Preface to the Second Edition

The first edition of this book was used as a textbook in several universities around
the world. We have received comments and suggestions on how to improve the
book. As the first edition was published in 2006, it is fitting that after 9 years there
are many technological changes and advances that must be presented. For one thing,
UML, which is at the heart of the approach used in the first edition, is in version 2.
The new version of UML is more complete; it is enriched with the object constraint
language (OCL) to better express constraints on modeling elements. This second
edition has a dedicated chapter about OCL.

The framework-based software development is one of the most important
approaches nowadays; it is powerful and enormously facilitates the process of
software development. There are a few such frameworks such as Zend Framework
(http://www.framework.zend.com) and Yii (http://www.yiiframework.com) to name
a couple. At the center of this framework-based approach is the model-view-
controller (MVC) design pattern. Therefore, we have dedicated a special section
to the presentation of the MVC pattern.

In the Epilogue of the first edition we had predicted that the model-driven
architecture (MDA) approach would grow and play a relevant role in the software
development industry. Our prediction was right. MDA is becoming more and
more prevalent in the software industry. Several MDA compliant tools have been
present in the market and its share in the software development industry is growing
constantly. One cannot write a serious book on software development without
mentioning this approach. In this book, we have selected to introduce only two of
the MDA-based tools—the virtual enterprise (http://www.intelliun.com) and Oliva
Nova (http://www.integranova.com). Two new chapters present some details of
these important technologies.

To write a book about software engineering is very challenging as technologies
change continuously and books in this domain usually do not have a long shelf
life. We paid special attention to not get into the details of the implementation of
a particular technology but rather in presenting the modeling part of the problem.
Models are abstract and technology independent. Therefore, models have a long
shelf life.

vii


http://www.framework.zend.com
http://www.yiiframework.com
http://www.intelliun.com
http://www.integranova.com

viii Preface to the Second Edition

Chapter 8 includes exercises and questions on conceptual modeling. The corre-
sponding answers are given in Chap. 16 at the end of the book. The goal is to make
readers aware that modeling is a complex task and the essence of the object-oriented
paradigm must be understood before starting to model.

The book can be useful to undergraduate and graduate students and researchers
who have an interest on modeling complex systems.

A book is never the result of the author’s work only, and this book does not
make exception from this general rule. Several are they who deserve credit for their
objective and unselfish help that made this book better. We would like to express
our gratitude to all of them for their criticism and suggestions that contributed to
improve the quality of our work.



Preface to the First Edition

This book is an effort to bring the application of new technologies into the domain
of agriculture. Historically, agriculture has been relatively behind the industrial
sector in using and adapting to new technologies. One of the reasons for the
technological gap between industrial and agricultural sectors could be the modest
amounts of investments made in the field of agriculture compared to the impressive
numbers and efforts the industrial sector invests in new technologies. Another reason
could be the relatively slow process of updating the student’s curriculum with new
technologies in university departments that prepare our future specialists in the field
of agriculture.

With this book, we would like to narrow the technological gap existing between
agriculture and the industrial sector in the field of software engineering. We have
tried to apply modern software engineering techniques in modeling agricultural
systems. Our approach is based on using the object-oriented paradigm and the
unified modeling language (UML) to analyze, design, and implement agricultural
systems.

Object-oriented has been the mainstream approach in the software industry for
the last decade, but its acceptance by the community of agricultural modelers
has been rather modest. There are a great number of researchers who still feel
comfortable using traditional programming techniques in developing new models
for agricultural systems. Although the use of the object-oriented paradigm will
certainly not make the simulation models predict any better, it will surely increase
the productivity, flexibility, reuse, and quality of the software produced.

The success of the object-oriented approach is mostly due to the ability of this
paradigm to create adequate abstractions. Abstraction is an effective way to manage
complexity as it allows for focusing on important, essential, or distinguishing
aspects of a problem under study. Object-oriented is the best approach to mimic
real world phenomena. Entities or concepts in a problem domain are conceived as
objects provided with data and behavior to play a well-defined role. Objects can
represent anything in the real world, such as a person, a car, or a physiological
process occurring in a plant. The use of objects enormously facilitates the process
of conceptual modeling, which can be defined as the process of organizing our

ix



X Preface to the First Edition

knowledge of an application domain into orderings of abstractions to obtain a better
understanding of the problem under study. Conceptual modeling makes heavy use of
abstraction, and the object-oriented approach, unlike other programming paradigms,
provides direct support for the principle of abstraction.

