2

DEFINITION OF THE
STOCHASTIC INTEGRAL

2.1 Introduction

In this chapter, we shall define stochastic integrals of the form
f[O,t]X dM where M is a right continuous local L2-martingale and X is
a process satisfying certain measurability and integrability assumptions,
such that the family of stochastic integrals { f[o, g XdM,t e IR} is aright
continuous local L2-martingale. For certain M and X, the integral can
be defined path-by-path. For instance, if M is a right continuous local
L?-martingale whose paths are locally of bounded variation, and X is a
continuous adapted process, then f[o, 9 Xs (w) dM,(w) is well-defined as a
Riemann-Stieltjes integral for each ¢ and w, namely by the limit as n — oo

of
[271]

D Xka-n (@) (Mz41)2-7 (@) = Mpa-n (@) -
k=0

The standard example of this path-by-path integral is obtained by setting
M; = Ny — at where N is a Poisson process with parameter o > 0. In this
case, for any continuous adapted process X we have

t
[e ]
/ Xs(w)dM,(w) = Z Lre<t3 Xre (W) — a/Xs(w) ds,
[0, k=1 0
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where 7% is the time of the kP jump of N, and a.s. for each fixed ¢ the sum
on the right is of finitely many non-zero terms because almost surely there
are only finitely many jumps of N in [0,¢].

The stochastic integral defined in the sequel is valid even when M
does not have paths which are locally of bounded variation. Any non-
constant continuous local martingale is such an M; the canonical example
is a Brownian motion B in IR. Even the simple integral f[o, 1 BdB cannot
be defined path-by-path in the Stieltjes sense, because almost every path
of a Brownian motion is of unbounded variation on each time interval (see
Freedman {33, p. 49]). In fact, the stochastic integral developed here, known
as the Itd integral when M is a Brownian motion, is not defined path-by-
path but via an isometry between a space of processes X that are square
integrable with respect to a measure induced by M, and a space of square
integrable stochastic integrals [ X dM.

As a guide to the reader, we provide the following outline of the several
stages in the definition of the stochastic integral.

The measurability conditions on X will be specified first. In doing this,
we adopt the modern view of X as a function on IRy x © and require it
to be measurable with respect to a o-field P generated by a simple class
R of “predictable rectangles.” Although this definition of the measurable
integrands may not be the most obvious one, it is convenient for a stream-
lined development of the integral. Moreover, we shall prove in Theorem 3.1
that the class of P-measurable functions includes all of the left continuous
adapted processes.

After a discussion of the o-field P, we shall consider the case where

M is a right continuous L2-martingale. A measure pps associated with M
will be defined on P and then we shall define the integral f[o 9 X dM in the
following three steps.

(i) [ X dM will be defined for any R-simple process X in such a way
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that the following isometry holds:

E{(/XdM)Q} :m+/xn(X)2duM.

(ii)  This isometry will then be used to extend the definition of [ X dM
toany X € £2 = L?(IRy x Q,P, pm)-

(iii) For any process X satisfying 1jp,qX € L2 for each t € IRy, it will
be shown that there is a version of {[ 1jo,qX dM,t € IR} } which is
a right continuous L2?-martingale, to be denoted by {f[o,t] XdM,t e
R, }.

Finally, the extension to the case where M is a right continuous local
L2-martingale and X is “locally” in £2 will be achieved using a sequence of
optional times tending to co. The above definition of the stochastic integral
will apply to the processes obtained by stopping M — My and X at any one
of these times, and then the integral for M and X will be defined as the
almost sure limit of these integrals, as the optional times tend to oo.

We now begin the above program with the definition of the o-field P.

2.2 Predictable Sets and Processes

The family of subsets of IR} x 2 containing all sets of the form {0} x Fy
and (s,t] x F, where Fy € Fo and F € F, for s < t in IRy, is called the
class of predictable rectangles and we denote it by R. The (Boolean) ring .A
generated by R is the smallest family of subsets of IR, x Q which contains
R and is such that if A; and A, are in the ring, then so too are their union
A1 UA, and difference A;\Az. Then A; N As is also in A. Indeed, it can be
verified that the ring .4 consists of the empty set @ and all finite unions of
disjoint rectangles in R. The o-field P of subsets of IRy x Q generated by R
is called the predictable o-field and sets in P are called predictable (sets).
A function X : IRy x @ — IR is called predictable if X is P-measurable.
This is denoted by X € P. If Ais a set in R, then 14(¢, -) is F;-measurable
for each t. Consequently, 14 is an adapted process. It follows by forming
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finite linear combinations that the same is true for any A in A. Then by
a monotone class theorem (see Section 1.2), any real-valued P-measurable
function is adapted. A real-valued P-measurable function will be referred
to as a predictable process.

Remark. In systematic studies of the theory of processes, it seems more
natural to consider the o-field P and predictable processes as defined on
(0,00) x Q2. However, we find it convenient to have all processes defined
at time zero. The consequence, which is of more logical than substantial
significance, is that time zero and sets like {0} x Fy sometimes require
slightly different treatment.

It is shown below that for any optional time 7,
0,r]={¢t,w)e R xQ:0<t < 7(w)}

is a predictable set. Such “intervals” play an important role in the final
extension phase of the definition of the stochastic integral.

2.3 Stochastic Intervals

For optional times 7 and 7, the set
.7 = {(t,w) € Ry x 1 m(w) <t < 7(w)}

is called a stochastic interval. Three other stochastic intervals (5, 7], (9, 7),
and [, 7), with left end-point 5 and right end-point 7 are defined similarly.
The term stochastic interval will refer to any of these four kinds of intervals
where 7 and 7 are any optional times. Note that stochastic intervals are
subsets of IR, x Q not IR, x Q; consequently (co,w) is never a member of
such a set, even if 7(w) = co. Also, we have not specified that n < 7, but
by definition the intersection of [y, 7] with IRy x {w : p > 7} is the empty
set. If s, ¢ € IRy, then [s, t], (s, t], [s, ) and (s, t), may be interpreted as
real or stochastic intervals. It will usually be clear from the context which
interpretation is meant. For example, in equation (2.10), 1o, means the
indicator function of the stochastic interval [0, ] x Q.
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The o-field of subsets of IR, X Q generated by the class of stochastic
intervals is called the optional o-field and is denoted by O. The graph of

an optional time 7, denoted by
[T] = [Oa T]\[Oa T) = {(t, UJ) € R+ x Q: T(w) = t},

is in @. A function X : IRy x Q@ — IR will be called optional iff X is
O-measurable. If A is a stochastic interval, then 14(¢, - ) is F;-measurable
for each t, by the optionality of the end-points of A. Then it follows as for
predictable functions that any optional function is an adapted process, and
we shall refer to it as an optional process.

We now investigate the relationship between P and O. Each predictable
rectangle of the form (s,f] x F' where F' € F, and s < tin IR, , is a stochastic
interval of the form (n, 7] with n= s, 7 = s on Q\F and 7 =¢ on F. Also,
for Fy € Fo, {0} x Fo =(),[0,7,) where

,,.__{'rlT on Fy
"7 0 on Q\Fp

is optional for each n. It follows that R C O and hence, since R generates
P, we have P C O. In the following lemma we show that certain types of
stochastic intervals are predictable.

