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2 

DEFINITION OF THE 
STOCHASTIC INTEGRAL 

2.1 Introduction 

In this chapter, we shall define stochastic integrals of the form 

f[o,t) X dM where M is a right continuous local L2-martingale and X is 

a process satisfying certain measurability and integrability assumptions, 

such that the family of stochastic integrals {~o,t) X dM, t E JR+} is a right 

continuous local L 2-martingale. For certain M and X, the integral can 

be defined path-by-path. For instance, if M is a right continuous local 

L 2-martingale whose paths are locally of bounded variation, and X is a 

continuous adapted process, then ~o,t)X&(w)dM&(w) is well-defined as a 

Riemann-Stieltjes integral for each t and w, namely by the limit as n-+ oo 

of 
[2nt) 

L xk2-n(w) (M(k+1)2-n(w)- Mk2-n(w)). 
k=O 

The standard example of this path-by-path integral is obtained by setting 

Mt = Nt - ext where N is a Poisson process with parameter ex > 0. In this 

case, for any continuous adapted process X we have 

00 t J X&(w) dM,(w) = L lh:$t}Xrk (w)- ex j X,(w) ds, 
[O,t) k=l 0 

K.L. Chung and R.J. Williams, Introduction to Stochastic Integration, Modern Birkhäuser Classics,  
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where Tk is the time of the kth jump of N, and a.s. for each fixed t the sum 

on the right is of finitely many non-zero terms because almost surely there 

are only finitely many jumps of N in [0, t]. 

The stochastic integral defined in the sequel is valid even when M 

does not have paths which are locally of bounded variation. Any non­

constant continuous local martingale is such an M; the canonical example 

is a Brownian motion B in JR. Even the simple integral I[o,t] B dB cannot 

be defined path-by-path in the Stieltjes sense, because almost every path 

of a Brownian motion is of unbounded variation on each time interval (see 

Freedman [33, p. 49]). In fact, the stochastic integral developed here, known 

as the Ito integral when M is a Brownian motion, is not defined path-by­

path but via an isometry between a space of processes X that are square 

integrable with respect to a measure induced by M, and a space of square 

integrable stochastic integrals I X dM. 

As a guide to the reader, we provide the following outline of the several 

stages in the definition of the stochastic integral. 

The measurability conditions on X will be specified first. In doing this, 

we adopt the modern view of X as a function on IR+ x n and require it 

to be measurable with respect to a a--field P generated by a simple class 

n of "predictable rectangles." Although this definition of the measurable 

integrands may not be the most obvious one, it is convenient for a stream­

lined development of the integral. Moreover, we shall prove in Theorem 3.1 

that the class of P-measurable functions includes all of the left continuous 

adapted processes. 

After a discussion of the a--field P, we shall consider the case where 

M is a right continuous L2-martingale. A measure flM associated with M 

will be defined on P and then we shall define the integral Jro,t] X dM in the 

following three steps. 

(i) I X dM will be defined for any n-simple process X in such a way 
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that the following isometry holds: 

(ii) This isometry will then be used to extend the definition of J X dM 

to any X E £ 2 := L2 (JR+ x 0, P,J-tM)· 

(iii) For any process X satisfying l[a,t]X E £ 2 for each t E JR+, it will 
be shown that there is a version of {f l[a,t]X dM, t E ~} which is 
a right continuous L2-martingale, to be denoted by {fta,t] X dM, t E 

~}. 

Finally, the extension to the case where M is a right continuous local 
L2-martingale and X is "locally" inC 2 will be achieved using a sequence of 
optional times tending to oo. The above definition ofthe stochastic integral 
will apply to the processes obtained by stopping M- Ma and X at any one 
of these times, and then the integral for M and X will be defined as the 
almost sure limit of these integrals, as the optional times tend to oo. 

We now begin the above program with the definition of the 0'-field P. 

2.2 Predictable Sets and Processes 

The family of subsets of IR+ X n containing all sets of the form { 0} X Fa 
and (s, t] x F, where Fa E Fa and F E F. for s < t in JR+, is called the 
class of predictable rectangles and we denote it by R.. The (Boolean) ring A 
generated by R. is the smallest family of subsets of~ X 0 which contains 
R. and is such that if A 1 and A 2 are in the ring, then so too are their union 
A1 UA2 and difference A1 \A2. Then A1 nA2 is also in A. Indeed, it can be 
verified that the ring A consists of the empty set 0 and all finite unions of 
disjoint rectangles inn. The 0'-field p of subsets of~ X n generated by n 
is called the predictable 0'-field and sets in P are called predictable (sets). 
A function X : ~ X n ---+ IR is called predictable if X is P-measurable. 
This is denoted by X E P. If A is a set in R., then lA(t, ·)is Ft-measurable 
for each t. Consequently, lA is an adapted process. It follows by forming 
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finite linear combinations that the same is true for any A in A. Then by 

a monotone class theorem (see Section 1.2), any real-valued P-measurable 

function is adapted. A real-valued P-measurable function will be referred 

to as a predictable process. 

Remark. In systematic studies of the theory of processes, it seems more 

natural to consider the u-field P and predictable processes as defined on 

(0, 00) X n. However, we find it convenient to have all processes defined 

at time zero. The consequence, which is of more logical than substantial 

significance, is that time zero and sets like {0} x Fa sometimes require 

slightly different treatment. 

It is shown below that for any optional time r, 

[O,r] = {(t,w) E JR+ x 0:0:::; t:::; r(w)} 

is a predictable set. Such "intervals" play an important role in the final 

extension phase of the definition of the stochastic integral. 

2.3 Stochastic Intervals 

For optional times 7J and r, the set 

[7J, r] = {(t,w) E JR+ X 0: 7J(w):::; t:::; r(w)} 

is called a stochastic interval. Three other stochastic intervals (7J, r], (77, r), 
and [77, r), with left end-point 7J and right end-point rare defined similarly. 

The term stochastic interval will refer to any of these four kinds of intervals 

where 7J and r are any optional times. Note that stochastic intervals are 

subsets of~ x 0 not~ x 0; consequently (oo,w) is never a member of 

such a set, even if r(w) = oo. Also, we have not specified that 7J:::; r, but 

by definition the intersection of [7J, r] with IR+ x {w : 7J > r} is the empty 

set. If s, t E ~,then [s, t], (s, t], [s, t) and (s, t), may be interpreted as 

real or stochastic intervals. It will usually be clear from the context which 

interpretation is meant. For example, in equation (2.10), l[o,t] means the 

indicator function of the stochastic interval [0, t] X 0. 
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The u-field of subsets of 1l4 X 0 generated by the class of stochastic 

intervals is called the optional u-field and is denoted by 0. The graph of 

an optional timer, denoted by 

(r] = (0, r]\(0, r) = {(t, w) E JR+ X 0: r(w) = t}, 

is in 0. A function X : IR+ x 0 -+ lR will be called optional iff X is 

0-measurable. If A is a stochastic interval, then lA(t, · ) is Ft-measurable 

for each t, by the optionality of the end-points of A. Then it follows as for 

predictable functions that any optional function is an adapted process, and 

we shall refer to it as an optional process. 

