
Chapter 2
Basic Principles of the Object-Oriented
Paradigm

2.1 Abstraction

One of the most appreciated advantages of object-oriented versus other modern
programming paradigms is the direct support for each of the most important and
used principles of abstraction. The Dictionary of the Object Technology defines
abstraction as “Any model that includes the most important, essential, or distinguish-
ing aspects of something while suppressing or ignoring less important, immaterial,
or diversionary details. The result of removing distinctions so as to emphasize
commonalities.” Abstraction is an effective way to manage complexity as it allows
for concentrating on relevant characteristics of a problem. Abstraction is a very
relative notion; it is domain and perspective dependent. The same characteristics
can be relevant in a particular context and irrelevant in another one.

The abstraction principles used in the object-oriented approach are classifi-
cation/instantiation, aggregation/decomposition, generalization/specialization, and
grouping/individualization. By providing support for the abstraction principles,
the object-oriented paradigm makes it possible to use conceptual modeling as an
efficient tool during the phases of analysis and design. Conceptual modeling can be
defined as the process of organizing our knowledge of an application domain into
hierarchical rankings or orderings of abstraction, in order to better understand the
problem in study [94].

Classification is considered to be the most important abstraction principle.
It consists of depicting from the problem domain things that have similarities and
grouping them into categories or classes. Things that fall into a class/category have
in common properties that do not change over time. Instantiation is the reverse
operation of classification. It consists of creating individual instances that will
fulfill the descriptions of their categories or classes. The majority of object-oriented
languages provide capabilities for creating instances of classes/categories.

Figure 2.1 shows an example of classification and instantiation. Concept Tractor
represents a set of properties that are typical for a tractor, regardless of their
brand, horse power, etc. Therefore, concept Tractor represents a classification.

P.J. Papajorgji and P.M. Pardalos, Software Engineering Techniques Applied
to Agricultural Systems, Springer Optimization and Its Applications 93,
DOI 10.1007/978-1-4899-7463-1__2, © Springer Science+Business Media LLC 2014

9



10 2 Basic Principles of the Object-Oriented Paradigm

Fig. 2.1 Examples
of classification and
instantiation

Fig. 2.2 Examples
of aggregation and
decomposition

Bob’s Tractor is a particular tractor that has some particular properties, the
most important being that it is Bob’s property. Therefore, concept Bob’s Tractor
represents an instantiation.

The second abstraction principle is aggregation. Aggregation refers to the
principle that considers things in terms of part-whole hierarchies. Concepts
in a problem domain can be treated as aggregates (i.e., composed of other
concepts/parts). A part itself can be considered as composed of other parts of
smaller granularity. Decomposition is the reverse operation of aggregation; it
consists of identifying parts of an aggregation. Object-oriented languages provide
support for aggregation/decomposition by allowing objects to have attributes that
are objects themselves. Thus, complex structures can be obtained by using the
principle of aggregation. Note that some authors use the term composition instead
of aggregation.

Figure 2.2 shows an example of aggregation and decomposition. Concept Tractor
can be considered as an aggregation/composition of other concepts such as Chassis,
Body, and Engine. Concept Body can be considered as one of the parts composing a
more complex concept such as Tractor.

The third abstraction principle is generalization. Generalization refers to the
principle that considers construction of concepts by generalizing similarities exist-
ing in other concepts in the problem domain. Based on one or more given classes,
generalization provides the description of more general classes that capture the
common similarities of given classes. Specialization is the reverse operation of
generalization. A concept A is a specialization of another concept B if A is similar
to B and A provides some additional properties not defined in B.



2.1 Abstraction 11

Fig. 2.3 Examples
of generalization and
specialization

Fig. 2.4 Examples
of grouping and
individualization

Object-oriented languages provide support for generalization/specialization as
they allow for creating subclasses of exiting classes and/or creating more general
classes (superclasses) of existing classes. Creating a subclass of an existing class
corresponds to specialization and creating a superclass of an existing class corre-
sponds to generalization. It is important to note that concept A is a generalization
of concept B if and only if B is a specialization of concept A [79]. Figure 2.3 shows
an example of generalization and specialization.