Lemma 2.1. Stochastic intervals of the form [0, 7] and (n, 7] are pre-
dictable.

Proof. Since (n,7] = [0,7]\[0,7)], it suffices to prove that a stochastic
interval of the form [0, 7] is predictable. For this we use a standard approx-
imation of 7 by a decreasing sequence {r,} of countably valued optional
times, defined by 7, = 2="[2"7 +1]. Since 7, | 7, we have [0, 7] = N[0, 7).

n
For each n,

[0,7] = ({0} x ) U ( U (k27 (k4 12-"] x {r> k2-"}) .
k€ INg

Here {7 > k27"} = Q\{r < k2="} € Fy,-x, since 7 is optional. It follows
that [0,7] € P. 1
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Stochastic intervals, other than those mentioned in the preceding
lemma, are not in general predictable without further restriction on the
end-poinrts. An F-measurable function 7 : Q — IR, is called a predictable
time (or simply predictable) if there is a sequence of optional times {7,}
which increases to 7 such that each =, is strictly less than 7 on {7 # 0}.
Such a sequence {r,} is called an announcing sequence for 7. It is easily
verified that a predictable time is an optional time and as a partial con-
verse, if 7 is optional then 7 4 t is predictable for each constant t > 0.
Intuitively speaking, if 7 > 0 is the first time some random event occurs,
then 7 is predictable if this event cannot take us by surprise because we
are forewarned by a sequence of prior events, occurring at times 7,. A very
simple example of a predictable time is

Op = 0 on Fy
Fo= Yoo onFg,

where Fy € Fy. An announcing sequence for O, is {Op, An,n=1,2,...}.
An example of a non-predictable optional time is the time at which the first
jump of a Poisson process occurs.

Parts (iii) and (iv) of the following lemma elucidate the reason for the
names of the predictable and optional o-fields.
Lemma 2.2.
(1) If 7 is a predictable time, then [r, 00) is predictable.

(ii)  All stochastic intervals of the following forms are predictable: (n, 7]
where 1 and T are optional, [n, 7] and (7, n) where 7 is predictable
and T is optional, [n, T) where 1 and T are both predictable.

(iii) The predictable o-field is generated by the class of stochastic inter-
vals of the form [r,00) where T is a predictable time.

(iv) The optional o-field is generated by the class of stochastic intervals
of the form [, 00) where T is an optional time.

Proof. To prove (i), suppose 7 is a predictable time and {7} is an
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announcing sequence for 7. Since 7, 1 7 and 7, < 7 on {7 # 0}, we have

[r,00) = ({0} x {r=0}) U (ﬂ (Tn,oo)> .

n

Here {r = 0} € Fo and (7, 0) = (R4 x Q)\[0, 7] is predictable for each
n, by Lemma 2.1. Hence [r,00) is predictable, proving (i).

For an optional time 7, [0, 7] is predictable by Lemma 2.1, and if 7 is
predictable, then [0, 7)—the complement of [r, c0)—is predictable by part
(i) above. Since each of the four kinds of stochastic intervals in (ii) can be
written as a difference of two intervals of the above kind, with 7 in place of
7 in one of them, the result (ii) follows.

For the proof of (iii), let Q@ denote the o-field generated by the class
of stochastic intervals of the form [r,00) where 7 is predictable. By part
(i), @ C P and to show P C Q, it suffices to prove R C Q. For any
optional time 7 we have [0, 7] = (1,[0, 7+ ). Here 7+ % is predictable and
therefore, by complementation, [0, 7+ 1) € Q. Consequently, [0,7] € Q. A
predictable rectangle (s,t]x F for F' € F, and s < t, is a stochastic interval
of the form (n, 7] = [0, 7]\[0, 7] and is therefore in Q. If Fy € Fy, then since
0Op, is a predictable time, we have {0} x Fy = [0F,, o0)\(0, 00) € Q. Thus,
R C Q and hence (iii) is proved.

Since O is generated by the stochastic intervals, to prove (iv) it suffices
to show that all stochastic intervals are contained in the o-field S generated
by the class of stochastic intervals of the form [r, 00). If 7 is optional, then
T+ L is optional for each n and hence (1,00) = |J,[r + &,00) is in S.
Since the class consisting of the stochastic intervals of the form [r,00) and
(7,00) generates all stochastic intervals by combinations of the operations
of complementation and differencing, it follows that all stochastic intervals
are in S, as required. |

For 7 : Q — IR, we have by the above lemma:
(i)  if 7 is predictable, then [r, 00) is predictable,

(i1)  if 7 is optional, then [r, 00) is optional.
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The converses of these results are also true. The converse of (ii) follows from
the result proved earlier that if [, 00) is an optional set, then 1{r,00) 1s an
adapted process. For the more difficult proof of the converse of (i), we refer
the reader to Dellacherie and Meyer [23, IV-76]. (Warning: Dellacherie
and Meyer use the conclusion of (i) as their definition of a predictable time
and derive the existence of an announcing sequence from it). Alternative
characterizations of the predictable and optional o-fields to those of Lemma
2.2 will be given in Chapter 3.

We conclude this section with the following result which is well known
to experts, especially those interested in applications to mathematical eco-
nomics. It is also referred to later in Section 9.4. The proof given here was
told to us by Michael Sharpe. The argument for the “if” part is similar to
that in Chung-Walsh [19]; the proof of the “only if” part is standard.

Proposition. Every optional time is predictable if and only if every (local)
martingale (adapted to {¥;}) has a continuous version.

Proof. For the “if” part, suppose every martingale has a continuous version.
Let 7 be an optional time. We may assume that 7 is bounded because
7 An | 7 and the limit of an increasing sequence of predictable times is
predictable. Consider the supermartingale Y defined by

Y, = E[(r — t)* | F] = E[r| Fi] - 7 At.

Since {E[r|F:],t > 0} is a martingale, by assumption we may choose a
continuous version of it. Then Y has continuous sample paths.

We first prove that P-a.s.,Y; =0forallt > 7andY; > 0forallt < 7.
For t > 7, this follows from the fact that Y has continuous paths and

Yilgsry = E[(t = )Y 1y | 7
=E[0|F]=0 P-as.

To prove that Y; > 0 for t < 7, let & = inf{¢t > 0 : Y; = 0}. Then by Doob’s
stopping theorem, P-a.s.,

Yrno = E[r| Fraol =T Ao = E[(t — o)t | Frao)-
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Now, by the result: Y; = 0 P-a.s., the definition of & implies that Y,a, = 0
P-a.s. Thus, taking expectations in the above yields

0= E[(r—0o)*].

Hence 7 < 0 P-a.s. and the desired property of Y follows. It then follows
that 7, =inf{t > 0:Y; < %} is an announcing sequence for 7 and hence 7
is predictable.

