
Chapter 2
Program Impact Estimation with Binary
Outcome Variables: Monte Carlo Results
for Alternative Estimators and Empirical
Examples

David K. Guilkey and Peter M. Lance

2.1 Introduction

A common problem in program evaluation is measuring the impact of a binary
program indicator on a binary outcome variable. For example, one of the most
frequently used methods to promote contraceptive use in less developed countries is
multi-media campaigns. Evaluation of such programs is complicated by the fact that,
except in a very few cases, an experimental design is not used (Bauman et al. 1993;
Mwaikambo et al. 2011) and the program implementers have little control over who
is exposed to the campaign. The typical method that has been used to evaluate such
programs relies on a cross sectional design where respondents are asked yes/no
questions about program exposure and contraceptive use along with questions that
solicit information about various other characteristics of the respondents that can
serve as control variables in a multivariate analysis. In a systematic review of family
planning interventions, Mwaikambo et al. (2011) found that two thirds of the 63
family planning interventions that were evaluated in the published literature between
1995 and 2005 involved this type of demand side intervention, although not all of
them only considered binary outcomes.

Statistical methods used to measure program impact with this type of data have
ranged from those that ignore the potential endogeneity of program recall, such
as simple logit or probit regression (see Mwaikambo et al. 2011; Hutchinson and
Wheeler 2006 for reviews) and propensity score matching (Babalola 2005), to
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estimators that correct for endogenous recall using linear or non-linear instrumental
variables methods or some type of full information maximum likelihood method
(Guilkey et al. 2006; Chen and Guilkey 2003; Guilkey and Hutchinson 2011).
On the surface, it would seem that simple methods that do not correct for the
potential endogeneity of program recall should inherently perform worse than
those that do. However, it is possible to make a case for these simple approaches
since methods that explicitly correct for endogeneity rely on the presence of valid
exclusion restrictions – variables that affect program recall directly but only affect
contraceptive use indirectly through the recall variable or, in some cases and as a
last resort, the nonlinearity provided by parametric assumptions.

Unfortunately, there are typically few variables that are candidates for exclusion
from the contraceptive use equation, and this is not a unique complication to the
multimedia campaign impact evaluation literature: the paucity of potential credible,
strong instruments is a widespread challenge in many other applications with
different outcomes and endogenous regressors of interest but a similar behavioral
structure. Instrumental variables methods as well as more complicated strategies
such as full information maximum likelihood estimation can yield highly unstable
results in the face of weak instruments. On the other hand, simple methods, even
when inconsistent, could lead to results that capture more reliably true program
effects (Bollen et al. 1995). In addition, some of the single and systems of equations
estimators rely on the assumption of normally distributed error terms and there is
evidence that when that assumption is violated, estimated impacts can be far from
the truth (Mroz 1999; Chiburis et al. 2011).

The purpose of this paper is to provide the most comprehensive analysis to date
of the finite sample performance of alternative methods to estimate program impact
when both the treatment and the outcome variables are binary. We focus primarily on
methods that can be implemented in STATA, a widely available statistical package,
but we also evaluate a semi-parametric instrumental variables random effects model
that is not available in STATA.1 Much of the work to date has focused on a model in
which either the treatment variable or the outcome variable is continuous while the
other is binary (Guilkey et al. 1992; Bollen et al. 1995; Mroz 1999). Chiburis et al.
(2011) do examine the finite sample performance of the bivariate probit estimator
and several linear estimators for our case of interest; however, they focus on a model
that is exactly identified case for linear models, which does not allow for the use of
tests that require the model, at least in theory, to be overidentified. Further, they
do not evaluate the wide range of estimators that are used in this setting, including
semi-parametric models that are potentially robust to departures from normality.
Our Monte Carlo data generation process is designed to mimic the type of data
that has been used to evaluate the impact of program recall on contraceptive use
in a developing country and we provide examples of the methods using data from
Bangladesh and Tanzania. However, the methods have wide applicability beyond
our specific examples given how often the basic behavioral structure behind them

1The authors are currently writing STATA commands to implement this estimator.
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appears in applied work. In this manuscript we restrict attention to the constant
effect case, limiting somewhat the applicability of our findings to instances where,
for instance, Local Average Treatment Effects are a concern.

This paper is organized as follows. In the next section, we lay out the statistical
model and provide details on the alternative estimation and testing procedures that
are evaluated. In Sect. 2.3, we detail the data generating process for the Monte Carlo
experiment and the results of the experiment are presented in Sect. 2.4. Section 2.5
presents the empirical example and Sect. 2.6 concludes.

2.2 Model and Estimation Methods

We are concerned with a model of the following form:

Y �
i1 D X

0

i ˇ1 CZ
0

i ˛ C �i1 (2.1)

Y �
i2 D X

0

i ˇ2 C Yi1ı C �i2 (2.2)

where there are i D 1; 2; : : : ; N observations and the dependent variables are latent
variables. The observed dependent variables are binary indicators: Yij D 1 if Y �

ij >

0 and Yij D 0 otherwise for j D 1; 2. Xi is a kX1 vector that represents variables
that appear in both Eqs. (2.1) and (2.2) while Zi is a kZX1 vector that represents a
set of variables that are excluded from Eq. (2.2). The coefficients in the model are
column vectors of appropriate dimension.

In our model, the observed binary indicator, Yi1, is the right-hand-side endoge-
nous explanatory variable, as opposed to the latent variable. It is well known for
this case that there exist estimators that are technically identified without exclusion
restrictions (˛ could be zero) due to functional form. However, the case that we are
interested in this paper is the one in which there are at least two valid exclusion
restrictions and so even the linear instrumental variables model would be over-
identified. Our primary interest is the outcome in Eq. (2.2) with Eq. (2.1) specifying
an endogenous treatment.

Several of the estimation methods that we compare assume that [�i1; �i2] follows
a bivariate normal distribution. To keep the notation simple, in this manuscript
we capture this by assuming that var.�ij / D 1 for j D 1; 2 and all i and that
E.�i1; �i2/ D �. The normalization that the error variances equal 1 means that the
parameter estimates are only estimated to scale, as is common when the dependent
variable is a binary indicator. However, the scale of the estimated parameters is
of little concern in this paper since the most important basis of comparisons will
be how well the various estimators approximate the population average treatment
effect (ATE) defined as:

ATE D E .Y2jY1 D 1/�E .Y2jY1 D 0/ (2.3)

We now turn to a brief discussion of the estimators we consider in this manuscript.
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2.2.1 Linear Probability Model (LPM)

Simple ordinary least squares estimation of Eq. (2.2) ignores the endogeneity of Yi1
and the binary nature of the dependent variable Yi2. In this case, the estimated ATE
is simply the estimate of ı and it will be a consistent estimator only ifE.Yi1�i2/ D 0.

2.2.2 Probit

From the class of single equation estimators for Eq. (2.2) that ignore the endogeneity
of Yi1, we also consider estimation of Eq. (2.2) by simple probit regression and then
note that:

OP .Yi2 D 1/ D ˆ
�
Xi Ǒ

2 C Yi1 Oı
�

(2.4)

where ˆ.�/ is the cumulative normal distribution function. We can now use (2.4) to
obtain an estimate of the ATE:

1ATE D 1

N

NX
iD1

OP .Yi2 D 1jYi1 D 1/�
NX
iD1

OP .Yi2 D 1jYi1 D 0/ (2.5)

This will be a consistent estimator under the same conditions as presented for the
OLS estimator.

2.2.3 Instrumental Variables

We compare three variants of linear instrumental variables: two-stage least squares
(TSLS), limited information maximum likelihood (LIML) and generalized method
of moments (GMM). In all cases, we use the default options in STATA for
estimation per the -ivreg- command. We consider all three because they offer
different estimation approaches within the context of linear instrumental variables
and allow for different tests for endogeneity and identification. Tests for endogneity
are based on the Wu-Hausman (Wu 1974; Hausman 1978) and Durbin (1954) tests
for TSLS, the standard Hausman test (Hausman 1978) for LIML, and a test referred
to as the C statistic for GMM (Hayashi 2000). The identification tests considered for
these estimation methods are: Sargon’s test (Sargon 1958) for TSLS; Basmann’s test
(Bassman 1960) for TSLS (specifically, Basmann’s �2 test) and LIML (Basmann’s F
test); the Anderson-Rubin test (Anderson and Rubin 1950) for LIML; and Hansen’s
test (Hansen 1982) for GMM. Details regarding all tests can be found in the STATA
reference manual and the cited references.
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For all three estimators, we use the estimated ı as the estimate of the ATE. In
general in linear instrumental variables models, what is actually estimated is a local
average treatment effect (LATE) (Imbens and Angrist 1994; see Angrist and Pischke
2009 for an excellent and succinct review). However, the design of our experiment
precludes the possibility of LATE, though it may be at play in the results from the
two applied examples considered in this manuscript.

2.2.4 Linear Predictor and Residual Models

Terza et al. (2008) discuss two basic approaches commonly applied in the face of
an endogenous regressor in a non-linear equation of interest and a possibly non-
linear first stage for that endogenous regressor: first stage predictor substitution
(which is essentially just the extension of linear two-stage least squares estimation
to the nonlinear setting) and residual inclusion. The predictor substitution strategy
is inconsistent whereas under very general conditions the residual inclusion strategy
is consistent (Terza et al. 2008). Previous work has suggested that, in the setting
of a second-stage binary dependent variable of interest and endogenous continuous
regressor, residual inclusion should be consistent provided that the distribution of
the unobservable determinants of the binary outcome and continuous endogenous
regressor is jointly normal (Rivers and Vuong 1988; Bollen et al. 1995).

We consider two versions of the residual inclusion approach as adapted to the
structure defined by the behavioral model in (2.1) and (2.2).2 First, for the most
obvious potential extension of Terza et al. (2008), Rivers and Vuong (1988) and
Bollen et al. (1995) to the present setting, we estimate (2.1) by ordinary least squares
(i.e. the linear probability model) and generate predicted residuals that are then
included in probit regression of (2.2). In the results tables we refer to this estimator
as Residual1. Second, we estimate (2.1) by probit and then calculate the generalized
residuals using the following formula (Gourieroux et al. 1987):

�
Yi1 � X

0

i ˇ1 �Z0

i ˛
�
�
�
Yi1 �X 0

i ˇ1 �Z
0

i ˛
�

ˆ
�
Yi1 � X

0

i ˇ1 �Z
0

i ˛
� �
1 �ˆ

�
Yi1 �X 0

i ˇ1 �Z
0

i ˛
�� (2.6)

where ˆ.�/ is the cumulative normal distribution function and �.�/ is the normal
density function. These residuals are then included in probit regression of (2.2). In
the tables and text we refer to this estimator as Residual2.

2We did consider predictor substitution schemes as well but, as expected, they performed poorly
and we do not include them in the comparisons.
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2.2.5 Bivariate Probit (BIPROBIT)

Bivariate probit jointly estimates Eqs. (2.1) and (2.2) by maximum likelihood
methods assuming bivariate normality for the error terms. The -biprobit- routine
in STATA relies on standard Newton-Raphson estimation using a conventional
approximation of the bivariate normal cumulative distribution function based on
quadrature. We also considered including the -mvprobit- routine, which is not
part of the basic STATA package but available as a user-written program (i.e., an
.ado file). This routine is designed to allow for more than two binary outcome
equations and uses Geweke-Hajivassilou smooth recursive conditioning simulator
to approximate the bivariate cumulative normal density (see Cappellari and Jenkins
2003). In preliminary runs, we found that we needed to use far more than the default
number of draws (five) in order to obtain accurate parameter estimates and so we
dropped this estimator from consideration.

After the model is estimated, the treatment effect is calculated from the marginal
probability distribution for the second outcome – using Eqs. (2.3) and (2.4) but
with estimated coefficients obtained from the full information maximum likelihood
estimator. An endogeneity test is simply a direct test of the null hypothesis
that the error correlation across the two equations is zero. We also report an
overidentification test that exploits the fact that this model is identified without
exclusion restrictions by including the instruments as explanatory variables in
Eq. (2.2) (adding the Z variables) and then performing a likelihood ratio test of
the null hypothesis that the coefficients are jointly zero. Support for the null implies
that these variables are in fact properly excluded.

2.2.6 Semi-parametric Maximum Likelihood
Estimation (DFM)

We consider a version of a semi-parametric estimator based on Heckman and Singer
(1984) but using a non-linear extension proposed by Mroz (1999). To set up the
likelihood function for this model, we adopt an error components approach to the
unobservables and re-write Eqs. (2.1) and (2.2) as follows:

Y �
i1 D X

0

i ˇ1 CZ
0

i ˛ C �i1 C ��
i1 (2.7)

Y �
i2 D X

0

i ˇ2 C Yi1ı C �i2 C ��
i2 (2.8)

where the correlation in the error terms is between the �’s and E.��
i1; �

�
i2/ D 0.