Concept Truck is a specialization of concept Vehicle. This is because Truck has
all the properties of concept Vehicle and some additional ones that make it a special
Vehicle. In reverse, concept Vehicle is a generalization of concept Truck as all trucks
are vehicles.

The fourth abstraction and perhaps the least obvious is grouping [94]. In
conceptual modeling, often a group of concepts needs to be considered as a whole,
not because they have similarities but because it is important that they be together
for different reasons. Object-oriented languages provide a mechanism for grouping
concepts together such as sets, bags, lists, and dictionaries. Individualization is
the reverse operation of grouping. It consists of identifying an individual concept
selected among other concepts in a group. Individualization is not as well estab-
lished as a form of abstraction [94]. Figure 2.4 shows an example of grouping and
individualization.



12 2 Basic Principles of the Object-Oriented Paradigm

All tractors used in a farm can be grouped in one category regardless of their
brand, color, horsepower, and year of production and be represented by one concept
such as Tractors. In case we need to use one of them with a certain horsepower, then
we need to browse the set of tractors and find that particular individual that satisfies
our needs. In this case, we have individualized one element of the set based on some
particular criterion. When we say Tom’s Tractor, we have used the ownership as
criterion for individualizing one of the tractors, the one that belongs to Tom.

2.2 Encapsulation

The Dictionary of the Object Technology defines encapsulation as “The physical
location of features (properties, behaviors) into a single black box abstraction that
hides their implementation behind a public interface.”

Often, encapsulation is referred to as “information hiding.” An object “hides” the
implementation of its behavior behind its interface or its “public face.” Other objects
can use its behavior without having detailed knowledge of its implementation.
Objects know only the kind of operations they can request other objects to perform.
This allows software designers to abstract from irrelevant details and concentrate on
what objects will perform.

An important advantage of encapsulation is the elimination of direct depen-
dencies on a particular implementation of an object’s behavior. The object is
known from its interface, and clients can use the object’s behavior by only having
knowledge of its interface; the particular implementation of an object’s interface is
not important. Therefore, the implementation of the object’s behavior can change
any time without affecting the object’s use. Encapsulation helps manage complexity
by identifying a coherent part of this complexity and assigning it to individual
objects.

The fact that an object “hides” the implementation of its behavior by exposing
only its “public face” could be beneficial to other objects that need its behavior. The
“interested” objects could consider more than one option while looking for a specific
functionality that satisfies their needs. They need only to “examine” the interfaces
of candidate objects. Objects with similar behavior could serve as substitute to each
other.

2.3 Modularity

The Dictionary of the Object Technology defines modularity as “The logical and
physical decomposition of things (e.g. responsibilities and software) into small,
simple groupings (e.g., requirements and classes, respectively), which increase the
achievements of software-engineering goals.”



2.3 Modularity 13

Modularity is another way of managing complexity by dividing large and
complex systems into smaller and manageable pieces. A software designing method
is modular if it allows designers to produce software systems by using independent
elements connected by a coherent, simple structure. Meyer [64] defines a software
construction method to be modular if it satisfies the five criteria:

Modular Decomposability: a software construction method satisfies modular
decomposability if it helps in the task of decomposing a software problem into a
small number of less complex subproblems, connected by a simple structure, and
independent enough to allow further work to proceed separately on each of them.

Modular Composability: a software construction method satisfies modular
composability if it favors the production of software elements which may then
be freely combined with each other to produce new systems, possible in an
environment quite different from the one in which they were initially developed.

Modular Understandability: a software construction method satisfies modular
understandability if it helps produce software in which each module can be
understood without having to examine other interrelated modules.

Modular Continuity: a software construction method satisfies modular continu-
ity if a small change in the requirements will impact just one or a small number of
modules.

Modular Protection: a software construction method satisfies modular pro-
tection if the effect of an exception occurring at run time will impact only the
corresponding module or a few neighboring modules.

The concept of modularity and the principles for developing modular software
in the object-oriented approach are encapsulated in the concept of class. Classes are
the building blocks in the object-oriented paradigm.



http://www.springer.com/978-1-4899-7462-4


	2 Basic Principles of the Object-Oriented Paradigm
	2.1 Abstraction
	2.2 Encapsulation
	2.3 Modularity


