
Chapter 2
Stochastic Volatility or Stochastic Central
Tendency: Evidence from a Hidden Markov
Model of the Short-Term Interest Rate

Craig A. Wilson and Robert J. Elliott

Abstract We develop a two-factor model for the short-term interest rate that in-
corporates additional randomness in both the drift and diffusion components. In
particular, the model nests stochastic volatility and stochastic central tendency, and
therefore provides a medium for testing the overall importance of both factors. The
randomness in the drift and diffusion terms is governed by a hidden Markov chain.
The likelihood function is determined through an iterative procedure and maximum
likelihood estimates are obtained via numerical maximization. This process allows
likelihood ratio testing of nested restrictions. These tests show that stochastic volatil-
ity is more important than stochastic central tendency for describing the short rate
dynamics.

2.1 Introduction

The risk-free interest rate is one of the most vital inputs in financial and economic
theory. There is still much debate about the relationship between rates for differ-
ing time horizons. Evidence for and against the expectations hypothesis waxes and
wanes as additional complexities are incorporated into interest rate models and as
more robust empirical analysis is applied to the various models. Most models of the
short-term interest rate combine a mean-reverting drift component with a diffusion
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component. The simplest models assume that the drift is a linear function of the
short-term interest rate with constant parameters, and that the diffusion is governed
by a constant volatility parameter. This model provides a mathematical framework
for describing a central bank trying to control interest rates by pushing rates slowly
toward a target rate with a force that is proportional to how far the current rate is
from the target, but misjudging the effect of its policy independently of (with addi-
tive noise models) or proportionally to (with multiplicative noise models) the current
rate in a consistent way (with constant volatility). Guthrie and Wright [11] develop
an alternative model of central bank behavior that leads to similar observed interest
rate behavior.

The main extensions to these simple models involve allowing for non-linearity
in the drift function, allowing for randomness in the drift function, and allowing for
randomness in the volatility function. Each of these extensions has been found to
be empirically significant, when studied individually; however the purpose of this
study is to determine which of these extensions is most important for explaining
historical short-term interest rates, and we find that stochastic volatility is by far the
more important feature.

Current theory about the dynamics of the short-term, default-free interest rate
suggests two alternative methods of modeling: an equilibrium approach, and a no
arbitrage approach. The later takes the current term structure as an input so as to
force an exact fit to longer-term bond prices and other interest rate derivatives. Ex-
amples of this approach include the models of Ho and Lee [14], Hull and White [15],
and Heath et al. [13]. On the other hand, equilibrium models such as those of Va-
sicek [22], and Cox et al. [7] generally do not predict values that exactly match
current term structures. In this sense, such models are not arbitrage free. However,
this shortcoming is often made up for by the model’s applicability to future time pe-
riods, since they usually lead to a stationary sequence of interest rates. Also, because
of the limitations of financial data, the term structures used as inputs for no arbitrage
models are finite, so in practice, arbitrage free predictions can often be achieved by
equilibrium type models with a sufficiently large number of parameters.

In the particular case of the equilibrium type model used by Chan et al. [5], the
interest rate is supposed to follow a mean reverting process described by dynamics
of the form

drt = α(r̄− rt)dt +σrγ
t dWt . (2.1)

In unconstrained estimation by Chan et al. [5] it is found that the variance elastic-
ity, γ , is approximately 1.5, (using GMM estimation on U.S. interest rates based on
monthly observations between June 1964 and December 1989), which causes the
previous SDE to have a non-stationary solution, (i.e. the variance increases with-
out bound as t gets large), which is undesirable for estimation and testing purposes.
The above interest rate model has two important features: the drift term is a linear
function of the interest rate and the volatility term is deterministic.

Relaxing one or both of these properties could resolve the problem. For instance
letting the drift term be non-linear so that it increased the mean-reverting force as
the interest rate became large, could resolve the non-stationarity problem [1]. Or if
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the volatility were allowed to be stochastic, as in Longstaff and Schwartz [18], the
need for randomness implicit in the rγ

t term could be reduced, requiring a smaller
elasticity parameter, γ . These issues are addressed by Sun [21], where he finds that
stochastic volatility was significant and non-linear drift was not significant. This
finding is consistent with Chapman and Pearson [6], who conclude that non-linear
drift is not an essential property of the short-term interest rate.

Although Sun [21] describes a model that nests both stochastic volatility and
non-linear drift, he is pitting a two-factor model up against a one-factor model when
he tests his restrictions. This approach might bias his study toward finding that the
stochastic volatility framework dominates the non-linear drift, since such a frame-
work is able to explain some observed term structure phenomena such as yield curve
twists that typically cannot be explained in a one-factor model. It turns out that this
concern is unfounded, as we also find that stochastic volatility is most important,
even when both full and restricted models have two factors of randomness.

Balduzzi et al. [3] develop a model in which the mean-reverting level, or what
they call the central tendency of the short rate process provides a second factor of
randomness. In this case the second factor enters through the drift, but they still
model the drift as being linear in the short rate. If one compares stochastic central
tendency against stochastic volatility, both restricted models have two factors of ran-
domness, and they can be compared on a level playing field, which is the approach
we take.

A natural model to nest these two phenomena is the three factor model of Bal-
duzzi et al. [2]. However, this model requires the central tendency factor to be in-
dependent of the other factors, so testing restrictions of this model pits a two-factor
model against a three-factor model, which may again bias toward rejecting the re-
strictions of constant central tendency or volatility. One solution to this problem
would be to implement a special case of this model’s extension by Dai and Sin-
gleton [8], where both central tendency and volatility are governed by the same
Brownian motion.

Unfortunately, implementing this approach in the Chan et al. [5] framework is
difficult because it requires relaxing the affine term structure model assumption. We
examine estimation techniques on the Chan et al. [5] model where the central ten-
dency level and volatility parameters themselves are prone to switch in accordance
with the same Markov chain. In this way, even the full model with both stochastic
drift and stochastic volatility has only two factors of randomness: the Markov chain
and an independent Brownian motion. Even so, this framework allows an arbitrary
correlation between drift and volatility. Such a feature was found to be important by
Dai and Singleton [8].

