
Chapter 2
Electromagnetic Theory

Abstract This chapter contains a summary of the main ingredients of the theory
of electrostatics and the theory of magnetostatics required for the subsequent
formulation of the theory governing electromechanical interactions in electro-
sensitive and magneto-sensitive materials. In particular, expressions for the force
and couple on an electric dipole in an electric field and on a magnetic dipole
in a magnetic field are derived, which are important for examining polarization
and magnetization in material media. The full system of four Maxwell equations
that govern electromagnetic phenomena in material media is then obtained and
the notions of polarization and magnetization that distinguish polarizable and
magnetizable materials, respectively, from vacuum or from materials that are not
sensitive to electric or magnetic fields are introduced. Maxwell’s equations are then
cast in their standard form in terms of free charge density and free current density.
Based on Maxwell’s equations, the final section of the chapter provides a derivation
of the conditions that must be satisfied by the electric field, electric displacement,
magnetic field and magnetic induction vectors on material boundaries.

2.1 Electrostatics

2.1.1 Preliminary Remarks

The equations that describe the forces generated by charged particles are well
established and can be found in any textbook on electrostatics. In this section we
begin with a short review of these equations and the associated field quantities
and the Lorentz Law which gives the force acting on a charged particle in an
electromagnetic field as a prelude to the introduction, in the next three sections, of
magnetic fields and the full set of Maxwell’s equations that completely describe the
interaction between electric and magnetic fields in the nonrelativistic setting. His-
torically, electromagnetic theory has been developed with reference to observable
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10 2 Electromagnetic Theory

macroscopic events occurring in vacuum or in condensed matter, but the theory
is first based on microscopic quantities such as point charges, dipoles and small
current-carrying circuits and their distributions, which together with their forces of
interaction are built into a continuum theory that describes experimentally observed
phenomena. In this section we are concerned primarily with the equations of
electrostatics. Of course, the notions of point charge, dipole, etc., are convenient
mathematical idealizations used to build the basic theory and are associated with
singularities. For example, the field of a point charge is infinite when evaluated at
the point where the charge is located. Continuum theory avoids such singularities.

For detailed background covering the material in this section and Sects. 2.2–2.4,
we refer to Becker and Sauter (1964), Landau and Lifshitz (1960), Jackson (1999)
and Stratton (2007) and the recent book by Kovetz (2000).

2.1.2 The Electric Field

Consider a time-independent spatial distribution of charged particles that interact
with one another by generating electrostatic forces. These interacting forces enable
the electric field, denoted E, to be defined at an arbitrary location x. Consider the
resultant force f of the considered distribution of particles acting on a test particle
with point charge e placed at position x. The point charge must be small enough not
to alter the original arrangement of the particles. As the magnitude of e approaches
zero, it is clear that the measured force must approach zero as well. However, in the
limit the ratio of force f to the charge e remains finite and identifies the electric field
vector E at the point x, i.e.

E.x/ D lim
e!0

f
e
; (2.1)

from which it follows that the electric field has dimensions of force per unit charge.

2.1.3 The Lorentz Law of Force

The Lorentz Law of force (Hendrik Antoon Lorentz, 1853–1928) is one of the
fundamental elements of the classical theory of electromagnetism and defines the
force exerted by an electromagnetic field on a charged particle. We first consider the
case of a stationary point charge at rest at location x subject to an electric field E.
This field exerts a force f on the particle given by

f.x/ D eE.x/; (2.2)
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where e is the charge of the particle, which is small enough not to disturb the sources
of the electric field and so not alter the electric field. This is a special case of the
Lorentz Law in which the particle is stationary. For completeness, we now consider
the general case in which the particle is moving, which requires the introduction of
a magnetic field. Suppose that, in addition to the electric field E, there is a time-
independent magnetic field, described in terms of the magnetic induction vector B,
which will be discussed in detail in Sect. 2.2, and consider the particle, instead of
being at rest, to be moving with velocity v and instantaneously located at the point x.
The particle experiences an additional force perpendicular to its direction of motion
and proportional to the magnitude of v. The additional force is maximal when the
motion of the particle is perpendicular to the direction of the magnetic induction B
and vanishes when the orientations of v and B coincide, and the total force on the
particle, consisting of electric and magnetic components, is then

f.x/ D eŒE.x/C v � B.x/�: (2.3)

This is known as the Lorentz force.

2.1.4 Coulomb’s Law

The laws of electrostatics have their origin in the experimental work performed
by Coulomb (Charles Augustin de Coulomb, 1736–1806), who investigated the
forces of interaction generated by a distribution of charged particles at rest. In
particular, Coulomb was able to quantify the force of interaction between two
charged particles. If the two particles have charges e1 and e2 and are placed at
locations x1 and x2, respectively, the interaction force is given by Coulomb’s Law

f D k e1e2
x1 � x2

jx1 � x2j3 ; (2.4)

where k is a constant of proportionality that depends on the units used. Coulomb’s
Law shows that the force depends linearly on the magnitude of each charge, is
inversely proportional to the square of the distance between the two particles and
is directed along the line connecting the two charges. It is attractive if one charge
is positive and one negative, as illustrated in Fig. 2.1, and repulsive if they are both
positively charged or both negatively charged.

Coulomb’s Law can be generalized to the case of N interacting particles. The
resultant net force acting on a test charge e1 due to all other charged particles is
obtained by using the principle of linear superposition and given by

f D k e1

NX

iD2
ei

x1 � xi
jx1 � xi j3 : (2.5)
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Fig. 2.1 The (attractive) force f of interaction between two charged particles e1 and e2 for the case
in which one charge is positive and one negative. Cartesian basis vectors e1, e2, e3 are also shown
together with the position vectors x1 and x2 of e1 and e2

Coulomb also showed that the electric field E generated by an isolated and
stationary particle is proportional to its charge e and to the inverse square of the
distance from the charge. The field at the point x due to a point charge e placed at
the origin is therefore given by

E.x/ D k e
x
r3

D k e
Ox
r2
; (2.6)

where r D jxj and Ox D x=r is a unit vector. If the charged particle is located at the
fixed point x0 instead of the origin, then (2.6) is replaced by

E.x/ D k e
x � x0

jx � x0j3 : (2.7)

This formula for a single particle is easily extended to a distribution of N charged
particles located at xi ; i D 1; : : : ; N , by the principle of linear superposition to give
the electric field at the point x ¤ xi ; i D 1; : : : ; N , as

E.x/ D k

NX

iD1
ei

x � xi
jx � xi j3 : (2.8)

2.1.5 Charge Conservation

The definition of the electric field up to this point assumes the existence of a discrete
spatial distribution of charged particles. We now generalize this concept within the
continuum framework by considering a charge distributed over a small volume in
the neighbourhood of a point x. Consider an infinitesimal element of volume dV and
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let �edV be the total charge within this element. Then �e is the charge density, which
may be positive or negative and depends, in general, on the position x and time t :
�e D �e.x; t /. Thus, the individual charged particles within dV are ‘smoothed out’
in the continuum theory to form a continuous density function.

The velocities of the individual particles are treated similarly, and we denote by
v the mean velocity of the individual charges in dV . Then, we define the current
density J at x by

J D �ev; (2.9)

from which can be determined the rate at which charges cross a unit surface of any
orientation and the current flowing across an arbitrary surface, as discussed below.

The Lorentz force for a point charge subject to electromagnetic fields E and B is
given in (2.3). For a charge distribution with density �e and current density J, the
Lorentz force per unit volume is given by

f D �eE C J � B: (2.10)

Consider an arbitrary volume V fixed in space and bounded by a closed surface
S with unit outward normal n. The charge density per unit volume within V is �e,
and the rate at which charge flows out of V across S is given by J � n per unit area.
The rate of increase of charge within V must arise from the influx of charge across
S . Thus,

d

dt

Z

V

�e dV D �
Z

S

J � n dS; (2.11)

which says that any change in charge within a confined volume must be balanced by
the charge flowing across the bounding surface. By using the divergence theorem to
convert the surface integral to an integral over the volume V , we obtain

Z

V

�
@�e

@t
C divJ

�
dV D 0; (2.12)

which must hold for arbitrary V . Provided the integrand in (2.12) is continuous, we
may deduce the local form of the charge conservation equation as

@�e

@t
C divJ D 0: (2.13)

In a steady state situation (no time dependence) we have @�e=@t D 0 and (2.13)
reduces to

divJ D 0; (2.14)
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and the corresponding integral form is

Z

S

J � n dS D 0; (2.15)

where S is an arbitrary closed surface.