We now investigate the relationship between P and 0. Each predictable 

rectangle of the form ( s, t] x F where F E :F3 and s < t in IR+, is a stochastic 

interval of the form ( 7], r] with 1J = s, T = s on 0\F and T = t on F. Also, 

for FoE Fo, {0} X Fo = nn[O, Tn) where 

on Fo 
on 0\Fo 

is optional for each n. It follows that n c 0 and hence, since n generates 

P, we have PC 0. In the following lemma we show that certain types of 

stochastic intervals are predictable. 

Lemma 2.1. Stochastic intervals of the form [O,r] and (1J,T] are pre­
dictable. 

Proof Since (1J, r] = [0, r]\[0, 1J], it suffices to prove that a stochastic 

interval of the form [0, r] is predictable. For this we use a standard approx­

imation of T by a decreasing sequence { Tn} of countably valued optional 

times, defined by Tn = 2-n[2nr+ 1]. Since Tn! T, we have [0, r] = nro, Tn]. 

For each n, 
n 

(0, Tn] = ({0} X 0) U ( u (k2-n, (k + 1)2-n] X {r 2: k2-n}). 
kEINo 

Here { T 2: k2-n} = 0\ { T < k2-n} E :Fk2-n, since T is optional. It follows 
that [0, r] E P. I 
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Stochastic intervals, other than those mentioned in the preceding 

lemma, are not in general predictable without further restriction on the 
end-points. An F-measurable function T : n --+ 1I4 is called a predictable 
time (or simply predictable) if there is a sequence of optional times { T n} 
which increases to T such that each Tn is strictly less than T on { r f. 0}. 
Such a sequence { Tn} is called an announcing sequence for r. It is easily 
verified that a predictable time is an optional time and as a partial con­
verse, if T is optional then T + t is predictable for each constant t > 0. 
Intuitively speaking, if T > 0 is the first time some random event occurs, 
then T is predictable if this event cannot take us by surprise because we 
are forewarned by a sequence of prior events, occurring at times Tn. A very 
simple example of a predictable time is 

0 _ { 0 on Fo 
Fo- oo on F.c 0 , 

where Fo E Fo. An announcing sequence for Op0 is {Op0 1\ n, n = 1, 2, ... }. 
An example of a non-predictable optional time is the time at which the first 

jump of a Poisson process occurs. 

Parts (iii) and (iv) of the following lemma elucidate the reason for the 
names of the predictable and optional u-fields. 

Lemma 2.2. 

(i) If T is a predictable time, then [r, oo) is predictable. 

(ii) All stochastic intervals of the following forms are predictable: (TJ, r] 
where TJ and T are optional, [TJ, r] and ( r, TJ) where TJ is predictable 

and T is optional, [TJ, r) where TJ and T are both predictable. 

(iii) The predictable u-lield is generated by the class of stochastic inter­

vals of the form [r, oo) where T is a predictable time. 

(iv) The optional u-Jield is generated by the class of stochastic intervals 
of the form [r, oo) where T is an optional time. 

Proof. To prove (i), suppose T is a predictable time and { Tn} is an 
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announcing sequence forT. Since Tn j T and Tn <Ton {T =/= 0}, we have 

Here {T = 0} E :Fo and (Tn,oo) = (IR+ X 0)\[0,Tn] is predictable for each 
n, by Lemma 2.1. Hence [T, oo) is predictable, proving (i). 

For an optional time T, [0, T] is predictable by Lemma 2.1, and if T is 
predictable, then [0, T)-the complement of [T, oo)-is predictable by part 
(i) above. Since each of the four kinds of stochastic intervals in (ii) can be 

written as a difference of two intervals of the above kind, with 'fJ in place of 

T in one of them, the result (ii) follows. 

For the proof of (iii), let Q denote the u-field generated by the class 
of stochastic intervals of the form [T, oo) where T is predictable. By part 
(i), Q C P and to show P C Q, it suffices to prove 1l C Q. For any 

optional timeT we have [0, T] = nn[O, T+ k ). Here T+ k is predictable and 
therefore, by complementation, [0, T+ ft) E Q. Consequently, [0, T] E Q. A 
predictable rectangle (s, t] x F for F E :F, and s < t, is a stochastic interval 

ofthe form {'fJ, T] = [0, T]\[0, 'fJ] and is therefore in Q. If FoE :Fo, then since 
Op0 is a predictable time, we have {0} X Fo = [Op0 , oo)\{0, oo) E Q. Thus, 
1l C Q and hence (iii) is proved. 

Since 0 is generated by the stochastic intervals, to prove (iv) it suffices 
to show that all stochastic intervals are contained in the u-field S generated 
by the class of stochastic intervals of the form [T, oo ). If T is optional, then 

T + ft is optional for each nand hence {T,oo) = Un[T + k,oo) is inS. 
Since the class consisting of the stochastic intervals of the form [ T, oo) and 
( T, oo) generates all stochastic intervals by combinations of the operations 

of complementation and differencing, it follows that all stochastic intervals 
are in S, as required. I 

ForT: n--+ IR+, we have by the above lemma: 

(i) if T is predictable, then [T, oo) is predictable, 

(ii) if Tis optional, then [T, oo) is optional. 
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The converses of these results are also true. The converse of (ii) follows from 

the result proved earlier that if [r, oo) is an optional set, then l[,.,oo) is an 
adapted process. For the more difficult proof of the converse of (i), we refer 
the reader to Dellacherie and Meyer [23, IV-76]. (Warning: Dellacherie 
and Meyer use the conclusion of (i) as their definition of a predictable time 

and derive the existence of an announcing sequence from it). Alternative 

characterizations of the predictable and optional u-fields to those of Lemma 

2.2 will be given in Chapter 3. 

We conclude this section with the following result which is well known 

to experts, especially those interested in applications to mathematical eco­

nomics. It is also referred to later in Section 9.4. The proof given here was 

told to us by Michael Sharpe. The argument for the "if" part is similar to 
that in Chung-Walsh [19]; the proof of the "only ir' part is standard. 

Proposition. Every optional time is predictable if and only if every (local) 

martingale (adapted to {:Ft}) has a continuous version. 

Proof. For the "if" part, suppose every martingale has a continuous version. 
Let T be an optional time. We may assume that T is bounded because 

T A n t T and the limit of an increasing sequence of predictable times is 

predictable. Consider the supermartingale Y defined by 

yt = E[( T- t)+ I:Ft] = E[r I:Ft] - TAt. 

Since {E[r I:Ft], t ~ 0} is a martingale, by assumption we may choose a 
continuous version of it. Then Y has continuous sample paths. 

We first prove that P-a.s., yt = 0 for all t ~ T and Yt > 0 for all t < T. 

For t ~ T, this follows from the fact that Y has continuous paths and 

Yfl{t~,.} = E[(r-t)+l{t~,.} I:Ft] 

= E[O I:Ft] = 0 P-a.s. 

To prove that yt > 0 fort< T, let u = inf{t ~ 0: Yt = 0}. Then by Doob's 

stopping theorem, P-a.s., 

Y,.l\0' = E[r j:F,.I\0']- TAu= E[( T- u)+ j:F,.I\0']· 
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Now, by the result: Yr = 0 P-a.s., the definition of u implies that YaAT = 0 

P-a.s. Thus, taking expectations in the above yields 

0 = E[(r- u)+]. 

Hence r :::; u P-a.s. and the desired property of Y follows. It then follows 

that Tn = inf{t 2': 0 : Yt :::; k} is an announcing sequence for r and hence r 

is predictable. 

For the "only if" part, suppose that every optional time is predictable. 