For the “only if” part, suppose that every optional time is predictable.
Let M be a local martingale. To prove M has a continuous version, it suf-
fices by localization to consider the case where M is a uniformly integrable
martingale. (Note that if M is a martingale, then M . o, is a uniformly
integrable martingale for each positive integer n.) Then by Theorem 1.5,
My = limy_, o M, exists P-a.s. and {M;, F;, t € [0,00]} is a martingale.
Since every martingale has a version that is right continuous with finite
left limits (see Chung [12, Section 1.4]), we may assume that M is such
a version, and so M can only have jump discontinuities. For ¢ > 0, let
r=inf{t > 0: My — M;_ > ¢}. Then 7 is an optional time (see Exercise
2), and by assumption it is also predictable. Let {7,} be an announcing
sequence for 7. By Doob’s stopping theorem, for all positive integers n,

EM: | Fr,] = My,.

Letting n — co in the above, we obtain

o0
E [M, \VJ f,ﬂ =M, < M —€l{r<c0}-

n=1
By taking expectations in the above, we obtain: e P(T < 00) < 0 and hence
P(r < 00) = 0. Similarly, for & = inf{t > 0: M; — M;_ < —¢} we have
P(o < 00) = 0. Since € > 0 was arbitrary, it follows that P-a.s., M has no
jumps at all. §

Example. Suppose {F:} is the filtration generated by a Hunt process
(cf. [12, Chapter 3]) with continuous sample paths, where the filtration
is augmented by the P-null sets in F. It is known [19] that every (local)
martingale adapted to {F:} has a continuous version. Hence every op-
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tional time is predictable. In particular, these properties hold if {F;} is the
standard filtration associated with a d-dimensional Brownian motion.

Next we define a measure on the predictable sets which is the key to
the basic isometry used in defining the stochastic integral.

2.4 Measure on the Predictable Sets

Suppose that Z = {Z;, t € IR} is a real-valued process adapted to the
(standard) filtration {F;,t € IR+ }, and Z, € L! for each t € IR,.

We define a set function Az on R by

Az ((s,t] x F)=E(1p(Z: — Z,))
(2.1) for F € F, and s < ¢t in IRy,
Az({O}X Fo):O for Fy € Fy.

We extend Az to be a finitely additive set function on the ring A generated
by R by defining

Ao(A) = 3 Aa(Ry)

i=1

n
for any A = |J Rj, where {R;,1 < j < n}is a finite collection of disjoint
i=1
sets in R. The value of Az(A) is the same for all representations of A as a
finite disjoint union of sets in R. We call Az a contentif Az > 0 on R and

hence on A.

It is clear that if Z is a martingale then Az = 0, and if Z is a sub-
martingale then Az > 0. In particular, suppose M = {M;,t € IR} is an
L2-martingale, then (M)? = {(M;)?,t € IR+ } is a submartingale and hence
A(yz > 0. More explicitly, for F' € F, and s < ,

(2.2) Mary (5,8 x F) = E {1p(M; — M)?} .

This is proved by setting Y = 1p in the following important identity. For
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s < t in IR; and any real-valued Y € bF;,

E{Y(M: - M.)*} = E{Y ((M:)* — 2M: M, + (M,)?) }
= E{Y ((M:)* + (M.)?)} —2E{Y M,E (M| F.)}
= B{Y ((M:)* + (M,)*)} —2E {Y(M,)*}
= E{Y (M:)* = (M.)*)}.

(2.3)

The martingale property of M was used to obtain the third equality above.

We are interested in L?-martingales M for which A(pr)2 can be extended
to a measure on P. It is shown in Section 2.8 that if Z is a right continuous
positive submartingale, then the content Az can be uniquely extended to a
measure on P, and this measure is o-finite. Setting Z = M?, we see that for
a right continuous L2-martingale M, there is a unique extension of (a2
to a (o-finite) measure on P. An independent proof of this extendibility
when M is a continuous L?-martingale is given in Section 4.4.

Until stated otherwise, we suppose that M = {M;,t € IR, } is a right
continuous L2-martingale. We use pps to denote the unique measure on P
which extends Aar)2. This measure has been called the Doléans measure of
M after C. Doléans-Dade who first made good use of it in a more general
setting in [25]. We use £2? to denote L?(IRy X , P, ptar), unless we need
to emphasize the association with M in which case we use £2(pp).

Example. Consider a Brownian motion B in IR with By € L? and let
{F:} denote its associated standard filtration. Then {B;, F;,t € IR+} is a
continuous L2-martingale. The following calculation shows that pp is the
product measure A x P on P, where A is the Lebesgue measure on IR,. For
s<tand F € F, we have

Agy2 ((s,t] x F) = E (1p(B; — By)?)
= E{1rE (B~ B,)’| F.)}
= E{(B: - B,)’} E{lr}
= (t — s)P(F)
= (A x P)((s,t] x F)

The third equality above follows because B; — B, is independent of Fj,
a consequence of the independence of the increments of B. The fourth



34 2. DEFINITION OF THE STOCHASTIC INTEGRAL

equality follows because B; — B, has mean zero and variance t — s. For
Fy € Fo,
}\(B)z ({0} X Fo) =0= (A X P) ({0} X Fo) .

Thus, A\(p)> agrees with A X P on R and hence on A. Since A X P is a
measure on B x F O P, we have ug = A x P on P, by the uniqueness of
the extension of A(py2 on A to ug on P.

Example. Consider a Poisson process N with parameter a > 0 and let
{F:} denote its associated standard filtration. Then M = {N; —at, Fi,t €
IR,} is a right continuous L2-martingale. In Exercise 4 you are asked to
prove that a(Ax P) is the Doléans measure for M. We shall not consider the
Poisson process in detail in this text because stochastic integrals with re-
spect to M can be defined using ordinary Lebesgue-Stieltjes integration (see
Exercise 11). In addition, in our subsequent development of the stochastic
calculus, from Chapter 4 onwards, we shall restrict ourselves to integrators
that are continuous local martingales. By restricting to continuous integra-
tors in this way, we are able to present the basic change of variable formula
and ideas of stochastic calculus without the cumbersome notation and more
elaborate considerations needed when one allows integrators with jumps.

2.5 Definition of the Stochastic Integral

First we define the stochastic integral [ X dM when X is an R-simple
process and show that the map X — [ X dM is an isometry from a subspace
of £? into L2. This isometry is the key to the extension of the definition to
all X in £2.

When X is the indicator function of a predictable rectangle, the integral
J X dM is defined as follows. For s < tin IR} and F € F;,

(2.4) /1(,,1],(;' dM = lp(Mt - M,)
and for Fy € Fo,

(2.5) /l{o}xFo dM = 0.
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Let £ denote the class of all functions X : IR} x Q@ — IR that are finite
linear combinations of indicator functions of predictable rectangles. Such a
function will be called an R-simple process. Thus, X € £ can be expressed
in the form

(2.6) X =) eiliaxr; + 2 dkl{o)xFu
j=1 k=1

where ¢; € IR, F; € F,;,8; <tjin IRy for 1< j<n,n€ IN, and d; € IR,
For € Fofor 1 < k< m, m € IN. This representation, although not unique,
can always be chosen such that the predictable rectangles (s;,t;] x Fj for
1< j <nand {0} x Foi for 1 < k < m, are disjoint.