This regime switching framework has been found helpful in explaining inter-
est rate and term structure characteristics in a number of studies including Hamil-
ton [12], Naik and Lee [19], Bansal and Zhou [4], Smith [20], and Kalimipalli and
Susmel [16], to name a few. We assume that the state of the Markov chain cannot
be observed directly, and must be estimated through filtering observations of the
short-term interest rate. In this way we consider the interest rate to be governed as a
hidden Markov model.
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We consider the case of a discrete time autoregressive stochastic process. An
extension of Hamilton’s [12] algorithm provides an iterative construction of the
likelihood function. Evaluating this likelihood function at the maximum likelihood
estimates obtained for full and restricted models allows the testing of various re-
strictions using likelihood ratio tests. We do this for observations of Canadian and
U.S. nominal interest rates. The null hypothesis of constant volatility can be strongly
rejected, whereas that of constant mean reverting level or central tendency cannot.

The remainder of this paper is organized as follows. Section 2.2 discusses the
general model, and Sects. 2.3 and 2.4 discus techniques to estimate and test this
model in the maximum likelihood framework. Section 2.5 specializes the model to
the case of short-term interest rates. Section 2.6 discusses the data, Sect. 2.7 analyzes
the results, and Sect. 2.8 concludes.

2.2 The Model

The first process that we consider is a finite state (N-dimensional), discrete time,
homogeneous Markov chain, X = {Xt ;t ∈ N = {0,1,2, . . .}}, that takes values in
the set of unit (column) vectors, S = {e1, . . . ,eN}, which is the canonical basis of
RN , (i.e. Xt = (0, . . . ,0,1,0, . . . ,0)T). Denote by FX = {FX

t } the filtration gener-
ated by the Markov chain X , and P its transition matrix, where Pi j = Pr{Xt+1 =
e j|Xt = ei, . . . ,X0 = ek} is the probability of going from state i to state j. It follows
that E[Xt+1|FX

t ] = PTXt , where the conditional expectation gives the vector of con-
ditional probabilities and the right hand side picks out the appropriate row of P.
(Note that the entries of P must be non-negative and that the rows must sum to 1.)
This convenient notation motivates our choice of state space and stochastic matrix
notation, which was done without loss of generality.

We presume that this Markov chain is hidden, (i.e. it is not directly observable),
so that we do not have access to the information FX . However, we do observe a
stochastic process {Yt ;t ∈ N}, which has the form

Yt+1 = μ(Xt)+ ζ (Xt)εt+1, (2.2)

where {εt} is a sequence of i.i.d. standard normal random variables (although other
distributions could be used), independent with the Markov chain, X . (For now, we
consider {Yt} to be a general observation process, but later we will specialize it to
observations of short-term interest rates.) It is clear that μ and ζ are Markov chains.
Also notice that the function μ(Xt) has the representation μTXt , where the vector μ
has typical entry μi = μ(ei), and similarly for ζ . In general, the drift and volatility
terms μ and ζ could be functions of other independent and observable variables.

Denote by FY = {FY
t } the filtration generated by the observed process, Y ,

F ε = {F ε
t } the filtration generated by the noise, ε , and G = {Gt}= {FX

t ∨FY
t }=

{FX
t ∨F ε

t } is the joint (or global) filtration. The filtering problem will therefore
involve the optimal use of the available information. We wish to make inferences
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about G -adapted processes by conditioning on the filtration FY . This procedure
gives a best, (in mean square error sense), estimate of the unobservable processes,
based on information obtained from observing the process Y [10].

2.3 Maximum Likelihood Estimation

The model requires estimates for the transition probabilities, Pi j and the entries of
the vectors μ and ζ . The class of maximum likelihood estimators, (MLE’s), has
several desirable properties such as consistency, efficiency, and robustness [17]. We
therefore attempt to find MLE’s for the various parameters. The problem is that
MLE’s can often be difficult to calculate directly or explicitly. We form the likeli-
hood function iteratively and solve it numerically via the EM algorithm. The proce-
dure we use is a modification of Elliott’s [10] filter.

Since the Markov chain is unobservable, we have particular difficulty in esti-
mating the probability matrix. This estimation can be done by using a change of
probability technique. Based on the time series of observations and arbitrary start-
ing parameter values, we filter information about the Markov chain’s state, which
is used to obtain optimal (in the sense of expectation maximization) parameter esti-
mates. The EM algorithm continues by finding new filtered processes using the pre-
vious optimal parameter estimates and using the new processes to find new optimal
parameter estimates. A fixed point in the parameter space corresponds to maximum
likelihood parameter estimates.

The previous algorithm gives maximum likelihood estimates, but not the likeli-
hood function. To perform likelihood ratio (LR) tests, we need the likelihood func-
tion evaluated at the optimal parameters for various restrictions. We use a modifi-
cation of Hamilton’s [12] algorithm to obtain the likelihood function and evaluate
it at the values found by the EM algorithm. This approach involves manipulating
conditional probability mass and density functions at each time and adding their
logarithms to get the log-likelihood function. Unfortunately this function cannot be
obtained in closed form, which is why we use the EM algorithm to maximize it.

2.4 The Likelihood Function

This section describes an algorithm similar to Hamilton’s [12] algorithm. We have
a hidden Markov chain {Xt} and a sequence of observations {Yt}, which are pre-
sumed to depend upon the previous state of the Markov chain, and on noise that
is independent with the Markov chain. Notice that we are considering probability
mass functions and probability density functions in this section and we denote them
f and g respectively. (These functions can be thought of as Radon-Nikodym deriva-
tives with respect to counting measure or Lebesgue measure.) Functions of more
than one variable refer to joint probability mass or density functions. For ease of
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notation, the dependence on the parameters is suppressed. It is implied that all of
the mass and density functions that follow depend on a common parameterization.