Let M be a local martingale. To prove M has a continuous version, it suf­

fices by localization to consider the case where M is a uniformly integrable 

martingale. (Note that if M is a martingale, then M . An is a uniformly 

integrable martingale for each positive integer n.) Then by Theorem 1.5, 

Moo = limt_,. 00 Mt exists P-a.s. and {Mt, :Ft, t E [0, oo]} is a martingale. 

Since every martingale has a version that is right continuous with finite 

left limits (see Chung [12, Section 1.4]), we may assume that M is such 

a version, and so M can only have jump discontinuities. For c: > 0, let 

r = inf{t 2': 0 : Mt - Mt- 2': c: }. Then r is an optional time (see Exercise 

2), and by assumption it is also predictable. Let { rn} be an announcing 

sequence for r. By Doob's stopping theorem, for all positive integers n, 

Letting n --+ oo in the above, we obtain 

By taking expectations in the above, we obtain: c:P( r < oo) :::; 0 and hence 

P(r < oo) = 0. Similarly, for u = inf{t 2': 0 : Mt- Mt- :::; -c:} we have 

P(u < oo) = 0. Since c: > 0 was arbitrary, it follows that P-a.s., M has no 

jumps at all. I 

Example. Suppose {:Ft} is the filtration generated by a Hunt process 

( cf. [12, Chapter 3]) with continuous sample paths, where the filtration 

is augmented by the P-null sets in :F. It is known [19] that every (local) 

martingale adapted to {:Ft} has a continuous version. Hence every op-
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tional time is predictable. In particular, these properties hold if { :Ft} is the 
standard filtration associated with a d-dimensional Brownian motion. 

Next we define a measure on the predictable sets which is the key to 
the basic isometry used in defining the stochastic integral. 

2.4 Measure on the Predictable Sets 

Suppose that Z = {Zt, t E JR+} is a real-valued process adapted to the 
(standard) filtration {:Ft,t E JR+}, and Zt E L1 for each t E ~· 

We define a set function Az on n by 

(2.1) 

Az ((s, t] x F)= E (1p(Zt- Z 8 )) 

for F E :F8 and s < t in JR+, 

Az ( {0} x Fo) = 0 for Fo E :Fo. 

We extend Az to be a finitely additive set function on the ring A generated 
by n by defining 

n 

Az(A) = L Az(Rj) 
j=l 

n 
for any A = U R;, where { Rj, 1 ::=:; j ::=:; n} is a finite collection of disjoint 

j=l 

sets inn. The value of Az(A) is the same for all representations of A as a 
finite disjoint union of sets in n. We call Az a content if Az ~ 0 on n and 

hence on A. 

It is clear that if Z is a martingale then Az = 0, and if Z is a sub­
martingale then Az ~ 0. In particular, suppose M = {Mt, t E JR+} is an 

L2-martingale, then (M) 2 = {(Mt)2 , t E JR+} is a submartingale and hence 

A(M)> ~ 0. More explicitly, for F E :F8 and s < t, 

(2.2) 

This is proved by setting Y = 1p in the following important identity. For 
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s < t in IJ4 and any real-valued Y E b:F., 

(2.3) 

E {Y(Mt- M.)2 } = E {Y ((Mt)2 - 2MtMs + (M.?)} 
= E {Y ((Mt)2 + (M.?)}- 2E {Y M.E (Mt IF.)} 

= E {Y ((Mt)2 + (M.?)}- 2E {Y(M.?} 
= E {Y ((Mt) 2 - (Ms?)}. 
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The martingale property of M was used to obtain the third equality above. 

We are interested in L2-martingales M for which A(M)2 can be extended 

to a measure on P. It is shown in Section 2.8 that if Z is a right continuous 

positive submartingale, then the content >.z can be uniquely extended to a 

measure on P, and this measure is lT-finite. Setting Z = M 2 , we see that for 

a right continuous L2-martingale M, there is a unique extension of A(M)2 

to a (t1-finite) measure on P. An independent proof of this extendibility 

when M is a continuous L2-martingale is given in Section 4.4. 

Until stated otherwise, we suppose that M = { Mt, t E lR+} is a right 

continuous L2-martingale. We use /JM to denote the unique measure on P 

which extends A(M)2. This measure has been called the Do leans measure of 

M after C. Doleans-Dade who first made good use of it in a more general 

setting in [25]. We use £ 2 to denote P(JR+ x n, P,JJM), unless we need 

to emphasize the association with M in which case we use £ 2(JJM ). 

Example. Consider a Brownian motion B in 1R with B 0 E L2 and let 

{ :Ft} denote its associated standard filtration. Then { Bt, :Ft, t E lR+} is a 

continuous L2-martingale. The following calculation shows that /JB is the 

product measure >. X P on P, where >. is the Lebesgue measure on li4. For 

s < t and F E :F8 we have 

A(B)2 ((s, t] x F)= E (lp(Bt- Bs?) 

= E {lpE ((Bt- B.)2 1 :F.)} 
= E {(Bt- B.)2 } E{lF} 

= (t- s)P(F) 

= (>. x P) ((s,t] x F) 

The third equality above follows because Bt - B 8 is independent of :F8 , 

a consequence of the independence of the increments of B. The fourth 
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equality follows because Bt -B. has mean zero and variance t- s. For 

Fa E :Fa, 
A(B)2 ({0} x Fa)= 0 =(.Ax P) ({0} x Fa). 

Thus, A(B)2 agrees with A x P on R and hence on A. Since A x P is a 

measure on B x :F :) P, we have J-IB = A x P on P, by the uniqueness of 

the extension of A(B)2 on A to J-IB on P. 

Example. Consider a Poisson process N with parameter a > 0 and let 

{:Ft} denote its associated standard filtration. Then M = {Nt- at, :Ft, t E 

IR+} is a right continuous L2-martingale. In Exercise 4 you are asked to 

prove that a( Ax P) is the Do leans measure for M. We shall not consider the 

Poisson process in detail in this text because stochastic integrals with re­

spect toM can be defined using ordinary Lebesgue-Stieltjes integration (see 

Exercise 11). In addition, in our subsequent development of the stochastic 

calculus, from Chapter 4 onwards, we shall restrict ourselves to integrators 

that are continuous local martingales. By restricting to continuous integra­

tors in this way, we are able to present the basic change of variable formula 

and ideas of stochastic calculus without the cumbersome notation and more 

elaborate considerations needed when one allows integrators with jumps. 

2.5 Definition of the Stochastic Integral 

First we define the stochastic integral J X dM when X is an R-simple 

process and show that the map X --+ J X dM is an isometry from a subspace 

of £ 2 into L2 . This isometry is the key to the extension of the definition to 

allXin£2 . 

When X is the indicator function of a predictable rectangle, the integral 

J X dM is defined as follows. For s < t in ~ and F E :Fs, 

(2.4) 

and for Fa E :Fa, 

(2.5) j l{a}xFo dM = 0. 
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Let & denote the class of all functions X : li4 X n --+ IR that are finite 

linear combinations of indicator functions of predictable rectangles. Such a 

function will be called an R.-simple process. Thus, X E & can be expressed 

in the form 

n m 

(2.6) X= 2:cj1(•;,t;]xF; + 2:dk1{o}xFok 
j=l k=l 

where Cj E JR, Fj E :Fs;, Sj < ti in li4 for 1 ~ j ~ n, n E IN, and dk E JR, 

Fok E :Fo for 1 ~ k ~ m, m E IN. This representation, although not unique, 

can always be chosen such that the predictable rectangles (sj, tj] X Fj for 

1 ~ j ~ n and {0} x Fok for 1 ~ k ~ m, are disjoint. 