The integral [ X dM for X € £ is defined by linearity. Thus, for X of
the form (2.6) we have

n
(2.7) /XdM?—_chlpj (My, — My,) .
j=1
It can be easily verified that the value of the integral does not depend on

the representation chosen for X.

Since 1z € L2 for any predictable rectangle R, it follows that £ is a
subspace of £2; and since M; € L? for each t, [ X dM is in L? for each
X € £. The following theorem shows that the linear map X — [ X dM is
an isometry from £ C L2 onto its image in L2.

Theorem 2.3. For X € £ we have the isometry

2.8) E{(/XdM)Z}: /(X)2d,uM.
Q

1R+x

Proof. Let X € & be expressed in the form (2.6) where the predictable
rectangles R; = (sj,t;] x Fj for 1 < j < n and {0} x Foi for 1 < k < m are
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disjoint. Then by (2.7) we have
2 n
(/ XdM) =S g, (M, - M,;)?
Jj=1

n n
+ 22 E cjcleian (Mtj - M-’j) (Mtk - Msk) .
J=lk=j+1

(2.9)

For1 < j < k < n,since R; N Ry = @, either
(1) Fjﬂsz(Z),or
(i) (s, t;]N (s, 0] = 0.

If (i) holds, the term indexed by j and k in the double sum above is zero.
If (ii) holds, we may assume without loss of generality that ¢t; < s;. By
the martingale property we have E (M, — M;, | Fs,) = 0. This implies the
basic “orthogonality property” that in the Hilbert space L?, the increment
M, — M,, of M is orthogonal to the subspace L? (Q, F,, P), i.e., for any
Y € L?2(Q, F,,, P),

E{Y (Mi, — M,,)} = E{Y E(M;, — M,, | F,,)} = 0.

Since 1r;nr, (M,J. - M,j) € L?(Q,F,,, P), it follows that the expected
value of the term indexed by j and k in the double sum in (2.9) is also zero
if (ii) holds. Thus, by taking expectations in (2.9) and using (2.1)-(2.2),
we obtain

d { </X"M)2} = En:C?E{lpj (M, - M,,)*}

j=1
n m

=Y Gum ((s, 4] x Fj)+ D dipar ({0} x Fox)
j=1 k=1

= [ Crdume n
1R+xn

The extension of the definition of [ X dM from integrands X in £ to
those in £2 is based on the isometry (2.8) and the fact that £ is dense in
the Hilbert space £2. A proof of the latter statement is given below.



2.5 Definition of the Stochastic Integral 37

Lemma 2.4. The set of R-simple processes £ is dense in the Hilbert space
£2.

Proof. Since P is generated by the ring A and pp is o-finite, then for
each € > 0, and A € P such that pup(A4) < oo, there is A; € A such that
purm(AAA;) < € where AAA; is the symmetric difference of A and A; (see
Halmos [37; p. 42, 49]). It follows that any P-simple function in £?% can
be approximated arbitrarily closely in the £2-norm by functions in £. The
proof is completed by invoking the standard result that the set of P-simple
functions is dense in £2. |}

If we regard £2? and L? as Hilbert spaces, then the map X — [ X dM
is a linear isometry from the dense subspace £ of £? into L2, and hence
can be uniquely extended to a linear isometry from £? into L? (see Taylor
[74, p. 99]). For X € L2, we define [ X dM as the image of X under this
isometry. Then (2.8) holds for all X in £2? and we refer to it simply as “the
isometry” since it is the only one we use.

Notation. Let A%(P, M) denote the space of all X€ P such that 1 4 X €
L? for each t € IRy. Here 1jo,7X denotes the process defined by

(Lo, X)(s,w) = 1io,9(s) X (s,w) for all (s,w) € Ry x Q.

Let X € A%(P,M). For each t, fl[o’,]X dM is well-defined and has
the isometry property:

(2.10) E { (/ 10,9 X dM)2} = / (X)2dpp.

[0,f]x2

By definition, uar({0} x Q) = 0, hence by (2.10) we have

(2.11) /1{0}xnx dM =0 as.

If X € £ and (2.6) is a representation for X, then for each ¢, 1[0, X is
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in £ and

n
(2.12) / logX dM =Y cjlp; (Mijae — Myjne) -
j=1

Here the right member of (2.12) is a right continuous L2-martingale indexed
by ¢. By using the isometry, we shall extend this to prove for X € A?(P, M)
that { [ 1j,qX dM,t € IRy} is an L?-martingale which has a right contin-
uous version; thus showing that these properties of M are preserved by the
integration.

Theorem 2.5. Let X € A%(P, M) and for each t let Y; = [1jp 4 X dM.
Then Y = {Y;,t € IR, } is a zero-mean L2-martingale and there is a version
of Y with all paths right continuous.

Proof. Let n € IN. Then 1 ,jX € £? and by Lemma 2.4 there is a sequence
{X*, k € IN} in € which converges to lio,n)X in L2. Tt follows that for each
t € [0,n], 1[0,y X* converges to 1o,y X in £? as k — oo, and hence by the
isometry, Y¥ = [ 1o,4X* dM converges to Y; = [1jp,4gX dM in L2. For
each k, by the remarks following equation (2.12), Y* = {Y*,t € R} } is a
right continuous L?-martingale. Since the martingale property is preserved
by L2-limits (see Proposition 1.3), it follows that {Y3,t € [0,n]} is an L2-
martingale. Since n was arbitrary, we conclude that {Y;,¢ € R+} is an
L2-martingale. By (2.11), Yo = 0 a.s. and hence E(Y;) = E(Yy) = 0 for all
t.

Since {Y;, F:, t € IR} } is amartingale and {F,} is a standard filtration,
by [12, p. 29], there is a version of {Y;, ¢ € IR;} with all paths right
continuous. Another proof of this last property of Y can be obtained by
replacing “continuous” with “right continuous” in the proof of Theorem 2.6
below. |

Theorem 2.6. Suppose the hypotheses of Theorem 2.5 hold and M has
continuous paths. Then there is a version of Y with continuous paths.