2.1.6 Units

In this book we use the SI system of units in which the basic units are length (metres,
m), mass (kilograms, kg), time (seconds, s) and electric charge (Coulomb, C). The
electric charge on an electron, for example, is e D �1:602 � 10�19 C. From the
equations connecting the electromagnetic field variables, it is then possible to derive
the dimensions of all other quantities in terms of these four basic units. Force, for
example, has dimensions kg m s�2 and is expressed in Newtons (N): 1 Newton is
equal to 1 kg m s�2. From (2.9) we find the dimensions of the current density J
to be C m�2 s�1 or Ampères per square metre (A m�2), where an Ampère (A) has
dimensions C s�1.

In SI units the constant k in (2.4), which defines the interaction force between
two charged particles, has dimensions of kg m3 s�2 C�2. From (2.6) we find that the
dimension of the electric field E is kg m s�2 C�1, alternatively N C�1 or volt per
metre (V m�1). In SI units the numerical value of the constant of proportionality k
in (2.4) is given by 1=4�"0, and Coulomb’s Law (2.4) becomes

f D e1e2

4�"0

x1 � x2
jx1 � x2j3 ; (2.16)

where "0 � 8:854 � 10�12 C2 N�1 m�2 is the permittivity of free space. Similarly,
the electric field at location x of a point charge e at x0 is given by (2.7), which, using
the expression for k, gives

E.x/ D e

4�"0

x � x0

jx � x0j3 : (2.17)

2.1.7 The Field of a Static Charge Distribution

If we replace the constant of proportionality k by its value appropriate to the units
adopted herein, then (2.6) takes on the form

E.x/ D e

4�"0

Ox
r2

D � e

4�"0
grad

�
1

r

�
; (2.18)
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where again r D jxj, while grad represents the gradient operator with respect to x.
When the charged particle is placed at the position x0 instead of at the origin, the
electric field is given by (2.7) or, alternatively, by

E.x/ D e

4�"0

R
R3

D � e

4�"0
grad

�
1

R

�
; (2.19)

where we have introduced the notations R D x � x0 and R D jRj. As in (2.18), the
gradient operator is with respect to x, i.e. the point at which E is determined.

These results can be generalized to a region in space containing a continuous
distribution of charge. In particular, consider a continuous distribution of charge
with density �e within a volume V , with the point charge e replaced by the charge
�e dV in the volume element dV . If �e D 0 outside the specified volume V , then
the electric field at location x is the sum of the contributions from all elements of
charge �e dV within V . It is given by

E.x/ D 1

4�"0

Z

V

�e.x0/
R
R3

dV.x0/ D � 1

4�"0

Z

V

�e.x0/ grad

�
1

R

�
dV.x0/; (2.20)

where the integration is with respect to the x0 variable. The grad operator is again
with respect to x and can therefore be taken outside the integral, leading to an
alternative expression for the electric field at point x, specifically

E.x/ D � 1

4�"0
grad

Z

V

�e.x0/
R

dV.x0/: (2.21)

The gradient operator in the above equation acts on a scalar function, and it is
therefore convenient to introduce a notation, namely, ' to represent this function.
It is known as the electrostatic potential and allows (2.21) to be written compactly
as

E.x/ D �grad'.x/; (2.22)

where ' is given by

'.x/ D 1

4�"0

Z

V

�e.x0/
R

dV.x0/: (2.23)

The gradient operator in (2.22) operates on a scalar quantity, yielding a vector field.
The standard vector identity curl.grad'/ � 0 for any scalar function ' applied in
the present context gives the first equation of electrostatics

curlE D 0: (2.24)

Far from the specified volume V , the electric field is approximately that of a
point charge situated at the origin with a charge equal to the total charge within the
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distribution. In this case we have 1=R � 1=r and the electrostatic potential (2.23)
can be approximated by

'.x/ � e

4�"0r
; (2.25)

where

e D
Z

V

�e.x0/ dV.x0/ (2.26)

is the total charge within V .

2.1.8 Gauss’s Theorem

Equation (2.24) on its own is not sufficient to determine the electric field. The set
of governing equations is completed by means of Gauss’s theorem (Carl Friedrich
Gauss, 1777–1855), which is now derived.

Consider first a particle carrying charge e placed at a position x0 within a volume
V bounded by a closed surface S . Equation (2.19) gives the associated electric field
at location x. Specifically, we need to determine the electric field E at a point x on the
surface S where the unit outward pointing normal vector is n, say. Let dS (D n dS )
be an infinitesimal vector area element on the surface S at x, where dS > 0. Then,
the flux of E across dS is given by

E � dS D e

4�"0

R � dS
R3

; (2.27)

and the total flux of E across the closed surface S is
Z

S

E � dS D e

4�"0

Z

S

R � dS
R3

: (2.28)

The integrand on the right-hand side defines the solid angle, denoted d˝, subtended
by dS at x0, i.e.

d˝ D R � dS
R3

; (2.29)

a purely geometrical quantity, and (2.28) may therefore be written as

Z

S

E � dS D e

4�"0

Z

S

d˝: (2.30)
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If x0 lies within the volume V , then the solid angle is equal to 4� . On the other hand,
if x0 lies outside the bounding surface, then positive contributions of R � dS=R3 to
the integral are balanced by negative contributions and the integral vanishes, as can
be shown by a simple application of the divergence theorem, noting that 1=R is a
fundamental solution of Laplace’s equation, i.e. r2.1=R/ D 0. Thus,

Z

S

E � dS D
8
<

:

e="0 if e is within V

0 if e is outside V :
(2.31)

We now extend this result to the case of a charge distribution within a volume V 0
which intersects V . The electric field at point x on the surface S is

E.x/ D 1

4�"0

Z

V 0

�e.x0/R
R3

dV.x0/; (2.32)

and the flux of E across the closed surface S , the boundary of V , is

Z

S

E.x/ � dS.x/ D 1

4�"0

Z

V 0

�e.x0/ dV.x0/
Z

S

R � dS.x/
R3

: (2.33)

Using again the properties of solid angle, we have

Z

S

R � dS
R3

D
(
4� if x0 is within V

0 if x0 is outside V ;
(2.34)

and hence
Z

S

E � dS D 1

"0

Z

V 0.V /

�e.x0/ dV.x0/; (2.35)

where V 0.V / is that part of V 0 contained within V . If e denotes the total charge
inside the volume V , the above equation can be written more compactly as

Z

S

E � dS D e

"0
; (2.36)

which is Gauss’s theorem. It states simply that the resultant flux of the electric
field E across any closed surface S is proportional to the total charge e contained
within S .

To derive the associated local equation, we rewrite Gauss’s theorem as

Z

S

E � dS D 1

"0

Z

V

�e dV; (2.37)
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where the integration on the right-hand side is restricted to the volume bounded by
the surface S . Then, by use of the divergence theorem, (2.37) becomes

Z

V

�
divE � �e

"0

�
dV D 0; (2.38)

which must hold for arbitrary V . Therefore, provided the integrand in (2.38) is
continuous, we deduce that

divE D �e

"0
; (2.39)

which is the local form of Gauss’s theorem and the second equation of electrostatics.
The equations

curlE D 0; divE D �e

"0
(2.40)

together govern the electrostatic field E. Since (2.40)1 is equivalent to E D �grad',
we may substitute this into (2.40)2 to obtain Poisson’s equation

r2' D ��e

"0
(2.41)

for the scalar potential ' for a given charge distribution with density �e. It is easy
to verify that the scalar potential (2.23) satisfies this equation whether x is within
or outside V (see, e.g., Jackson (1999), Sect. 1.7). A fortiori, the integrals in (2.20)
and (2.23) are finite when x is within V . For regions where �e D 0, (2.41) reduces
to Laplace’s equation

r2' D 0: (2.42)

Of course, for any particular boundary-value problem, appropriate boundary
conditions need to accompany the equations. These will be given in a general form
in Sect. 2.5 for a fixed surface and in Sect. 9.1 for a moving surface.

2.1.9 The Field of a Dipole

The equations of electrostatics discussed up to this point are concerned with the
interactions of time-independent charges and fields in free space. When an electric
field is applied to a solid medium, the configuration of charges is altered, and
this leads, in particular, to the production of dipoles within the medium at the
microscopic level, and the material is said to be polarized. A dipole can be visualized
as two localized concentrations of charge with the same magnitude and opposite
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Fig. 2.2 Depiction of a volume V containing a charge distribution with density �e.x0/ at point x0

relative to an originO within V . There are no charges outside V . A field point P exterior to V has
position vector x relative to the origin O and R D x � x0

signs separated by a small distance. We shall consider polarization in Sect. 2.4, but
here we discuss the field due to an idealized isolated dipole.