The goal is to obtain the current filter, which is the probability mass function
f (xt ;yt , . . . ,y0) = Pr{Xt = xt |Yt = yt , . . . ,Y0 = y0} when starting with the previous
filter f (xt−1;yt−1, . . . ,y0) = Pr{Xt−1 = xt−1|Yt−1 = yt−1, . . . ,Y0 = y0}. This func-
tion provides a filter for the state of the Markov chain. We assume that the condi-
tional density function g(yt |xt−1,yt−1, . . . ,y0) is known. In particular, for our general
model we use the normal density

g(yt |xt−1,yt−1, . . . ,y0) =
1√

2πζTxt−1
exp

{
− (yt − μTxt−1)

2

2(ζTxt−1)2

}
; (2.3)

however, other densities could be used. A consequence of the algorithm is that the
conditional density function g(yt |yt−1, . . . ,y0) is obtained, which can be used to con-
struct the likelihood function L(θ ;y) = g(yT , . . . ,y1|y0) = ∏T

t=1 g(yt |yt−1, . . . ,y0).
Hamilton advocates maximizing the log-likelihood function numerically to obtain
maximum likelihood estimates for the parameters. Knowing the likelihood function
explicitly allows likelihood ratio tests to be applied to test equality constraints on
the parameters in a straight forward manner: With r distinct equality restrictions, the
logarithm of the square of the ratio of the likelihood function evaluated at the un-
restricted MLE to that evaluated at the restricted MLE has a central χ2 distribution
with r degrees of freedom (under certain regularity conditions see Lehmann [17] for
example).

We outline the algorithm as follows: Assume we know f (x0|y0), we have it-
erated through the algorithm to the tth observation to get f (xt |yt , . . . ,y0), and
g(yt+1|xt ,yt , . . . ,y0) is given as in Eq. 2.3. Then

1. g(yt+1,xt |yt , . . . ,y0) = g(yt+1|xt ,yt , . . . ,y0) f (xt |yt , . . . ,y0)
2. g(yt+1|yt , . . . ,y0) = ∑i g(yt+1,ei|yt , . . . ,y0)

3. f (xt |yt+1, . . . ,y0) =
g(yt+1,xt |yt ,...,y0)

g(yt+1|yt ,...,y0)

4. f (xt+1,xt |yt+1, . . . ,y0) = f (xt+1|xt ,yt+1, . . . ,y0) f (xt |yt+1, . . . ,y0)
5. f (xt+1|yt+1, . . . ,y0) = ∑i f (xt+1,ei|yt+1, . . . ,y0)

Each step follows from the definition of conditional probability or a straightforward
application of Bayes’ theorem. In Steps 2 and 5, the term ei in the joint density
or mass function refers to the case when xt = ei. In Step 4, the conditional mass
is f (xt+1|xt ,yt+1, . . . ,y0) = f (xt+1|xt), (by the Markov property and independence
between the noise and the Markov chain), which is simply the transition probability.
We obtain the likelihood function as the product of conditional density functions
found in Step 2.
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2.5 The Interest Rate Model

We assume that the interest rate follows a discrete version of the continuous time
stochastic process defined by the SDE,

drt = αt (r̄t − rt)dt +σt r
γ
t dWt , (2.4)

where αt = α , r̄t = r̄(Xt), σt = σ(Xt), and W is a standard Brownian motion inde-
pendent with the continuous time Markov chain, X . The continuous time Markov
chain is characterized by its transition rate matrix, Q, which is related to the prob-
ability transition matrix through the forward and backward Kolmogorov equations.
In particular, for a homogeneous Markov chain whose rate matrix doesn’t depend
on time, we have P = eQΔ t , obtained by the matrix exponential. A well-behaved
Markov chain has a rate matrix that is a so-called conservative Q-matrix, which
means that Q has non-negative off-diagonal entries and its rows sum to zero, so the
probability transition matrix does turn out to be a stochastic matrix with entries Pi j

representing the probability of going from state i at time s to state j at time s+Δ t.
If Δ t is small, then an Euler approximation of the above SDE provides the fol-

lowing discrete representation of the interest rate:

Δrt+1 = α{r̄(Xt)− rt}Δ t +σ(Xt)r
γ
t

√
Δ tεt+1, (2.5)

where {Xt} is a discrete time Markov chain with transition matrix P = eQΔ t and
{εt} are i.i.d. standard normal. Here α is the rate of mean reversion, r̄ is the mean
reverting level or central tendency, σ is the volatility of the interest rate process, and
γ is the variance elasticity. We estimate the following equation

Δrt+1 = β0(Xt)+β1rt + ς(Xt)r
γ
t εt+1, (2.6)

and then transform the coefficients to the more meaningful term structure coeffi-
cients.

We now turn our attention to what this model implies about the behavior of in-
terest rates. First of all the short-term rates, following this model will be positively
auto-correlated through time. The auto-correlation is ρ = 1−αΔ t, which is less
than 1 whenever the mean reversion rate, α , is positive, where α measures the rate
at which r is expected to approach the mean reverting level, r̄. If ρ > 1, then the
process will drift away from the mean. If ρ = 1, then μ must equal zero and thus r
follows a random walk.

Allowing the parameters to depend on a Markov chain means that the central
tendency and interest rate volatility will change from time to time. When it does
change, the interest rate will begin to converge toward the new central tendency
level, when it changes back, the interest rate will turn around and begin to converge
back. It seems intuitive that such a data generating process would describe a cyclical
pattern, but with a random cycle length. In particular, such a data generating process
would be able to create large cycles with a relatively small volatility parameter, as
is typically seen in a series of interest rates.
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Since short-term interest rates are essentially controlled by the central bank, it
might seem unreasonable that they switch so violently. However, whatever the un-
derlying variable that the bank is primarily controlling through its choice of interest
rates, be it inflation, exchange rates, or unemployment, etc, it might not be unreason-
able to model these, exogenously, as having the impact of a Markov chain switching
the converging level. Furthermore, the continuous time rate process has continuous
sample paths, which provides a certain smoothness in interest changes that is often
desired by central banks. This intuition suggests that randomness in the central ten-
dency or drift term of the short rate process will be the more natural. Surprisingly,
it is randomness in the volatility that seems to be more important.