The approach that we use for this estimator is based on the type-I Extreme Value
distribution for the �’s (leading to the logit model) instead of the normal distribution.
However, the basis of comparison is the ATE as defined in Eq. (2.3) and not the
estimated coefficients (which are well known to be different by a scale factor from
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corresponding probit coefficients). Hence, the shift from the cumulative normal
distribution to the logistic function still allows a simple comparison of results. We
can then write:

P .Yi1j�i1/ D e.X
0

i ˇ1CZ
0

i ˛C�i1/

1C e

�
X

0

i ˇ1CZ0

i ˛C�i1
� (2.9)

P .Yi2j�i2/ D e.X
0

i ˇ2CYi1ıC�i2/

1C e

�
X

0

i ˇ2CYi1ıC�i2
� (2.10)

The contribution to the likelihood function for observation i , conditional on the
�’s is:

Li .�i1; �i2/ D ŒP .Yi1 D 1j�i1/ P .Yi2 D 1j�i2/�Yi1Yi2

ŒP .Yi1 D 0j�i1/P .Yi2 D 0j�i2/�.1�Yi1/.1�Yi2/

ŒP .Yi1 D 1j�i1/P .Yi2 D 0j�i2/�Yi1.1�Yi2/

ŒP .Yi1 D 0j�i1/P .Yi2 D 1j�i2/�.1�Yi1/Yi2

We assume that the distributions of the �’s can be approximated by a step function
with J steps for each of the �’s and probability weights (wj for j D 1; 2; : : : ; J )
that sum to one for the J steps. The unconditional contribution to the likelihood
function for observation i can then be written:

Li D
JX
jD1

wj Li .�i1; �i2/ (2.11)

The likelihood function is simply the product of (2.11) over the N observations. In
addition to the model’s coefficients, one searches over J �1weights (since they sum
to one) and J � 1 sets of the �’s (since one of the �’s must be set to zero if there is
a constant term in the model). We call this the “discrete factor model” (and, for the
sake of brevity, frequently refer to it as the ‘DFM’ in discussions below); (see Mroz
(1999) for additional details). The estimated ATE can be obtained using Eq. (2.10)
where the population parameters are replaced with estimates including the estimates
for the weights and mass points (the �’s ).

In practice, one would add points of support to the heterogeneity distribution
until there is no significant improvement in the likelihood function. However, this
is not practical in a Monte Carlo experiment and so we simply set the number of
points of support for the discrete distribution to four.
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2.3 Data Generating Process

The basic logic behind the data generating process is straightforward: within each
Monte Carlo experiment data are generated in a fashion that insures that the resulting
estimation samples conform to the behavioral parameters of that experiment. Most
of these behavioral parameters vary across Monte Carlo experiments (one was
fixed across them). It is this variation in these parameters that allows examination
of the comparative performance under alternative circumstances of the estimators
considered in this study. The behavioral parameters that vary across experiments
include the true (i.e. established by the design of the experiment): program effect
(E.Y2jX; Y1 D 1/ � E.Y2jX; Y1 D 0/); correlation of the errors {�1, �2}; average
of the program outcome (Y1) within the sample3; average of the outcome of interest
(Y2) within the sample; first stage strength of the instruments Z to explain Y1 (as
reflected in the �2 statistic emerging from a test of the joint significance of those
instruments); and the bivariate error type (i.e. normal or non-normal errors).

In each experiment, the first step is to draw pseudo-randomly a sample of size
N for the exogenous variables X , Z and � (given the error correlation and type
specified for that experiment). Given the draws from X and Z and this initial draw
from �, we then determine values for the system parameters ˇ1, ˇ2, ˛ and ı from
Eqs. (2.1) and (2.2) that insure that data generated conditional on those values for
the system parameters and X and Z would conform to the remaining behavioral
parameters. The experiment itself then involved replications (1,000 replications in
the case of experiments involving 1,000 or 5,000 observations and 500 replications
in the case of experiments involving 10,000 observations). In each, a new pseudo-
random draw was made from the distribution of the error terms � for each of the
N observations and, conditional on that new draw, the draw from X and Z and
the values for ˇ1, ˇ2, ˛ and ı determined in the first step, new values for Y1 and
Y2 were calculated for each observation. The performance of the various estimators
considered in this manuscript was then recorded given “observed” data Y1, Y2, X
and Z.

2.3.1 Sample Sizes and Behavioral Parameter Values

Our various Monte Carlo experiments are distinguished by the values of the behav-
ioral parameters set for them, as well as the sample sizes involved. We consider
many alternative combinations of these sample sizes and behavioral parameters. To
begin with, three basic sample sizes are considered: 1,000, 5,000 and 10,000. These
were selected based on a rough sense of the sort of ranges of sample sizes frequently
encountered when estimating systems along the lines of Eqs. (2.1) and (2.2) using
real world data.

3That is, the program enrollment prevalence within the sample.
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For program participation prevalence and outcome prevalence we consider values
of 0.5 and 0.25. These capture the cases of programs for which participation is
comparatively common and less common, and outcomes of interest for which the
same can be said.

For program impact (the true marginal effect of Y1 on the probability of Y2)
we consider high (0.2) and modest (0.05) impact cases. The program impact levels
reflect constant (as opposed to varying with observed or unobserved heterogeneity)
effects.

The error terms � are based on two basic bivariate distributions:

1. A bivariate standard normal distribution;
2. A non-normal distribution with a skewness of 1.5 and an excess kurtosis of 3.

The algorithm for drawing the non-normal errors is based on the method proposed
by Vale and Maurelli (1983).4 The Vale and Maurelli (1983) approach involves a
combination of Fleishman’s (1978) procedure for generating non-normal random
variables with a matrix decomposition method typically applied to the task of
generating multivariate normal random variables (Kaiser and Dickman 1962). Two
levels of error correlation are employed for these bivariate distributions: 0.1 and 0.3,
allowing different degrees of endogeneity. Finally, we vary the first stage (Eq. (2.1))
explanatory power of the instruments as manifested by a �2 statistic resulting from
a test of the joint significance of those instruments based on a probit regression of
Y1 on X and Z. We cover test statistic values of 15, 25, and 50, encompassing a
range of instrument strength levels.

Overall explanatory power of Eqs. (2.1) and (2.2), as captured by the R2 from
ordinary least squares regression estimation of them, is fixed at 0.3 in both cases
in order to reflect a degree of explanatory power more realistic to regression
analyses using micro-level samples. This typically results in pseudo-R2 values in
the 0.15–0.25 range.

2.3.2 Drawing X and Z

The exogenous explanatory variables X and Z are pseudo-randomly drawn from
the standard normal distribution. In this manuscript, four exogenous characteristics
X (X1, X2, X3 and X4) and two instruments Z (Z1 and Z2) are drawn for each
Monte Carlo experiment. Thus, in the terms of the discussion introducing Eqs. (2.1)
and (2.2) in Sect. 2.2, k D 4 and kz D 2.

4We are grateful to Stas Kolenikov for generously sharing a STATA .ado file that he wrote
implementing that Vale and Maurelli (1983) procedure.



14 D.K. Guilkey and P.M. Lance

2.3.3 The Mechanics of the Data Generating Process

Each Monte Carlo experiment could be characterized by these behavioral parame-
ters as applied to the system of equations (2.1) and (2.2). To begin with, the Monte
Carlo experiments revolve around the latent variable equations

Y �
i1 D X

0

i ˇ1 CZ
0

i ˛ C �1�i1 (2.12)

Y �
i2 D X

0

i ˇ2 C Yi1ı C �2�i2 (2.13)

which differ from (2.1) and (2.2) primarily by the coefficients � on the error terms �.
(As will be seen below, these coefficients are placed on the errors to support the
target R2 of 0.3 in each equation.) Given the dimensionality of X and Z employed
in this study, (2.12) and (2.13) are, effectively,

Y �
i1 D ˇ10 CX1iˇ11 CX2iˇ12 CX3iˇ13 CX4iˇ14 CZ1i˛1 CZ2i˛2 C �1�i1

(2.14)

Y �
i2 D ˇ20 CX1iˇ21 CX2iˇ22 CX3iˇ23 CX4iˇ24 C Yi1ı C �2�i2 (2.15)

These equations are used to generate the variables Y used for each experiment. To
do this, specific values need to be assigned to the ˇ’s, ˛’s, ı and the �’s.

We begin with the ˇ’s that served as coefficients for the four exogenous
explanatory variables X1, X2, X3 and X4. The values of these do not vary across
experiments. For Eq. (2.1) these (ˇ11, ˇ12, ˇ13 and ˇ14, respectively) are set to �0.5,
0.33, 0.57 and �0.2. The corresponding values for Eq. (2.2) are �0.35, 0.33, 0.77
and �0.18. These values were randomly determined at the outset of the study.5

The remaining parameters of (2.14) and (2.15) are thus set at the outset of each
experiment as follows:

1. N observations for X and Z are pseudo-randomly drawn from the multivariate
standard normal distribution with zero correlation across X and Z;

2. For each of these N observations, a pair of errors {�1; �2} was drawn (either the
bivariate normal distribution or via the Vale and Maurelli (1983) procedure, with
correlation level indicated for that experiment);

3. The values for ˇ10, ˛1, ˛2 and �1 were set to guarantee the data generating
process conformed to the program participation prevalence and first stage
instrument strength indicated for that experiment as well as the explanatory
power for Eq. (2.14) of R2 D 0:3. This was done through an iterative search
over candidate values for these four parameters as follows:

5Experimentation suggests that variation in the values assigned to these coefficient terms had very
little impact on the statistics of interest in this study.
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(a) Set all four parameters to low initial values;
(b) Find the values for �1 and ˇ10 that yield R2 D 0:3 (from linear regression

of Y �
i1 on Xi and Zi ) and the target program prevalence (with program

participation Y1i determined by whether Y �
i1 exceeds zero);

(c) Given these values, determine the �2 statistic resulting from a test of the joint
significance of Z1 and Z2 based on a probit regression of Y1 on the X ’s
and Z’s;

(d) If the �2 statistic value matched the target, the parameter value search was
concluded. If not the values of ˛1 and ˛2 were increased incrementally and
steps 3(b)–(d) were repeated.

4. Once the values for ˇ10, ˛1, ˛2 and �1 had been found, Y1i was determined by
whether Y �

i1 exceeded zero given the draws for X , Z and �1 and those parameter
values.

5. The focus then shifted to Eq. (2.15), and a similar iterative process was used to
find values for ˇ20, ı and �2. It proceeded as follows:

(a) Set the three parameters to low initial values;
(b) Find values for ˇ20 and �2 that yield R2 D 0:3 (from linear regression of Y �

i2

on Xi and Y1i ) and the target prevalence for the outcome of interest;
(c) Given these values, determine the program effect according to

ˆ.ˇ20 CX1iˇ21 CX2iˇ22 CX3iˇ23 CX4iˇ24 C ı/

�ˆ.ˇ20 CX1iˇ21 CX2iˇ22 CX3iˇ23 CX4iˇ24/

where ˆ.�/ is the cumulative normal distribution function.
(d) If the program impact matched the target parameter value, the search was

concluded; if not ı was increased incrementally and steps 5(b)–(d) were
repeated.

6. Once appropriate values for ˇ20, ı and �2 were found, Y2i was determined by
whether Y �

2i exceeded zero given the draws for X and �2 as well as Yi1 and those
parameter values.

The first phase of each Monte Carlo experiment thusly found values for the equation
parameters that conformed to the behavioral parameters of that experiment.

The experiment then shifted to the empirical repetition phase. In each of the
repetitions, the same sequence of events occurred:

1. A new draw for {�1, �2} was made6;

6Step 1 was actually slightly more involved. It became apparent in early rounds of experiments
that some behavioral parameters, particularly instrument strength, occasionally varied across
replications to a degree with which the authors were not comfortable. In particular, the various
replications from experiments involving first stage �2 statistics with target values of 15 and 25
occasionally produced overlapping ranges for the �2 statistic values actually generated across
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2. Given the values assigned to ˇ10, ˇ11, ˇ12, ˇ13, ˇ14, ˛1, ˛2 and �1, and X1i , X2i ,
X3i , X4i , Z1i , Z2i and �1i , for each of the N observations Yi1 was set to 1 if Y �

i1

exceeded 0 and to 0 otherwise;
3. Given the values assigned to ˇ20, ˇ21, ˇ22, ˇ23, ˇ24, ı and �2, and X1i , X2i , X3i ,
X4i , Yi1 and �2i , for each of the N observations Yi2 was set to 1 if Y �

i2 exceeded
0 and to 0 otherwise.

The data X , Z, Y1 and Y2 so generated thus formed the empirical “observations”
over which the performance of each of the estimators was then recorded for that
repetition.

2.4 Monte Carlo Results

The results of the Monte Carlo experiments are presented in Tables 2.1–2.25.
Tables 2.1–2.8 present mean absolute deviations between estimated and true ATE
across either 1,000 (sample sizes 1,000 and 5,000) or 500 (sample size 10,000) repli-
cations of the each of the experiments. The experiments differ by their sample sizes
or assumed behavioral parameters.7 Tables 2.9–2.16 present mean estimated ATE.
Tables 2.17–2.21 present regression results summarizing the findings regarding ATE
estimation. Tables 2.22–2.25 present a restricted set of results for the identification
and endogeneity tests. Owing to space constraints, in Tables 2.1–2.16 and 2.22–2.25
we present only results for experiments in which the average frequencies for the two
dependent variables Yi1 and Yi2 were both set to be the same at 0.25 or 0.5.