Equation (2.20) determines the electric field at location x for a charge density
contained within a volume V , and (2.23) gives the corresponding potential. To
determine the field generated by an electric dipole, we again consider a distribution
of charge with density �e.x0/, but now confined to a small volume V , where x0 is the
position vector of a typical point in V relative to an origin O located within V and
�e D 0 outside V . Let x be the position vector of a point P far from V at which the
electrostatic field is to be calculated, as depicted in Fig. 2.2.

Then jx0j � jxj for all x0 in V , and we may use the Taylor expansion to obtain
the approximation

1

R
� 1

jx � x0j � 1

r
� x0 � grad

�
1

r

�
; (2.43)

recalling that r D jxj. Hence, from (2.23), the electrostatic potential at x is
approximated as

'.x/ � e

4�"0r
� 1

4�"0
p � grad

�
1

r

�
; (2.44)

where e is the total charge in V given by the formula (2.26) and p is defined by

p D
Z

V

�e.x0/x0dV.x0/: (2.45)

If e ¤ 0, then the origin can be translated to the centre of charge (analogous to
the centre of mass in mechanics) so that p D 0, in which case

'.x/ � e

4�"0r
; (2.46)



20 2 Electromagnetic Theory

which is the field of a point charge e located at the origin. Then, to a first
approximation, the field at a large distance from a charge distribution is indistin-
guishable from that of a point charge, as already indicated in Sect. 2.1.7. On the
other hand, if e D 0 and p ¤ 0, we have

'.x/ � � 1

4�"0
p � grad

�
1

r

�
D 1

4�"0

p � x
r3

: (2.47)

This is the potential due to an electric dipole of strength p situated at the origin. This
is equivalent to having two charges of magnitude e and of equal and opposite signs
very close together, say at distances ˙ d=2 from the origin, in which case p D ed.
The above formula becomes exact in the limit in which d approaches 0 as e ! 1,
while p remains finite.

2.1.10 The Force and Couple on a Dipole in an Electric Field

We now calculate the total electric force on a distribution of charge contained within
a volume V . Using that part of the Lorentz force density (2.3) due to the electric field
E, this is denoted Fe, the subscript e signifying ‘electric’, and given by

Fe D
Z

V

�e.x0/E.x0/ dV.x0/: (2.48)

Now take the origin to be within V and let V be a small volume. Then, by expanding
E.x0/ to the first order in x0, we may approximate Fe as

Fe D
Z

V

�e dV.x0/E.0/C
Z

V

�e.x0/x0dV.x0/ � ŒgradE.0/�; (2.49)

where gradE.0/ is gradE evaluated at the origin, and we are using the convention
that the second-order tensor gradE is defined by .gradE/a D .a � grad/E for
an arbitrary vector a (see (A.22) in Appendix A for the component form of this
definition). If the total charge in V vanishes then, by (2.45), this becomes

Fe D .p � grad/E; (2.50)

where gradE is evaluated at the origin. This is the force acting on a dipole of strength
p located at a point in an electric field, in this case the origin.

The total couple acting on the charge distribution, about the origin, is denoted Ge

and given by

Ge D
Z

V

�e.x0/x0 � E.x0/ dV.x0/; (2.51)
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and when V is small, this is approximated, to the first order, as

Ge D p � E; (2.52)

with E evaluated at the origin. The formulas (2.50) and (2.52) for Fe and Ge are
exact in the idealized limit of an isolated dipole.

We note that the equation curlE D 0 is equivalent to the symmetry .gradE/T D
gradE, where T denotes the transpose of a second-order tensor, and this fact can be
used to rewrite the electric Lorentz force density, using (2.39), as

�eE D "0.divE/E D div£e; (2.53)

where £e is the so-called electrostatic Maxwell stress tensor, which is defined by

£e D "0ŒE ˝ E � 1
2
.E � E/I�; (2.54)

where I is the identity tensor and ˝ indicates the tensor product of two vectors,
which, in Cartesian component form, is defined by .a ˝ b/ij D aibj . The Maxwell
stress tensor plays an important role in subsequent developments.

Finally in this section, it is also convenient as a precursor for later developments
to introduce the so-called electric displacement vector, denoted D, which for free
space is related to E simply by D D "0E, and hence

divD D �e: (2.55)

As we shall see in Sect. 2.4, (2.55) is one of Maxwell’s equations, and it applies
within material media, with �e then replaced by the free charge density �f (to be
defined in Sect. 2.4), as well as in vacuum (where �e D 0), and also when there is
time dependence.

We also note that the force (2.50) can then be written as

Fe D "�1
0 .p � grad/D: (2.56)

For an isolated dipole, the formulas (2.50) and (2.56) are equivalent, but, as we shall
see in Chap. 4, their counterparts are not equivalent in polarizable media.

2.2 Magnetostatics

2.2.1 Preliminary Remarks

In electrostatics the electric field is determined in terms of point charges according
to (2.6) for a single point charge placed at the origin or in terms of a distribution
of charges according to (2.21), for example. Magnetism is fundamentally different
since the analogue of a point charge (a magnetic monopole) does not exist. The basic
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unit of magnetism is the magnetic dipole, but magnetic fields are generated by
moving charges and a magnetic dipole is equivalent to an idealized small current-
carrying circuit. That currents generate magnetic fields is demonstrated by placing a
small bar magnetic near a fixed wire carrying current. The magnet is deflected by the
magnetic force generated by the current. Equally, when a current-carrying wire is
placed in the vicinity of a fixed magnet, the wire is deflected. For example, a straight
wire carrying current I (measured in Ampéres) produces an azimuthal magnetic
flux density (or magnetic induction) field of magnitude �0I=2�r at a perpendicular
distance r from the wire, where the constant �0 is the magnetic permeability of
free space, whose value is 4� � 10�7 NA�2. There is an important connection
between �0 and the permittivity of free space "0 introduced in Sect. 2.1.6, namely
that 1=

p
"0�0 D c, the speed of light, which is very slightly less than 3�108 m s�1.

In this section we are concerned with steady currents and magnetostatic fields, i.e.
no time dependence is considered. For a distribution of current, the current density
J then satisfies (2.15), where S is a closed surface and the net flux of current out of
the enclosed volume vanishes. Geometrically, we can think of lines of current flow
within S having tangent in the direction of J at each point. For example, a so-called
tube of current flow is defined as the surface formed by all such lines that intersect a
given closed curve, analogous to lines and tubes of flow in fluid dynamics. It follows
that the flux of J across a cross section of the tube is the same for all cross sections.
Steady current therefore consists of closed tubes of current flow. The total current
I passing across an open surface S is just the flux of J across S and is given by

I D
Z

S

J � n dS: (2.57)

In practice, a thin conducting wire is a tube of flow of small cross section dS and
current I � J � dS.

Each infinitesimal segment of a wire contributes to the magnetic field produced
by the complete circuit. Let dx0 be such a segment. Then, the (infinitesimal)
contribution to the magnetic field induced (the magnetic induction) at the field point
x, say dB.x/, is given by

dB.x/ D �0I

4�

dx0 � R
R3

; (2.58)

where again R D x�x0 andR D jRj, x0 being the point at which dx0 is situated. This
is the counterpart for magnetostatics of Coulomb’s Law in electrostatics and also has
an inverse square character. This is the essence of the Biot–Savart Law, deduced on
the basis of experiments of Biot and Savart and Ampére and the analysis of Ampére
in the nineteenth century (Jean-Baptiste Biot, 1774–1862; Felix Savart, 1791–1841;
André-Marie Ampère, 1775–1836).
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2.2.2 The Biot–Savart Law and the Vector Potential

To obtain the total magnetic field B.x/ generated by the entire length of the wire,
we superpose linearly the contributions provided by all the segments dx0 of the wire
to obtain

B.x/ D �0I

4�

Z

C

dx0 � R
R3

; (2.59)

where C is the closed circuit of the wire. By replacing Idx0 by J.x0/dV.x0/, this
formula is generalized to that for a current distribution of density J.x0/ within a
volume V , giving

B.x/ D �0

4�

Z

V

J.x0/ � R
R3

dV.x0/: (2.60)

This important formula is known as the Biot–Savart Law for a volume current
distribution. As for the formula (2.20), this applies for x inside or outside V .

