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Abstract In this paper, we get explicit upper and lower bounds for y,, where
0 < y1 < y» < y3 < --- are consecutive ordinates of non-trivial zeros p =
B + iy of the Riemann zeta function. Meanwhile, we obtain the asymptotic relation
Yalog?>n —2mnlogn ~ 2mnloglogn as n — oo.

1 Introduction

The Riemann zeta function is defined for Re(s) > 1by ¢(s) = Y .o, n~* and
extended by analytic continuation to the complex plan with a simple pole at s = 1
with residues 1. It is known [3, 7] that

T T
NT)= Y 1= 5 log — + O(log 7). (1)
Z(/gj-yi;)i(l

As a consequence of (1) we get

o1 log(2
Y o—= Lo 7 = 1982 oo 4 B,
4 2

0<y<T
{(B+iy)=0

with E(T) = O(1). Recently, we obtained an explicit form of this approximate

formula by proving that 5‘—30 < E(T) < X% forany T > y, (see [1, Theorem 1]),
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Fig. 1 Graph of the point set (n,y,) for 2 < n < 250 and functions 1207;:’1 a1+ alolgol%) with
a=3/4anda =5/2

y1 =min{y > 0: (B + iy) = 0} ~ 14.134725141734693790457251983562.

More generally, we set 0 < y; < y» < y3 < --- to be consecutive ordinates of the
imaginary parts of non-trivial zeros p = B + iy of {(s). Another consequence of

(1)is

2mn

Vi , as n— oo.

- logn

Our intention in writing this note is to obtain explicit forms of this approximate
formula. More precisely, we show the following.
Theorem 1.1. For any integer n = 5 we have

2mn 3loglogn 2mn 5loglogn
1+_ﬁ <y, < 1+_ﬁ ] 2)
logn 4 logn logn 2 logn

Figure 1 shows graph of the point set (n,y,) for 2 < n < 250, and lower and
upper bounds appeared in (2). We note that the left-hand side of (2) is valid for
2 < n <4, too.

One may obtain better bounds for y, by using numerical information, which we
obtain during proof of Theorem 1.1. More precisely, by considering Tables 1 and 2,
we have the following.

Theorem 1.2. Assume that we choose pairs A and n) from Table 1, and also we
choose pairs n and n; from Table 2. Then, we have

2nn (1+iloglogn) <y and y, < 2nn (1 +iloglogn)7

logn 2r logn 2n logn

respectively, for n = ny and for n = n,.
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Table 1 Some values of A and 1, for which the inequality (11) is valid
forn = n,

~

A nj =~ A n, =
—27 39 3n/2 4984.5

- 51 57/3 392062.1

—1 7.8 TIn/4 138610176.5

0 10.7  97/5 2499273431483.9

1 16.7 11x/6  109511051064367600190250.3

b4 97.1 5.795 876581819433015771165641491644046075.5

Table 2 Some values of 7 and n, for which the inequality (12) is valid

forn = n,

i ny = n ny =

207 8.8 61 1197.1

107 11.7 S5 26245.8

8 64.3 4r 80727920.5

T 217.7 3n 74219923532062069835922351534787.7

On the other hand, we mention that the constants % and % in Theorem 1.1, as

more as, the constants % and % in Theorem 1.2, are not optimal. More precisely,
if we let

Vn
2nn -1
. logn
Ry = loglogn ’ )
logn

then Theorem 1.1 yields that & < R, < 5 for any integer n = 5. But, the proof o
hen Th 1.1 yields that 3 < R, < 3 for any integ 5. But, the proof of

above theorems includes an argument in its heart, which implies that lim R, = 1.
n—>o0

Indeed, we show the following.