2.6 Data

For the Canadian data we use monthly and weekly observations of the short term in-
terest rate implied by Government of Canada 3-month Treasury bills. The monthly
rates were obtained from the Bank of Canada website, excerpted from Selected
Canadian and International Interest Rates Including Bond Yields and Interest Ar-
bitrage. The data set includes bills from March 1934, when the first public tender
occurred, until December 2004. The rates quoted in this data set are measured in
units of percent and quoted as a discount style of interest rate. To be consistent with
our modeling, we convert these rates to unitless annual continuously compounded
values. Monthly rates are based on the last Wednesday of the month. Data with
weekly observations starts Wednesday January 3, 1962. The weekly Canadian data
was taken from the CANSIM website (series V121778).

For the U.S. data, we also use monthly and weekly observations of the U.S. 3-
month Treasury bill returns provided by the St. Louis Federal Reserve website.
Monthly returns are provided from January 1934 to December 2004 and weekly
returns are provided from January 1954; however, to be consistent with our Cana-
dian data, we restrict attention to the post 1962 period. These returns are based
on averages over the week or month, so we use daily data and choose data from
each Wednesday or the last Wednesday of the month for our observations. For those
Wednesdays that land on a holiday, we use data from the following Thursday. The
returns in these data sets are discrete discount returns, so we convert them into con-
tinuously compounded annual returns.

Interest rates obtained from 3-month T-bills are used because these products have
much longer time series of data available than 1-month T-bills. The interest rate
model in the previous section is a discrete time approximation of a continuous time
model of the infinitesimally short term risk-free rate. As such it would be better
to use a shorter term product with more frequent observations; however, the insti-
tutional features of the interest rate market and data availability leave us with the
current compromise.1

1 Moving to daily observations may also introduce too much serial correlation, which may lead to
inconsistent estimators.
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Before we proceed to the general case, it is informative to first consider the sim-
pler case where the parameters are constant and do not depend on the Markov chain.
First we rewrite Eq. 2.6 as Δr = Xβ +u, where u ∼ N(0,Ω), Ω = ς2diag[r2γ

0 , . . . ,

r2γ
T−1], X = [1 �1(r)], 1 is a column vector of 1’s, �1(r) = (r0, . . . ,rT−1)

T, and β =

(α r̄Δ t,1−αΔ t)T. This form makes it clear that for any known γ , β can be estimated
by generalized (or weighted) least squares, β̂ (γ) = (XTΩ−1X)−1XTΩ−1Δr, which
is the output of the OLS regression ηΔr = ηXβ +ηu, for η = diag[r−γ

0 , . . . ,r−γ
T−1].

On the other hand, if β is known, then the log-likelihood function is

�(r;β ,γ, σ̂) = {−T ln(2π)−T −T ln(σ̂2)− 2γ
T

∑
t=1

ln(rt−1)}/2, (2.7)

where σ̂2 = 1
T ∑

(
Δ rt−Xβ

rγ
t−1

)2
. Given β , this equation can be maximized numerically

over the one unknown variable γ .
With normally distributed errors, β̂ (γ) is a maximum likelihood estimate con-

ditional on γ . Since γ is independent of β terms, we can iterate back and forth
maximizing conditional on γ , then conditional on β , etc. In fact, thinking of β̂ (γ)
as a function of γ allows us to maximize over γ in one step. Details of this approach
can be found in Davidson and MacKinnon [9].

The output of this estimation is provided in Table 2.1. All of the parameters have
the expected signs; however, none of them are significantly different from zero.
Furthermore, none of the series are expected to differ from zero as is seen by the
F statistics. This observation foreshadows our more general finding that once the
proper diffusion parameters are employed, the drift parameters are not very im-
portant. None of the four series differs significantly from a unit root as tested by
the Dickey-Fuller τ statistics, all four series have residuals that exhibit significant
serial correlation as seen by the Durbin-Watson statistics, and the residuals of all
four series have a significantly non-normal distribution according to the Jarque-Bera
statistics. These negative results, together with the very low R2 statistics demonstrate
that this type of linear drift one-factor model does not adequately describe 3-month
T-bill rates in either country, at least not for such a long time period.2 Particularly
troubling is the combination of serial correlation in the residuals and regressing on
lagged dependent variables, which can cause the maximum likelihood estimators to
be inconsistent. Combining this observation with the non-normality of the residuals
implies that the parameter estimates may not be very accurate.

Nevertheless, to compare the parameters and to allow them to be more easily
understood, it is helpful to convert them to the form in Eq. 2.5. This conversion is
done in the second panel of Table 2.1. The parameters should be approximately

2 For robustness we repeated the analysis for the shorter time period from May 1990 to December
2004 using 3-month T-bill rates, 3-month LIBOR rates, and 1-month LIBOR rates, and although
the parameters differed substantially from the longer period, the findings were generally similar.
The only noteworthy differences were that β1 was significantly less than zero, ruling out a unit
root in each case, and for the Canadian short rates, serial correlation in the residuals was no longer
present. Data for the LIBOR rates was obtained at the British Bankers’ Association website.
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CEV US-T-3-m US-T-3-w Can-T-3-m Can-T-3-w

β0 0.000123 2.59×10−5 0.000552 6.81×10−5

t stat 1.137823 0.83111 1.498601 1.065669
β1 −0.00037 −0.00013 −0.00784 −0.00098
DF τ stat −0.09936 −0.13147 −1.15416 −0.82891
std err 0.012858 0.002313 0.001547 0.000208
F stat 1.542211 0.668327 1.183339 0.594016
γ 1.156092 1.134993 0.770751 0.772217
r2 0.009546 0.000596 0.004592 0.00053
DW stat 1.621623 1.831274 1.584126 1.564956
JB stat 241.351 4030.834 2596.504 88514.14
# obs 515 2,243 515 2,243
Δt 0.083333 0.019231 0.083333 0.019231
r̄ 0.330697 0.200768 0.070411 0.06966
α 0.004479 0.006698 0.094047 0.050839
σ 0.392037 0.34664 0.135987 0.103896
γ 1.156092 1.134993 0.770751 0.772217