The integrand in the above formula can be written as

J.x0/ � R
R3

D grad

�
1

R

�
� J.x0/ D curl

�
J.x0/
R

�
; (2.61)

where the operators grad and curl are with respect to x, and hence, on taking the curl
operation outside the integral, (2.60) can be rewritten as

B.x/ D �0

4�
curl

�Z

V

J.x0/
R

dV.x0/
�
: (2.62)

This prompts the introduction of a vector function A defined by

A.x/ D �0

4�

Z

V

J.x0/
R

dV.x0/; (2.63)

which is known as the magnetostatic vector potential. Equation (2.62) can now be
written in the more concise form

B D curlA; (2.64)

from which it follows that B satisfies the equation

divB D 0: (2.65)

This is a fundamental equation of magnetostatics. Integration of this equation over a
volume V and then use of the divergence theorem shows that the magnetic flux
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through any closed surface within a magnetic field is always zero. It expresses
the fact that magnetic poles cannot be isolated, i.e. there is no counterpart in
magnetostatics of the electrostatic point charge. In fact, (2.65) is general and holds
even when there is time dependence and electromagnetic coupling, both in free
space and in material media.

2.2.3 Scalar Magnetic Potential

Consider again (2.59), which gives the magnetic field due to a thin closed current-
carrying circuit C . We now write this in the alternative forms

B.x/ D �0I

4�

Z

C

grad

�
1

R

�
� dx0 D �0I

4�
curl

Z

C

dx0

R
; (2.66)

where again we recall that the derivatives are with respect to x, not x0.
For points x distant from C for which jx0j � jxj for all x0 on C , we may use the

Taylor expansion (2.43), i.e.

1

R
� 1

jx � x0j � 1

r
� x0 � grad

�
1

r

�
;

and since C is a closed curve, the first term in the integral vanishes and we obtain

B.x/ D ��0
4�

curl

�
M grad

�
1

r

��
; (2.67)

where the second-order tensor M is defined by

M D I

Z

C

dx0 ˝ x0 (2.68)

and ˝ signifies the tensor product of two vectors. For any two vectors a and b, for
example, this product is defined, in Cartesian components, by .a ˝ b/ij D aibj , as
noted in Sect. 2.1.10, while M has components Mij and .Ma/i D Mij aj ; i; j 2
f1; 2; 3g, with summation over j from 1 to 3 (here we are using the summation
convention for repeated indices). Moreover, M is a skew-symmetric tensor, since,
because C is a closed circuit,

M C MT D I

Z

C

d.x0 ˝ x0/ D O; (2.69)

the zero tensor, where T signifies the transpose of a second-order tensor.
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The tensor M is referred to as the magnetic moment tensor. Let m denote the
associated axial vector, defined by m D � 1

2
–M, where – is the alternating tensor

(see Appendix A.1). Expressed in components, this is written asmi D � 1
2
�ijkMjk ,

with summation over indices j and k from 1 to 3. Then, for any vector a, Ma D
m � a, and, since m is independent of x, (2.67) becomes

B.x/ D ��0
4�

curl

�
m � grad

�
1

r

��
D �0

4�
curlcurl

�m
r

�
: (2.70)

Since 1=r satisfies Laplace’s equation (provided r ¤ 0), we may use the standard
identity curlcurl D graddiv � r2 to rewrite the above as

B.x/ D �0

4�
graddiv

�m
r

�
D ��0

4�
grad

�m � x
r3

�
: (2.71)

Thus, we may introduce a scalar potential function  .x/ defined by

 .x/ D �0

4�

m � x
r3

(2.72)

such that

B.x/ D �grad .x/: (2.73)

The potential (2.72) has the same structure as the potential associated with
an electric dipole given in (2.47). Thus (2.72) is interpreted as the magnetostatic
potential of a magnetic dipole of strength m situated at the origin. Moreover, since

m D �1
2

–M D 1

2
I

Z

C

x0 � dx0; (2.74)

the potential due to a magnetic dipole is equivalent to that due to a small current
loop. More particularly, if C is a planar loop, then

m D I dS D I n dS; (2.75)

where dS is the plane area enclosed by the loop and n is the unit normal to the plane
of the loop, directed in the positive sense.

For a dipole situated at the point x0, the potential in (2.72) is replaced by

 .x/ D �0

4�

m � R
R3

: (2.76)

Now consider a circuit C of finite dimensions carrying current I , as depicted
in Fig. 2.3. Let S be any regular surface that is bounded by C . Imagine that a
fine network of curves is constructed on S such that each mesh is infinitesimal,
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m = IdS

C

S

Γ

Fig. 2.3 An open surface S bounded by a closed circuit C carrying current I . On S is shown
a network of curves made up of small current loops with current I corresponding to magnetic
dipoles with magnetic moment m D IdS, where dS is the directed area element on S related to
the direction of the current by the right-hand screw rule. The closed curve � encircles C once and
hence cuts S

effectively plane and with vector area element dS. We may regard the current I as
flowing in each curve of the mesh because it cancels out on adjoining meshes. In
effect, we have a surface S consisting of a distribution of magnetic dipoles I dS.
The potential at x is due to contributions from all such dipoles. Inserting m D I dS
into (2.76) and integrating over S , we obtain the potential

 .x/ D �0I

4�

Z

S

R � dS
R3

; (2.77)

and with reference to Sect. 2.1.8, we see that

Z

S

R � dS
R3

D ˝.x/ (2.78)

is the solid angle subtended by S at x. Thus,

 .x/ D �0I

4�
˝.x/: (2.79)

The solid angle ˝.x/ has the property that its value changes by 4� as the point
x crosses the surface S . This means the potential function  is multi-valued and
changes in value by �0I each time x traverses a curve which cuts S once. Otherwise
 is continuous.
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2.2.4 Ampère’s Circuital Law

Consider again an open surface S bounded by the circuit C carrying current I . Let
the closed curve � encircle the circuit C just once, therefore cutting S , with the
direction around � related to the direction of the current in C by the right-hand
screw rule, as shown in Fig. 2.3. At any point of � , the magnetic induction is given
by (2.73) with (2.79). The line integral of B around � is

Z

�

B � dx D �
Z

�

grad � dx D �Œ  �� ; (2.80)

where Œ  �� is the change in  as � is traversed once. This is non-zero because
 is multi-valued, and since � cuts S just once in the sense described above, ˝
increases by �4� , and hence  by ��0I , for a single traversal of � . Therefore,

Z

�

B � dx D �0I; (2.81)

where we note that the right-hand side is independent of the curve � . Now let ˙
be an open surface bounded by � , and let I be the total current flowing through
˙ . Then, the above argument can be applied to a current distribution J such thatR
˙

J � dS D I , leading to the formula

Z

�

B � dx D �0

Z

˙

J � dS: (2.82)

This is a mathematical statement of Ampère’s Circuital Law. By applying Stokes’
theorem to (2.82), we obtain

Z

˙

.curlB � �0J/ � dS D 0; (2.83)

which holds for any open surface ˙ associated with a � with the considered
properties. Provided the integrand in (2.83) is continuous, we obtain the local form
of one of the fundamental equations of magnetostatics, specifically

curlB D �0J: (2.84)

We recall that in deriving this equation, it has been assumed that J is time
independent.

Returning to (2.64) we note that it is not affected by the addition of the gradient
of an arbitrary scalar function (say ') to the magnetic vector potential, i.e.

A ! A C grad'; (2.85)
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which is known as a gauge transformation. This flexibility enables a restriction to
be imposed on A, a gauge condition, which is usually taken in the form

divA D 0: (2.86)

Using (2.84) and (2.64), we have

curl.curlA/ D �0J; (2.87)

and, by using a standard vector identity, (2.87) can be written in the equivalent form

grad.divA/ � r2A D �0J: (2.88)

Equation (2.86) is then used to reduce (2.88) to

r2A D ��0J; (2.89)

which, for given J, is Poisson’s equation for the magnetostatic vector potential.
It can be verified that the expression for A given in (2.63) is a solution of (2.89)
whether x is inside or outside V .

2.2.5 Force and Couple on a Dipole in a Magnetic Field

We now derive expressions for the (mechanical) force and couple on a magnetic
dipole placed in a magnetic field. For this purpose we recall from Sect. 2.1.3 that
the Lorentz force acting on a charged particle e moving with velocity v in an
electromagnetic field with electric field E and magnetic induction B is eE C ev � B.
In the case of a continuous distribution of charge with density �e and current with
density J, the Lorentz force per unit volume is given by (2.10) as �eE C J � B. We
now focus on the magnetic contribution J � B to the Lorentz force.