Proof. We first show that for each n € IN there is a continuous version Z"
of {Y;,t € [0,n]}. For j < k and Y/, Y as in the above proof, Y¥ —Y7 isa
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continuous L2-martingale and thus by the basic inequality (1.3) of Theorem
1.4 we have

(213) P ( sup

, 1 .12
s [ve NAE 2—,,;) <2 (vt -vi[)

for each m € IN. Since Y,* converges to Y, in L? as k — oo, there is a
subsequence {Y;¥=, m € IN} such that

(2.14) E (|Y,{°m+1 — Ykm |2) < 5317;

By combining (2.13) and (2.14), we obtain

S (g e i 2 g5) < D <o

0<t<n
An application of the Borel-Cantelli lemma then yields

P ( sup
0<t<n
where i.o. is our abbreviation for “infinitely often”. It follows that there is

a set €, of probability one such that for each w € Q,, {Y*~(t,w),m € IN}
converges uniformly for ¢ € [0, 7] to some limit Z"(¢,w). Since Y¥m (-, w)

Ytkm‘l'l - Y'tkml Z 515 lO) = 0’

is continuous on [0,7n], so is Z™( - ,w), by the uniformity of the conver-
gence. Moreover, for each t € [0,n], Y™ converges a.s. to Zp, and in L2
to Y;, as m — oo; hence ZP = Y; as. Thus, Z" = {Z},t€[0,n]} is a
continuous version of {Y;,t € [0,n]} on Q,. For ny < ng, {Z}*,t € [0,n1]}
and {Z72,t € [0,n,]} are both continuous versions of {Y;,t € [0,71]} on
Qn, NQy,, and are therefore indistinguishable there. It follows that there
is a set Q9 C (), 2 of probability one such that for each w € o,
lim,, .00 Z2™(t,w) exists and is finite for each ¢t € IR;, and for each n € IN
this limit equals Z™(¢,w) for each ¢t € [0,n]. If we denote this limit by
Z(t,w), then Z is a continuous version of ¥ on . It can easily be ex-
tended to a continuous version on 2. |

Notation. We shall use the notation { f[o g X dM,t € IRy} to denote a
right continuous version of {[ 14X dM,t € IR;} and f(s X dM to de-
note f[Ot]XdM - f[o.s]XdM for s < t in IRy. If M is known to be
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continuous, we shall use { fg X dM,t € IR+ } to denote a continuous version
of { [ 10,gX dM,t € IRy} and [} X dM to denote [ X dM — [; X dM for
s<t.

In the following theorem, we list some properties of the stochastic in-
tegral f[o g X dM.

Theorem 2.7. Let X € A?(P,M) and let Y denote the right continu-
ous stochastic integral process { f[o 9 X dM,t € IR, }. Then the following
properties hold.

(1) For s < tin IRy and any r.v. Z € bF;, we have 1(, 4Z € P,
1s,0ZX € A%(P, M), and a.s.

(2.15) /1(,,ﬂzx M =2 / X dM.
(5.1

(i)  The measure puy associated with the right continuous L?-martingale
Y has density (X)? with respect to ppm, i.e., for any A € P,

(2.16) py (4) = / (X)? dpunr.
A

(iii) For any bounded optional time T,

(2.17) Y, = / X dM = / o XdM as.

[0,7]

Remark. The first equality in (2.17) is by definition, where for each w, Y, (w)
is the value of Y;(w) at ¢t = 7(w); whereas the integral on the far right of
(2.17) is a random variable defined via the L2-isometry. Their a.s. equality
must therefore be proved.

Proof. For s < tin IRy and Z € F;, 1(,,4Z € P follows by linearity and
a monotone class argument from the fact that 1, qxg € P for G € F;.
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Then, since X € P, 1(5,0ZX € P. (For a partial converse see Exercise
8.) Furthermore, if Z is bounded, then since X € A%(P, M), we have
15,94X € A2(P, M). Now that the measurability and integrability prop-
erties in part (i) have been established, we focus on the proof of (2.15). Note
that (2.15) is easily verified if Z = 1g for some G € F, and X = l(yv]xF
for some u < v in IRy and F € F,. It then follows by linearity that
(2.15) holds when Z is an F,-simple function and X is in £. For general
Z and X, there is a bounded sequence {Z*} of F,-simple functions con-
verging to Z pointwise on 2, and a sequence {X*} of functions in £ such
that klim 1(3,t]X’c =1 X in £2. Since {Z*} is bounded, it follows that
kli»nc}o 1;?:(])Z’“X’C =1(;,1ZX in £? also. Now,

/1(3’t]ZX dM — Z / XdM
(s.1]

= / 1y (Z2X - Z2¥X*) dM

(2.18)
+ /1(s,t]z’“X'° dM — Z* / Xt dMm
(1]
+ ZF /(X’“—X)dM+(Z’° -Z7) / X dM.
(] (]

We claim that the terms following the equals sign above converge to zero in
L! as k — 0o. By the simple function case discussed above, the second term
(in braces) is zero. The first and third terms converge to zero in I?, by the
isometry. The last term tends to zero in L!, by Schwarz’s inequality and
bounded convergence. Since the expression in (2.18) preceding the equals
sign is independent of k, it follows that it is zero a.s., proving (i).

For the proof of part (ii), it suffices to prove (2.16) for A € R, since the
measures gy and (X)2dup on P are uniquely determined by their values
on R. If A= {0} x Fy for Fy € Fy, both sides of (2.16) are zero. On the
other hand, if A = 1(, yyxF for some s < t and F € F;, then

uy(4) = B{1p(Y; - ¥,)?} = E{(lpf( ﬂXdM)z}
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which by part (i) equals

2
E{(/ 1(s,t]xFXdM) }=/1(s,t]xF(X)2 dpum =A/(X) dpm.

The first equality above follows by the isometry. Thus (2.16) holds for all
A in R and hence for all A in P.

For the proof of part (iii), let 7 be an optional time, bounded by C,
say. We approximate 7 in the standard way by a sequence {m,, n € IN} of
optional times such that for each n, 7, takes only finitely many values and
(2.17) holds with 7, in place of 7.

As in the proof of Lemma 2.1, for each n let 7, = 27" [2"7 + 1]. Also
let N, = [2"C]. Then

Np
(219)  [0,m]= ({0} x QU [ (27", (k+ 1)27"] x {r > k27"}
k=0

is in A and by the boundedness of 7, 1jo,r,) X € L2. Now, for each n,

Nan

Vi, =D Likz-ngra(ian)z—»} Yik1)2-n
k=0
Nn

= Z Lirska-n} (Ye41)2-n — Yia-n) .
k=0

Here the second equality is obtained by partial summation using Yy = 0
and 0 < 7 < (Np + 1)2=". Thus by the definition of Y; and part (i) we
have a.s.

Npn
Yr, = Z/l(kz-",(k+1)2—"]x{r2k2-"}X dM.
By linearity, (2.11), and (2.19), it follows that a.s.
(2.20) Y. =/1[0,.,-n]XdM.

Since 7, | 7 and Y is right continuous, the left side of (2.20) converges
pointwise on Q to Y, as n — oo; and since 7, is bounded by C +1, it follows
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by dominated convergence and the isometry that the right side converges
to fl[o,,]X dM in L?. Hence (2.17) holds. |

The following corollary will be needed in the next section.

Corollary 2.8. Let s <t in IRy, F € F,, and T be an optional time.
Then we have a.s.:

(2'21) /1[0,7]1(3,t]xF dM = 1F(A{[tA'r - .sAr)-

Proof. Let X = 1(;4jxr- Then,

/1[O,u]X dM = 1F(MtAu - sAu)-

The right side of the above equality is right continuous in u and therefore
may be used as the right continuous version f[o u] X dM of the left side. By
replacing u by 7 At, we obtain

XdM = 1F(Mt/\r - SAT)'

[0,7At]

It follows from (2.17) with 7 At in place of 7 there, that the left side of the
above is equal a.s. to the left side of (2.21). Hence (2.21) holds as. [

Our definitions of the measure pps and the stochastic integral f[o, 9 XdM
only involved the increments of M. Hence the values of these quantities
would remain unchanged if we replaced M by M — My in their definitions.
Indeed, the following depends on this.