Table 2.1 Quasi-maximum likelihood estimation of the regression equation Δrt+1 = β0 +β1rt +
ςrγ

t εt+1, where εt+1 are independent standard normal random variables. For a given γ this equation
can be estimated independently of the distribution of ε by GLS. The normal distribution is used
to obtain the maximum likelihood estimate for γ . Here Δrt+1 = rt+1 − rt , and rt is the unitless,
annual, continuously-compounded yield to maturity at date t on a US or Canadian T-bill maturing
3 months later. These interest rate observations occur monthly or weekly from January 1962 to
December 2004, with weekly observations occurring each Wednesday (or the next available date),
and monthly observations occurring on the last Wednesday of each month (or the last weekly ob-
servation of the month). The column notation is used to indicate the country, interest rate type
(T-bill v. LIBOR), maturity (3 month v. 1 month), and observation frequency (monthly v. weekly)
of the short rate process. (Although only 3-month T-bill data was available from 1962, other short
rates became available from May 1990 and were considered for robustness.) The regression co-
efficients have Student t statistics reported, which in the case of β1 is actually a Dickey-Fuller τ
statistic used to test against a unit root. The F statistic tests against the fully restricted model with
both coefficients being zero. The Durbin-Watson statistic is used to test for serial correlation in
the residuals, and the Jarque-Bera statistic is used to test whether the residuals are normally dis-
tributed. The values for Δt are 1/12 for monthly and 1/52 for weekly observations, which are used
to convert the regression coefficient estimates into interest rate model coefficients for the equation
Δrt+1 = α(r̄− rt)Δt +σ rγ

t

√
Δtεt+1

equal when comparing the monthly to the weekly observed time series, which is the
case for all parameters except the rate of mean reversion parameter α , being difficult
to estimate anyway [5, 2, 21].

Comparing parameter estimates for both countries yields a further contrast. The
Canadian rates have a central tendency (r̄) around 0.07 and a rate of mean reversion
(α) between 0.05 and 0.09, whereas the U.S. rates have a much higher central ten-
dency (greater than 0.2) and a much slower rate of mean reversion between 0.0045
and 0.0067. The data suggests that U.S. rates tend toward a fairly high interest rate
at a fairly slow rate and Canadian rates tend more quickly toward a modest inter-
est rate. This high US-low Canadian central tendency is even more puzzling when
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Fig. 2.1 The graph depicts US and Canadian 3-month T-bill rates from January 1962 to December
2004. The rates are in unitless continuously compounded form and they are based on monthly
observations on the last Wednesday in each month

considering Fig. 2.1, which shows that US rates never once reach 20 %, and Cana-
dian rates peak higher and typically are higher for most of this period.

Finally, we notice, like Chan et al. [5], that the elasticity parameter for this pe-
riod is greater than 1 for the U.S. data (between 1.135 and 1.156), which provides
a good opportunity to see if incorporating stochastic volatility will reduce the elas-
ticity to an acceptable level as suggested by Sun [21]. It turns out that we find that
elasticity is not affected in a predictable way by incorporating stochastic volatility.
(In particular, we find that elasticity is decreased in the Canadian case, which was
already sufficiently low, but it is not changed significantly in US rates, which could
be considered too high for purposes of term structure modeling.)

Yong [23] provides some conditions on the variance elasticity parameter γ for
a continuous time model similar to Eq. 2.4, in which the parameter functions αt ,
r̄t , and σt are bounded, deterministic functions of time. In that case, there does not
exist a continuous associated wealth process bounded in expectation when γ > 1/2.
In particular, the condition E[exp(λ

∫ T
0 rtdt)] < ∞ does not hold for any T > 0 and

λ > 0. Yong [23] also shows that Novikov’s condition fails when γ ≥ 1/2, which
causes problems for determining the existence of an equivalent martingale measure,
when using this interest model in conjunction with a Black-Scholes type model
for the risky asset(s). Failure of the existence of an equivalent martingale measure
implies that the model permits arbitrage.

In empirical investigation, we find γ > 1/2 for all of our samples except for
weekly observations of Canadian T-bill rates. This indicates that a linear interest rate
model of the type described by Eq. 2.4 may not adequately fit with historical interest
rate data. One approach to deal with this problem could be to apply a non-linear
model, such as that put forward by Aı̈t-Sahalia [1]. However, two main distinctions
between our model and Yong’s [23] model could help explain these problematic
empirical results: First, we actually estimate the discrete model given by Eqs. 2.5
and 2.6, instead of the continuous model given by Eq. 2.4, so the parameters may



44 C.A. Wilson and R.J. Elliott

not exactly coincide with those of a continuous model. Second, we do not permit the
parameter functions to vary directly and deterministically with time. By permitting
the parameters to vary directly with time, information from the term structure could
be used to estimate the parameter functions, which might decrease estimates of the
elasticity parameter. However, since our main objective in this paper is to compare
the relative importance of stochastic volatility and stochastic central tendency, we
leave a detailed investigation of this issue for future research.

Figure 2.2 plots the monthly observed US 3-month T-bill rates and the residuals
to the estimation equation used in this section. Note that the residuals seem to clus-
ter into high and low volatility regimes, which provides further motivation for our
method.

Fig. 2.2 The upper panel depicts the US 3-month T-bill rate between January 1962 and December
2004. The lower panel plots the standardized residuals from the constant elasticity of volatility
model Δrt+1 = β0 +β1rt +σ rγ

t εt+1 estimated via maximum likelihood
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2.7 Results

We implement the model for a 2-state Markov chain.3 Because the columns of the
Markov matrix must sum to 1, the matrix is associated with two free parameters, also
the central tendency and volatility components of the model are associated with two
free parameters each. Together with the mean reversion rate and volatility elasticity
parameters the model has a total of eight parameters. The estimates obtained by
the algorithm are presented in Tables 2.2–2.5. Tables 2.2 and 2.3 use monthly and
weekly observed US data respectively and Tables 2.4 and 2.5 use the equivalent
Canadian data.