Theorem 1.3. Let

A = Yulog?n —2mnlogn

4
nloglogn @

Then, we have lim A, = 2.

n—o0

Corollary 1.1. For any real ¢ € (0, 1), there exists positive integer n. such that for
n = n, we have

2 logl 2 logl
wn 1_’_(1_8)ogogn <y < wn 1_'_(1_'_8)ogogn '
logn logn egn gn
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Fig. 2 Graph of the pointset (1, R,) for 4000 < n < 5000 and 9000 < n < 10000, where R, is
defined by (3)
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R
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Fig. 3 Graph of the point set (1, A,) for 2 < n < 500, where A, is defined by (4), and horizontal
line at height 27

Remark 1.1. Figure 2 pictures some values of R, for several values of n. As our
computations show, one may have the inequality R, > 1 for n = 3. This means that
one may have the validity of the left-hand side of (2) with 1 instead of %, for any
integer n = 3. This conjecture is pictured in Fig. 3 in another point of view, where
we plot values of A, for 2 < n < 500 and horizontal line at height 27r. Also, it
seems that there exists a positive integer m =~ 250 such that R,y,, = R, for any
integer n = 3.

Remark 1.2. The truth of Corollary 1.1 asserts that as n — oo we have

log logn)

_ 2nn
N logn

yy = 2 (1 (14 0(1)

logn

One may ask for such asymptotic expansions with more precise terms.
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In the next two sections, we prove our results. To generate figures which appeared
on present paper, as more as, during proofs, we will do several computations running
over the numbers y,, all of which have been done by using Maple software and are
based on the tables of zeros of the Riemann zeta function due to Odlyzko [4].

2 Lambert W Function, the Key of Proof

The main idea to get explicit results similar to (2) is applying an explicit version of
the Riemann—von Mangoldt formula (1). This can be found in the following result
due to Rosser, which is Theorem 19 of [6].

Proposition 2.1. Forany T = 2 we have |[N(T) — F(T)| < R(T), with

443 397
loglog T + —.
oglogT + 250

T T 137
F(T) = —1log — + - and R(T) = —— log T
(1) = pleeg o +g and R(T) = qasloeT + 105

For our purpose, we need to modify the truth of above proposition as follows. For the
whole text, we set

14 11
{=— and u=—.
25 50
Lemma 2.1. Let
1 1
L(T)y=—TlogT —4T and U(T)= —TlogT — uT. (5)
21 2
Then, for T = y; — 107 we have
L(T) < N(T) < U(T). ©)

Moreover, U(T) and L(T) are strictly increasing for T = e*™"~' ~ 1.465653 and
T = &?™=! = 12.411008, respectively.

Proof. We consider Proposition 2.1 to write F(T)—R(T) < N(T) < F(T)+R(T)
for T = 2. On the other hand, for T = y;—107> we have F(T)+R(T) < U(T) and
L(T) < F(T)— R(T). This proves both sides of (6). Monotonicity of the functions
U(T) and L(T) is straightforward. O

The following lemma brings lower and upper bounds for N(7') to bounds for y,
in terms of inverses of mentioned bounds for N (7).

Lemma 2.2. Assume that L(T) and U(T) are defined as in (5), and denote by
L™YT) and U~N(T) their inverses, respectively. Then, for any integer n = 1
we have
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U™'(n) < yu < L7 (). 7

Proof. Assume that n > 1 is any arbitrary integer and § € (0, 1) is any arbitrary
real. We have N(y,) = n. Thus, we get N(y, +6) = nand N(y, —6) < n — L.
Therefore, we obtain

14+ N(yp—38) <n < Ny, +96). (8)

Right-hand sides of (6) and (8) give y, + 8§ = U~'(n). Thus, we get y, = U~'(n).
Similarly, left-hand sides of (6) and (8) give L(y, —8) < N(y, —8) <n—1 <n.
So, we get ¥, — 8 < L™!(n), and this implies validity of y, < L™!(n). O

In order to use inequalities (7), we need formulas for the inverses of the functions
L(T) and U(T). This may be done in terms of the Lambert W function W(x), which
is defined by the relation W(x)e"™ = x for x € [—e™', +00). The Lambert W
function has the asymptotic expansion W(x) = logx 4+ O(loglogx) as x — oo,
(see [5, p. 111]). The following lemma summarizes what we need about the inverses
of the functions L(7T") and U(T).

Lemma 2.3. Assume that a and b are some positive real numbers, and let
1
f(Ty=-TlogT —bT.
a

We denote the inverse function of f by f~'. Then, for T = e*~! the function f is
strictly increasing and we have

aT

WaeT)’ )

i) =

In particular, as T — +oo, we obtain f ~1(T) ~ aT /logT.