The integral I X dM for X E & is defined by linearity. Thus, for X of 

the form (2.6) we have 

(2.7) J X dM::: f>i 1F; (Mt;- Ms;). 
j=l 

It can be easily verified that the value of the integral does not depend on 

the representation chosen for X. 

Since 1R E £ 2 for any predictable rectangle R, it follows that & is a 

subspace of £ 2 ; and since Mt E £ 2 for each t, I X dM is in £ 2 for each 

X E & . The following theorem shows that the linear map X --+ I X dM is 

an isometry from & C £ 2 onto its image in £ 2 • 

Theorem 2.3. For X E & we have the isometry 

(2.8) 

Proof. Let X E & be expressed in the form (2.6) where the predictable 

rectangles Rj = (sj, tj] X Fj for 1 ~ j ~nand {0} x Fok for 1 ~ k ~mare 
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disjoint. Then by (2.7) we have 

(2.9) n n 

+ 2 .L: .L: CjCk1F;nFk (Mt; - Ma;) (Mtk- M.k). 
j=l k=J+l 

For 1 $ j < k $ n, since R; n Rk = 0, either 

(i) F; n Fk = 0, or 

If (i) holds, the term indexed by j and k in the double sum above is zero. 

If (ii) holds, we may assume without loss of generality that t; $ Sk. By 

the martingale property we have E (Mh - M.k I :F.k) = 0. This implies the 
basic "orthogonality property" that in the Hilbert space £2, the increment 

Mtk - M.k of M is orthogonal to the subspace L2 (0, :F,k, P), i.e., for any 

Y E L 2 (0, :Fak, P), 

Since 1F;nFk (Mt;- M.;) E L2 (O,:F3 k,P), it follows that the expected 
value of the term indexed by j and k in the double sum in (2.9) is also zero 
if (ii) holds. Thus, by taking expectations in (2.9) and using (2.1)-(2.2), 
we obtain 

n m 

= .L:cJJlM((s;,t;] X F;)+ .L:d~JlM({O} X Fok) 
j=l k=l 

= J (X? dJlM· I 
m.+xn 

The extension of the definition of J X dM from integrands X in & to 
those in £ 2 is based on the isometry (2.8) and the fact that & is dense in 
the Hilbert space £ 2 • A proof of the latter statement is given below. 
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Lemma 2.4. The set of R-simple processes & is dense in the Hilbert space 

£2. 

Proof. Since P is generated by the ring A and J.lM is u-finite, then for 

each c > 0, and A E P such that J.lM(A) < oo, there is A1 E A such that 

J.lM(A.6A1) < c where A.6A1 is the symmetric difference of A and A1 (see 

Halmos [37; p. 42, 49]). It follows that any P-simple function in .C 2 can 

be approximated arbitrarily closely in the .C2-norm by functions in & . The 

proof is completed by invoking the standard result that the set of'P-simple 

functions is dense in .C2 • I 

If we regard .C2 and L 2 as Hilbert spaces, then the map X -+ J X dM 

is a linear isometry from the dense subspace & of .C2 into L 2 , and hence 

can be uniquely extended to a linear isometry from .C2 into L 2 (see Taylor 

[74, p. 99]). For X E .C 2 , we define J X dM as the image of X under this 

isometry. Then (2.8) holds for all X in .C 2 and we refer to it simply as "the 
isometry" since it is the only one we use. 

Notation. Let A2(P, M) denote the space of all XE P such that l[o,t]X E 

.C2 for each t E ll4. Here l[o,t]X denotes the process defined by 

(l[o,t]X)(s,w) = l[o,tJ(s)X(s,w) for all (s,w) E JR+ x 0. 

Let X E A2 ('P, M). For each t, J l[o,t]X dM is well-defined and has 
the isometry property: 

(2.10) 

By definition, J.lM( {0} X 0) = 0, hence by (2.10) we have 

(2.11) j l{o}xnX dM = 0 a.s. 

If X E & and (2.6) is a representation for X, then for each t, l[o,t]X is 
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in£ and 

(2.12) j 1[o,t]X dM = t Cj 1F; (Mt;l\t- Ma;l\t) . 
j=l 

Here the right member of (2.12) is a right continuous L2-martingale indexed 
by t. By using the isometry, we shall extend this to prove for X E A2('P, M) 
that {I 1[o,t]X dM, t Em+} is an L2-martingale which has a right contin­
uous version; thus showing that these properties of M are preserved by the 
integration. 

Theorem 2.5. Let X E A 2('P, M) and for each t let yt = I 1[o,t]X dM. 

Then Y = {yt, t E m+} is a zera-mean L2 -martingale and there is a version 
of Y with all paths right continuous. 

Proof. Let n E IN. Then 1[o,n]X E £ 2 and by Lemma 2.4 there is a sequence 
{Xk, k E IN} in£ which converges to 1[o,n]X in £ 2• It follows that for each 
t E [0, n], 1[o,t]Xk converges to 1[o,t]X in £ 2 as k--+ oo, and hence by the 
isometry, Yl = I 1[o,t]Xk dM converges to Yt = I 1[o,t]X dM in L 2 • For 
each k, by the remarks following equation (2.12), yk = {Yl, t Em+} is a 
right continuous L 2-martingale. Since the martingale property is preserved 
by L2-limits (see Proposition 1.3), it follows that {Yt, t E [0, n]} is an L 2-

martingale. Since n was arbitrary, we conclude that {Yt, t E JR+} is an 

L2-martingale. By (2.11), Yo = 0 a.s. and hence E(Yt) = E(Yo) = 0 for all 

t. 

Since {Yt, :Ft, t E JR+} is a martingale and { :Ft} is a standard filtration, 
by [12, p. 29], there is a version of {Yt, t E JR+} with all paths right 
continuous. Another proof of this last property of Y can be obtained by 
replacing "continuous" with "right continuous" in the proof of Theorem 2.6 

below. I 

Theorem 2.6. Suppose the hypotheses of Theorem 2.5 hold and M has 
continuous paths. Then there is a version of Y with continuous paths. 

Proof. We first show that for each n E IN there is a continuous version zn 
of {Yt, t E [0, n]}. For j < k and yi, yk as in the above proof, yk- yi is a 
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continuous £ 2-martingale and thus by the basic inequality (1.3) of Theorem 

1.4 we have 

(2.13) 

for each m E IN. Since Y; converges to Yn in £ 2 as k ---> oo, there is a 

subsequence {Y;m, mE IN} such that 

(2.14) E (lykm+l- ykm 12) < _1_• 
n n - 23m 

By combining (2.13) and (2.14), we obtain 

L p c~~t IY/m+l - ~km 12: 2~) :s; L 2~ < oo. 
m -- m 

An application of the Borel-Cantelli lemma then yields 

p ( sup 1-y:km+l - ykm I > _!__ i.o.) = 0 
t t -2m ' 