Most tables presenting Monte Carlo experiment results cover a particular com-
bination of target average treatment effect and error correlation. In all such tables,
the columns provide results by the error type applied in the experiment (bivariate
normal or bivariate non-normal) and, within each error type, instrument strength in
terms of the �2 test statistic for the joint significance of the instruments in Eq. (2.1)
as estimated by probit (e.g. �2 D 15, �2 D 25, etc.) for given values of Y1 and
Y2 (where, for instance, Y1 D 0:25, Y2 D 0:25 indicates results for experiments

the replications for the two experiments. This muddied the waters somewhat for the purposes
of making inferences about estimator performance differentials as instrument strength varied. To
address this, we set tolerance bands for acceptable variation of such �2 values around their target
for a given experiment. If, on a particular replication, a draw {�1, �2} resulted in a �2 value outside
of the tolerance range for that experiment, that draw was discarded and a new draw {�1, �2}
was made. This was done to insure that the replications within an experiment conformed to an
acceptable degree to the parameters of that experiment.
7As explained in Sect. 2.3, the behavioral parameters are imposed by the design of the data
generating process for each experiment and included the: program effect (P r.Y2jX; Y1 D 1/ �
P r.Y2jX; Y1 D 0/); correlation of the errors {�1; �2}; average of the program outcome (Y1) within
the sample; average of the outcome of interest (Y2) within the sample; first stage strength of the
instruments Z to explain Y1 (as reflected in the �2 statistic emerging from a test of the joint
significance of those instruments); and bivariate error type (i.e. normal or a non-normal errors).
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Table 2.1 Mean absolute deviation of ATE for true ATE D 0.05, error correlation D 0.1,
Y1 D 0:25 and Y2 D 0:25

Normal errors Non-normal errors

�2 D 15 �2 D 25 �2 D 50 �2 D 15 �2 D 25 �2 D 50

N D 1,000
LPM 0.0812 0.0805 0.0771 0.0797 0.0776 0.0719
Probit 0.0597 0.0597 0.0592 0.0662 0.0647 0.0614
TSLS 0.2099 0.1627 0.1076 0.2123 0.1599 0.1098
LIML 0.2279 0.1692 0.1096 0.2314 0.1672 0.1121
GMM 0.2111 0.1632 0.1076 0.2122 0.1600 0.1099
Residual1 0.2043 0.1674 0.1132 0.1945 0.1572 0.1130
Residual2 0.1431 0.1235 0.0946 0.1895 0.1564 0.1053
BIPROBIT 0.1448 0.1251 0.0961 0.2319 0.1927 0.1227
DFM 0.1175 0.1102 0.0943 0.0938 0.0919 0.0791

N D 5,000
LPM 0.0820 0.0824 0.0813 0.0848 0.0838 0.0834
Probit 0.0588 0.0594 0.0588 0.0691 0.0684 0.0684
TSLS 0.2208 0.1684 0.1141 0.2009 0.1574 0.1058
LIML 0.2392 0.1766 0.1163 0.2143 0.1640 0.1081
GMM 0.2209 0.1684 0.1142 0.2009 0.1574 0.1059
Residual1 0.2130 0.1730 0.1209 0.1905 0.1576 0.1103
Residual2 0.0854 0.0832 0.0713 0.3110 0.2591 0.1822
BIPROBIT 0.0973 0.0900 0.0740 0.2862 0.2648 0.2149
DFM 0.1198 0.1125 0.1050 0.0643 0.0648 0.0643

N D 10,000
LPM 0.0823 0.0808 0.0818 0.0821 0.0810 0.0804
Probit 0.0594 0.0582 0.0593 0.0664 0.0654 0.0651
TSLS 0.2054 0.1649 0.1097 0.2066 0.1643 0.1186
LIML 0.2183 0.1697 0.1117 0.2223 0.1707 0.1205
GMM 0.2051 0.1649 0.1109 0.2055 0.1643 0.1187
Residual1 0.1989 0.1635 0.1129 0.2017 0.1650 0.1224
Residual2 0.0716 0.0644 0.0622 0.3239 0.2951 0.2463
BIPROBIT 0.0838 0.0771 0.0666 0.2774 0.2675 0.2466
DFM 0.1310 0.1288 0.1076 0.0597 0.0597 0.0591

for which the average values of the endogenous variable Y1 and the outcome of
interest Y2 are 0.25). Generally speaking, the rows of these tables provide statistics
for the estimators considered in this manuscript at various sample sizes. Finally,
to save space, the individual models are referred to in the rows of the tables by
shorthand expressions: LPM for linear probability model (i.e. single equation OLS
with no control for endogeneity); Probit for single equation probit regression; TSLS
for two-stage least squares; LIML for the limited information linear instrumental
variables estimator; GMM for the generalized method of moments implementation
of the linear instrumental variables estimator; Residual1 and Residual2 for the two
variants of the residual inclusion estimators; BIPROBIT for the bivariate probit
estimator provided by the STATA -biprobit- command; and DFM for the discrete
factor model.
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Table 2.2 Mean absolute deviation of ATE for true ATE D 0.05, error correlation D 0.1, Y1 D 0:5

and Y2 D 0:5

Normal errors Non-normal errors

�2 D 15 �2 D 25 �2 D 50 �2 D 15 �2 D 25 �2 D 50

N D 1,000
LPM 0.0832 0.0832 0.0780 0.1001 0.0972 0.0919
Probit 0.0749 0.0752 0.0712 0.0870 0.0846 0.0816
TSLS 0.2133 0.1623 0.1109 0.2097 0.1624 0.1138
LIML 0.2341 0.1688 0.1130 0.2279 0.1693 0.1161
GMM 0.2136 0.1624 0.1113 0.2099 0.1628 0.1138
Residual1 0.1986 0.1597 0.1112 0.1937 0.1568 0.1139
Residual2 0.1666 0.1412 0.1043 0.1572 0.1304 0.1026
BIPROBIT 0.1773 0.1447 0.1051 0.1269 0.1087 0.0935
DFM 0.1420 0.1263 0.1045 0.1021 0.0833 0.0669

N D 5,000
LPM 0.0815 0.0813 0.0790 0.0998 0.0992 0.0999
Probit 0.0738 0.0737 0.0718 0.0871 0.0867 0.0877
TSLS 0.2077 0.1624 0.1116 0.2071 0.1654 0.1128
LIML 0.2228 0.1688 0.1137 0.2220 0.1713 0.1146
GMM 0.2079 0.1624 0.1117 0.2071 0.1655 0.1129
Residual1 0.1906 0.1554 0.1116 0.1900 0.1589 0.1123
Residual2 0.1286 0.1091 0.0907 0.1771 0.1454 0.0998
BIPROBIT 0.1399 0.1184 0.0943 0.0983 0.0837 0.0630
DFM 0.1438 0.1270 0.1043 0.0661 0.0587 0.0511

N D 10,000
LPM 0.0820 0.0829 0.0814 0.0993 0.1004 0.0989
Probit 0.0740 0.0750 0.0737 0.0862 0.0872 0.0859
TSLS 0.2067 0.1595 0.1077 0.2157 0.1633 0.1206
LIML 0.2206 0.1663 0.1096 0.2307 0.1699 0.1228
GMM 0.2049 0.1592 0.1076 0.2150 0.1632 0.1206
Residual1 0.1861 0.1511 0.1071 0.1975 0.1560 0.1206
Residual2 0.0997 0.0964 0.0814 0.2287 0.2072 0.1603
BIPROBIT 0.1202 0.1094 0.0853 0.1081 0.0967 0.0747
DFM 0.1471 0.1336 0.1127 0.0887 0.0877 0.0810

Before turning to the mean absolute deviation results, it is interesting to note
that Tables 2.9–2.16 for mean estimated treatment effect indicate that there is
typically, though not always, an upward bias to the estimated treatment effect even
for estimators that correct for the endogeneity of the treatment effect. The bias,
however, is typically smaller as one moves from a true treatment effect of 0.05–0.2.

The results in Tables 2.1–2.8 on mean absolute deviations are varied and difficult
to summarize. A few broad trends seem to emerge. First, the bivariate probit
model (BIPROBIT) appears to do well in general when the error terms are indeed
jointly normally distributed. However, at sample size 1,000 it is frequently no
better than DFM, especially when instrument strength is low and is sometimes
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Table 2.3 Mean absolute deviation of ATE for true ATE D 0.05, error correlation D 0.3,
Y1 D 0:25 and Y2 D 0:25

Normal errors Non-normal errors

�2 D 15 �2 D 25 �2 D 50 �2 D 15 �2 D 25 �2 D 50

N D 1,000
LPM 0.1945 0.1923 0.1835 0.2124 0.2084 0.1968
Probit 0.1678 0.1658 0.1598 0.1929 0.1896 0.1814
TSLS 0.2149 0.1612 0.1118 0.2146 0.1625 0.1061
LIML 0.3353 0.1668 0.1136 0.2378 0.1686 0.1083
GMM 0.2154 0.1617 0.1119 0.2144 0.1625 0.1065
Residual1 0.2057 0.1605 0.1134 0.2020 0.1586 0.1099
Residual2 0.1473 0.1281 0.0942 0.2115 0.1553 0.0980
BIPROBIT 0.1540 0.1295 0.0923 0.2308 0.1696 0.0994
DFM 0.1164 0.1155 0.0981 0.1125 0.1004 0.0742

N D 5,000
LPM 0.1986 0.1991 0.1977 0.2018 0.2012 0.1991
Probit 0.1713 0.1720 0.1710 0.1854 0.1848 0.1831
TSLS 0.2246 0.1673 0.1238 0.1969 0.1489 0.1021
LIML 0.2421 0.1718 0.1255 0.2114 0.1558 0.1042
GMM 0.2248 0.1675 0.1240 0.1970 0.1490 0.1020
Residual1 0.2182 0.1695 0.1268 0.1801 0.1485 0.1064
Residual2 0.0897 0.0899 0.0758 0.2005 0.1686 0.1173
BIPROBIT 0.1051 0.0963 0.0782 0.2130 0.1777 0.1232
DFM 0.1506 0.1443 0.1240 0.1207 0.1066 0.0924

N D 10,000
LPM 0.1948 0.1951 0.1942 0.2081 0.2085 0.2075
Probit 0.1675 0.1678 0.1672 0.1909 0.1914 0.1903
TSLS 0.1938 0.1598 0.1113 0.2015 0.1549 0.1068
LIML 0.2100 0.1650 0.1134 0.2194 0.1621 0.1088
GMM 0.1954 0.1598 0.1112 0.2013 0.1549 0.1066
Residual1 0.1850 0.1566 0.1129 0.1891 0.1488 0.1114
Residual2 0.0698 0.0658 0.0613 0.2661 0.2407 0.1901
BIPROBIT 0.0956 0.0830 0.0684 0.2665 0.2428 0.1862
DFM 0.1562 0.1447 0.1083 0.1053 0.1080 0.0881

worse than LPM and Probit when sample size is small and error correlation is
low. In addition, the Residual2 estimator which uses a first stage probit regression
to generate generalized residuals frequently has lower mean absolute deviation
(MAD) than BIPROBIT. Whatever advantage BIPROBIT has when the true errors
are normal disappears for non-normal errors. For non-normal errors, the DFM
model typically performs the best. The linear instrumental variables estimators’
performance increases significantly as instrument strength and sample size increases
regardless of whether or not the true error distribution is normal or non-normal. That
said, it is understandably difficult to grasp general patterns from the many cells of
these tables.
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Table 2.4 Mean absolute deviation of ATE for true ATE D 0.05, error correlation D 0.3, Y1 D 0:5

and Y2 D 0:5

Normal errors Non-normal errors

�2 D 15 �2 D 25 �2 D 50 �2 D 15 �2 D 25 �2 D 50

N D 1,000
LPM 0.2033 0.1994 0.1946 0.2308 0.2293 0.2211
Probit 0.1948 0.1913 0.1871 0.2089 0.2076 0.2010
TSLS 0.2192 0.1680 0.1162 0.2135 0.1633 0.1180
LIML 0.2345 0.1726 0.1174 0.2305 0.1702 0.1188
GMM 0.2193 0.1684 0.1166 0.2138 0.1643 0.1189
Residual1 0.2047 0.1633 0.1162 0.1975 0.1576 0.1141
Residual2 0.1805 0.1495 0.1093 0.1525 0.1263 0.0968
BIPROBIT 0.1854 0.1494 0.1068 0.1331 0.1132 0.0909
DFM 0.1411 0.1170 0.0969 0.1107 0.0933 0.0775

N D 5,000
LPM 0.2031 0.2020 0.2015 0.2269 0.2255 0.2249
Probit 0.1953 0.1942 0.1939 0.2115 0.2101 0.2099
TSLS 0.2092 0.1600 0.1139 0.2156 0.1706 0.1244
LIML 0.2347 0.1657 0.1157 0.2288 0.1751 0.1250
GMM 0.2092 0.1601 0.1140 0.2158 0.1707 0.1245
Residual1 0.1893 0.1539 0.1132 0.1977 0.1638 0.1193
Residual2 0.1248 0.1080 0.0934 0.2125 0.1742 0.1203
BIPROBIT 0.1480 0.1180 0.0946 0.1177 0.0873 0.0657
DFM 0.1491 0.1380 0.1070 0.0516 0.0454 0.0468