These tables provide parameter estimates for hidden Markov interest rate models.
Each table is associated with a separate time series. The first column reports values
for the fully restricted model, in which neither parameter is permitted to switch
according to the Markov chain. The remaining columns relax various parameter re-
strictions. We consider restrictions on the stochastic nature of the mean-reverting
level or volatility parameters. These restrictions force the level or volatility to be
constant by requiring them to take the same values in each state, (although they
allow the constant to be arbitrary). For each restricted model, we report maximum
likelihood parameter estimates and the value of the log-likelihood function eval-
uated at the MLE. We also report likelihood ratio statistics, and Durbin-Watson
and Jarque-Bera statistics, which are constructed from each model’s residuals. The
partially restricted models are associated with only one fewer degrees of freedom,
(seven free parameters instead of eight); however, the fully restricted model has
four fewer degrees of freedom since the stochastic matrix parameters are no longer
relevant in that case.

By looking at the likelihood ratio statistics, we see that for all short rate series,
the constant volatility restriction can be rejected and the constant central tendency
restriction cannot be rejected. The small improvement in likelihood from relaxing
the constant level restriction suggests that the parsimonious model is best. A caveat
to this finding is that it depends heavily on the second factor of randomness being
present. When comparing the fully restricted model with constant central tendency
and constant volatility to a stochastic central tendency model, the likelihood does
improve substantially. We don’t report statistics in the tables, but the smallest like-
lihood ratio statistic would be about 40, which is highly significant.

This result shows that on its own, stochastic central tendency seems to be very
important, which is consistent with Balduzzi et al. [3]. However, when compared
on an equal footing with an alternative 2-factor model having stochastic volatility, it
is found to be almost completely unimportant in explaining historical interest rates,
which suggests that it is the second factor of randomness in general that is important
rather than the stochastic central tendency in particular.

3 For robustness, the complete analysis was repeated for a 3-state Markov chain and the results
were qualitatively the same: Stochastic central tendency was important only when compared to the
1-factor model. It was unimportant when compared with a stochastic volatility model.
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US-T-3-m Constant Constant ς Constant β0 Full

β0(e1) 0.000123 0.00184 8.32×10−5 6.68×10−5

β0(e2) 0.00011 0.000173
β1 −0.000373 −0.029164 −2.12×10−8 −2.1×10−8

ς(e1) 0.113171 0.156445 0.053643 0.053674
ς(e2) 0.167192 0.167746
γ 1.156092 1.286568 1.159406 1.160018
P11 0.990704 0.919711 0.918096
P12 0.009296 0.080289 0.081904
P21 0.044543 0.120808 0.123999
P22 0.955457 0.879192 0.876001
loglikelihood 2161.35 2181.783 2245.361 2245.467
LR-stat 168.2335 127.3688 0.211469
DW-stat 1.621623 1.723194 1.677849 1.67412
JB-stat 241.351 328.0739 166.5115 183.8003
# obs 515 515 515 515
Δt 0.083333 0.083333 0.083333 0.083333
r̄(e1) 0.330697 0.0631 3930.426 3157.727
r̄(e2) 0.003787 8157.085
α 0.004479 0.349969 2.54×10−7 2.54×10−7

σ (e1) 0.392037 0.541941 0.185826 0.185933
σ (e2) 0.579172 0.581091
γ 1.156092 1.286568 1.159406 1.160018
Q11 −0.114663 −1.075674 −1.1005
Q12 0.114663 1.075674 1.100502
Q21 0.549448 1.618516 1.666099
Q22 −0.549448 −1.618516 −1.6661

Table 2.2 Quasi-maximum likelihood estimation of the regression equation Δrt+1 = β0(Xt) +
β1rt + ς(Xt)r

γ
t εt+1, where εt+1 are independent standard normal random variables and Xt is a hid-

den Markov chain. Here Δrt+1 = rt+1−rt , and rt is the unitless, annual, continuously-compounded
yield to maturity at date t on a US T-bill maturing 3 months later based on monthly observations
from January 1962 to December 2004 on the last Wednesday of each month. The column notation
is used to indicate various model restrictions from the full model with both β0 and ς allowed to
take different values in different states of the Markov chain. The columns “constant ς” “constant
β0” and “constant” imply that ς , β0 or both respectively take the same value in each state of the
Markov chain. The matrix P is the transition probability matrix with Pi j being the probability of
switching from state i to state j. The loglikelihood is used to calculate the likelihood ratio statis-
tics, which are based on the difference in loglikelihood between the full model and each particular
restriction. The Durbin-Watson statistic is used to test for serial correlation in the residuals, and the
Jarque-Bera statistic is used to test whether the residuals are normally distributed. The value for Δt
is used to convert the regression coefficient estimates into interest rate model coefficients for the
equation Δrt+1 = α(r̄(Xt )− rt)Δt +σ (Xt)r

γ
t

√
Δtεt+1. The matrix Q is the transition rate matrix

P = eQΔ t
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US-T-3-w Constant Constant ς Constant β0 Full

β0(e1) 2.59×10−5 4.76×10−5 2.01×10−5 1.86×10−5

β0(e2) −0.004438 2.65×10−5

β1 −0.000129 −3.79×10−8 −1.75×10−11 −1.75×10−11

ς(e1) 0.04807 0.045367 0.026938 0.026941
ς(e2) 0.077429 0.077445
γ 1.134993 1.137806 1.151832 1.151875
P11 0.993943 0.967915 0.9679
P12 0.006057 0.032085 0.0321
P21 0.343071 0.060586 0.060636
P22 0.656929 0.939414 0.939364
loglikelihood 11195.18 11269.19 11612.03 11612.04
LR-stat 833.7179 685.7047 0.028266
DW-stat 1.831274 0.858285 1.853169 1.853177
JB-stat 4030.834 12186.02 5194.324 5194.194
# obs 2,243 2,243 2,243 2,243
Δt 0.019231 0.019231 0.019231 0.019231
r̄(e1) 0.200768 1255.337 1,150,858 1,067,508
r̄(e2) −116999.2 1,514,390
α 0.006698 1.97×10−6 9.08×10−10 9.08×10−10