09~n 

where i.o. is our abbreviation for "infinitely often". It follows that there is 

a set On of probability one such that for each w E On, { Y km (t, w), m E IN} 

converges uniformly for t E [0, n] to some limit zn(t, w). Since ykm ( ·, w) 

is continuous on [0, n], so is zn( · ,w), by the uniformity of the conver­

gence. Moreover, for each t E [0, n], Y/m converges a.s. to Zf, and in £ 2 

to yt, as m - oo; hence Zf = yt a.s. Thus, zn = {Zf, t E [0, n]} is a 

continuous version of {Yt,t E [O,n]} on On. For n1 < n2, {Zf,t E [O,n1]} 

and { Zf2 , t E [0, n 1]} are both continuous versions of {yt, t E [0, n 1]} on 

Dn 1 n Dn2 , and are therefore indistinguishable there. It follows that there 

is a set Do C nn On of probability one such that for each w E Do, 

limn-oozn(t,w) exists and is finite for each t E JR+, and for each n E IN 

this limit equals zn(t,w) for each t E [O,n]. If we denote this limit by 

Z(t,w), then Z is a continuous version of Yon 0 0 . It can easily be ex­

tended to a continuous version on n. 1 

Notation. We shall use the notation {~o,t] X dM, t E JR+} to denote a 

right continuous version of {f 1[o,t]X dM, t E ~} and f(s ,t] X dM to de­

note ~o,t] X dM - ~o,s] X dM for s < t in ~. If M is known to be 
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continuous, we shall use {I~ X dM, t E JR+} to denote a continuous version 

of {I 1[o,t]X dM, t E JR+} and I: X dM to denote I~ X dM- I; X dM for 
s < t. 

In the following theorem, we list some properties of the stochastic in­

tegral Jro,t] X dM. 

Theorem 2.7. Let X E A2(P,M) and let Y denote the right continu­

ous stochastic integral process {/ro,t] X dM, t E ~ }. Then the following 
properties hold. 

(i) For s < t in ~ and any r.v. Z E b:F8 , we have 1(a,t]Z E P, 
1(s,tJZX E A2 (P, M), and a.s. 

(2.15) J 1(s,t]ZX dM = Z j X dM. 

(s ,t] 

(ii) The measure J.IY associated with the right continuous L2-martingale 
Y has density (X)2 with respect to J.IM, i.e., for any A E P, 

(2.16) J.IY(A) = J (X)2 dJ.!M· 
A 

(iii) For any bounded optional time r, 

(2.17) Yr = j X dM = J 1[o,r]X dM a.s. 

[O,r] 

Remark. The first equality in (2.17) is by definition, where for each w, Yr(w) 
is the value of Yt(w) at t = r(w); whereas the integral on the far right of 

(2.17) is a random variable defined via the L 2-isometry. Their a.s. equality 

must therefore be proved. 

Proof. For s <tin~ and Z E :F., 1(s,t]Z E P follows by linearity and 

a monotone class argument from the fact that 1(a,t]xG E P for G E :F •. 
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Then, since X E P, 1(s,t]ZX E P. (For a partial converse see Exercise 

8.) Furthermore, if Z is bounded, then since X E A2(P, M), we have 
1(s,t]ZX E A2 (P, M). Now that the measurability and integrability prop­
erties in part (i) have been established, we focus on the proof of (2.15). Note 

that (2.15) is easily verified if Z = 1a for some G E :F. and X = 1(u,v]xF 
for some u < v in 114 and F E :Fu. It then follows by linearity that 
(2.15) holds when Z is an :F.-simple function and X is in&. For general 
z and X, there is a bounded sequence {zk} of :F.-simple functions con­
verging to Z pointwise on 0, and a sequence {Xk} of functions in & such 

that klim 1(s,t]Xk = 1(s,t]X in .C}. Since {Zk} is bounded, it follows that 
-+00 

klim 1(s,t]zk Xk = 1(s,t]ZX in £ 2 also. Now, 
-+00 

(2.18) 

J 1(s,t]ZX dM- Z J X dM 

(• ,t] 

= j 1cs,tJ (zx - zk xk) dM 

+ {J 1cs,tJZk xk dM- zk j xk dM} 
(s,t] 

+ zk J (Xk -X) dM + (zk - Z) J X dM. 

(s,t] (s,t] 

We claim that the terms following the equals sign above converge to zero in 
£ 1 as k -+ oo. By the simple function case discussed above, the second term 
(in braces) is zero. The first and third terms converge to zero in £2 , by the 
isometry. The last term tends to zero in £1, by Schwarz's inequality and 
bounded convergence. Since the expression in (2.18) preceding the equals 
sign is independent of k, it follows that it is zero a.s., proving (i). 

For the proof of part (ii), it suffices to prove (2.16) for A E "R, since the 

measures JlY and (X) 2dJ!.M on P are uniquely determined by their values 
on "R. If A= {0} X Fo for Fo E :Fo, both sides of (2.16) are zero. On the 
other hand, if A= 1cs,t]xF for somes< t and FE :F., then 

Jly(A)=E{1F(Yi-Y.)2}=E{(1F { XdM)2 } 
lcs,t] 
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which by part (i) equals 

The first equality above follows by the isometry. Thus (2.16) holds for all 

A in n and hence for all A in P. 

For the proof of part (iii), let r be an optional time, bounded by C, 

say. We approximate r in the standard way by a sequence { Tn, n E IN} of 

optional times such that for each n, Tn takes only finitely many values and 

(2.17) holds with Tn in place of r. 

As in the proof of Lemma 2.1, for each n let Tn = 2-n [2nr + 1]. Also 

let Nn = [2nC]. Then 

Nn 

(2.19) [O,rn] = ({0} X 0) U U (k2-n,(k+ 1)2-n] X {r ~ k2-n} 
k=O 

is in A and by the boundedness ofrn, 1[o,rn]X E .C2. Now, for each n, 

Nn 

YTn = L 1{k2-n~r<(k+1)2-n} Y(k+1)2-n 
k=O 

Nn 

= L l{r~k2-n} (Y(k+1)2-n- Yk2-n) • 
k=O 

Here the second equality is obtained by partial summation using Yo = 0 

and 0 ~ r < (Nn + 1 )2-n. Thus by the definition of yt and part (i) we 

have a.s. 

By linearity, (2.11), and (2.19), it follows that a.s. 

(2.20) 

Since Tn l r and Y is right continuous, the left side of (2.20) converges 

pointwise on 0 to Yr as n-+ oo; and since Tn is bounded by 0+1, it follows 
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by dominated convergence and the isometry that the right side converges 

to J 1[o,r]X dM in L2 . Hence (2.17) holds. I 

The following corollary will be needed in the next section. 

Corollary 2.8. Let s < t in If4, F E F., and r be an optional time. 

Then we have a.s.: 

(2.21) 

Proof Let X= 1(s,t]xF· Then, 

The right side of the above equality is right continuous in u and therefore 

may be used as the right continuous version Jro,u] X dM of the left side. By 

replacing u by r 1\ t, we obtain 

J X dM = 1F(MtAr - MsAr ). 

[O,ri\t] 

It follows from (2.17) with r 1\ t in place of r there, that the left side of the 

above is equal a.s. to the left side of (2.21). Hence (2.21) holds a.s. I 

Our definitions of the measure J.LM and the stochastic integral Jro,t] X dM 

only involved the increments of M. Hence the values of these quantities 

would remain unchanged if we replaced M by M - M0 in their definitions. 

Indeed, the following depends on this. 