N D 10,000
LPM 0.2039 0.2024 0.2029 0.2316 0.2309 0.2297
Probit 0.1956 0.1941 0.1947 0.2136 0.2130 0.2120
TSLS 0.2186 0.1673 0.1142 0.2117 0.1599 0.1102
LIML 0.2392 0.1768 0.1166 0.2273 0.1668 0.1116
GMM 0.2184 0.1649 0.1138 0.2146 0.1606 0.1103
Residual1 0.1869 0.1540 0.1127 0.1959 0.1547 0.1103
Residual2 0.1077 0.0968 0.0746 0.1922 0.1683 0.1265
BIPROBIT 0.1413 0.1186 0.0837 0.0725 0.0627 0.0516
DFM 0.1557 0.1322 0.1102 0.0761 0.0689 0.0678

To perhaps provide a somewhat clearer overall picture, we consider a series
of simple regression results. Tables 2.17–2.21 provide results for these regression
analyses. These involve regressing mean absolute deviation estimates across the
replications of our Monte Carlo experiments on dummy variables capturing the
models that generated those mean absolute deviation estimates. The regression relies
on a sample that has an observation for each mean absolute deviation estimate
generated by each model considered in each Monte Carlo experiment (for instance,
the typical Monte Carlo experiment will yield nine observations in the regression
sample corresponding to the mean absolute deviation estimates generated by the
various models). In Table 2.17, we present results across all experiments and a
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Table 2.5 Mean absolute deviation of ATE for true ATE D 0.2, error correlation D 0.1, Y1 D 0:25

and Y2 D 0:25

Normal errors Non-normal errors

�2 D 15 �2 D 25 �2 D 50 �2 D 15 �2 D 25 �2 D 50

N D 1,000
LPM 0.0972 0.0976 0.0939 0.0577 0.0569 0.0565
Probit 0.0711 0.0715 0.0700 0.0426 0.0424 0.0432
TSLS 0.2150 0.1650 0.1145 0.2036 0.1595 0.1051
LIML 0.2350 0.1711 0.1167 0.2204 0.1663 0.1071
GMM 0.2160 0.1652 0.1148 0.2044 0.1603 0.1053
Residual1 0.2312 0.1897 0.1372 0.2173 0.1820 0.1270
Residual2 0.1684 0.1457 0.1112 0.1974 0.1690 0.1093
BIPROBIT 0.1741 0.1500 0.1111 0.2482 0.2076 0.1318
DFM 0.1324 0.1264 0.1143 0.1332 0.1328 0.1250

N D 5,000
LPM 0.0919 0.0919 0.0906 0.0734 0.0735 0.0706
Probit 0.0639 0.0639 0.0633 0.0555 0.0558 0.0536
TSLS 0.2245 0.1621 0.1155 0.2026 0.1485 0.1078
LIML 0.2446 0.1690 0.1172 0.2175 0.1539 0.1097
GMM 0.2246 0.1621 0.1157 0.2027 0.1484 0.1077
Residual1 0.2385 0.1892 0.1375 0.2161 0.1714 0.1312
Residual2 0.0950 0.0929 0.0825 0.3361 0.2919 0.2127
BIPROBIT 0.1071 0.1004 0.0849 0.3154 0.2988 0.2520
DFM 0.0977 0.0933 0.0924 0.0616 0.0576 0.0542

N D 10,000
LPM 0.0960 0.0962 0.0958 0.0577 0.0584 0.0577
Probit 0.0673 0.0676 0.0673 0.0405 0.0411 0.0407
TSLS 0.1935 0.1508 0.1062 0.1974 0.1516 0.1093
LIML 0.2066 0.1571 0.1081 0.2147 0.1572 0.1116
GMM 0.1933 0.1507 0.1064 0.1968 0.1518 0.1093
Residual1 0.2190 0.1793 0.1293 0.2154 0.1741 0.1292
Residual2 0.0746 0.0790 0.0663 0.3123 0.2908 0.2362
BIPROBIT 0.0869 0.0902 0.0725 0.2798 0.2707 0.2444
DFM 0.1351 0.1341 0.1157 0.0414 0.0433 0.0412

stratification by error type (bivariate normal versus bivariate non-normal). The
omitted category among the regressors (which are dummy variables indicating the
model behind the mean absolute deviation estimate in a particular observation) is
the linear probability model (LPM). Thus, a negative number means that the model
outperforms the omitted category model (the LPM) while a positive number means
that it performed more poorly than that omitted category model. For these tables we
used all of the experiments (i.e. we did not confine ourselves to cases where program
participation prevalence and outcome prevalence were both 0.25 or 0.5).

From Table 2.17 it is clear that, across all Monte Carlo experiments, only simple
Probit and DFM perform slightly better than LPM while all other estimators perform
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Table 2.6 Mean absolute deviation of ATE for true ATE D 0.2, error correlation D 0.1, Y1 D 0:5

and Y2 D 0:5

Normal errors Non-normal errors

�2 D 15 �2 D 25 �2 D 50 �2 D 15 �2 D 25 �2 D 50

N D 1,000
LPM 0.0809 0.0814 0.0816 0.1071 0.1062 0.1035
Probit 0.0728 0.0737 0.0746 0.0888 0.0886 0.0891
TSLS 0.2147 0.1704 0.1173 0.2233 0.1676 0.1193
LIML 0.2328 0.1780 0.1192 0.2447 0.1739 0.1209
GMM 0.2157 0.1706 0.1175 0.2240 0.1684 0.1197
Residual1 0.2080 0.1752 0.1259 0.2210 0.1732 0.1263
Residual2 0.1801 0.1548 0.1137 0.1859 0.1450 0.1100
BIPROBIT 0.1879 0.1591 0.1144 0.1362 0.1126 0.0962
DFM 0.1430 0.1405 0.1216 0.1671 0.1634 0.1555

N D 5,000
LPM 0.0759 0.0747 0.0756 0.1003 0.0997 0.1006
Probit 0.0681 0.0670 0.0680 0.0831 0.0829 0.0841
TSLS 0.2017 0.1592 0.1176 0.2119 0.1647 0.1208
LIML 0.2182 0.1654 0.1195 0.2243 0.1708 0.1225
GMM 0.2018 0.1592 0.1177 0.2121 0.1648 0.1209
Residual1 0.2001 0.1641 0.1252 0.2091 0.1713 0.1283
Residual2 0.1307 0.1164 0.1000 0.2655 0.2196 0.1481
BIPROBIT 0.1443 0.1252 0.1023 0.1519 0.1224 0.0851
DFM 0.1273 0.1185 0.1060 0.1026 0.1046 0.0983

N D 10,000
LPM 0.0826 0.0816 0.0809 0.0939 0.0930 0.0921
Probit 0.0744 0.0734 0.0728 0.0764 0.0756 0.0748
TSLS 0.2023 0.1590 0.1140 0.2204 0.1684 0.1187
LIML 0.2173 0.1645 0.1159 0.2361 0.1764 0.1209
GMM 0.2034 0.1606 0.1143 0.2205 0.1673 0.1192
Residual1 0.2010 0.1649 0.1231 0.2178 0.1740 0.1298
Residual2 0.1051 0.0998 0.0880 0.3435 0.3172 0.2567
BIPROBIT 0.1227 0.1102 0.0946 0.2020 0.1792 0.1398
DFM 0.1462 0.1352 0.1160 0.0693 0.0676 0.0694

slightly worse. For Monte Carlo experiments involving normal errors, BIPROBIT
and Residual2 perform slightly better than LPM while DFM and Probit perform
about the same as LPM. This result for BIPROBIT is not surprising since it is
the asymptotically efficient estimator, given that it is based on a joint distributional
assumption for the errors that happens to exactly match the actual error distribution
behind the data generating process. The other four estimators perform worse.
Although their point estimates are small, they are significantly different from zero in
all four cases. For non-normal errors, no estimator performs better than LPM except
for DFM and the two worst performing estimators are Residual2 and BIPROBIT.
This is not surprising since these two estimators rely heavily on a normality
assumption for the error term.
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Table 2.7 Mean absolute deviation of ATE for true ATE D 0.2, error correlation D 0.3, Y1 D 0:25

and Y2 D 0:25

Normal errors Non-normal errors

�2 D 15 �2 D 25 �2 D 50 �2 D 15 �2 D 25 �2 D 50

N D 1,000
LPM 0.1985 0.2020 0.1918 0.1951 0.1883 0.1747
Probit 0.1779 0.1820 0.1718 0.1806 0.1741 0.1630
TSLS 0.2144 0.1643 0.1098 0.2126 0.1599 0.1116
LIML 0.2295 0.1701 0.1108 0.2302 0.1658 0.1137
GMM 0.2157 0.1648 0.1100 0.2134 0.1602 0.1116
Residual1 0.2322 0.1898 0.1348 0.2290 0.1894 0.1419
Residual2 0.1565 0.1472 0.1130 0.2076 0.1661 0.1137
BIPROBIT 0.1647 0.1469 0.1086 0.2401 0.1867 0.1180
DFM 0.1432 0.1415 0.1208 0.1757 0.1546 0.1407

N D 5,000
LPM 0.1957 0.1955 0.1936 0.1602 0.1606 0.1575
Probit 0.1749 0.1748 0.1733 0.1487 0.1490 0.1461
TSLS 0.2196 0.1737 0.1211 0.2033 0.1526 0.1068
LIML 0.2346 0.1788 0.1224 0.2197 0.1598 0.1094
GMM 0.2198 0.1739 0.1212 0.2034 0.1526 0.1067
Residual1 0.2381 0.2004 0.1422 0.2208 0.1829 0.1471
Residual2 0.0962 0.0928 0.0853 0.1612 0.1429 0.0988
BIPROBIT 0.1144 0.1041 0.0883 0.1907 0.1648 0.1160
DFM 0.1093 0.1098 0.0978 0.0966 0.0925 0.0782

N D 10,000
LPM 0.1963 0.1969 0.1960 0.1694 0.1692 0.1701
Probit 0.1748 0.1754 0.1747 0.1571 0.1570 0.1577
TSLS 0.1784 0.1465 0.1072 0.1987 0.1503 0.1087
LIML 0.1895 0.1517 0.1083 0.2153 0.1581 0.1115
GMM 0.1791 0.1452 0.1085 0.1989 0.1505 0.1087
Residual1 0.2090 0.1787 0.1380 0.2216 0.1827 0.1484
Residual2 0.0809 0.0692 0.0680 0.1978 0.1720 0.1366
BIPROBIT 0.1051 0.0869 0.0793 0.2025 0.1780 0.1439
DFM 0.1381 0.1244 0.1060 0.1056 0.0916 0.0727

The results presented above likely mask some important variations in the
performance of the estimators for different configurations of the data generating
process. In Table 2.18 we present results based on further stratification of the simple
regression by error correlation. For normal errors and the lower error correlation
level of 0.1, no estimator has a lower MAD than LPM but the Probit estimator’s
MAD is not significantly different from that for the LPM. However, it is interesting
to note that the relative performance of the estimators is completely different with
normal errors and error correlation 0.3. Now Residual2 and BIPROBIT are the
dominant estimators followed closely by DFM while the other estimators are not
much different in terms of MAD from LPM. For non-normal errors, the results
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Table 2.8 Mean absolute deviation of ATE for true ATE D 0.2, error correlation D 0.3, Y1 D 0:5

and Y2 D 0:5

Normal errors Non-normal errors

�2 D 15 �2 D 25 �2 D 50 �2 D 15 �2 D 25 �2 D 50

N D 1,000
LPM 0.1757 0.1706 0.1712 0.2202 0.2199 0.2151
Probit 0.1715 0.1662 0.1669 0.2027 0.2025 0.1990
TSLS 0.2177 0.1627 0.1134 0.2101 0.1670 0.1324
LIML 0.2342 0.1698 0.1156 0.2252 0.1712 0.1335
GMM 0.2182 0.1636 0.1138 0.2105 0.1679 0.1334
Residual1 0.2162 0.1728 0.1258 0.2183 0.1787 0.1372
Residual2 0.1862 0.1549 0.1172 0.1891 0.1507 0.1195
BIPROBIT 0.1920 0.1535 0.1125 0.1487 0.1226 0.1049
DFM 0.1428 0.1385 0.1199 0.1607 0.1634 0.1512

N D 5,000
LPM 0.1750 0.1745 0.1732 0.1934 0.1932 0.1926
Probit 0.1707 0.1703 0.1691 0.1835 0.1832 0.1830
TSLS 0.2058 0.1630 0.1143 0.2038 0.1582 0.1135
LIML 0.2201 0.1700 0.1166 0.2188 0.1641 0.1150
GMM 0.2059 0.1631 0.1144 0.2037 0.1583 0.1136
Residual1 0.2074 0.1777 0.1292 0.2130 0.1738 0.1272
Residual2 0.1324 0.1179 0.0992 0.3206 0.2778 0.2028
BIPROBIT 0.1526 0.1310 0.1020 0.2706 0.2052 0.1334
DFM 0.1211 0.1090 0.0992 0.0905 0.0924 0.0889

N D 10,000
LPM 0.1799 0.1797 0.1793 0.2073 0.2063 0.2068
Probit 0.1753 0.1751 0.1748 0.1939 0.1930 0.1936
TSLS 0.2101 0.1485 0.1133 0.2052 0.1657 0.1058
LIML 0.2290 0.1549 0.1154 0.2200 0.1721 0.1076
GMM 0.2116 0.1483 0.1132 0.2052 0.1657 0.1085
Residual1 0.2166 0.1623 0.1305 0.2141 0.1792 0.1249
Residual2 0.1065 0.1052 0.0907 0.3346 0.3080 0.2551
BIPROBIT 0.1393 0.1226 0.0991 0.2238 0.1890 0.1397
DFM 0.1349 0.1364 0.1157 0.0504 0.0521 0.0485

are quite different. We see that for error correlation 0.1, only PROBIT and DFM
perform as well as LPM, with all other methods performing significantly worse. At
the error correlation level of 0.3, DFM dominates all other estimators.