2.6 Extension to Local Integrators and Integrands

So far we have considered stochastic integrals f[O,t]X dM where the
integrator is a right continuous L2-martingale and the integrand is in
A%2(P,M). As a final extension we shall define the stochastic integral for
integrators and integrands which only possess these properties in a local
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sense. Consequently, we shall no longer assume that M is a right contin-
uous L2-martingale. Instead, for the rest of this chapter, we suppose that
M is a right continuous local L2-martingale (see Section 1.10 for the def-
inition). If {rx} is a localizing sequence for M, we use M* to denote the
right continuous L2-martingale {M;a-, — Mo,t € IR, } for each k.

Next we define the class of integrands associated with M.

Definition. Let A(P, M) denote the class of all processes X for which there
is a localizing sequence {7;} for M such that M* is an L2-martingale and

(2.22) Ljo,r,)X € A%(P, M¥) for each k.
Such a sequence will be called a localizing sequence for (X, M).

Example. Suppose M has continuous paths and X is a continuous adapted
process. We claim X € A(P, M) and

Tk = inf{t >0: |Mt —_ M()I \% Ith > k‘}
defines a localizing sequence for (X, M).

For the proof of this claim we note that by results in Chapter 3, X is
predictable. By the definition of 7, (X)? < k2 on (0,t A 7%]. Moreover, by
the isometry and Theorem 2.7(iii) we have

[ tmmidise = B {(Minr, — 10"} < &2,
IRy x2

Thus, by combining the above with the fact that pprx ({0} x Q) = 0, we
obtain
Yo,ear)(X)? dpprr < k%,
IRy xQ2

which proves the assertion.

An important special case of the above example is obtained by setting
X=M.

Let X € A(P, M) and {7} be a localizing sequence for (X, M). Then
Yk = { f[o 4 lo,n1X dM k.t € IR,} is a right continuous L2-martingale
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for each k, by the notational convention following Theorem 2.6. We shall
define Y = {f, ; X dM,t € IRy} as the a.s. limit of the Y*’s, just as Z
was defined from the Z™’s in the proof of Theorem 2.6. The difference
being that here we use random truncation times 7, whereas constant times
n were used before. To validate this procedure, we need to verify that the
following consistency condition holds:

(1)  for each k, for almost every w:

(2.23) Y™ (w) = YF(w) for all t € [0, 7] and m > k,
and to show that

(ii) the definition of Y is independent (up to indistinguishability) of the
choice of a localizing sequence for (X, M).

These assertions are formally obvious, but their proofs are long in de-
tails. They follow from the two lemmas below which are spelled out for the
meticulous reader.

Lemma 2.9. Let 7 and n be optional times such that M™ = {Mia, —
My, t € IRy} and M" = {Ma, — Mo,t € IRy} are right continuous L?-
martingales. Let pu”™ and p" denote the measures pp- and ppn on P
associated respectively with M™ and M". Then p™ and p" induce the same
measure on the stochastic interval [0, A7), L.e., for each A € P:

(2.24) uT(AN[0,7An)) = p"(AN[0, 7 An)).

Proof. Since the predictable rectangles generate P, it suffices to prove (2.24)
when A is a predictable rectangle. Clearly both sides of (2.24) are zero when
A = {0} x Fy for some Fy € Fo. On the other hand, if A = (s,t] x F for
some s <t and F' € F,, then by the isometry

2
/‘T(A n [0, TA 77]) =EK { (/ 1[0,‘rAn]1(s,t]xF dMT) } .
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By Corollary 2.8 and since M = M, — M, for 0 < u < 7, the right side
above equals
E{lF(MtAfAn - .sA'rAr/)z}‘

Since the last expression is symmetric in 7 and 7, (2.24) follows for A =
(s,t] x F, and hence forall Ain P. 1

Lemma 2.10. Let 7 and ) be optional times such that M™ = {Ma, —
Mo,t € IRy} and M" = {Miny — Mo,t € IR} are right continu-
ous L2-martingales, and 101X € A*(P,M7) and 1o ;X € A%(P,M7).
Let Y™ and Y" respectively denote the right continuous L?-martingales
{f[o,t] ljo,nX dM",t € IR} } and {f[o,t] ljo,; X dM",t € IR, }. Then

(2.25) P{Y[ =Y for 0<t<TAn}=1.

Proof. To prove (2.25), it is equivalent to prove the processes {YJ\T Apt 2 0}
and {Y{\,r,,t > 0} are indistinguishable, and since these are right contin-
uous, it suffices to prove

(2'26) Yt7/-\'rAn = Yt?\r/\n a.s.

for each t. It is easily verified using (2.17) and (2.21) that (2.26) holds if X
is the indicator function of a predictable rectangle, and hence by linearity
if X isin £. For the general case, using the same notation as in Lemma 2.9,
we have 1[g taraqX € L2(p7). Hence there is a sequence {X"} in £ which
converges to 1[0 tarang) X in L2(u7) and therefore 1jo iaran)(X™ —X) — 0 in
L2(p") as n — co. The latter convergence is also in £2(u"), since u” and
u" induce the same measure on [0,tATA7] by Lemma 2.9. We have already
verified that (2.26) holds if X is replaced by X™. By letting n — oo and
using (2.17) and the isometries (for 7 and 7), it follows that (2.26) holds
for X. §

By setting 7 = 7, and 7 = 7 in Lemma 2.10, we obtain (2.23).
Consequently, there is a set o of probability one such that for each
w € Qo,limp—00 Y™(t,w) exists and is finite for each ¢, and for each &
and t € [0, 7] this limit equals Y*(¢,w). We denote this limit by Y (¢,w).
Then Y (-,w) is right continuous for each w € £ and can easily be defined
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so that it is right continuous for w € Q\Qo. Then for each &, almost surely,
Yinr, = YF for all . Hence Y is a right continuous local L?-martingale

with localizing sequence {7x}.

We shall denote Y; by f[O,t] XdM and Y; — Y, by f(s,t]XdM. If M is
actually continuous, then so is Y, and Y; will be denoted by fot X dM and
Y, - Y, by [ X dM.

The fact that the definition of Y is independent (up to indistinguishabil-
ity) of the choice of a localizing sequence for (X, M) is an easy consequence
of Lemma 2.10. The formal proof is left to the reader.

The following theorem is an immediate consequence of the above dis-
cussion and the example which follows (2.22). Recall that a continuous
local martingale is automatically a local L 2-martingale.

Theorem 2.11. Let M be a continuous local martingale and X be a
continuous adapted process. Then X € A(P,M) and {fot X dM,t € IR}
is a continuous local martingale.