2.6 Extension to Local Integrators and Integrands 

So far we have considered stochastic integrals Jro,t] X dM where the 

integrator is a right continuous £ 2-martingale and the integrand is in 

A2(P, M). As a final extension we shall define the stochastic integral for 

integrators and integrands which only possess these properties in a local 
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sense. Consequently, we shall no longer assume that M is a right contin­
uous £ 2-martingale. Instead, for the rest of this chapter, we suppose that 

M is a right continuous local £2-martingale (see Section 1.10 for the def­
inition). If { rk} is a localizing sequence for M, we use Mk to denote the 

right continuous £ 2-martingale {MtATk- Mo,t E .lR+} for each k. 

Next we define the class of integrands associated with M. 

Definition. Let A(P, M) denote the class of all processes X for which there 

is a localizing sequence { TA:} for M such that Mk is an £ 2-martingale and 

(2.22) 

Such a sequence will be called a localizing sequence for (X, M). 

Example. Suppose M has continuous paths and X is a continuous adapted 

process. We claim X E A(P, M) and 

1"k = inf{t > 0: IMt- Mol V IXtl > k} 

defines a localizing sequence for (X, M). 

For the proof of this claim we note that by results in Chapter 3, X is 

predictable. By the definition of rk, (X)2 ~ k2 on (0, t Ark]· Moreover, by 
the isometry and Theorem 2.7(iii) we have 

j l(o,tAT,.] dJ.LM" = E { (MtATk - Mo)2 } ~ k2 . 

J14xn 

Thus, by combining the above with the fact that J.LMk ( {0} X 0) = 0, we 
obtain J l[O,ti\Tk](X? dJ.LMk ~ k4 , 

m.+xn 

which proves the assertion. I 

An important special case of the above example is obtained by setting 

X=M. 

Let X E A(P,M) and {TA:} be a localizing sequence for (X,M). Then 

yk = {~o,tjl[o,Tk]X dMk, t E .lR+} is a right continuous L2-martingale 
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for each k, by the notational convention following Theorem 2.6. We shall 

define Y = {Jro,t] X dM, t E 114} as the a.s. limit of the Y k 's, just as Z 

was defined from the zn•s in the proof of Theorem 2.6. The difference 

being that here we use random truncation times Tf< whereas constant times 

n were used before. To validate this procedure, we need to verify that the 

following consistency condition holds: 

(i) for each k, for almost every w: 

(2.23) Yr(w) = Y/(w) for all t E [0, rk] and m ~ k, 

and to show that 

(ii) the definition of Y is independent (up to indistinguishability) of the 

choice of a localizing sequence for (X, M). 

These assertions are formally obvious, but their proofs are long in de­

tails. They follow from the two lemmas below which are spelled out for the 

meticulous reader. 

Lemma 2.9. Let r and rJ be optional times such that Mr = {MtAT -

M 0 , t E JR+} and M'1 = {Mt""- M 0 , t E JR+} are right continuous L2-

martingales. Let J-tr and J-t" denote the measures J-tM~ and J-tM~ on P 

associated respectively with MT and M'1. Then llr and ll" induce the same 

measure on the stochastic interval [0, r 1\ rJ], i.e., for each A E P: 

(2.24) llr(A n [0, r 1\ rJ]) = ll"(A n [0, r 1\ rJ]). 

Proof. Since the predictable rectangles generate P, it suffices to prove (2.24) 

when A is a predictable rectangle. Clearly both sides of (2.24) are zero when 

A= {0} x Fo for some Fo E :Fo. On the other hand, if A= (s, t] x F for 

some s < t and F E :F,, then by the isometry 
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By Corollary 2.8 and since M;; = Mu - Mo for 0 :S u :S r, the right side 

above equals 

Since the last expression is symmetric in T and 'TJ, (2.24) follows for A = 
(s, t] x F, and hence for all A in P. I 

Lemma 2.10. LetT and 'TJ be optional times such that Mr = {MtAT­

Mo,t E JR+} and M11 = {Mu, 11 - Mo,t E JR+} are right continu­

ous L 2 -martingales, and 1[o,r]X E A2(P, Mr) and 1[o,11]X E A2(P, M11). 

Let yr and ¥11 respectively denote the right continuous L2 -martingales 

{fro,tj1[o,r]X dMr, t E JR+} and {fro,tj1[o,11]X dM11, t E JR+}. Then 

(2.25) 

Proof. To prove (2.25), it is equivalent to prove the processes {~~rA1J, t 2: 0} 

and {~1rA1J' t 2: 0} are indistinguishable, and since these are right contin­

uous, it suffices to prove 

(2.26) Y r - v-1/ as 
tATA1J - L tATA1J ' ' 

for each t. It is easily verified using (2.17) and (2.21) that (2.26) holds if X 

is the indicator function of a predictable rectangle, and hence by linearity 

if X is in£. For the general case, using the same notation as in Lemma 2.9, 

we have 1[o,tATA1J]X E £ 2 (J.1.r). Hence there is a sequence {X"} in£ which 

converges to 1[o,tATA1J]X in £ 2 (p.r) and therefore 1[o,tArA1J] (Xn- X) -+ 0 in 

£ 2 (J.Lr) as n-+ oo. The latter convergence is also in £ 2 (J.L11), since J.Lr and 

J.L., induce the same measure on [0, t/\T/\TJ] by Lemma 2.9. We have already 

verified that (2.26) holds if X is replaced by xn. By letting n -+ oo and 

using (2.17) and the isometries (for T and TJ), it follows that (2.26) holds 

for X. I 

By setting T = Tm and 'TJ = Tk in Lemma 2.10, we obtain (2.23). 

Consequently, there is a set no of probability one such that for each 

w E no,limm-+oo ym(t,w) exists and is finite for each t, and for each k 

and t E [O,rk) this limit equals Yk(t,w). We denote this limit by Y(t,w). 

Then Y(·,w) is right continuous for each wE no and can easily be defined 
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so that it is right continuous for wE 0\0o. Then for each k, almost surely, 

YtATk = ~k for all t. Hence Y is a right continuous local £ 2-martingale 

with localizing sequence { Tk}. 

We shall denote yt by Jro,t] X dM and yt- Y, by ~s,t] X dM. If M is 

actually continuous, then so is Y, and Yt will be denoted by J; X dM and 

yt - Y. by I: X dM. 

The fact that the definition ofY is independent (up to indistinguishabil­

ity) of the choice of a localizing sequence for (X, M) is an easy consequence 

of Lemma 2.10. The formal proof is left to the reader. 

The following theorem is an immediate consequence of the above dis­

cussion and the example which follows (2.22). Recall that a continuous 

local martingale is automatically a local L 2-martingale. 

Theorem 2.11. Let M be a continuous local martingale and X be a 

continuous adapted process. Then X E A(P, M) and {f; X dM, t E .IR+} 
is a continuous local martingale. 

If M is a right continuous £ 2-martingale and X E A2 (P, M), the above 

definition of Jro,t] X dM is consistent with that given in the previous section 

because the integrals are unchanged if M is replaced by M- M0 • This 

replacement is also used to simplify some later proofs by reducing to the 

case Mo = 0 so that Mtk = MtATk. In connection with this, we emphasize 

that only the integrator can be replaced by M- M0 • In particular if M is 

a continuous local martingale we have 

(2.27) 

t t 

J M dM = J (M- Mo) dM + Mo(Mt - Mo) 
0 0 

t 

= J (M- Mo) d(M- Mo) + Mo(Mt - Mo). 