We also consider stratification of the summary regression by instrument strength.
Results for this are presented in Tables 2.19 and 2.20. We consider only two
instrument strength levels (as manifested by the size of the �2 statistic obtained
from a test of the joint significance of the instruments in a probit regression with Y2
as the dependent variable): �2 D 15 and �2 D 50. Not surprisingly, the estimators
most affected by instrument strength are the linear instrumental variables methods.
They perform quite poorly compared with the LPM at instrument strength �2 D 15.
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Table 2.9 Mean ATE for true ATE D 0.05, error correlation D 0.1, Y1 D 0:25 and Y2 D 0:25

Normal errors Non-normal errors

�2 D 15 �2 D 25 �2 D 50 �2 D 15 �2 D 25 �2 D 50

Obs D 1,000
LPM 0.1306 0.1299 0.1261 0.1291 0.1269 0.1212
Probit 0.1084 0.1086 0.1077 0.1155 0.1139 0.1106
TSLS 0.0755 0.0770 0.0654 0.0184 0.0444 0.0486
LIML 0.0739 0.0745 0.0642 0.0074 0.0400 0.0469
GMM 0.0761 0.0773 0.0657 0.0181 0.0443 0.0488
Residual1 0.1089 0.0980 0.0677 0.0527 0.0613 0.0516
Residual2 0.0896 0.0852 0.0701 0.1755 0.1410 0.0913
BIPROBIT 0.0811 0.0808 0.0735 0.1675 0.1465 0.0943
DFM 0.1175 0.1076 0.0952 0.1076 0.1045 0.0819

Obs D 5,000
LPM 0.1315 0.1319 0.1309 0.1343 0.1334 0.1329
Probit 0.1083 0.1089 0.1083 0.1186 0.1179 0.1179
TSLS 0.0948 0.0880 0.0821 0.0477 0.0480 0.0545
LIML 0.0913 0.0858 0.0810 0.0424 0.0443 0.0530
GMM 0.0949 0.0883 0.0823 0.0481 0.0481 0.0547
Residual1 0.1122 0.0967 0.0793 0.0655 0.0532 0.0483
Residual2 0.0705 0.0726 0.0699 0.3602 0.3070 0.2279
BIPROBIT 0.0524 0.0596 0.0640 0.3292 0.3034 0.2495
DFM 0.1186 0.1082 0.1105 0.1105 0.1097 0.1096

Obs D 10,000
LPM 0.1318 0.1303 0.1313 0.1316 0.1305 0.1300
Probit 0.1089 0.1077 0.1088 0.1159 0.1149 0.1146
TSLS 0.0837 0.0663 0.0727 0.1136 0.0944 0.0981
LIML 0.0813 0.0647 0.0719 0.1125 0.0927 0.0979
GMM 0.0837 0.0664 0.0801 0.1158 0.0941 0.0982
Residual1 0.0878 0.0656 0.0669 0.1160 0.0915 0.0883
Residual2 0.0708 0.0560 0.0730 0.3734 0.3446 0.2958
BIPROBIT 0.0532 0.0399 0.0613 0.3269 0.3171 0.2940
DFM 0.1227 0.1229 0.1007 0.1088 0.1085 0.1079

However, even at instrument strength �2 D 50, they do not perform any better
than the LPM model (or at least they do not do so to a statistically significant
degree). For BIPROBIT and Residual2, we see improved performance as instrument
strength increases for both normal and non-normal errors. Finally, DFM improves
with increasing instrument strength for normal errors but does roughly equally well
at the two instrument strengths when the errors are non-normal.

In Table 2.20, rather than stratifying by error distribution, we stratify by error
correlation and then instrument strength. This table clearly isolates the cases in
which the linear instrumental variables estimators perform relatively well. We see
that all three linear instrumental variables estimators are inferior to LPM when
the error correlation is low regardless of instrument strength. At the lower value
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Table 2.10 Mean ATE for true ATE D 0.05, error correlation D 0.1, Y1 D 0:5 and Y2 D 0:5

Normal errors Non-normal errors

�2 D 15 �2 D 25 �2 D 50 �2 D 15 �2 D 25 �2 D 50

Obs D 1,000
LPM 0.1327 0.1326 0.1273 0.1496 0.1467 0.1414
Probit 0.1243 0.1245 0.1204 0.1365 0.1341 0.1310
TSLS 0.0826 0.0818 0.0773 0.0923 0.0874 0.0812
LIML 0.0743 0.0804 0.0763 0.0884 0.0843 0.0800
GMM 0.0832 0.0819 0.0778 0.0926 0.0881 0.0817
Residual1 0.0823 0.0787 0.0719 0.0813 0.0760 0.0707
Residual2 0.0804 0.0783 0.0746 0.0100 0.0290 0.0589
BIPROBIT 0.0703 0.0779 0.0761 0.0271 0.0420 0.0654
DFM 0.1224 0.1131 0.0922 0.1215 0.0982 0.0808

Obs D 5,000
LPM 0.1310 0.1308 0.1285 0.1493 0.1487 0.1494
Probit 0.1233 0.1232 0.1213 0.1366 0.1362 0.1372
TSLS 0.0770 0.0680 0.0639 0.1066 0.0896 0.0906
LIML 0.0724 0.0653 0.0626 0.1054 0.0872 0.0895
GMM 0.0771 0.0680 0.0639 0.1068 0.0897 0.0908
Residual1 0.0751 0.0631 0.0568 0.1032 0.0835 0.0818
Residual2 0.0745 0.0689 0.0613 �0.1167 �0.0774 �0.0217
BIPROBIT 0.0538 0.0563 0.0567 �0.0320 �0.0098 0.0230
DFM 0.1315 0.1148 0.0978 0.1074 0.0998 0.0918

Obs D 10,000
LPM 0.1315 0.1324 0.1309 0.1488 0.1499 0.1484
Probit 0.1235 0.1245 0.1232 0.1357 0.1367 0.1354
TSLS 0.0293 0.0377 0.0518 0.0605 0.0592 0.0721
LIML 0.0242 0.0347 0.0503 0.0544 0.0562 0.0705
GMM 0.0314 0.0362 0.0519 0.0575 0.0562 0.0726
Residual1 0.0569 0.0494 0.0568 0.0905 0.0799 0.0830
Residual2 0.0742 0.0652 0.0580 �0.1792 �0.1570 �0.1088
BIPROBIT 0.0454 0.0486 0.0525 �0.0566 �0.0451 �0.0186
DFM 0.1296 0.1185 0.1045 0.1360 0.1348 0.1285

for instrument strength, the linear instrumental variables estimators still offer
no improvement over LPM when error correlation is 0.1. However, they offer
substantial improvement over LPM when error correlation is 0.3 and instrument
strength is high. We do not display results for instrument strength 25 but in this
case, the linear instrumental variables estimators offer slight improvement over
LPM with the higher error correlation. This relatively strong performance for the
linear instrumental variables methods is robust to a further stratification by error
distribution (results not displayed). When error correlation is 0.3 and instrument
strength is 50, there is no difference in the level of improvement over LPM for
normal or non-normal errors. This is reassuring given that the linear instrumental
approach has been recommended in this setting (e.g. Angrist and Krueger 2001).
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Table 2.11 Mean ATE for true ATE D 0.05, error correlation D 0.3, Y1 D 0:25 and Y2 D 0:25

Normal errors Non-normal errors

�2 D 15 �2 D 25 �2 D 50 �2 D 15 �2 D 25 �2 D 50

Obs D 1,000
LPM 0.2440 0.2418 0.2330 0.2619 0.2579 0.2463
Probit 0.2173 0.2153 0.2093 0.2424 0.2391 0.2309
TSLS 0.0965 0.0886 0.0742 0.0768 0.0613 0.0538
LIML �0.0203 0.0812 0.0706 0.0683 0.0533 0.0499
GMM 0.0960 0.0889 0.0745 0.0765 0.0610 0.0537
Residual1 0.1086 0.0827 0.0531 0.0856 0.0543 0.0302
Residual2 0.1071 0.0983 0.0728 0.2143 0.1460 0.0825
BIPROBIT 0.0969 0.0955 0.0751 0.1886 0.1280 0.0722
DFM 0.1306 0.1298 0.1059 0.1380 0.1230 0.0835

Obs D 5,000
LPM 0.2481 0.2486 0.2472 0.2513 0.2507 0.2486
Probit 0.2209 0.2215 0.2205 0.2349 0.2343 0.2326
TSLS 0.1234 0.1226 0.1071 0.0254 0.0442 0.0453
LIML 0.1148 0.1168 0.1040 0.0109 0.0359 0.0414
GMM 0.1242 0.1232 0.1076 0.0256 0.0446 0.0455
Residual1 0.1229 0.1076 0.0802 0.0303 0.0298 0.0152
Residual2 0.0907 0.0970 0.0866 0.2387 0.2068 0.1512
BIPROBIT 0.0638 0.0810 0.0770 0.1984 0.1731 0.1202
DFM 0.1742 0.1675 0.1497 0.1665 0.1511 0.1353

Obs D 10,000
LPM 0.2444 0.2446 0.2438 0.2576 0.2580 0.2570
Probit 0.2170 0.2173 0.2167 0.2404 0.2409 0.2398
TSLS 0.0552 0.0694 0.0730 0.0571 0.0566 0.0566
LIML 0.0401 0.0635 0.0694 0.0409 0.0480 0.0519
GMM 0.0532 0.0697 0.0732 0.0568 0.0561 0.0563
Residual1 0.0459 0.0485 0.0376 0.0495 0.0364 0.0210
Residual2 0.0839 0.0803 0.0748 0.3151 0.2896 0.2390
BIPROBIT 0.0410 0.0465 0.0530 0.2984 0.2745 0.2219
DFM 0.1764 0.1647 0.1309 0.1546 0.1571 0.1361

However, the linear instrumental variables estimator never performs as well as DFM
for any of these stratifications.

Finally, in Table 2.21 we add to the basic summary models presented in
Table 2.17 controls for the behavioral parameters of the Monte Carlo experiment.
Among the sample size regressors, the omitted category is experiments with 1,000
observations. The omitted instrument strength is �2 D 15 (the lowest). The
comparison values for error correlation and treatment effect are 0.1 and 0.05,
respectively. Finally, for both program (i.e. program enrollment) and treatment
prevalence the comparison value is 0.5.

There appears to be a clear performance improvement at the larger sample
sizes with normal errors but performance actually deteriorates as sample size
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Table 2.12 Mean ATE for true ATE D 0.05, error correlation D 0.3, Y1 D 0:5 and Y2 D 0:5

Normal errors Non-normal errors

�2 D 15 �2 D 25 �2 D 50 �2 D 15 �2 D 25 �2 D 50

Obs D 1,000
LPM 0.2528 0.2489 0.2441 0.2803 0.2788 0.2706
Probit 0.2444 0.2408 0.2366 0.2584 0.2571 0.2505
TSLS 0.1183 0.0991 0.0997 0.1100 0.0998 0.1123
LIML 0.1084 0.0932 0.0970 0.0932 0.0902 0.1085
GMM 0.1185 0.0996 0.1001 0.1119 0.1013 0.1142
Residual1 0.1108 0.0890 0.0839 0.0851 0.0695 0.0784
Residual2 0.1138 0.0948 0.0903 0.0251 0.0368 0.0717
BIPROBIT 0.1087 0.0956 0.0933 0.0531 0.0624 0.0896
DFM 0.1471 0.1224 0.1006 0.1382 0.1168 0.1035

Obs D 5,000
LPM 0.2526 0.2515 0.2510 0.2765 0.2750 0.2744
Probit 0.2448 0.2437 0.2434 0.2610 0.2596 0.2594
TSLS 0.0375 0.0667 0.0735 0.1199 0.1332 0.1153
LIML 0.0131 0.0597 0.0700 0.1091 0.1278 0.1122
GMM 0.0374 0.0668 0.0734 0.1202 0.1333 0.1154
Residual1 0.0402 0.0577 0.0565 0.1069 0.1115 0.0892
Residual2 0.0729 0.0737 0.0712 �0.1611 �0.1201 �0.0576
BIPROBIT 0.0380 0.0548 0.0644 �0.0585 �0.0189 0.0212
DFM 0.1577 0.1424 0.1145 0.0952 0.0890 0.0909

Obs D 10,000
LPM 0.2534 0.2519 0.2524 0.2811 0.2804 0.2792
Probit 0.2451 0.2436 0.2442 0.2631 0.2625 0.2615
TSLS �0.0107 �0.0095 0.0325 0.0611 0.0701 0.0788
LIML �0.0313 �0.0211 0.0285 0.0445 0.0602 0.0742
GMM �0.0105 �0.0080 0.0329 0.0641 0.0685 0.0803
Residual1 0.0166 �0.0015 0.0261 0.0818 0.0742 0.0712
Residual2 0.0694 0.0526 0.0601 �0.1421 �0.1172 �0.0732
BIPROBIT 0.0161 0.0156 0.0394 �0.0086 0.0083 0.0318
DFM 0.1674 0.1426 0.1111 0.1253 0.1183 0.1172

increases for non-normal errors. Interestingly, however, the effects of instrument
strength and error correlation do not differ substantially by error type. Increasing
the instrument strength always reduces MAD while increasing the error correlation
always increases it. The true treatment effect has a small but significant effect on
performance (with performance deteriorating as true treatment effect increases).
Program participation and outcome prevalence have substantial, highly significant
effects, but in opposite directions. Performance clearly worsens with non-normal
errors.