Consider a material volume V in which there is a current distribution with density
J, and let B be the magnetic induction field permeating the material. Then, the
magnetic contribution to the Lorentz force acting on V , which we denote by Fm, is

Fm D
Z

V

J � B dV; (2.90)

where the subscript m signifies ‘magnetic’. Now suppose that V consists simply
of a single current loop C carrying current I . Then, we may replace the volume
integral by a line integral around C , and (2.90) becomes

Fm D I

Z

C

dx � B D I

Z

S

.dS � grad/ � B; (2.91)

where S is a regular open surface bounded by C and the latter integral has been
obtained by an application of Stokes’ theorem.
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Next, we take C and S to be infinitesimal so that the derivatives of B are
approximately uniform over S . Then (2.91) is approximated as Fm � I.dS �
grad/� B, and by setting I dS D m to be the equivalent magnetic dipole and taking
the limit I ! 1 as dS ! 0 while keeping m finite, we obtain the exact result
Fm D .m � grad/� B, which is evaluated at the location of the dipole. By standard
vector identities and the fact that divB D 0, this force on a dipole m in a magnetic
induction field B may be written as

Fm D .gradB/Tm: (2.92)

In (2.92) and henceforth, similarly to Sect. 2.1.10, we adopt the following con-
ventions: for two vector fields u and v, we define the products .gradu/Tv and
.gradu/v � .v � grad/u via their index notation representations uj;i vj and ui;j vj ,
respectively, where ;j D @=@xj and .gradu/ij D ui;j .

The (magnetic) couple on V , denoted Gm, about a fixed origin due to the
magnetic Lorentz force is given by

Gm D
Z

V

x � .J � B/ dV; (2.93)

where x is the position vector relative to the chosen origin. When V consists of just
a current loop C , this becomes

Gm D I

Z

C

x � .dx � B/ D I

Z

C

.dx ˝ x/B � I
Z

C

.x � dx/B: (2.94)

Once more we take C to be infinitesimal, but now it suffices, as a first approxima-
tion, to take B to be uniform over C so that it can be taken outside the integrals.
Then, since C is a closed circuit, the final integral in (2.94) vanishes, and on use
of (2.68) Gm can be written compactly as

Gm D MB D m � B; (2.95)

again with B evaluated at the location of the dipole, and this is exact in the limit
described above. This is the couple on a dipole m in a magnetic induction field B.

Thus far the development has been based entirely on the use of the magnetic
induction vector B, but at this point it is instructive to introduce the so-called
magnetic field vector, which is denoted by H. For the field due to an isolated dipole
placed in a vacuum, for example, B and H are simply related by B D �0H, where
the constant �0 is again the permeability of free space. This relationship applies at
any point in free space or in non-magnetizable materials, whatever the source of
the magnetic field, in which case B and H satisfy the same equations. In particular,
curlH D 0, or equivalently .gradH/T D gradH, and (2.92) and (2.95) can be written
in the alternative forms

Fm D �0.m � grad/H; Gm D �0m � H: (2.96)
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We emphasize that while the two expressions for Fm are equivalent in the present
context, their counterparts are not equivalent in magnetizable media, and the dis-
tinction will be recognized as important, in particular when dealing with deformable
media.

Similarly to the electric Maxwell stress tensor introduced in Sect. 2.1.10, we
derive a magnetic Maxwell stress tensor. The magnetic contribution to the Lorentz
force density may be rewritten, using (2.84), as

J � B D ��1
0 .curlB/ � B D ��1

0 Œ.gradB/B � .gradB/TB� D div£m; (2.97)

where £m is the magnetic Maxwell stress tensor, defined by

£m D ��1
0 ŒB ˝ B � 1

2
.B � B/I�: (2.98)

Here, the subscript m indicates ‘magnetic’, not ‘Maxwell’. As with its electric
counterpart, this tensor has an important role to play subsequently.

2.3 Faraday’s Law of Induction

2.3.1 Preliminary Remarks

Having summarized the basic equations for both electrostatics and magnetostatics,
we now consider time-dependent fields, in which case there is in general a strong
coupling between the electric and magnetic fields. In experiments in 1819, Oersted
(Hans Christian Ørsted, 1777–1851) showed that a steady current produces a steady
magnetic field and established a connection between the electric current and the
magnetic field. Faraday (Michael Faraday, 1791–1867) in his initial experiments
investigated the possibility of a steady magnetic field producing a steady electric
current, which, as we now know, is not possible. In the process, however, Faraday
made the transformational discovery that a time-varying magnetic field will induce
the flow of an electric current in a closed circuit and therefore an electric field.
This phenomenon is known as electromagnetic induction and requires the additional
information that is embodied in Faraday’s Law of Induction, which we examine in
detail in this section.

Before discussing Faraday’s Law, we note that a time-varying electric field
always generates a magnetic field. Equation (2.39) shows that a changing electric
field is necessarily associated with a charge density �e that depends on time. The
equation of charge conservation (2.13) connects a time-varying �e to the current
density J, which then generates a magnetic field, as quantified by the Biot–Savart
Law (2.60).
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2.3.2 Electromotive Force

Consider the uniform flow of an electric current in a closed circuit, which is
equivalent to the average motion of charges (conduction electrons) along the wire.
This motion suffers resistance analogous to dynamic friction, and therefore some
force is required to drive the electrons along the wire and to maintain the current
flow. This driving force is known as the electromotive force, abbreviated as emf.
A uniform current in a closed loop of wire can therefore only be achieved if the
component of the driving force tangential to the wire does net work in driving the
electrons once round the loop in the direction of the current.

Let f denote the driving force per unit charge. Then the net work done around the
closed circuit C is

Z

C

f � dx ¤ 0; (2.99)

which implies that f is non-conservative. In the case of a battery, for example, this
is the voltage (which drives the current). The use of an electrostatic field as the
driving force can be excluded because the field E is the gradient of the electrostatic
potential, so that f D E D �grad' and E is conservative provided ' is single
valued.

2.3.3 Flux of a Magnetic Field Through a Moving Circuit

For the development that follows, it is important to remember that Faraday has
shown experimentally that the same electromotive force can be induced in a closed
circuit whether the closed circuit is moved while keeping the applied magnetic
field stationary or whether the closed circuit is fixed and the applied magnetic field
varies in time. Faraday also observed that the emf generated is proportional to the
change of the magnetic field per unit time, faster change inducing a larger emf.
He also noticed that the induced emf is proportional to the area bounded by the
closed circuit.

The objective now is to determine an expression for the electromotive force
in a small closed circuit C that is moving with velocity v without rotation in a
magnetostatic field B. Let u denote the velocity of the charges relative to the wire
so that v C u is their resultant velocity. The magnetic force per unit charge is then
given by

f D .v C u/ � B; (2.100)

and the electromotive force is the integral of this around the circuit C :
Z

C

f � dx D
Z

C

Œ.v C u/ � B� � dx D �
Z

C

B � Œ.v C u/ � dx�: (2.101)
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dS t+d t

−dS t

C t+d t

C t

dx

vdt

dx × vdt

v

Fig. 2.4 A small circuit moves with uniform velocity v without rotation. At time t it is at Ct and
the approximately plane surface bounded by Ct is denoted by St , with vector area element dSt
related to the direction of Ct by the right-hand screw rule. At an infinitesimal time ıt later, the
curve is at CtCıt and St has moved to StCıt with vector area element dStCıt . The normal vector
to the ribbon-like surface which completes the boundary of the volume formed by the motion of
the curve is also shown, pointing out of the volume

The magnetic force generated by the motion of the charges along the wire is u � B,
which is perpendicular to the current flow and therefore does no work around the
circuit. The expression for the electromotive force therefore reduces to

Z

C

f � dx D �
Z

C

B � .v � dx/: (2.102)

In the time interval from time t to t C ıt , the closed circuit C moves from
the location Ct to location CtCıt , where ıt is infinitesimal. Let St denote an
approximately plane surface bounded by Ct and StCıt the corresponding surface
bounded by CtCıt with surface normal vectors related to the direction of C by the
right-hand screw rule. The surfaces consisting of the ribbon-like surface swept out
by the motion of C and the surfaces St and StCıt form the boundary of a closed
volume. The outward normals to the three surfaces are in the directions dx � v,
�dSt and dStCıt , respectively, as illustrated in Fig. 2.4. Clearly,

Z

C

B � .dx � v/ıt; �
Z

St

B � dS;
Z

StCıt

B � dS (2.103)

are the fluxes of B across the respective surfaces out of the enclosed volume.
Since divB D 0, it follows from the divergence theorem that

Z

S

B � dS D 0 (2.104)

for any closed surface S . Hence, the sum of the fluxes in (2.103) must vanish:
Z

C

B � .dx � v/ıt C
Z

StCıt

B � dS �
Z

St

B � dS D 0: (2.105)
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Thus, from (2.102) and (2.105), in the limit as ıt ! 0, we obtain

Z

C

f � dx D lim
ıt!0

(
� 1

ıt

"Z

StCıt

B � dS �
Z

St

B � dS

#)
D � d

dt

Z

S

B � dS: (2.106)

This shows the important property that the electromotive force is equal to the change
of the magnetic flux across any surface S bounded by C . The minus sign on the
right-hand side of (2.106) indicates that the induced electric current will produce
a magnetic field that always opposes the change of the magnetic flux. The latter
connection is known as Lenz’s Law (Heinrich Friedrich Emil Lenz, 1804–1865).