Currently, UML is an industry standard for visualizing, specifying, constructing,
and documenting all the steps of the software development. UML allows for
presenting different views of the system under study using several diagrams
focusing on the static and the dynamic aspects of the system. UML can be used
in combination with a traditional programming environment, but its power and
elegance fits naturally with the object-oriented approach.

One of the most beneficial advantages of UML is its ability to design a platform
independent model (PIM) that is a representation of the model using a high level
of abstraction. Details of the model can be expressed clearly and precisely in UML
as it does not use any particular formalism. The intellectual capital invested in the
model is insulated from changes in the implementation technologies.

A platform specific model (PSM) is developed by mapping a PIM to a particular
computer platform and a specific programming environment. A mapping process
allows the transformation of the abstract PIM into a particular PSM. This two-layer
concept, a PIM and the corresponding PSM, keeps the business logic apart from
the implementation technologies. Experience shows that the business logic has a
much longer life than the implementation technologies. Changes and evolution of
the implementation technologies should not have any impact on the business model.

The book is divided into two parts. Part one presents the basic concepts of the
object-oriented approach, their UML notations, and an introduction to the UML
modeling artifacts. Several diagrams are used to present the static and dynamic
aspects of the system. There are an ample number of examples taken from the
agriculture domain to explain the object-oriented concepts and the UML modeling
artifacts. In this part of the book, a short introduction to design patterns explains the
need for using proven solutions to agricultural problems.

Part two deals with applying the object-oriented concepts and UML modeling
artifacts for solving practical and real problems. Detailed analysis are provided to
show how to depict objects in a real problem domain and how to use advanced soft-
ware engineering techniques to construct better software. Examples are illustrated
using the Java programming language.

The book aims to present modeling issues a designer has to deal with during
the process of developing software applications in agriculture. Although the Java
programming language is used to illustrate code implementation, this book is not
intended to teach how to program in Java. For this topic, we would recommend
the reader to look for more specialized books. There is a chapter in this book that
introduces the reader to some of the design patterns that we have used in agricultural
applications. In no way do we pretend to have covered entirely the subject of how to
use design patterns in software development. For an advanced and full presentation
of the design patterns, we strongly suggest the reader to consider the well-known
book Design Patterns Elements of Reusable Object-Oriented Software [41].



Preface to the First Edition xi

Our approach is based on the rational unified process (RUP) methodology,
although it does not rigorously follow this methodology. Our focus is on presenting
modeling issues during the analysis and design of agricultural systems. For a
more detailed and advanced approach to RUP, the reader needs to consult more
specialized books.

What makes our book of unique value? Well, we have assembled in a compre-
hensive way a wide range of advanced software engineering techniques that will
allow the reader to understand and apply these techniques in developing software
applications in agriculture and related sciences. Agricultural systems tend to be
more abstract than business systems. Everyone has a good understanding of how
to use an ATM (automated teller machine). The use of an ATM is a classic example,
used in many publications, to explain what an object is and how to build a UML
diagram. The process of photosynthesis or the interaction of a plant with the
surrounding environment, just to name a few typical agricultural examples, is less
known to a large number of readers. Modeling a plant as an object provided with
data and behavior may not be as straightforward as modeling an ATM. Therefore,
the book aims to provide examples and solutions to modeling agricultural systems
using the object-oriented paradigm and the UML.

The book is intended to be of use to anyone who is involved in software devel-
opment projects in agriculture: managers, team leaders, developers, and modelers
of agricultural systems. Developing a successful software project in agriculture
requires a multidisciplinary team: specialists from different fields with different
scientific backgrounds. It is crucial to the success of the project that specialists
involved in the project have a common language that everybody understands. We
find that UML is an excellent tool for analyzing, designing, and documenting
software projects. Models can be developed visually and using plain English (and
any other language for that matter) and can be understood by programmers and
non-programmers alike. Thus, collaboration between these groups is substantially
improved by increasing the number of specialists directly involved in the process of
software design and implementation.

The book was written having always in mind the important number of specialists
who still develop agricultural models using traditional approaches. There are ample
step-by-step examples in this book that show how to depict concepts from a problem
domain and represent them using objects and UML diagrams. We hope this book
will be useful to these researchers and help them make a soft switch to the object-
oriented paradigm. We hope readers will find this book of interest.

Tirana, Albania Petraq J. Papajorgji
Gainesville, FL, USA Panos M. Pardalos
May 2006



2 Springer
http://www.springer.com/978-1-4899-7462-4

Software Engineering Techniques Applied to
Agricultural Systems

An Object-Oriented and UML Approach
Papajorgji, P.J.: Pardalos, P.

2014, XV, 301 p. 239 illus., 89 illus. in color.,
Hardcover

ISBM: 978-1-4895-7462-4