Before proceeding, it is worth reflecting on the generally poor performance of
several estimators in the case of non-normal errors. This is very concerning when
one considers that, in many respects, the non-normal error distribution considered in
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Table 2.13 Mean ATE for true ATE D 0.2, error correlation D 0.1, Y1 D 0:25 and Y2 D 0:25

Normal errors Non-normal errors

�2 D 15 �2 D 25 �2 D 50 �2 D 15 �2 D 25 �2 D 50

Obs D 1,000
LPM 0.2965 0.2970 0.2933 0.2564 0.2559 0.2556
Probit 0.2694 0.2704 0.2691 0.2395 0.2399 0.2410
TSLS 0.2403 0.2468 0.2399 0.1717 0.2068 0.1941
LIML 0.2315 0.2437 0.2387 0.1624 0.2043 0.1928
GMM 0.2404 0.2469 0.2402 0.1714 0.2066 0.1941
Residual1 0.2336 0.2325 0.2209 0.1688 0.1966 0.1766
Residual2 0.2223 0.2349 0.2228 0.3155 0.2953 0.2319
BIPROBIT 0.2115 0.2326 0.2246 0.3170 0.3030 0.2375
DFM 0.1704 0.1715 0.1846 0.1981 0.1949 0.1900

Obs D 5,000
LPM 0.2914 0.2914 0.2901 0.2730 0.2730 0.2701
Probit 0.2634 0.2634 0.2628 0.2550 0.2553 0.2531
TSLS 0.2522 0.2404 0.2507 0.2097 0.2061 0.2032
LIML 0.2504 0.2377 0.2502 0.2043 0.2039 0.2021
GMM 0.2527 0.2406 0.2510 0.2102 0.2061 0.2033
Residual1 0.2378 0.2237 0.2293 0.1968 0.1870 0.1761
Residual2 0.2167 0.2147 0.2208 0.5348 0.4901 0.4086
BIPROBIT 0.1996 0.2035 0.2167 0.5092 0.4914 0.4409
DFM 0.2120 0.2024 0.2199 0.2074 0.2053 0.2033

Obs D 10,000
LPM 0.2956 0.2957 0.2953 0.2572 0.2579 0.2572
Probit 0.2668 0.2671 0.2668 0.2400 0.2406 0.2402
TSLS 0.2417 0.2283 0.2309 0.2236 0.2338 0.2192
LIML 0.2380 0.2254 0.2295 0.2231 0.2333 0.2182
GMM 0.2419 0.2283 0.2310 0.2183 0.2338 0.2192
Residual1 0.2124 0.1928 0.1942 0.1981 0.2105 0.1939
Residual2 0.2133 0.2122 0.2092 0.5118 0.4902 0.4354
BIPROBIT 0.1977 0.1975 0.2006 0.4792 0.4698 0.4432
DFM 0.2560 0.2504 0.2378 0.2165 0.2164 0.2136

this study represents a rather forgiving departure from joint normality. For instance,
it still involves unimodal marginal distributions for the errors and a unimodal surface
for the joint density of the errors in R3. This may indeed be too generous from
the standpoint of accurately reflecting conditions likely to be encountered in actual
applied microeconometric settings.

For instance, in the real world the joint distribution of the error term from a
particular application involving a system along the lines of Eqs. (2.1) and (2.2) is
likely often to involve multi-modality: the joint distribution of the unobservables
for the error term in many settings is likely to reflect substantial mass for extreme
(in terms of behavior) types of individuals that would be difficult to accommodate
accurately with unimodal joint distributions under which such varied and extreme
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Table 2.14 Mean ATE for true ATE D 0.2, error correlation D 0.1, Y1 D 0:5 and Y2 D 0:5

Normal errors Non-normal errors

�2 D 15 �2 D 25 �2 D 50 �2 D 15 �2 D 25 �2 D 50

Obs D 1,000
LPM 0.2803 0.2809 0.2809 0.3066 0.3057 0.3030
Probit 0.2722 0.2731 0.2737 0.2883 0.2880 0.2886
TSLS 0.2511 0.2310 0.2291 0.2714 0.2665 0.2611
LIML 0.2471 0.2289 0.2279 0.2646 0.2642 0.2601
GMM 0.2525 0.2316 0.2297 0.2729 0.2676 0.2618
Residual1 0.2305 0.2154 0.2147 0.2383 0.2410 0.2459
Residual2 0.2307 0.2167 0.2183 0.1206 0.1569 0.2122
BIPROBIT 0.2262 0.2162 0.2197 0.1575 0.1826 0.2237
DFM 0.1932 0.1802 0.1781 0.2455 0.2402 0.2563

Obs D 5,000
LPM 0.2754 0.2742 0.2751 0.2998 0.2992 0.3001
Probit 0.2676 0.2665 0.2676 0.2826 0.2824 0.2836
TSLS 0.2061 0.2139 0.2202 0.2811 0.2649 0.2628
LIML 0.2016 0.2116 0.2192 0.2799 0.2633 0.2621
GMM 0.2063 0.2140 0.2203 0.2814 0.2649 0.2630
Residual1 0.1858 0.1968 0.2044 0.2575 0.2433 0.2437
Residual2 0.2070 0.2054 0.2061 �0.0613 �0.0140 0.0676
BIPROBIT 0.1901 0.1941 0.2026 0.0547 0.0859 0.1351
DFM 0.2132 0.2075 0.2031 0.1920 0.1947 0.2053

Obs D 10,000
LPM 0.2821 0.2811 0.2804 0.2934 0.2925 0.2916
Probit 0.2739 0.2729 0.2723 0.2759 0.2751 0.2743
TSLS 0.1942 0.2002 0.2089 0.2346 0.2432 0.2289
LIML 0.1878 0.1977 0.2076 0.2294 0.2404 0.2273
GMM 0.1937 0.2000 0.2103 0.2348 0.2418 0.2289
Residual1 0.1869 0.1938 0.2013 0.2339 0.2372 0.2224
Residual2 0.2126 0.2031 0.2041 �0.1440 �0.1177 �0.0572
BIPROBIT 0.1898 0.1888 0.1984 �0.0025 0.0203 0.0598
DFM 0.2488 0.2482 0.2307 0.1748 0.1718 0.1780

combinations are typically found only with much lower probability. If Y1 were
smoking and Y2 were obesity, for example, one could easily imagine a significant
proportion of the population with combinations of strong unobserved tendencies
toward and away from smoking and obesity that are hard to accommodate with
unimodal (in terms of marginal errors or density surface in R3) errors, let alone joint
normality. However, it also hard to believe that the performance of many models
(such as those based on joint normality) would improve from what is presented
in this manuscript once the departure from joint normality involved relaxing the
assumption of unimodality.

In Tables 2.22–2.25, we examine a limited set of results for the endogeneity tests
and the identification tests considered in our Monte Carlo experiments. To begin
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Table 2.15 Mean ATE for true ATE D 0.2, error correlation D 0.3, Y1 D 0:25 and Y2 D 0:25

Normal errors Non-normal errors

�2 D 15 �2 D 25 �2 D 50 �2 D 15 �2 D 25 �2 D 50

Obs D 1,000
LPM 0.3981 0.4015 0.3913 0.3946 0.3878 0.3742
Probit 0.3774 0.3815 0.3713 0.3801 0.3736 0.3625
TSLS 0.2668 0.2543 0.2463 0.2156 0.2264 0.1967
LIML 0.2561 0.2474 0.2431 0.2005 0.2190 0.1930
GMM 0.2676 0.2549 0.2468 0.2154 0.2267 0.1970
Residual1 0.2317 0.2095 0.1909 0.1826 0.1830 0.1460
Residual2 0.2301 0.2257 0.2129 0.3335 0.2908 0.2075
BIPROBIT 0.2189 0.2221 0.2173 0.3056 0.2755 0.1984
DFM 0.1947 0.1892 0.1794 0.2499 0.2228 0.1860

Obs D 5,000
LPM 0.3952 0.3950 0.3931 0.3597 0.3601 0.3570
Probit 0.3744 0.3743 0.3728 0.3482 0.3485 0.3456
TSLS 0.2850 0.2826 0.2625 0.1494 0.1651 0.1624
LIML 0.2770 0.2779 0.2590 0.1358 0.1573 0.1587
GMM 0.2855 0.2832 0.2629 0.1498 0.1655 0.1625
Residual1 0.2464 0.2408 0.2081 0.1246 0.1236 0.1066
Residual2 0.2164 0.2219 0.2175 0.3340 0.3097 0.2487
BIPROBIT 0.1905 0.2048 0.2092 0.2971 0.2809 0.2194
DFM 0.2483 0.2534 0.2409 0.2604 0.2486 0.2191

Obs D 10,000
LPM 0.3958 0.3964 0.3955 0.3689 0.3687 0.3696
Probit 0.3743 0.3749 0.3742 0.3566 0.3565 0.3572
TSLS 0.2316 0.2282 0.2297 0.1636 0.1702 0.1713
LIML 0.2227 0.2211 0.2260 0.1480 0.1609 0.1670
GMM 0.2306 0.2265 0.2288 0.1630 0.1699 0.1712
Residual1 0.1730 0.1621 0.1588 0.1274 0.1185 0.1098
Residual2 0.2176 0.2123 0.2032 0.3943 0.3681 0.3288
BIPROBIT 0.1836 0.1817 0.1827 0.3824 0.3548 0.3092
DFM 0.2762 0.2559 0.2367 0.2920 0.2794 0.2546

with, in each of these tables we list models with the specific test associated with that
model in parentheses. In both tables we present proportions of p-values that exceed
or fall below some important threshold. We begin with the overidentification tests
in Tables 2.22 and 2.23, for which the null is that the overidentifying restrictions
are valid (i.e. that the specification considered is valid).8 Since the identifying

8Recall that the overidentification test statistic for the bivariate probit model is simply the �2

statistic for a test of the joint significance of the instruments in the marginal probit equation for
Y2 under the “just identified” specification under which the instruments appear in both marginal
probit equations and identification rests on nonlinearity from functional form (i.e. joint normality)
alone. The null hypothesis of such a test is that the instruments are not jointly significant regressors
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Table 2.16 Mean ATE for true ATE D 0.2, error correlation D 0.3, Y1 D 0:5 and Y2 D 0:5

Normal errors Non-normal errors

�2 D 15 �2 D 25 �2 D 50 �2 D 15 �2 D 25 �2 D 50

Obs D 1,000
LPM 0.3752 0.3701 0.3707 0.4197 0.4194 0.4146
Probit 0.3710 0.3657 0.3665 0.4022 0.4020 0.3985
TSLS 0.2350 0.2126 0.2262 0.2729 0.2709 0.2804
LIML 0.2255 0.2051 0.2229 0.2584 0.2639 0.2769
GMM 0.2357 0.2135 0.2269 0.2747 0.2729 0.2823
Residual1 0.2155 0.1894 0.2006 0.2235 0.2195 0.2345
Residual2 0.2185 0.1941 0.2034 0.0842 0.1343 0.1948
BIPROBIT 0.2140 0.1949 0.2085 0.1373 0.1765 0.2229
DFM 0.1853 0.1671 0.1668 0.2149 0.2113 0.2298

Obs D 5,000
LPM 0.3745 0.3740 0.3727 0.3929 0.3927 0.3921
Probit 0.3702 0.3698 0.3686 0.3830 0.3827 0.3825
TSLS 0.1848 0.1780 0.2060 0.2153 0.2274 0.2348
LIML 0.1716 0.1707 0.2026 0.2031 0.2206 0.2317
GMM 0.1849 0.1780 0.2059 0.2151 0.2277 0.2350
Residual1 0.1651 0.1532 0.1786 0.1800 0.1896 0.1963
Residual2 0.1855 0.1813 0.1892 �0.1205 �0.0773 0.0004
BIPROBIT 0.1597 0.1647 0.1842 �0.0701 �0.0033 0.0731
DFM 0.2231 0.2071 0.1977 0.1265 0.1244 0.1334

Obs D 10,000
LPM 0.3794 0.3792 0.3788 0.4068 0.4058 0.4063
Probit 0.3748 0.3746 0.3743 0.3934 0.3925 0.3931
TSLS 0.1182 0.1547 0.1773 0.2124 0.2121 0.2165
LIML 0.1038 0.1462 0.1734 0.1984 0.2039 0.2125
GMM 0.1193 0.1534 0.1773 0.2125 0.2123 0.2175
Residual1 0.1069 0.1300 0.1491 0.1916 0.1857 0.1810
Residual2 0.1804 0.1819 0.1804 �0.1350 �0.1085 �0.0555
BIPROBIT 0.1377 0.1580 0.1664 �0.0241 0.0108 0.0610
DFM 0.2372 0.2437 0.2148 0.1561 0.1563 0.1609

restrictions in our Monte Carlo experiments are indeed valid by construction,
large test statistics (and accompanying low p-values) would be cause for concern.
Tables 2.22 and 2.23 thus present the percentage of p-values that are in the
concerning range (i.e. below the conventional cutoff level of 0.1). Interestingly, here
all three linear instrumental variables models appear to do quite well.