If the circuit C is moved through a magnetic field in such a way that the flux
through C changes, then an electromotive force is induced and a current will flow.
For a rigid closed circuit moving with uniform translation (no rotation), a current
will flow provided B changes with position. If B is uniform, then the flux will not
change unless C rotates.

Since the circuit C is moving, we may write, with reference to the integral on the
right-hand side of (2.106),

d

dt

Z

S

B � dS D
Z

S

B;t � dS; (2.107)

where B;t denotes the material time derivative (or total time derivative), which
accounts for the motion of C (and hence of S ) and is given by

B;t D @B
@t

C .v � grad/B; (2.108)

where @B=@t is the time derivative at fixed x. For a definition of the material time
derivative for a moving and deforming material, we refer to Sect. 3.1.4.1. Since
v is independent of position on S , it is easy to show from the identity (A.19) in
Appendix A.2 that .v � grad/B D �curl.v � B/. Using this in the above equation
together with (2.107) and then applying Stokes’ theorem, we obtain from (2.106)
the formula

Z

C

f � dx D �
Z

S

@B
@t

� dS C
Z

C

.v � B/ � dx: (2.109)

Equation (2.109) gives an expression for the electromotive force alternative to
(and equivalent to) that in (2.106). The right-hand side in each case is the rate of
change of the flux of B through S . For an observer in a frame of reference moving
with C , S appears fixed and (2.109) admits the possibility that B can vary with
t as well as x. We recall that in deriving (2.106), we assumed that B was time
independent. The derivation carries over to the case when B depends on time. Thus,
the flux through the circuit C may be changed by either a time-dependent magnetic
field or by the motion of C , or both simultaneously.
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2.3.4 Faraday’s Law

In the previous subsection we quantified the electromotive force generated by
moving a closed circuit in a magnetostatic field. We have shown that a magnetic
force is the driving agency that generates the flow of charges. Here, on the other
hand, we consider an observer rigidly attached to the moving circuit, i.e. the circuit
is held fixed in the moving frame of reference. Let E0 and B0 be the electric and
magnetic induction fields as measured in this frame of reference, which we take to
have constant velocity v. We now relate these to the corresponding fields in the fixed
frame.

Consider the force on a unit point charge moving with velocity u in an
electromagnetic field. In a fixed frame of reference the magnetic force (2.1.3) is

f D E C .u C v/ � B: (2.110)

The force measured in the moving frame is

f0 D E0 C u � B0 (2.111)

since the point charge has velocity u relative to this frame of reference. According
to Newton’s Second Law, the force must be the same in both frames. Therefore,

E C .u C v/ � B D E0 C u � B0; (2.112)

which must hold for arbitrary u. By taking u D 0, it follows that

E0 D E C v � B; (2.113)

and hence on substituting back in (2.112), we obtain

B0 D B: (2.114)

As already noted, the magnetic force u � B in (2.100) does not contribute to the
electromotive force given by (2.101) and (2.102). According to the moving observer
the driving force cannot be magnetic since the stationary circuit does not experience
magnetic forces in a magnetostatic field. However, the moving observer perceives a
non-conservative electric field so that electric force becomes the driving agency that
moves the charges. The electric force per unit charge measured in the moving frame
is f D E0, and the electromotive force on the complete circuit C is then given by

Z

C

E0 � dx D �
Z

S

B0
;t � dS; (2.115)
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which shows that, contrary to the electrostatic case, the electric field inside the con-
ducting circuit is non-conservative when there is a change in the magnetic flux. Note
that not only is B0 D B but also B0

;t D B;t since the latter is the time derivative of B
following the motion of the circuit. By Stokes’ theorem, (2.115) can be written as

Z

S

.curlE0 C B0
;t / � dS D 0; (2.116)

and since S is arbitrary, it follows that

curlE0 C B0
;t D 0; (2.117)

as measured in the frame of reference of the moving circuit.
Substitution of (2.113) into (2.117) gives

curl.E C v � B/C B;t D 0; (2.118)

and hence, using (2.108) and the formula curl.v � B/ D �.v � grad/B, we obtain the
important equation

curlE C @B
@t

D 0; (2.119)

connecting the fields E and B measured in a fixed frame of reference. This shows
that the structure of (2.117) is invariant under changes of uniformly moving frames
of reference.

Equation (2.106) is known as Faraday’s Law of Induction, which we repeat here
compactly as

Z

C

f � dx D � d

dt

Z

S

B � dS: (2.120)

Faraday’s Law is very general and allows for both time and space variation of E and
B and is independent of observer. Different observers measure different voltages
(emfs), the same flux, but different rates of change of that flux. Faraday’s Law is
based on experiments in which the magnetic flux through a thin wire circuit is made
to vary in a variety of ways. It is the basis of the dynamo and the electric motor
(which involve rotations of wire loops in magnetic fields).

Thus, the electric and magnetic fields are in general intimately connected when
there is time variation or motion.

Equation (2.119) replaces the electrostatic equation curlE D 0 for time-varying
situations. By taking the divergence of (2.119) we obtain

div

�
@B
@t

�
D @

@t
.divB/ D 0: (2.121)
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If divB D 0 at some initial time, then it follows from (2.121) that divB D 0 for
all time. Thus, the magnetostatic equation divB D 0 still holds in the time-varying
situation.

2.4 Maxwell’s Equations

2.4.1 The Full Set of Maxwell’s Equations

We begin this section by first recalling the fundamental equations governing
time-independent electric and magnetic fields that were discussed, respectively, in
Sects. 2.1 and 2.2. The equations of electrostatics were derived in Sects. 2.1.7 and
2.1.8 and are

curlE D 0; divE D �e

"0
: (2.122)

Similarly, for the magnetostatic field we have the two equations

curlB D �0J; divB D 0; (2.123)

from Sects. 2.2.3 and 2.2.2, respectively, where we emphasize that J is a steady
current density. Applying the divergence operator to both sides of (2.123)1 shows
that

divJ D 0: (2.124)

For time-dependent fields, the equation of charge conservation (2.124) is no longer
valid and must be replaced by (2.13), which we write here as

divJ C @�e

@t
D 0: (2.125)

In Sect. 2.3 we have seen that a steady current produces a magnetic field and that
a time-varying magnetic field will induce a flow of electric charges and therefore
produce an electric field. Clearly, the fundamental equations describing static
fields need to be modified to reflect these experimental facts. Equations (2.122)2
and (2.123)2 remain unchanged, while (2.122)1 is replaced by (2.119), i.e.

curlE C @B
@t

D 0; (2.126)

which is the local form of Faraday’s Law.
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This leaves (2.123)1, which no longer holds since it implies (2.124) and
not (2.125). To compensate for this difference we write, instead of (2.123)1,

curlB D �0J C G; (2.127)

where G is an unknown vector function that has to be determined. On taking the
divergence of this equation and using (2.122)2 and (2.125) we obtain

divG D ��0divJ D �0
@�e

@t
D �0"0div

�
@E
@t

�
: (2.128)

The equations are now self-consistent if we set

G D �0"0
@E
@t
; (2.129)

so that

��1
0 curlB D J C "0

@E
@t
: (2.130)

A divergence-free vector can be added to G, but this is inessential.
We now collect together the four fundamental differential equations for time-

dependent fields as

divE D �e

"0
; divB D 0; (2.131)

curlB D �0J C �0"0
@E
@t
; curlE D �@B

@t
: (2.132)

These are the four Maxwell equations (James Clerk Maxwell, 1831–1879) that
govern the fields E and B everywhere when the charge density �e and current density
J are known. When coupled with the Lorentz Law of force, they constitute an exact
and complete description of classical (non-relativistic) electromagnetic phenomena.