σ (e1) 0.34664 0.327146 0.194254 0.194272
σ (e2) 0.558349 0.558466
γ 1.134993 1.137806 1.151832 1.151875
Q11 −0.387444 −1.750856 −1.751751
Q12 0.387444 1.750856 1.751751
Q21 21.94357 3.306166 3.308974
Q22 −21.94357 −3.306166 −3.308974

Table 2.3 Quasi-maximum likelihood estimation of the regression equation Δrt+1 = β0(Xt) +
β1rt + ς(Xt)r

γ
t εt+1, where εt+1 are independent standard normal random variables and Xt is a hid-

den Markov chain. Here Δrt+1 = rt+1−rt , and rt is the unitless, annual, continuously-compounded
yield to maturity at date t on a US T-bill maturing 3 months later based on weekly observations
from January 1962 to December 2004 on the last Wednesday of each month. The column notation
is used to indicate various model restrictions from the full model with both β0 and ς allowed to
take different values in different states of the Markov chain. The columns “constant ς” “constant
β0” and “constant” imply that ς , β0 or both respectively take the same value in each state of the
Markov chain. The matrix P is the transition probability matrix with Pi j being the probability of
switching from state i to state j. The loglikelihood is used to calculate the likelihood ratio statis-
tics, which are based on the difference in loglikelihood between the full model and each particular
restriction. The Durbin-Watson statistic is used to test for serial correlation in the residuals, and the
Jarque-Bera statistic is used to test whether the residuals are normally distributed. The value for Δt
is used to convert the regression coefficient estimates into interest rate model coefficients for the
equation Δrt+1 = α(r̄(Xt )− rt)Δt +σ (Xt)r

γ
t

√
Δtεt+1. The matrix Q is the transition rate matrix

P = eQΔ t
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Can-T-3-m Constant Constant ς Constant β0 Full

β0(e1) 0.000552 0.014384 0.000277 0.000273
β0(e2) 0.000433 −0.000328
β1 −0.007837 −0.012064 −0.001139 −6.23×10−5

ς(e1) 0.039256 0.034997 0.011153 0.010552
ς(e2) 0.038387 0.036238
γ 0.770751 0.788342 0.553748 0.539309
P11 0.269987 0.932768 0.933597
P12 0.730013 0.067232 0.066403
P21 0.02281 0.191737 0.177576
P22 0.97719 0.808263 0.822424
loglikelihood 2038.84 2073.68 2143.932 2144.174
LR-stat 210.6678 140.9884 0.485521
DW-stat 1.584126 0.647096 1.528304 1.528396
JB-stat 2596.504 31575.5 1117.866 1076.651
# obs 515 515 515 515
Δt 0.083333 0.083333 0.083333 0.083333
r̄(e1) 0.070411 1.19231 0.243123 4.38532
r̄(e2) 0.035868 −5.27452
α 0.094047 0.144767 0.013662 0.000747
σ (e1) 0.135987 0.121232 0.038637 0.036552
σ (e2) 0.132975 0.125534
γ 0.770751 0.788342 0.553748 0.539309
Q11 −16.26365 −0.933712 −0.913454
Q12 16.26365 0.933712 0.913454
Q21 0.508179 2.662839 2.442781
Q22 −0.508179 −2.662839 −2.442781

Table 2.4 Quasi-maximum likelihood estimation of the regression equation Δrt+1 = β0(Xt) +
β1rt + ς(Xt)r

γ
t εt+1, where εt+1 are independent standard normal random variables and Xt is a hid-

den Markov chain. Here Δrt+1 = rt+1−rt , and rt is the unitless, annual, continuously-compounded
yield to maturity at date t on a Canadian T-bill maturing 3 months later based on monthly obser-
vations from January 1962 to December 2004 on the last Wednesday of each month. The column
notation is used to indicate various model restrictions from the full model with both β0 and ς al-
lowed to take different values in different states of the Markov chain. The columns “constant ς”
“constant β0” and “constant” imply that ς , β0 or both respectively take the same value in each state
of the Markov chain. The matrix P is the transition probability matrix with Pi j being the probability
of switching from state i to state j. The loglikelihood is used to calculate the likelihood ratio statis-
tics, which are based on the difference in loglikelihood between the full model and each particular
restriction. The Durbin-Watson statistic is used to test for serial correlation in the residuals, and the
Jarque-Bera statistic is used to test whether the residuals are normally distributed. The value for Δt
is used to convert the regression coefficient estimates into interest rate model coefficients for the
equation Δrt+1 = α(r̄(Xt )− rt)Δt +σ (Xt)r

γ
t

√
Δtεt+1. The matrix Q is the transition rate matrix

P = eQΔ t
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Can-T-3-w Constant Constant ς Constant β0 Full

β0(e1) 6.81×10−5 0.008376 2.45×10−5 2.54×10−5

β0(e2) 7.37×10−5 −1.17×10−5

β1 −0.000978 −0.00254 −7.84×10−5 −6.09×10−5

ς(e1) 0.014408 0.012304 0.002357 0.002356
ς(e2) 0.010228 0.010221
γ 0.772217 0.771539 0.431682 0.431884
P11 0.296443 0.933413 0.933518
P12 0.703557 0.066587 0.066482
P21 0.008998 0.172207 0.170958
P22 0.991002 0.827793 0.829042
loglikelihood 11140.16 11373.37 11825.4 11825.44
LR-stat 1370.562 904.1384 0.074158
DW-stat 1.564956 0.322833 1.59396 1.594426
JB-stat 88514.14 358305.9 12302.88 12244.49
# obs 2,243 2,243 2,243 2,243
Δt 0.019231 0.019231 0.019231 0.019231
r̄(e1) 0.06966 3.297269 0.312126 0.416996
r̄(e2) 0.029008 −0.192659
α 0.050839 0.13209 0.004077 0.003166
σ (e1) 0.103896 0.088725 0.016999 0.016991
σ (e2) 0.073757 0.073705
γ 0.772217 0.771539 0.431682 0.431884
Q11 −64.01087 −3.95636 −3.946761
Q12 64.01087 3.95636 3.946761
Q21 0.818628 10.23188 10.14906
Q22 −0.818628 −10.23188 −10.14906