The same cannot be said for the bivariate probit model, which produces large test
statistics (as evidenced by low p-values) alarmingly often. Its performance appears

in marginal probit equation for Y2 (i.e. that they are legitimately excluded from the marginal probit
equation for Y2).
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Table 2.17 Basic summary regressions

All models Normal errors Non-normal errors

Method Coeff. T-statistic Coeff. T-statistic Coeff. T-statistic

Probit �0.0038 �0.71 �0.0054 �1.05 �0.0023 �0.28
TSLS 0.0361 6.76 0.0397 7.81 0.0325 4.03
LIML 0.0450 8.42 0.0490 9.64 0.0410 5.07
GMM 0.0363 6.79 0.0399 7.85 0.0326 4.04
Residual1 0.0361 6.76 0.0393 7.72 0.0330 4.08
Residual2 0.0409 7.64 �0.0201 �3.96 0.1018 12.6
BIPROBIT 0.0402 7.52 �0.0128 �2.52 0.0933 11.54
DFM �0.0242 �4.52 �0.0041 �0.81 �0.0442 �5.47
N 2,592 1,296 1,296

to improve considerably with larger sample sizes and joint normality of errors. On
the whole, however, using an overidentification test which relies on the non-linearity
of the bivariate probit model is of limited usefulness.

Turning to Tables 2.24 and 2.25 and the endogeneity test results, we now consider
the proportion of the time that the test statistic yields a large p-value. This is once
again natural and fitting since the null hypothesis in these tests is exogeneity. A small
test statistic (and accompanying large p-value) would thus be cause for concern
since endogeneity is present in our models by design (and therefore the null should
be rejected). We consider the proportion of p-values that exceed 0.1. Here the
results are generally far less reassuring. The performance of endogeneity tests in the
linear instrumental variables models is poor,9 with particularly misleading results
in the case of the Hausman test. The performance of the bivariate probit model,
Residual1 and Residual2 are not much better. In general, these results suggest that
conventional endogeneity tests are more or less completely unreliable, at least in
terms of conventional benchmark p-value thresholds when both dependent variables
are binary.

2.5 Empirical Examples

We present two empirical examples based on data sets from Bangladesh and
Tanzania that have been previously analyzed by Chen and Guilkey (2003) and
Guilkey and Hutchinson (2011). The models that we use in this paper are highly
simplified compared to those presented in the original papers. However, they
are sufficiently detailed to provide a good comparison of the methods and to
demonstrate the pitfalls that one might encounter in analyzing similar problems.

9We refer to the Wu-Hausman test (Wu 1974; Hausman 1978) simply as “Wu” in Tables 2.24
and 2.25.
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Table 2.21 Summary regressions with controls for all experimental features

All models Normal errors Non-normal errors

Method Coeff. T statistic Coeff. T statistic Coeff. T statistic

Probit �0.0038 �0.84 �0.0054 �1.39 �0.0023 �0.33
TSLS 0.0361 7.95 0.0397 10.32 0.0325 4.82
LIML 0.0450 9.9 0.0490 12.73 0.0410 6.07
GMM 0.0363 7.99 0.0399 10.37 0.0326 4.84
Residual1 0.0361 7.95 0.0393 10.2 0.0330 4.89
Residual2 0.0409 8.99 �0.0201 �5.23 0.1018 15.1
BIPROBIT 0.0402 8.85 �0.0128 �3.33 0.0933 13.82
DFM �0.0242 �5.32 �0.0041 �1.07 �0.0442 �6.55
Sample size 5,000 �0.0019 �0.74 �0.0099 �4.47 0.0061 1.55
Sample size 10,000 �0.0013 �0.48 �0.0154 �6.93 0.0129 3.31
Instrument strength 25 �0.0271 �10.31 �0.0257 �11.55 �0.0284 �7.3
Instrument strength 50 �0.0577 �21.98 �0.0546 �24.55 �0.0607 �15.59
Error correlation 0.3 0.0213 9.93 0.0252 13.86 0.0174 5.47
Treatment effect 0.2 0.0038 1.75 0.0001 0.04 0.0074 2.34
Program prevalence 0.25 0.0251 11.7 0.0115 6.35 0.0386 12.14
Outcome prevalence 0.25 �0.0265 �12.35 �0.0164 �9.02 �0.0365 �11.49
Non-normal errors 0.0239 11.14
N 2,592 1,296 1,296

That said, an important consideration to remember now that we have moved from
simulations (for which we control all parameters) to applications with real world
samples is that heterogeneous treatment effects (which were not considered in the
simulations) may be at play and driving differences in estimates.

In Bangladesh, we use data that was gathered to examine how self-exposure to the
Smiling Sun multimedia communication campaign in rural Bangladesh impacted
women’s use of modern contraception (more details and more extensive models are
to be found in Guilkey and Hutchinson (2011)). The Smiling Sun communication
program, launched in Bangladesh in 2001, was a multi-channel campaign with the
objectives of establishing the Smiling Sun symbol, disseminating important health-
related messages, and promoting health services in urban and rural areas at Paribarik
Shastha Clinics (Family Health Clinics) operated by the NGO Service Delivery
Program (for which the Smiling Sun served as a logo). The campaign involved
a 26-episode television drama serial ‘Eyi Megh Eyi Roudro’ (“Now cloud, now
sunshine”), television advertisements, radio spots, posters, billboards, press ads in
daily newspapers and local publicity efforts.

The data were collected roughly at the beginning of the Smiling Sun campaign in
2001 and then again 2 years later. Questions were asked of women of reproductive
age about whether they had seen the Smiling Sun logo and, if so, whether they
had seen it in a television drama, in a television advertisement, on the radio, on a
billboard, at a signboard at a clinic, or elsewhere. In the original paper, we examined
the impact of recall for each source separately. In the simplified model used here,
all sources are combined into a single binary indicator for exposure to the program.
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Table 2.22 Identification tests for true ATE D 0.2, error correlation D 0.3, Y1 D 0:25 and
Y2 D 0:25: proportion of times that the p-value for the test statistic is less than 0.1

Normal errors Non-normal errors

�2 D 15 �2 D 25 �2 D 50 �2 D 15 �2 D 25 �2 D 50

N D 1,000
TSLS_Sargan 0.0900 0.1010 0.0980 0.1010 0.0950 0.0940
TSLS_Basmann 0.0900 0.1000 0.0980 0.1010 0.0950 0.0930
LIML_AndersonRubin 0.0880 0.0990 0.0980 0.1010 0.0950 0.0950
LIML_Basmann 0.0880 0.0970 0.0980 0.0950 0.0930 0.0920
GMM_Hansen 0.0840 0.1000 0.0980 0.0990 0.0920 0.0880
BIPROBIT 0.2748 0.2890 0.2821 0.2624 0.3361 0.3810

N D 5,000
TSLS_Sargan 0.1080 0.0910 0.1190 0.0930 0.1040 0.0990
TSLS_Basmann 0.1080 0.0910 0.1190 0.0930 0.1040 0.0990
LIML_AndersonRubin 0.1030 0.0910 0.1190 0.0910 0.1020 0.0990
LIML_Basmann 0.1010 0.0910 0.1180 0.0910 0.1020 0.0990
GMM_Hansen 0.1070 0.0890 0.1200 0.0930 0.1030 0.0970
BIPROBIT 0.1416 0.1249 0.1263 0.2385 0.2613 0.3340

N D 10,000
TSLS_Sargan 0.1100 0.1080 0.1180 0.1000 0.1240 0.1200
TSLS_Basmann 0.1100 0.1080 0.1180 0.1000 0.1240 0.1200
LIML_AndersonRubin 0.1080 0.1060 0.1180 0.0980 0.1200 0.1200
LIML_Basmann 0.1080 0.1060 0.1180 0.0980 0.1200 0.1200
GMM_Hansen 0.1080 0.0960 0.1200 0.1000 0.1240 0.1180
BIPROBIT 0.1172 0.0984 0.1240 0.2360 0.3026 0.4140

We pool the data from 2001 and 2003 in the analysis. Descriptive statistics
and variable definitions are presented in Table 2.26. There are three exclusion
restrictions in the current use of contraception equation: the last three variables that
indicate the number of Smiling Sun posters in clinics that are within 1 km of the
sample cluster and whether or not the household owns a TV and radio (two separate
indicators).

In Tanzania, we use data gathered over a 9-year period for the purpose of
evaluating that nation’s National Population Policy (NPP). The NPP began in 1992
and was developed to address a very high total fertility rate of about 6.3 children
(Ngallaba et al. 1993) and an under five mortality rate of 141 per 1,000 live births.
The NPP had substantial funding from donor agencies including the United States
Agency for International Development (USAID).

The main USAID program in Tanzania for family planning was the Family
Planning Support System (FPSS) project. The major components of the program
were to train health providers in the provision of family planning, to provide
logistical support for the provision of family planning supplies and to develop
an information, education and communication (IEC) program to promote family
planning. This program ended in 1999 and cross sectional data were gathered
in 1991, 1994, 1996, and 1999 to evaluate its impact. Chen and Guilkey (2003)



2 Program Impact Estimation with Binary Outcome Variables 39

Table 2.23 Identification tests for true ATE D 0.2, error correlation D 0.3, Y1 D 0:5 and
Y2 D 0:5: proportion of times that the p-value for the test statistic is less than 0.1

Normal errors Non-normal errors

�2 D 15 �2 D 25 �2 D 50 �2 D 15 �2 D 25 �2 D 50

N D 1,000
TSLS_Sargan 0.0880 0.1000 0.0900 0.0910 0.1070 0.1210
TSLS_Basmann 0.0860 0.1000 0.0890 0.0910 0.1070 0.1200
LIML_AndersonRubin 0.0840 0.1000 0.0900 0.0910 0.1070 0.1210
LIML_Basmann 0.0820 0.0990 0.0880 0.0900 0.1060 0.1200
GMM_Hansen 0.0900 0.0970 0.0890 0.0950 0.1050 0.1190
BIPROBIT 0.2791 0.3252 0.3439 0.3141 0.3033 0.2464

N D 5,000
TSLS_Sargan 0.0970 0.0890 0.0990 0.0790 0.0820 0.0900
TSLS_Basmann 0.0970 0.0890 0.0990 0.0790 0.0810 0.0900
LIML_AndersonRubin 0.0930 0.0890 0.0990 0.0780 0.0800 0.0900
LIML_Basmann 0.0920 0.0870 0.0990 0.0780 0.0800 0.0880
GMM_Hansen 0.0990 0.0900 0.1010 0.0790 0.0840 0.0920
BIPROBIT 0.1518 0.1436 0.1506 0.4598 0.5172 0.5518

N D 10,000
TSLS_Sargan 0.0960 0.0980 0.1060 0.0860 0.1040 0.0900
TSLS_Basmann 0.0960 0.0980 0.1060 0.0860 0.1040 0.0900
LIML_AndersonRubin 0.0940 0.0980 0.1040 0.0860 0.1040 0.0900
LIML_Basmann 0.0940 0.0980 0.1040 0.0860 0.1040 0.0900
GMM_Hansen 0.1000 0.1000 0.1020 0.0860 0.1040 0.1060
BIPROBIT 0.1443 0.1403 0.1506 0.2385 0.2780 0.3560

provide a comprehensive evaluation of the program’s impact. In this example, we
estimate the impact of having heard a family message from any source on current
contraceptive use. The summary statistics for the sample are found in Table 2.27.

