50 % probability of being below (and, therefore, also above) the value they indicate.
Their interpretation is hence quite different from that of the point forecasts considered
before, since point forecasts, as conditional expectations, are not associated to any
form of probability level. Note that, if forecast uncertainty is perfectly symmetric
around point predictions, then q̂

(0.5)
t+k|t = ŷt+k|t .

In the present case, if looking more closely at the 42-hour ahead lead time, while
the previously discussed point forecasts tell that the expected power generation
is 1.646 GW, the quantile forecast informs there is a 50 % probability that power
generation will be below (or above) 1.706 GW.

2.3.3.2 Prediction Intervals

Quantile forecasts give a probabilistic information about future renewable power
generation, in the form of a threshold level associated with a probability. Even though
they may be of direct use for a number of operational problems, they cannot provide
forecast users with a feeling about the level of forecast uncertainty for the coming
period. For that purpose, prediction intervals certainly are the most relevant type of
forecasts. Furthermore, prediction intervals are frequently used to make decisions
under uncertainty using robust optimization (see, e.g., Chaps. 8 and 9).
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Definition 2.6. A prediction interval Î
(β)
t+k|t , issued at time t for time t + k, defines a

range of potential values for Yt+k , for a certain level of probability (1−β), β ∈ [0, 1],
its nominal coverage rate,

P[Yt+k ∈ Î
(β)
t+k|t | g, Ωt , Θ̂] = 1 − β. (2.6)

It is equivalently referred to as an interval forecast.
Such an interval Î

(β)
t+k|t must be defined by its lower and upper bounds,

Î
(β)
t+k|t = [q̂(α)

t+k|t , q̂
(α)
t+k|t ], (2.7)

where these bounds are quantile forecasts whose nominal levels α and α verify that

α − α = 1 − β. (2.8)

This general definition makes that a prediction interval is not uniquely defined by
its nominal coverage rate. It is thus also necessary to decide on the way it should be
centered on the probability density function. Commonly, it is chosen to center it (in
probability) on the median, so that there is the same probability that an uncovered
realization yt+k lies below or above that interval. This translates to

α = 1 − α = β/2. (2.9)

With this type of centering, the resulting intervals are called central prediction inter-
vals. For example, central prediction intervals with a nominal coverage rate of 90 %
(i.e., (1 − β) = 0.9) are defined by quantile forecasts with nominal levels of 5 and
95 %. Other types of intervals exist, e.g., shortest-length intervals and highest-density
regions among others [5], depending upon the way they are chosen to summarize
information from the full probabilistic distribution. An illustration is given below,
for the case of wind power generation in Western Denmark.

Example 2.4 (Central Prediction Intervals of Wind Power Generation) Central pre-
diction intervals of wind power generation with a nominal coverage rate of 90 %
(i.e., (1 − β) = 0.9), issued for the whole onshore capacity of Western Denmark
and for the same period than in Figs. 2.2 and 2.3, are depicted in Fig. 2.4. They
give a range of possibilities of power generation for every lead time, for a certain
probability level, and therefore tell about how confident one may be about the point
forecasts originally provided—the tighter they are, the higher the confidence is. The
advantage is that they give a very visual information on the expected range of future
events.

In the present case, these intervals, for instance, inform that there is a 90 %
probability that, 24 h in the future, wind power generation will be between 0.897 GW
and 1.65 GW. There is only a 5 % probability that wind power generation will actually
be less than 0.897 GW, and similarly, only a 5 % probability of being more than
1.65 GW.
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