Proof. Assume that T > 0. Then, by definition of the Lambert W function, we
imply that f(e" («™T)+aby = T or equivalently f~1(T) = " (ac™"T)+ab Dpefi-
nition of the Lambert W function also gives that aT = W (ae4*T)e" (ec™T)+ab_
Thus, we obtain (9). The asymptotic relation comes from W(ae “*T) ~ logT,
which is valid as T — +o0. O

Finally, to get our desired explicit results, we need some explicit bounds for the
Lambert W function. The following proposition, which is Theorem 2.8 of [2], offers
such sharp bounds.

Proposition 2.2. Assume that o > 0 is real, and let

logl
wy(x) :=logx —loglogx + a%.
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Then, for every x = e we have
w1 (x) S W(x) < 0 (x), (10)

with equality only for x = e.

3 Proof of Results

3.1 Proof of the Left-Hand Side of (2)

We let ¢, = 2we™2", By applying the validity of Lemma 2.3, considering the left-
hand side of (7), and considering the right-hand side of (10), we obtain

2mn 2mn

n Z []_1 = Z )
v () W(eun) = o_< (cun)

for ¢,n = e or equivalently forn > = = 1.7. Moreover, by computation, for any
integer n = 1 we get

2nn

n =
w_< (cyn)

Y = g(n),

say. We let
gn) — o=

nloglogn
log?n

h(n) :=

Now, we note that the function & : (e, +00) —> (—00,2x) defined by h(n) is
continuous and strictly increasing. Moreover, we have

lim h(n) = —oco and lim Ah(n) = 2.
n—et n—-+o00

Therefore, for any real A € (—o0, 27), there exists unique n) € (e, +00) such that
h(n) = A for n = n, with equality only for n = n,. Hence, for n > n, we obtain

2nn nloglogn

iz (1)

=
logn log2 n

In Table 1 we list some values of A and related values of ;. We use information of
this table choosing A = 37”, from which we obtain the inequality



76 M. Hassani

2rn 3mnloglogn

n 2 2
logn 2log"n

v

for n = 4985. By computation, we confirm validity of it for 2 < n < 4984, too.
This completes the proof of left-hand side of (2).

3.2 Proof of the Right-Hand Side of (2)

Let ¢, = 2we 2"t We use the validity of Lemma 2.3, the right-hand side of (7), and
the left-hand side of (10) to get

2mn - 2nn
Wi(cen) — wijaleen)’

Vn L_l(n) =

for ¢yn = e or equivalently forn = 5 % 14.6. As more as, by computation, for any
integer n > 8, we obtain
2nn
n S ———— 1= v(n),
601/2(6[}1)
say. We set
2
. U(}’l) - 107;’:1
Z(}’l) ™ nloglogn

log? n
Also, we let

1 log(—logey)

= ~ —0.049167.
n—>1/c,+ z(n) 27 log ¢

Y=

We note that the function y : (1/¢;, +00) — (y1,1/(27)) defined by y(n) =
1/z(n) is continuous and strictly increasing. Thus, there exists unique ny > 1/c¢¢
such that y(ng) = 0. By computation, we observe that ny ~ 7.745051. Now, we
note that the function z : (ng, +00) — (27, +00) defined by z(n) is continuous and
strictly decreasing. Moreover, we have

lim z(n) = 4oco and lim z(n) =2m.
n—ng n—+00

Therefore, for any n € (2w, +00), there exists unique n, € (no, +00) such that
z(n) < nfor n = n, with equality only for n = n,, and consequently, for n > n,
we get
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2rn nloglogn

< 12
logn log? n (12)

Vn

Table 2 includes some values of 7n and related values of n,. Considering our
computational tools, we choose n = 57 from this table, from which for n = 26246
we obtain the inequality

2nn Smnloglogn

n <
v logn log’n

By computation, we confirm validity of it for 5 < n < 26245, too. This completes
the proof of right-hand side of (2).

3.3 Proof of Theorem 1.3

We note that inequalities (11) and (12) imply

liminf A, = 2% and limsup A, <2,
n—00 n—00

respectively. This gives assertion of Theorem 1.3.
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