Table 2.5 Quasi-maximum likelihood estimation of the regression equation Δrt+1 = β0(Xt) +
β1rt + ς(Xt)r

γ
t εt+1, where εt+1 are independent standard normal random variables and Xt is a hid-

den Markov chain. Here Δrt+1 = rt+1−rt , and rt is the unitless, annual, continuously-compounded
yield to maturity at date t on a Canadian T-bill maturing 3 months later based on weekly obser-
vations from January 1962 to December 2004 on the last Wednesday of each month. The column
notation is used to indicate various model restrictions from the full model with both β0 and ς al-
lowed to take different values in different states of the Markov chain. The columns “constant ς”
“constant β0” and “constant” imply that ς , β0 or both respectively take the same value in each state
of the Markov chain. The matrix P is the transition probability matrix with Pi j being the probability
of switching from state i to state j. The loglikelihood is used to calculate the likelihood ratio statis-
tics, which are based on the difference in loglikelihood between the full model and each particular
restriction. The Durbin-Watson statistic is used to test for serial correlation in the residuals, and the
Jarque-Bera statistic is used to test whether the residuals are normally distributed. The value for Δt
is used to convert the regression coefficient estimates into interest rate model coefficients for the
equation Δrt+1 = α(r̄(Xt )− rt)Δt +σ (Xt)r

γ
t

√
Δtεt+1. The matrix Q is the transition rate matrix

P = eQΔ t



50 C.A. Wilson and R.J. Elliott

The remaining rows report estimates for the equivalent parameterization of
Eq. 2.5. These estimates are more meaningful and they are comparable with each
other among the different observation frequencies. The entries of the matrix Q rep-
resent the rate that a continuous Markov chain switches between states. They are
obtained by solving P = eQΔ t . The values of these observation frequency-robust es-
timates generally do seem to be quite close to each other; however the LR statistics
indicate a significant difference (e.g. comparing monthly to weekly observations for
US 3-month T-bills yields a LR statistic of 7.28).

As in Table 2.1, most models predict that β1 is close to 0, which is associated with
a rate of mean reversion α close to 0. The exception is the case with stochastic drift
and constant volatility. In that case the mean reversion rate is quite high, which is
not too surprising since, for the central tendency to be important, the mean reversion
rate can’t be too close to zero in our models.

One problem that occurs in some cases is a very high central tendency, (around
151 million percent for the US weekly observed rate). On the other hand this very
high central tendency was also associated with a very slow rate of mean reversion in
all but the Canadian stochastic central tendency and constant volatility cases, which
had high values for P12 suggesting that the process switches out of state 1 soon after
it enters, but the potential for unreasonably high interest rates to be generated by
this process does still exist.4

Finally, for the Canadian data, the elasticity parameter does seem to decrease
with the introduction of stochastic volatility. On the other hand it increases slightly
for the U.S. data. There doesn’t seem to be a conclusive empirical finding on this
result.

Furthermore, it seems that the potential for our more general models to alleviate
the observed serial correlation and non-normality of the residuals for the constant
models is not achieved. While the stochastic volatility models tend to increase the
Durbin-Watson statistics and reduce the Jarque-Bera statistics, these statistics are
nowhere near their optimal values of 2 and 0 respectively. A caveat to this finding
is that maximum likelihood estimation does not necessarily minimize the sum of
squared residuals, so the reported statistics are not as meaningful as they are for
regression models.

Another quantity of interest is the filter for the Markov chain. Figure 2.3 plots the
conditional probability of being in the high-volatility state over time as estimated
by the full model on monthly observations US 3-month T-bill rates. Several features
to notice are that the state probability seems to traverse quickly between high and
low values of approximately 0.88 and 0.17. Furthermore, it seems to switch out of
each state quite frequently, (and more frequently down than up, consistent with the
transition probability estimates of 0.082 for switching up and 0.124 for switching
down). Also, the volatility seems to be more likely in the high state between the late
1960s and 1982 and more likely in the low volatility state in the post 1982 period.
However, the frequent switching of the Markov chain suggests that it is picking up

4 For robustness, we further restricted the stochastic volatility models by requiring all drift param-
eters to be 0. Such restrictions had little effect on the log-likelihoods and the LR statistics were all
less than 0.4.
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Fig. 2.3 The filter for the Markov chain. The conditional probability (given the observations up to
date) of the high volatility (and high central tendency) state as estimated from the hidden Markov
model Δrt+1 = β0(Xt )+β1rt +σ (Xt)r

γ
t εt+1 via maximum likelihood using monthly observations

of the US 3-month T-bill rate, where {Xt} is an unobserved 2-state Markov chain

more than just a structural break at 1982. It is more likely that the split is due to the
rising and falling long-term trends apparent in Fig. 2.2 together with the fact that the
high volatility state is also the high central tendency state in this case.

2.8 Conclusion

We develop a 2-factor model for the short-term interest rate where the second fac-
tor enters through both the volatility and the drift, (and in particular, the central
tendency). We develop a method for estimating and testing the model. Since the
decrease in the likelihood is much greater for the constant volatility restriction, it
seems that a stochastic volatility is very important, and far more important than
stochastic drift components for explaining nominal interest rate movements. This
conclusion is true for both Canadian and U.S. interest rates using both monthly and
weekly observations.

A potential weakness of this finding is the limitation of a linear stochastic drift.
The combination of non-linear drift and stochastic central tendency may affect our
conclusions. This issue is particularly relevant in light of our estimates of the volatil-
ity elasticity parameter γ being greater than 1/2 for most samples, which is inappro-
priate for term structure modeling. We leave this problem to future research.
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