0 
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2. 7 Substitution Formula 

Theorem 2.12. Let M be a right continuous local martingale, X E 

A(P, M) and Yt = Jra,t] XdM for all t 2: 0. Suppose Z E A(P, Y). Then 
X Z E A(P, M) and a.s. for all t 2: 0, 

(2.28) J ZdY = J XZdM. 

[a,~ [a.~ 

Proof. By taking the minimum of a localizing sequence { O" n} for (X, M) 
(see (2.22)) and a localizing sequence {Pn} for (Z, Y), we obtain a sequence 
{ Tn = O"n t\pn} that is simultaneously localizing for (X, M) and (Z, Y). By 
stopping M andY with this sequence and multiplying X and Z by l[a,rn)> 

we see that it suffices to prove the theorem for the case in which M and Y 
are L2-martingales, X E A2(P, M) and Z E A2(P, Y). The proof for this 
case is divided into three parts. 

(i) Suppose Z is an R-simple integrand. Then, for each t E JR+, (2.28) 
holds a.s. 

Proof of (i). Note that l[a,t]X Z E .C2(t-tM ), since this holds with X in place 
of X Z and Z is bounded. It follows from (2.5) with Y in place of M, and 
(2.10) with XZ in place of X and t-tM( {0} x fl) = 0, that (2.28) holds 
when Z = l{a}xFo where Fa E :Fa. By Theorem 2.7, (2.28) also holds when 
Z = l(r,s]xFr for Fr E :Fr, 0:::; r < s < oo. It then follows by linearity that 
(2.28) holds for any R-simple Z. 

(ii) For each t E JR+, 

and hence X Z E A2(P, M). 

Proof of (ii). If Z is R-simple, then by the isometry (2.8) and part (i) above 
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we have 

1 I~.•JZ'dpy ~ E [ Uo.<J ZdY) '] 

(2.30) ~ E [ Uo.<J XZdM) '] 

The result for Z E A2(P, Y) then follows by applying a monotone class 

theorem. 

(iii) Almost surely, (2.28) holds for all t E JR+. 

Proof of (iii). Since both sides of (2.28) are right continuous processes, it 

suffices to show that (2.28) holds P-a.s for fixed t. By part (i) above, this 
holds for all 'R.-simple functions Z. For a general Z E A2 (P, Y), there is a 
sequence {z(m)} of 'R.-simple integrands such that 1[o,t]z(m) converges to 

1[o,t]Z in .C2(1JY) as m-+ oo. It follows by the £ 2-isometry that 

(2.31) J z(m)dY-+ j ZdY in £ 2 • 

[0~] [0,~ 

Hence, using (2.29) with Z replaced by z(m)- Z, we see that as m-+ oo, 

1[o,t]X{z(m) - Z) converges to zero in .C2(1JM ), and so by the isometry 
(2.8), 

(2.32) J Xz(m)dM-+ J XZdM in £ 2 • 

[0,~ [0,~ 

Since the z(m)•s are 'R.-simple, the left members of (2.31) and (2.32) are 
equal for each m, by part (i), and hence the right members are equal P-a.s. 

I 
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2.8 A Sufficient Condition for Extendibility of .A z 

For the proofs below, we have benefited from the presentation given in 
Letta [53]. 

For any set A c IE4 X nand wEn, let AW denote thew-section of A: 

Aw = {t E If4 : (t, w) E A}. 

The debut D A of A is defined by 

(2.33) DA(w) = infAw, for all wE A, 

where inf0 = oo. 

Lemma 2.13. 

(i) If Bj C IE4 for 1 ~ j ~ k ~ oo, then 

inf (inf Bj) = inf (uk Bj) . 
1:5i9 . 1 

J= 

(ii) If for each n ~ 1, Cn is a compact subset of If4 and Cn :::::> Cn+l for 
all n, then 

j!_.~ i (inf Cn) = inf ( n Cn) . 
n=l 

Remark. The empty set 0 is a compact set. 

Proof. We prove part (ii) only. If there is an n such that Cn = 0, then 

infCn = oo and the result reduces to oo = oo. On the other hand, suppose 

none of the Cn is empty, let C = n:=l Cn and tn = inf Cn for each n. 
Then, tn E Cn and t* =: limm-oo j tm E Cn for all n ~ 1. Thus, t* E C, 
t* ~ inf C ~ tn for all n. Hence t* = inf C. I 

Example. If the sets in Lemma 2.13(ii) are not compact, the result can 

fail, as the following example illustrates. If Cn = (1- k, 1) U {2}, then 

Cn! {2}, but infCn = 1- ~ i 1 'I infnn Cn = 2. 
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A subset A of li4 X n is called a stochastic compact if for each w E n, 
Aw is a compact subset of li4. 

Lemma 2.14. 

(i) If Aj C JI4 x n for 1 ~ j ~ k ~ oo, then 

(ii) If for each n ~ 1, An is a stochastic compact and An :J An+l for all 

n, then 

lim f D A,. = Dnoo_ A,.· 
n-+oo "'-1 

Proof. This is an immediate consequence of Lemma 2.13. I 

Definition. A random variable X is said to have finite range if {X(w): wE 

n} is a finite set. 

Lemma 2.15. If A E A, then D A is optional and has finite range. 

Proof. Since A E A, there are finitely many disjoint predictable rectangles 

Rt, ... , Rn, such that A= Uj=1 Rj. By Lemma 2.14(i), 

If R = (s, t] X F 8 for F8 E :F8 , then DR= slp. +oo·lp~ is an optional time. 
If R = {0} X Fo for FoE :Fo, then DR= 0 ·lp0 +oo·lp8 is an optional time. 
Since the minimum of a finite number of optional times, each of which has 

finite range, is optional and has finite range, the result follows. I 

Remark. More generally, the debut of any optional (in fact, of any pro­
gressively measurable) set is optional (see Chung [12, Theorem 3, Section 

1.5]). 
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Theorem 2.16. Let Z be a right continuous positive submartingale. Then 
the content Az defined in Section 2.4 can be uniquely extended to a measure 
on P, and this measure is u-finite. 

Proof. We first note for later reference that for each t ~ 0, from the non­
negativity and sub martingale property of Z, 

and hence {Z3 , 0:::; 8:::; t} is uniformly integrable. 

Since 

Az([O, t] x Q) = E[Zt - Zo] < oo for all t ~ 0, 

any extension of Az to a measure on P must be u-finite. 

By the Caratheodory extension theorem [37, p. 54], since the u-ring 
generated by A is P, to prove that Az is uniquely extendible to a measure 
on P, it suffices to prove Az is count ably additive on A. For this it is enough 
to show that for any sequence {Gn} C A such that Gn ! 0, Az(Gn) --+ 0. 
Now for any G E A, 

Az(G) =Az(Gn({O} X n)) + Az(Gn((O, oo) X n)) 

= Az (G n ((0, oo) x Q)), 

where G n ((0, oo) x Q) E A. Thus, it suffices to consider {Gn} C An 
({0, oo) x Q). Note that if G = (8, t] x F8 for Fa E :Fa, then for any mE IN 

such that 8 + ~ < t, H = (8 + ~, t] X F8 E R, K = [8 + ~. t] X Fa is a 
stochastic compact, and H C K C G. Furthermore, 

as m --+ oo, by the right continuity of Z and the uniform integrability 

of {Zu : 8 :::; u :::; 8 + 1}. Since each set in An ((0, oo) X n) is a finite 
union of disjoint sets in R n ((0, oo) X n), it follows that given any c: > 0, 
for each j ~ 1, there is Hj E A and a stochastic compact Kj such that 
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Hj c Kj C Gj and .Xz(Gj)- .Xz(Hj) < c2-j. Since {Gn} is decreasing, 

we have for each n, 

n n n 

j=l j=l j=l 

where Hn E A, Kn is a stochastic compact, and 

(2.34) 

By hypothesis Gn ! 0, hence Kn ! 0, and then by Lemma 2.14(ii), 

Since Tn = D Hn ~ D Kn, we have Tn j oo as n -+ oo. Thus, for any t ~ 0 

and w E 0, there is N(w) E IN such that Tn(w) 1\ t = t for all n ~ N(w). 