On taking the curl of (2.132)2 and making use of (2.132)1, we obtain

curl.curlE/ D � @

@t
.curlB/ D � @

@t

�
�0J C �0"0

@E
@t

�
: (2.133)

Combining this with the identity curl.curlE/ D grad.divE/ � r2E and (2.131)1,
we arrive at the equation

r2E � �0"0 @
2E
@t2

D grad

�
�e

"0

�
C �0

@J
@t
: (2.134)
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This is the inhomogeneous wave equation for E, where c D .�0"0/
�1=2 is the speed

of light anticipated at the beginning of Sect. 2.2 (i.e. the speed of electromagnetic
effects in free space). The right-hand side of (2.134) is the source term. Similarly,
taking the curl of (2.132)1 and using (2.131)2 and (2.132)2, the corresponding wave
equation for the magnetic induction B is obtained as

r2B � 1

c2
@2B
@t2

D ��0curlJ: (2.135)

In free space, where �e D 0 and J D 0, we obtain the homogeneous wave equations

r2E D 1

c2
@2E
@t2

; r2B D 1

c2
@2B
@t2

: (2.136)

Now, from (2.131)2, we may write B D curlA, A being a time-dependent vector
potential. Substitution of this into (2.132)2 yields

curl

�
E C @A

@t

�
D 0; (2.137)

and hence we may introduce a scalar field ' such that

E D �@A
@t

� grad': (2.138)

On substituting this into (2.131)1 we may rearrange it as a wave equation for ',
specifically

r2' � 1

c2
@2'

@t2
D ��e

"0
� @

@t

�
divA C 1

c2
@'

@t

�
: (2.139)

Similarly, substitution into (2.132)1 leads to a wave equation for A, i.e.

r2A � 1

c2
@2A
@t2

D ��0J � grad

�
divA C 1

c2
@'

@t

�
: (2.140)

Since there is flexibility in the definition of A (as noted in Sect. 2.2.4, the gradient
of an arbitrary scalar function may be added to A), these equations suggest that the
additional condition

divA C 1

c2
@'

@t
D 0 (2.141)

should be adopted. This is a gauge condition, extending that in (2.86) to the time-
varying situation and known as the Lorenz condition (Ludwig Valentin Lorenz,
1829–1891). Note that Lorentz and Lorenz are different. The wave equations then
become
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r2' � 1

c2
@2'

@t2
D ��e

"0
; r2A � 1

c2
@2A
@t2

D ��0J: (2.142)

These have solutions analogous to those in the static case given by (2.23) and (2.63),
respectively, namely

'.x; t / D 1

4�"0

Z

V

�e.x0; t 0/
R

dV.x0/; A.x; t / D �0

4�

Z

V

J.x0; t 0/
R

dV.x0/; (2.143)

where t 0 is the retarded time t � R=c. Thus, the structure of the potentials carries
over to the dynamic situation.

2.4.2 Polarization and Magnetization in Materials

In Sects. 2.1.10 and 2.2.5, respectively, we introduced the electric displacement
vector D and the magnetic field vector H in free space. These are simply related
to E and B, respectively, by a constant factor in each case. Thus,

D D "0E; B D �0H; (2.144)

where "0 is the electric permittivity and �0 the magnetic permeability of free space
introduced earlier. In material media these relations do not hold in general, and to
aid the description of the electric and magnetic properties of materials, we introduce
two additional vectors, defined by

P D D � "0E; M D ��1
0 B � H: (2.145)

The vector P is called the polarization density and M the magnetization density. We
now provide physical interpretations for these quantities.

We recall from (2.44) that the electrostatic potential at x due to a point charge e
and dipole p at the origin is given by

'.x/ D e

4�"0r
� 1

4�"0
p � grad

�
1

r

�
; (2.146)

where we have replaced the approximation by an equality by neglecting higher-
order terms. Thus, we are considering an isolated point charge and an isolated
dipole situated at the origin. There is no net charge on a dipole since it consists of
equal amounts of positive and negative charge (these are said to be bound charges),
whereas e is regarded as a free charge. We now generalize these notions and consider
a continuous distribution of free charges and dipoles in a volume V with densities
�f.x0/ and P.x0/ at the point x0, where �f.x0/ represents the free charge density. Then,
the potential at x due to this distribution is
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'.x/ D 1

4�"0

Z

V

�
�f.x0/
R

C P.x0/ � grad 0
�
1

R

��
dV.x0/; (2.147)

where R D jx � x0j and grad 0 is the gradient with respect to x0. We also note that

grad 0
�
1

R

�
D �grad

�
1

R

�
: (2.148)

By the divergence theorem, (2.147) can be rewritten as

'.x/ D 1

4�"0

Z

V

�f.x0/ � div 0P.x0/
R

dV.x0/C
Z

S

P.x0/ � dS.x0/
R

; (2.149)

where div 0 is the divergence operator with respect to x0 and S is the bounding surface
of V .

From the first integral in (2.149) it can be seen that the term �div 0P.x0/ acts
like an additional charge density. It is referred to as the bound charge density and
denoted �b, i.e.

�b.x/ D �divP.x/ (2.150)

at any point x in V . Thus, the total charge density consists of free charge and bound
charge, and we write, for any point x in V ,

�e.x/ D �f.x/C �b.x/: (2.151)

This provides the interpretation of P. The first term in the formula (2.149) can then
be recognized as the same as that in (2.23), which did not account for the surface
term included here. The complete expression (2.149) is a solution of Poisson’s
equation (2.41).

It follows from (2.131)1 and (2.145)1 that

divD D �f: (2.152)

This is the equation that replaces (2.131)1 in the case of polarizable materials, and
it applies for both static and time-dependent fields.

Turning now to (2.132)1, we may use (2.145), (2.150) and (2.151) to rewrite it as

curlH D @D
@t

C J � curlM � @P
@t
: (2.153)

We now interpret the different terms on the right-hand side of this equation. The
application of a magnetic field to a material generates a flow of electrons and an
alignment of intrinsic magnetic dipoles known as magnetization and quantified
by the magnetization density (or magnetic moment per unit volume) introduced
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in (2.145)2. The effect of the magnetization is to induce a bound current density
resulting from the motion of bound charges in atoms. We denote this by Jb.
Moreover, when the polarization changes in time, it generates an additional current,
characterized by the polarization current density, which we denote by Jp, and the
difference J � Jb � Jp is the free current density, which we denote by Jf. Thus,

J D Jf C Jb C Jp: (2.154)

The connections

Jb D curlM; Jp D @P
@t

(2.155)

then follow.
To see why curlM can be interpreted as a current density, consider the following.

From Sect. 2.2.3 the vector potential at the point x associated with an isolated
magnetic dipole situated at the origin is

A.x/ D ��0
4�

Mgrad

�
1

r

�
; (2.156)

where M is the magnetization tensor given by (2.68), which is skew-symmetric
and is related to the magnetic moment vector m (the axial vector of M) by m D
� 1
2
–M. Conversely, M is given in terms of m by M D �–m, or, in components,

Mij D ��ijkmk .
Suppose now there is a distribution of dipoles with density M.x0/ and tensor

density M.x0/ within a volume V , vanishing outside V . Then, the vector potential
at x is given by the integral

A.x/ D �0

4�

Z

V

M.x0/grad 0
�
1

R

�
dV.x0/; (2.157)

where (2.148) has again been used. By applying the divergence theorem, we obtain

A.x/ D �0

4�

Z

V

div 0M.x0/
R

dV.x0/C �0

4�

Z

S

M.x0/dS.x0/
R

; (2.158)

where the skew-symmetry of M has been used. But it is easy to show that
div 0M.x0/ D curl 0M.x0/ and hence

A.x/ D �0

4�

Z

V

curl 0M.x0/
R

dV.x0/C �0

4�

Z

S

M.x0/dS.x0/
R

: (2.159)

Comparison of the first term in the above with (2.63) shows that, for a distribution
of dipoles, curlM behaves like a current density and therefore has the interpretation
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indicated above. The expression (2.159) is a solution of Poisson’s equation (2.89)
for J D Jb.

Clearly divJb D 0 and, by definition, Jp satisfies the charge conservation
equation

divJp D @

@t
.divP/ D �@�b

@t
; (2.160)

from which it may be deduced that the free charge satisfies separately the charge
conservation equation

divJf D �@�f

@t
: (2.161)

It follows from (2.132)1 and (2.145)2 that

curlH D Jf C @D
@t
; (2.162)

which shows that only the free electric current density Jf remains in Maxwell’s
equation. The term @D=@t , the time derivative of the electric displacement, plays a
role similar to a current density and is known as the displacement current.