We estimated the two equation models, one for self-reported exposure to a
message and one for current contraceptive use, using all nine methods that were
evaluated in the Monte Carlo experiments. The results of the Monte Carlo experi-
ments suggest that the overidentification tests were reasonably reassuring while the
endogeneity tests were highly inaccurate. The overidentification tests in Bangladesh
for 2SLS, LIML, GMM all fail to reject the null hypothesis that the exclusion
restrictions are valid, the desired result. The results for these tests for Tanzania
were mixed: the p-values were 0.09, 0.09, and 0.21 for 2SLS, LIML, and GMM
respectively and so there is weak evidence to support the null. When we included the
excluded variables in the BIPROBIT models and tested to see if these variables had
direct effects on contraceptive use, we found that two of three exclusion restrictions
were valid for Bangladesh while both exclusion restrictions were valid for Tanzania.
Since the DFM is also identified without exclusion restrictions, we performed the
same test using DFM and found that none of the excluded variables had direct
effects on contraceptive use. Thus, the evidence seems to suggest that the models
are identified.
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Table 2.24 Endogeneity tests for true ATE D 0.2, error correlation D 0.3, Y1 D 0:25 and
Y2 D 0:25: proportion of times that the p-value for the test statistic is greater than 0.1

Normal errors Non-normal errors

�2 D 15 �2 D 25 �2 D 50 �2 D 15 �2 D 25 �2 D 50

N D 1,000
TSLS_Durban 0.8630 0.8010 0.7140 0.8180 0.7930 0.6280
TSLS_Wu 0.8630 0.8020 0.7160 0.8180 0.7950 0.6280
LIML_Hausman 1.0000 1.0000 0.9900 1.0000 1.0000 0.9810
GMM_Hayashi 0.8610 0.8000 0.7060 0.8180 0.7880 0.6240
Residual1 0.8710 0.8180 0.7300 0.8230 0.8000 0.6440
Residual2 0.8330 0.7770 0.6860 0.8970 0.8740 0.7180
BIPROBIT 0.8499 0.7658 0.6690 0.7886 0.8006 0.6640

N D 5,000
TSLS_Durban 0.8750 0.8420 0.7490 0.7860 0.7290 0.5740
TSLS_Wu 0.8750 0.8430 0.7510 0.7860 0.7290 0.5740
LIML_Hausman 1.0000 1.0000 0.9940 1.0000 0.9970 0.9750
GMM_Hayashi 0.8780 0.8390 0.7490 0.7830 0.7280 0.5720
Residual1 0.8770 0.8410 0.7690 0.7910 0.7280 0.5820
Residual2 0.6410 0.6140 0.5590 0.9010 0.8840 0.7870
BIPROBIT 0.7570 0.7090 0.6020 0.8400 0.8220 0.7230

N D 10,000
TSLS_Durban 0.8500 0.7680 0.6740 0.7780 0.7280 0.5860
TSLS_Wu 0.8500 0.7680 0.6740 0.7780 0.7300 0.5860
LIML_Hausman 1.0000 0.9980 0.9780 1.0000 0.9920 0.9620
GMM_Hayashi 0.8460 0.7600 0.6660 0.7720 0.7220 0.5840
Residual1 0.8460 0.7780 0.6780 0.7740 0.7260 0.6020
Residual2 0.4940 0.4660 0.3600 0.8720 0.8940 0.8980
BIPROBIT 0.6300 0.5680 0.4300 0.8040 0.8540 0.8480

We also performed tests of the null hypothesis that having heard a family
planning message is exogenous. The results across the two data sets were consistent
for 2SLS, GMM, Residual1, Residual2, and BIPROBIT: the null hypothesis was
strongly rejected for Tanzania and the tests failed to reject the null hypothesis in
Bangladesh. We did not perform a formal endogeneity test for DFM. However, for
both data sets, the DFM yielded highly significant heterogeneity parameters using a
four point of support model (the same number of points of support employed in the
Monte Carlo experiments) and, as can be seen in the tables below, in both samples
the point estimate of the ATE is quite different for the DFM and models that do not
correct for endogeneity.

Table 2.28 presents the estimated ATE’s across all nine methods along with
standard errors. The ATE’s and standard errors are drawn directly from the
regression results for the linear models while the STATA margins command was
used to obtain the ATE and standard errors for all non-linear models except DFM.
The standard errors for the DFM model were obtained by using a parametric
bootstrap procedure with 10,000 replications using a FORTRAN program.
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Table 2.25 Endogeneity tests for true ATE D 0.2, error correlation D 0.3, Y1 D 0:5 and Y2 D 0:5:
proportion of times that the p-value for the test statistic is greater than 0.1

Normal errors Non-normal errors

�2 D 15 �2 D 25 �2 D 50 �2 D 15 �2 D 25 �2 D 50

N D 1,000
TSLS_Durban 0.8500 0.7980 0.7040 0.8620 0.8110 0.7330
TSLS_Wu 0.8510 0.8040 0.7060 0.8630 0.8130 0.7340
LIML_Hausman 1.0000 0.9980 0.9920 1.0000 0.9980 0.9900
GMM_Hayashi 0.8430 0.8020 0.7080 0.8600 0.8080 0.7300
Residual1 0.8440 0.7980 0.7080 0.8510 0.8090 0.7380
Residual2 0.8410 0.7820 0.6870 0.5760 0.5860 0.5680
BIPROBIT 0.8510 0.7800 0.6680 0.7287 0.6740 0.6210

N D 5,000
TSLS_Durban 0.8010 0.7340 0.6510 0.8240 0.7850 0.6910
TSLS_Wu 0.8010 0.7350 0.6510 0.8240 0.7850 0.6920
LIML_Hausman 1.0000 0.9960 0.9840 1.0000 1.0000 0.9820
GMM_Hayashi 0.8000 0.7280 0.6540 0.8250 0.7840 0.6870
Residual1 0.8020 0.7350 0.6510 0.8220 0.7790 0.6930
Residual2 0.6870 0.6450 0.5670 0.0110 0.0230 0.0350
BIPROBIT 0.7400 0.6760 0.5760 0.0864 0.0590 0.0720

N D 10,000
TSL_Durban 0.6960 0.7080 0.5680 0.8040 0.7220 0.6060
TSLS_Wu 0.6960 0.7080 0.5680 0.8040 0.7240 0.6060
LIML_Hausman 1.0000 0.9960 0.9680 1.0000 0.9940 0.9720
GMM_Hayashi 0.7000 0.7080 0.5640 0.8060 0.7240 0.6140
Residual1 0.6980 0.7280 0.5740 0.8340 0.7440 0.6380
Residual2 0.6060 0.5280 0.4280 0.0000 0.0000 0.0020
BIPROBIT 0.6640 0.5960 0.4540 0.0020 0.0040 0.0040

There is a fairly wide range in estimated ATEs across methods. For Bangladesh,
the DFM has the largest estimated ATE but also the largest standard error. We also
see that LPM and all the methods that assume normality give similar estimated
ATE’s while the three instrumental variables methods give results between these
methods and DFM. For Tanzania, DFM and the three instrumental variables
methods give very consistent results with estimated ATE’s approximately double
what is found for the two methods that do not correct for endogeneity (LPM and
Probit). The residual inclusion methods yield similar point estimates for the ATE as
BIPROBIT which falls above the methods that do not correct for endogeneity and
below the DFM and the instrumental variables methods.

Given the results of the Monte Carlo experiments, one would probably place the
most confidence in the results obtained for the DFM followed by the instrumental
variables methods. None of these methods rely on the assumption of normality
for the error distributions in models and the results of these methods are highly
consistent for Tanzania and least somewhat consistent for Bangladesh.
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Table 2.26 Descriptive statistics for Bangladesh (N D 21;472)

Variable Mean Standard dev.

Endogenous variables
Current user of contraception 0.458 0.498
Recall smiling sun message 0.223 0.417

Exogenous variables
Woman age 20–24 0.179 0.383
Woman age 25–29 0.178 0.383
Woman age 30–34 0.169 0.375
Woman age 35–39 0.140 0.347
Woman age 40–44 0.111 0.314
Woman age 45–49 0.072 0.259
Woman has primary education 0.248 0.432
Woman has secondary education 0.180 0.385
Husband has primary education 0.190 0.392
Husband has secondary education 0.243 0.429
Husband has college education 0.020 0.141
Sum of the number of contraceptive methods

available within 1 km
1.318 2.333

Indicator for 2003 survey 0.406 0.491
Number of facilities within 1 km with

smiling sun posters
0.305 0.542

Household has a radio 0.305 0.461
Household has a television 0.142 0.349

2.6 Conclusion

We conclude with some thoughts regarding the pattern of results presented in
Sect. 2.4. We first note that, when error correlation and instrument strength are low,
the models that we consider that attempt explicitly to correct for the endogeneity of
a binary regressor do not seem to perform as well as alternatives that simply ignore
potential endogeneity. Even BIPROBIT, for which identification ultimately rests on
the assumption of jointly normal errors in Eqs. (2.1) and (2.2) does not perform as
well as LPM under circumstances of weak error correlation and weak instruments,
even when the true error distribution is bivariate normal.

As either instrument strength or error correlation increases, our findings suggest
that the researcher has attractive options relative to the simple methods. As expected,
BIPROBIT performs well under these circumstances when the true error distribution
is bivariate normal. However, Residual2 performs as well or is even slightly better
than BIPROBIT. In addition, even when the true error distribution is bivariate
normal, DFM represents a significant improvement over LPM and performs only
slightly worse than Residual2 and BIPROBIT. When the true error distribution is
non-normal, DFM dominates all other estimators. The only estimation methods that
come close are the linear instrumental variables estimators, which are also robust
to non-normal errors. However, these estimators only approach but do not equal the
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Table 2.27 Descriptive statistics for Tanzania (N D 17;724)

Variable Mean Standard dev.

Endogenous variables
Current user of contraception 0.115 0.319
Recall family planning message 0.387 0.487

Exogenous variables
Woman age 15–19 0.221 0.415
Woman age 20–24 0.196 0.397
Woman age 25–29 0.174 0.379
Woman age 30–34 0.132 0.338
Woman age 35–39 0.113 0.317
Woman age 40–44 0.086 0.280
Woman 1–6 years of education 0.219 0.413
Woman 7 years of education 0.411 0.492
Woman 8 or more years of education 0.017 0.128
Partner 1–6 years of education 0.170 0.376
Partner 7 years of education 0.274 0.446
Partner 8 or more years of education 0.042 0.201
Number of contraceptive methods seen

in stock in facilities within 5 km
1.229 1.702

Household owns a radio 0.347 0.476
Household owns a television 0.002 0.044

Table 2.28 Estimated average treatment effects and standard errors for the two
empirical examples

Bangladesh Tanzania

Method ATE SE ATE SE

LPM 0.0669 0.0082 0.0700 0.0050
Probit 0.0699 0.0082 0.0676 0.0050
TSLS 0.0843 0.0376 0.1327 0.0224
LIML 0.0843 0.0376 0.1329 0.0224
GMM 0.0841 0.0377 0.1320 0.0236
Residual1 0.0840 0.0375 0.1231 0.0243
Residual2 0.0508 0.0358 0.1181 0.0236
BIPROBIT 0.0508 0.0358 0.1178 0.0229
DFM 0.1188 0.0545 0.1361 0.0440
N 21,472 17,724

performance of DFM when both error correlation and instrument strength are high.
Nonetheless, they are a reasonable option for researchers using standard statistical
packages (at least until an implementation of the DFM becomes available within one
of these packages, a project on which the authors have now embarked with STATA).

The superior performance of the DFM and, to some extent, the linear instru-
mental variables estimators when the true error distribution is non-normal is
even more impressive when one considers that the design of our experiments
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involving non-normal errors was likely comparatively favorable to models that
assume normality compared with real world circumstances: our approach to non-
normal errors still retained the unimodality of the joint distribution of the errors
and of the surface of its joint distribution in R3. In some sense this likely gave
even those models explicitly motivated by joint normality some fighting chance
for reasonable fit to the data. Real world circumstances will likely involve multi-
modal distributions, reflecting the presence of combinations of pronounced “types”
within the population. Nonetheless, our results suggest that methods that rely on
the assumption of normally distributed errors are a poor choice relative to the more
robust methods considered in this paper even in the unimodal case. In that sense
they echo the concerns about the fragility of identification by functional form that
have been in the literature in various contexts for nearly three decades (e.g. LaLonde
1986; Manning et al. 1987).

In terms of practical advice for applied researchers, our results thus do suggest
some guidelines. First, less parametric methods, including linear instrumental
variables models if not the DFM itself (the estimation of which is, for the moment,
impractical for most) are preferable to methods that rely on more parametric
assumptions for the joint error distribution: joint normality assumptions work out
particularly well only when the errors are indeed jointly normal (and even then
only when instrument strength and error correlation were high), and this is likely
a heroic assumption in many applied microeconometric applications. Even when
the bivariate probit performs well, it does not necessarily significantly outperform
simpler methods (such as Residual2) that also implicitly rely on joint normality. Put
slightly differently, it is not clear that the explicit functional form assumption of the
bivariate probit model is buying the user much in terms of performance, even under
ideal circumstances.

Second, and perhaps intuitively unsurprisingly in light of the evidence regarding
weak instruments in the setting of continuous outcomes of interest and endogenous
variables (e.g. Stock and Staiger 1997; Bound et al. 1995), instrument strength
matters. Indeed, even in the case of models relying on joint normality assumptions
for the errors when the errors are actually jointly non-normal, increases in instru-
ment strength yield performance benefits. Moreover, it is straightforward to assess
instrument strength.

Overidentification tests proved reasonably reliable in the binary outcome and
binary endogenous variable setting even with linear instrumental variables based
tests. We can offer far less guidance regarding the other key indicator of likely model
performance, tests of endogeneity. Unfortunately, we cannot even say with any
confidence that formal endogeneity tests are, in this setting and with the currently
available set of conventional tests, necessarily any more reliable than informed
theoretical assumptions by applied researchers.

As for future work in the methodological arena, it is clear that nonparametric full-
information maximum likelihood approaches hold great potential promise. Much
remains to be done in this area, including the introduction of routines for estimating
these models as part of standard statistical packages such as STATA, continued
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improvement of estimation methodology and the development and refinement of
tests (such as a formal endogeneity test). Finally, model performance in circum-
stances of heterogeneous treatment effects is now under consideration by the authors
in a follow-up to this manuscript.
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