If M is aright continuous L2-martingale and X € A%(P, M), the above
definition of f[o, 9 X dM is consistent with that given in the previous section
because the integrals are unchanged if M is replaced by M — M,. This
replacement is also used to simplify some later proofs by reducing to the
case My = 0 so that Mt" = Miar,. In connection with this, we emphasize
that only the integrator can be replaced by M — Mp. In particular if M is
a continuous local martingale we have

/MdM: /(M— Mo) dM + My(M; — Mo)
(2.27) 0 0

- /(M — Mo)d(M — Mo) + Mo(My — My).
0
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2.7 Substitution Formula

Theorem 2.12. Let M be a right continuous local martingale, X €
A(P,M) and ¥; = f[o 4 XdM for all t > 0. Suppose Z € A(P,Y). Then
XZ € A(P,M) and a.s. for all t> 0,

(2.28) / Zdy = / XZdM.

(0,2] (0.4

Proof. By taking the minimum of a localizing sequence {o,} for (X, M)
(see (2.22)) and a localizing sequence {p,} for (Z,Y’), we obtain a sequence
{™ = on A pn} that is simultaneously localizing for (X, M) and (Z,Y). By
stopping M and Y with this sequence and multiplying X and Z by 1,7,
we see that it suffices to prove the theorem for the case in which M and Y
are L?-martingales, X € A%(P, M) and Z € A?(P,Y). The proof for this
case is divided into three parts.

(i)  Suppose Z is an R-simple integrand. Then, for each t € IRy, (2.28)
holds a.s.

Proof of (i). Note that 10 1 X Z € L2(ppr), since this holds with X in place
of XZ and Z is bounded. It follows from (2.5) with Y in place of M, and
(2.10) with XZ in place of X and up ({0} x Q) = 0, that (2.28) holds
when Z = 1{0}xF, Wwhere Fy € Fo. By Theorem 2.7, (2.28) also holds when
Z = Yy s1xF, for Fr € Fr, 0 < r < s < co. It then follows by linearity that
(2.28) holds for any R-simple Z.

(ii) Foreachte€ Ry,

(2.29) / ljo,qZ2%dpy = / 10,0 X2 Z%dpnt,

and hence XZ € A*(P, M).

Proof of (i1). If Z is R-simple, then by the isometry (2.8) and part (i) above
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we have
- 2
/l[o’t]Zdey =F (/ ZdY) ]
[0,]
- 2
(2.:30) =E ( XZdM) }
[0,]

= / 1[0)t]X2Z2dﬂM-

The result for Z € A%(P,Y) then follows by applying a monotone class

theorem.
(iii) Almost surely, (2.28) holds for allt € IR ;.

Proof of (iii). Since both sides of (2.28) are right continuous processes, it
suffices to show that (2.28) holds P-a.s for fixed ¢. By part (i) above, this
holds for all R-simple functions Z. For a general Z € A%(P,Y), there is a
sequence {Z(™)} of R-simple integrands such that 1j 4Z(™) converges to
10,2 in L%(py) as m — oo. It follows by the L2-isometry that

(2.31) / Zmay / ZdY in L.
[0,7] (0,7
Hence, using (2.29) with Z replaced by Z(™) — Z, we see that as m — oo,

1o,y X(Z(™) — Z) converges to zero in L%(up), and so by the isometry
(2.8),

(2.32) / XzmdM — / XZdM in L2
[0,2] [0,
Since the Z(™)’s are R-simple, the left members of (2.31) and (2.32) are

equal for each m, by part (i), and hence the right members are equal P-a.s.
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2.8 A Sufficient Condition for Extendibility of A

For the proofs below, we have benefited from the presentation given in
Letta [53].

For any set A C IRy x Q and w € Q, let A¥ denote the w-section of A:
AY ={te Ry : (t,w) € A}.
The début D4 of A is defined by
(2.33) Dy(w) =inf A¥, forall w € A,

where inf( = oo.

Lemma 2.13.

(i) IfBj CIR; for1<j<k<oo,then

C=

1515'1£k(mf3j) = inf ( lBj) .

J

(ii) Iffor each n > 1, C, is a compact subset of IRy and Cp, D Cp41 for
all n, then

oo
nango 1 (inf Cy) = inf (Dl Cn> .
Remark. The empty set @ is a compact set.

Proof. We prove part (ii) only. If there is an n such that C, = 0, then
inf C,, = oo and the result reduces to 0o = co. On the other hand, suppose
none of the Cy, is empty, let C = (., C, and t, = inf Cy, for each n.

Then, t, € C,, and t* = limy—co T tm € Cp, for all n > 1. Thus, t* € C,
t* > inf C > t, for all n. Hence t* =infC. |

Example. If the sets in Lemma 2.13(ii) are not compact, the result can
fail, as the following example illustrates. If C, = (1 — %, 1) U {2}, then
Cn | {2}, but infCp =1-1 1 14#inf(), Cr =2.
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A subset A of IR, x Q is called a stochastic compact if for each w € Q,
A% is a compact subset of IRy.

Lemma 2.14.

(i) If Aj CIRy xQ for 1< j<k<oo,then

inf Da.=Dyr 4.
1<i<k Uj=14i

(ii) Ifforeachn>1,Apisa stochastic compact and Ap, D Any1 for all
n, then

lim 1 Da, = Dnee 4,

n—00 L

Proof. This is an immediate consequence of Lemma 2.13. I

Definition. A random variable X is said to have finite range if {X(w) :w €
Q} is a finite set.

Lemma 2.15. If A € A, then D, is optional and has finite range.

Proof. Since A € A, there are finitely many disjoint predictable rectangles
Ry,..., Ry, such that A = Jj_; R;. By Lemma 2.14(i),

Djg = min Dg..
1<j<n ;i

If R = (s,t]x F, for F, € F,, then Dg = slp, +00-1F; is an optional time.
If R = {0} x Fy for Fy € Fo, then Dp = 0-1p,+00-1F¢ is an optional time.
Since the minimum of a finite number of optional times, each of which has
finite range, is optional and has finite range, the result follows. R

Remark. More generally, the début of any optional (in fact, of any pro-
gressively measurable) set is optional (see Chung [12, Theorem 3, Section
1.5)).
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Theorem 2.16. Let Z be a right continuous positive submartingale. Then
the content Az defined in Section 2.4 can be uniquely extended to a measure
on P, and this measure is o-finite.

Proof. We first note for later reference that for each ¢ > 0, from the non-
negativity and submartingale property of 7,

0<Z, <E[Z;|Fs] forall 0<s<t,

and hence {Z,, 0 < s <t} is uniformly integrable.

Since
Az([0,t] x Q) = E[Zy — Zp) < o0 forall t >0,

any extension of Az to a measure on P must be o-finite.