To summarize, the four Maxwell equations in material matter may be written as

divD D �f; divB D 0; (2.163)

curlH D Jf C @D
@t
; curlE D �@B

@t
; (2.164)

which are equivalent to (2.131) and (2.132). For a detailed treatment of Maxwell’s
equations, see, for example, the classic texts by Jackson (1999), Landau and Lifshitz
(1960) and Stratton (2007), and, for an interesting historical overview, we refer to
the book by Maugin (1988).

In (2.145) there are three vector fields associated with electric effects and three
vector fields associated with magnetic effects. In each case there is one connection
between the three vectors. These apply to all polarizable or magnetizable materials.
To distinguish between different materials an additional connection is needed in
each case. Such a connection is known as a constitutive equation. For polarizable
materials this may take the form of an explicit expression for P in terms of either
D or E, with either E or D as the independent electric variable, or of either E or D
in terms of one of the other variables. Similarly, for magnetizable materials any one
of H, B or M may be adopted as the independent variable and the constitutive law
specified accordingly.

Basic examples of constitutive laws include those for linear isotropic media, for
which the equations in (2.144) are replaced by

D D "r"0E; B D �r�0H; (2.165)
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where "r and �r are the relative dielectric permittivity and relative magnetic perme-
ability, respectively. From (2.145) and (2.165), the polarization and magnetization
are given by

P D "r � 1
"r

D; M D �r � 1
�0�r

B; (2.166)

so that P and M, respectively, are parallel to the electric displacement D and the
magnetic induction B. Also, the units of the electric polarization P and the electric
displacement D as well as the units of the magnetization vector M and the magnetic
field vector H coincide; see (2.165) and (2.166). In vacuo or in non-polarizable
material, "r D 1, while in vacuo or in non-magnetizable media, �r D 1. In
polarizable materials "r > 1 and P is in the same direction as D. For most materials
�r > 1; however, there are some magnetizable materials for which �r < 1 and M is
therefore opposite in direction to B. For details of the permittivity and permeability
constants of dielectric and magnetic materials, a convenient source of information
is Wikipedia (2013), which contains references to multiple sources.

2.5 Boundary Conditions

Maxwell’s equations (2.163) and (2.164) are valid for any material medium
provided D and H are given by appropriate constitutive laws. To these equations
we need to append boundary conditions in order to formulate and solve boundary-
value problems. In general the field vectors E;D;B and H are discontinuous across
surfaces between different media or across a surface bounding the material. In
this section we derive, using (2.163) and (2.164) in integral form together with
the divergence and Stokes’ theorems, as appropriate, the equations satisfied by the
discontinuities. We consider only stationary surfaces. The results will be generalized
to moving surfaces in Chap. 9.

2.5.1 Boundary Conditions for E and D

Let S be a stationary surface which carries free surface charge �f per unit area.
The two sides of S are distinguished as side 1 and side 2, and field vectors on the
two sides of S are identified with subscripts 1 and 2. Let n be the unit normal to
S pointing from side 1 to side 2. The ‘jump’ in a vector on S is the difference
between its values on side 2 and side 1, evaluated on S . Thus E, for example, has
jump E2 � E1, which is denoted �E�, and similarly for the other vectors. The jump
conditions satisfied by E and D are summarized as

n � �E� D 0; n � �D� D �f: (2.167)

We now establish these results.
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n

t

BA

CD

S
1

2

ds

dh

Fig. 2.5 A small plane area intersecting the surface S with corners A, B , C , D in the plane of
the unit normal n to the surface and a unit tangent vector t. The unit normal points from side 1 to
side 2 of the surface. The bounding curve is traversed in the direction of the arrows along the path
ABCDA

Consider the Maxwell equation (2.164)2 integrated over an open surface ˙ with
bounding curve � . After application of Stokes’ theorem, it becomes

Z

�

E � dx D �
Z

˙

@B
@t

� dS: (2.168)

Let˙ be an infinitesimal plane rectangular surface with � identified by its corner
points ABCD lying in the plane of the unit normal n to a surface S and a unit
tangent vector t to the surface and intersecting S , as shown in Fig. 2.5. The sides
AB and CD of � are parallel to t and have lengths ıs. The sides BC and DA are
parallel to n and have lengths ıh. Then, application of (2.168) to ˙ and � yields
the approximate result

�
Z

AB

E�tdsC
Z

BC

E�ndhC
Z

CD

E�tds�
Z

DA

E�ndh � �@B
@t

�.n�t/ıhıs: (2.169)

Taking the limit as ıh ! 0 and then dividing by ıs and letting ıs ! 0, we obtain
E2 � t � E1 � t D 0, i.e. t � �E� D 0. This holds for an arbitrary t normal to n, and
hence the result (2.167)1 follows.

Now consider a cylinder (or ‘pill box’) of infinitesimal height ıh and cross-
sectional area ıS D nıS straddling the surface S , as depicted in Fig. 2.6.
Equation (2.163)1 is integrated over the volume V of the cylinder and the divergence
theorem then applied to give

Z

˙

D � dS D
Z

V

�f dV; (2.170)

where ˙ is the bounding surface of the cylinder.
Since ıh is infinitesimal and the flux of D across the lateral surface of the

cylinder becomes negligible as ıh ! 0, the only contributions to the surface
integral come from the top and bottom surfaces of the cylinder. The right-hand side
of (2.170) is the total free charge in V , which consists of the surface charge �fıS .
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ndS

S
1

2 dh

Fig. 2.6 A ‘pill-box’ of height ıh and cross-sectional area ıS straddling the surface S with unit
normal n pointing from side 1 to side 2 of S

Equation (2.170) is therefore approximated simply as D2 � n ıS � D1 � n ıS � �fıS ,
which, after dividing by ıS and taking the limit ıS ! 0, yields n � �D� D �f, and
hence (2.167)2 is established. Clearly, if the surface S is free of distributed charge
�f, then the normal component of D is continuous.

If the material medium is surrounded by a non-polarizable medium or a vacuum
(where P D 0), the boundary conditions (2.167) can be written in the alternative
forms

�D� D �fn C .n � P/ n � P; "0�E� D �fn C .n � P/n; (2.171)

where use has been made of the connection (2.145)1.

2.5.2 Boundary Conditions for B and H

The counterparts of the boundary conditions (2.167) for the magnetic vectors are

n � �H� D Kf; n � �B� D 0; (2.172)

where Kf is the free current surface density on the surface S per unit area. The proof
of (2.172) follows the same pattern as for (2.167) and is given below.

Consider again the cylinder of infinitesimal height ıh and cross-sectional area
ıS D nıS straddling the surface S in Fig. 2.6. Equation (2.163)2, when integrated
over the volume V of the cylinder followed by an application of the divergence
theorem, yields

Z

˙

B � dS D 0: (2.173)

Again, since ıh is infinitesimal and the flux of B across the lateral surface of
the cylinder becomes negligible as ıh ! 0 and only the integrals over the top and
bottom surfaces of the cylinder contribute non-negligible values. Equation (2.173) is
therefore approximated simply as B2 � n ıS � B1 � n ıS � 0, which, after dividing by
ıS and taking the limit ıS ! 0, yields n��B� D 0, and hence (2.172)2 is established.
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Next, consider (2.164)2 integrated over the open surface ˙ with bounding curve �
shown in Fig. 2.5. On application of Stokes’ theorem, it becomes

Z

�

H � dx D
Z

˙

�
Jf C @D

@t

�
� dS; (2.174)

which yields the approximate result

�
Z

AB

H � t ds C
Z

BC

H � n dhC
Z

CD

H � t ds �
Z

DA

H � n dh

�
��Z

BC

Jf dhC @D
@t

dh

�
� n

�
� t ıs: (2.175)

In the limit as ıh ! 0 the term in @D=@t in the integral on the right-hand side
becomes negligible, as do the integrals along BC and DA on the left-hand side,
while the term in Jf becomes the surface current density Kf with n � Kf D 0. Then
dividing by ıs and letting ıs ! 0, we obtain H2 � t � H1 � t D .Kf � n/ � t. Setting
n � t D k and noting that k � n D t, it follows that fn � �H�g � k D Kf � k. Since t is
an arbitrary tangent, then so is k. This holds for arbitrary k normal to n, and hence
the result (2.172)2 follows.

Note that if outside the material is a vacuum or a non-magnetizable material
M D 0 outside the material, in which case, by combining the two boundary
conditions (2.172) and using the connection (2.145)2, we obtain

�H� D .n � M/n � n � Kf; �B� D �0n � .n � M/ � �0n � Kf: (2.176)
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