Thus, ZTnAt -+ Zt pointwise on 0 as n-+ oo. Now, by Lemma 2.15, Tn is 

optional and has finite range. Hence Tn 1\ t also has these properties, and 

then by the submartingale property of Z, 

0 ::; ZT nAt ::; E[Zt 1FT nAt] for all n > 1. 

(Note we did not need to use the right continuity of Z for this.) Conse­

quently, { ZT nAt' n ~ 1} is uniformly integrable and it follows that 

lim E[ZT At] = E[Zt]· 
n-+oo n 

By the definition of .Xz, 

(2.35) Az ((Tn 1\ t, t]) = E[Zt- ZTnAt]-+ 0 as n-+ oo. 

Since G1 E An ((0, oo) x 0), there is t > 0 such that G1 C [0, t] and so 

Hn C [0, t]. On the other hand, by the form of the sets in An ((0, oo) x 0), 

the graph {(Dzt (w),w) : w E 0} c IE4 X 0 of the debut of the set Hn 

does not meet Hn, and so Hn C (Tn, oo). Hence, Hn C (Tn 1\t, t]. It follows 

from (2.35) that Az(Hn)-+ 0 as n-+ oo, and hence by (2.34), .Xz(Gn)-+ 0 

as n -+ oo, as desired. I 
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Corollary 2.17. If M is a right continuous L2-martingale, then A(M)2 has 

a unique extension to a measure on P, and this measure is u-linite. 

2.9 Exercises 

1. Let {h denote the u-field generated by all stochastic intervals of the 

form [7J, r] where 7J and T are optional times. Similarly, let g 2 , g3 and g4 

denote the u-fields generated by the stochastic intervals of the form [7J, r), 
(7J, r] and (7J, r), respectively. Can you identify g; (i E {1, 2, 3, 4}) with P, 
0 or neither? 

(Answer: gl = g2 = 0, g3 C P but g3 f- P, and g4 C 0 but g4 f- 0.) 

2. Suppose X = { Xt, t ~ 0} is a right continuous process that has finite 

left limits on (0, oo) and is adapted to {.:Ft, t ~ 0}. Prove that T = inf{t ~ 

0 : Xt - Xt- ~ c:} is an optional time. 
(This result can be proved from first principles, but it is also a special case 

of the optionality of the debut of a progressively measurable set, cf. Chung 

[12, Section 1.5].) 

In the next two exercises, let { Nt, t E JR+} be a Poisson process with 

parameter a > 0 and let {Ft, t ~ 0} be the associated standard filtration 

as defined in Section 1.8. 

3. Let T be the time of the first jump of N. Show the following. 

(a) Tis an optional time. 

(b) T is not a predictable time. 

Hint for (b): For a proof by contradiction, suppose that {Tn} is an an­

nouncing sequence for T. Then use the memory less property of the Poisson 

process at the optional times Tn to conclude that for any c: > 0: 

P(T-Tn > c:) = P(T > c:). 

Since Tn l T P-a.s., the left member above tends to zero as n --+ oo. On 

the other hand, the right member is independent of n and strictly positive. 

4. Show that Mt = Nt - at defines a (right continuous) L2-martingale 
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and that its Doleans measure is I'-M= a(A x P) (cf. Exercise 2 of Chapter 

1). 

5. Let T be an optional time relative to {Ft}· Suppose the following two 

properties hold: 

(i) for each t > 0, P(O < T ~ t) > 0, and 
(ii) for A E Ft, P(A n {T > t}) is either equal to 0 or to P(T > t). 

Prove that if S is also an optional time relative to { Ft}, then 

P(O < S < T) < P(T > 0). 

This implies that T is not predictable. Since the first jump time of a Poisson 
process satisfies (i)-(ii), this gives an alternative proof of 3(b) above. 

6. Let (W, g, v) be a a--finite measure space where the u-field g is generated 

by a ring 1t such that v(A) < oo for each A E 1£. Prove that if A1 E g and 
v(Al) < oo, then for each c > 0 there is A2 E 1t such that v(A1.6.A2) <c. 

7. Use the monotone class theorem for functions (see Section 1.2) to give 
an alternative proof of Lemma 2.4. 

Hint: First prove this result for bounded functions in L2([0, t] X n, p' I'-M). 

8. Suppose X is a predictable process and X > 0. Prove that for any 
0 ~ s < t < oo and random variable Z E .r, 1(s,t]ZX is predictable if and 
only if Z is F.-measurable. 

9. Prove that (2.17) is also true if T is a finite optional time and X E £2. 

10. Let { Tk} be a localizing sequence for a right continuous local L 2-

martingale M. For fixed k, define 

Zt = Mtii.TkAk - Mo for all t ~ 0. 

Show that Z is an L 2-martingale and that its Doleans measure pz is finite 
on (II4 X n, P). 

11. Let N be a Poisson process with parameter a> 0. Define Mt = Nt-at. 
Note from Exercise 4 that I'-M= a( Ax P). Suppose X E A2(P, M). Then 
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the stochastic integral J[o,t] X dM is well defined for all t E li4. Prove 

that for each t, f[o,t] X,dN8 and ho,t] X,ds are almost surely well defined as 
Lebesgue-Stieltjes integrals and that they define random variables satisfying 

(2.36) { X,dN. = { XdM +a { X 8 ds, 
J[o,t] J[o,t] J[o,t] 

where the integral with respect to dM is a stochastic integral defined by 
the L2-isometry. 
Hint: First prove (2.36) for an 'R-simple X and then use a monotone class 

argument to extend to X E A2(P, M). 

In Exercises 12 and 13 below, B is a Brownian motion in IR with B 0 E L2 • 

You may use the result from the first example in Section 4.2 in solving these 

exercises. 

12. Working from the fundamental definition, evaluate the stochastic in­

tegral J; B. dB,. If you are ambitious, try also J; B: dB. for k = 2, 3, ... , 
where B: denotes the kth power of B,. 

13. Show that for each fixed t ~ 0, the approximating sums: 

converge in L2 to J; B, dB. + t/2 as n --+ oo. Note that this limit does 
not define a martingale. It defines what is usually called the Stratonovitch 
integral of B with respect to B. 



http://www.springer.com/978-1-4614-9586-4


	2 DEFINITION OF THE STOCHASTIC INTEGRAL
	2.1 Introduction
	2.2 Predictable Sets and Processes
	2.3 Stochastic Intervals
	2.4 Measure on the Predictable Sets
	2.5 Definition of the Stochastic Integral
	2.6 Extension to Local Integrators and Integrands
	2.7 Substitution Formula
	2.8 A Sufficient Condition for Extendibility of λz
	2.9 Exercises