By the Caratheodory extension theorem [37, p. 54], since the o-ring
generated by A is P, to prove that Az is uniquely extendible to a measure
on P, it suffices to prove Az is countably additive on .4. For this it is enough
to show that for any sequence {G,} C A such that G, | 0, A\z(G,) — 0.
Now for any G € A,

Az(G) = Az (GN ({0} x Q) + Az (GN((0, 00) x Q)
=2z (G N((0, 0) x Q)),

where G N ((0, 00) x Q) € A. Thus, it suffices to consider {G,} C AN
((0, 00) x Q). Note that if G = (s, t] x F; for F; € F,, then for any m € IN
such that s+ L <t, H=(s+ %, t]xF, eR, K=[s+%,l]x F,isa
stochastic compact, and H C K C G. Furthermore,

Az(G\H) = Az(G) = Az(H) = E (1F,(z,+# - z,)) —0

as m — 00, by the right continuity of Z and the uniform integrability
of {Zy : s < u < s+ 1}. Since each set in 4N ((0, 00) x Q) is a finite
union of disjoint sets in R N ((0, 0o) x Q), it follows that given any € > 0,
for each j > 1, there is H; € A and a stochastic compact K such that
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H; C Kj C Gj and Az(Gj) — Az(Hj) < €274, Since {Gn} is decreasing,
we have for each n,

j=1 j=1

HnEth C KnEmI{] C GnEﬂGja
j=1

where H,, € A, K, is a stochastic compact, and

(2.34) Az(G\H,) = Az(Gn) — Az(Ha) < e.

By hypothesis G, | 0, hence K, | 0, and then by Lemma 2.14(ii),
DK,. T Dq) = 00.

Since T,, = DI'L > DI?,.’ we have T}, 1 0o as n — oco. Thus, for any ¢ > 0
and w € Q, there is N(w) € IN such that T,(w) At =t for all n > N(w).
Thus, Z1, At — Z; pointwise on Q as n — co. Now, by Lemma 2.15, T}, is
optional and has finite range. Hence T, At also has these properties, and

then by the submartingale property of Z,
0 S ZTnAt S E[Zt I}-T,./\t] for all n 2 1.

(Note we did not need to use the right continuity of Z for this.) Conse-
quently, {Z1 a¢, n > 1} is uniformly integrable and it follows that
lim E[Zr,at] = E[Z4).

n— o0

By the definition of Az,
(2.35) Az (To AL, t)) = E[Z: — Zroat] = 0 as n — oo.

Snince G1 € AN((0, 00) x Q), there is t > 0 such that Gy C [0, ¢] and so
H, C [0,t]. On the other hand, by the form of the sets in AN ((0, c0) x Q),
the graph {(Dﬁn(w),w) tw € Q) C TRy x Q of the début of the set H,
does not meet H,, and so H, C (T, 00). Hence, H, C (T At t]. Tt follows
from (2.35) that Az(H,) — 0 as n — oo, and hence by (2.34), Az(Gr) — 0
as n — 0o, as desired. |
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Corollary 2.17. If M is a right continuous L?-martingale, then A(ar)2 has
a unique extension to a measure on P, and this measure is o-finite.

2.9 Exercises

1. Let G; denote the o-field generated by all stochastic intervals of the
form [n, 7] where 5 and 7 are optional times. Similarly, let G2, Gs and G4
denote the o-fields generated by the stochastic intervals of the form [, 7),
(1, 7] and (7, 7), respectively. Can you identify G; (¢ € {1,2,3,4}) with P,
O or neither?

(Answer: Gy = G2 = 0, Gz C P but Gz # P, and G4 C O but G4 # O.)

2. Suppose X = {X;,t > 0} is a right continuous process that has finite
left limits on (0, c0) and is adapted to {F;, ¢t > 0}. Prove that 7 = inf{t >
0:X; — X;_ > ¢} is an optional time.

(This result can be proved from first principles, but it is also a special case
of the optionality of the début of a progressively measurable set, ¢f. Chung
[12, Section 1.5].)

In the next two exercises, let {N;,t € IR} } be a Poisson process with
parameter a > 0 and let {F;, t > 0} be the associated standard filtration
as defined in Section 1.8.

3. Let T be the time of the first jump of N. Show the following.

(a) T is an optional time.

(b) T is not a predictable time.

Hint for (b): For a proof by contradiction, suppose that {T,} is an an-
nouncing sequence for 7. Then use the memoryless property of the Poisson
process at the optional times T, to conclude that for any € > 0:

P(T =T, >¢) = P(T >¢).

Since T,, 1 T P-a.s., the left member above tends to zero as n — co. On
the other hand, the right member is independent of n and strictly positive.

4. Show that M; = N; — ot defines a (right continuous) L?-martingale
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and that its Doléans measure is ppr = a(X X P) (cf. Exercise 2 of Chapter

1).

5. Let T be an optional time relative to {F;}. Suppose the following two
properties hold:

(i) for each t > 0, P(0 < T'< t) > 0, and
(ii) for A € Fi, P(AN{T > t}) is either equal to 0 or to P(T > ¢).

Prove that if S is also an optional time relative to {F;}, then
PO<S<T)<P(T>0).

This implies that T is not predictable. Since the first jump time of a Poisson
process satisfies (i)-(ii), this gives an alternative proof of 3(b) above.

6. Let (W, G, v) be a o-finite measure space where the o-field G is generated
by a ring H such that v(A4) < oo for each A € H. Prove that if A; € G and
V(A1) < 0o, then for each £ > 0 there is A € H such that ¥(A1A4,) <e.

7. Use the monotone class theorem for functions (see Section 1.2) to give
an alternative proof of Lemma 2.4.
Hint: First prove this result for bounded functions in L%([0,¢] x 2, P, uar).

8. Suppose X is a predictable process and X > 0. Prove that for any
0 <5 <t < 00 and random variable Z € F, 1(, 4ZX is predictable if and
only if Z is Fs-measurable.

9. Prove that (2.17) is also true if 7 is a finite optional time and X € £2.

10. Let {7} be a localizing sequence for a right continuous local L2-
martingale M. For fixed k, define

Zt = Mt/\Tk/\k d Mo for all 4 2 0.

Show that Z is an Lz-martingale and that its Doléans measure pz is finite
on (IR} x Q, P).

11. Let N be a Poisson process with parameter o > 0. Define M; = N;—af.
Note from Exercise 4 that up = (X x P). Suppose X € A2(P, M). Then
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the stochastic integral f[o i XdM is well defined for all ¢ € IR;. Prove
that for each ¢, f[o 1 X dN, and f[o 9 X,ds are almost surely well defined as
Lebesgue-Stieltjes integrals and that they define random variables satisfying

(2.36) / XsdN, = XdM + o X,ds,

[0,t] [0,t] [0,¢]
where the integral with respect to dM is a stochastic integral defined by
the L2-isometry.
Hint: First prove (2.36) for an R-simple X and then use a monotone class
argument to extend to X € A%(P, M).

In Exercises 12 and 13 below, B is a Brownian motion in IR with By € L2.
You may use the result from the first example in Section 4.2 in solving these

exercises.

12. Working from the fundamental definition, evaluate the stochastic in-
tegral fot B, dB;. If you are ambitious, try also fot BYdB, for k= 2,3,...,
where B¥ denotes the k*® power of B,.

13. Show that for each fixed ¢ > 0, the approximating sums:

2"-1

kZ:O B ( (k + %)w—") {B((k + 1)t2~") — B(kt2™")}

converge in L? to fot B,dB,; +t/2 as n — o0o. Note that this limit does
not define a martingale. It defines what is usually called the Stratonovitch
integral of B with respect to B.
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