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Abstract In this paper, we get explicit upper and lower bounds for �n, where
0 < �1 < �2 < �3 < � � � are consecutive ordinates of non-trivial zeros � D
ˇC i� of the Riemann zeta function. Meanwhile, we obtain the asymptotic relation
�n log2 n � 2�n logn � 2�n log logn as n ! 1.

1 Introduction

The Riemann zeta function is defined for Re.s/ > 1 by �.s/ D P1
nD1 n�s and

extended by analytic continuation to the complex plan with a simple pole at s D 1

with residues 1. It is known [3, 7] that
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As a consequence of (1) we get
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with E.T / D O.1/. Recently, we obtained an explicit form of this approximate
formula by proving that 3

50
< E.T / < 109

250
for any T > �1 (see [1, Theorem 1]),
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M. Hassani (�)
Department of Mathematics, University of Zanjan, University Blvd., 45371-38791, Zanjan, Iran
e-mail: mehdi.hassani@znu.ac.ir
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Fig. 1 Graph of the point set .n; �n/ for 2 6 n 6 250 and functions 2�n
logn .1 C a

log logn
logn / with

a D 3=4 and a D 5=2

�1 D minf� > 0 W �.ˇ C i�/ D 0g Ñ 14:134725141734693790457251983562:

More generally, we set 0 < �1 < �2 < �3 < � � � to be consecutive ordinates of the
imaginary parts of non-trivial zeros � D ˇ C i� of �.s/. Another consequence of
(1) is

�n � 2�n

logn
; as n ! 1:

Our intention in writing this note is to obtain explicit forms of this approximate
formula. More precisely, we show the following.

Theorem 1.1. For any integer n > 5 we have

2�n

logn

�

1C 3

4

log logn

logn

�

6 �n 6 2�n
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log logn
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�

: (2)

Figure 1 shows graph of the point set .n; �n/ for 2 6 n 6 250, and lower and
upper bounds appeared in (2). We note that the left-hand side of (2) is valid for
2 6 n 6 4, too.

One may obtain better bounds for �n by using numerical information, which we
obtain during proof of Theorem 1.1. More precisely, by considering Tables 1 and 2,
we have the following.

Theorem 1.2. Assume that we choose pairs 	 and n	 from Table 1, and also we
choose pairs � and n� from Table 2. Then, we have

2�n
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�

1C 	

2�

log logn
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�

6 �n and �n 6 2�n
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�

1C �

2�
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;

respectively, for n > n	 and for n > n�.
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Table 1 Some values of 	 and n	 for which the inequality (11) is valid
for n > n	

	 n	 Ñ 	 n	 Ñ
�2� 3.9 3�=2 4984.5
�� 5.1 5�=3 392062.1
�1 7.8 7�=4 138610176.5
0 10.7 9�=5 2499273431483.9
1 16.7 11�=6 109511051064367600190250.3
� 97.1 5.795 876581819433015771165641491644046075.5

Table 2 Some values of � and n� for which the inequality (12) is valid
for n > n�

� n� Ñ � n� Ñ
20� 8:8 6� 1197.1
10� 11:7 5� 26245.8
8� 64:3 4� 80727920.5
7� 217:7 3� 74219923532062069835922351534787.7

On the other hand, we mention that the constants 3
4

and 5
2

in Theorem 1.1, as
more as, the constants 	

2�
and �

2�
in Theorem 1.2, are not optimal. More precisely,

if we let

Rn WD

�n
2�n
log n

� 1
log log n

log n

; (3)

then Theorem 1.1 yields that 3
4

6 Rn 6 5
2

for any integer n > 5. But, the proof of
above theorems includes an argument in its heart, which implies that lim

n!1Rn D 1.

Indeed, we show the following.

Theorem 1.3. Let

�n D �n log2 n � 2�n log n

n log logn
: (4)

Then, we have lim
n!1�n D 2� .

Corollary 1.1. For any real " 2 .0; 1/, there exists positive integer n" such that for
n > n" we have

2�n

logn

�

1C .1 � "/ log logn

logn

�

6 �n 6 2�n

logn

�

1C .1C "/
log logn

logn

�

:



72 M. Hassani

Fig. 2 Graph of the pointset .n; Rn/ for 4000 6 n 6 5000 and 9000 6 n 6 10000, where Rn is
defined by (3)

Fig. 3 Graph of the point set .n;�n/ for 2 6 n 6 500, where�n is defined by (4), and horizontal
line at height 2�

Remark 1.1. Figure 2 pictures some values of Rn for several values of n. As our
computations show, one may have the inequalityRn > 1 for n > 3. This means that
one may have the validity of the left-hand side of (2) with 1 instead of 3

4
, for any

integer n > 3. This conjecture is pictured in Fig. 3 in another point of view, where
we plot values of �n for 2 6 n 6 500 and horizontal line at height 2� . Also, it
seems that there exists a positive integer m Ñ 250 such that RnCm > Rn for any
integer n > 3.

Remark 1.2. The truth of Corollary 1.1 asserts that as n ! 1 we have

�n D 2�n

logn

�

1C .1C o.1//
log logn

logn

�

:

One may ask for such asymptotic expansions with more precise terms.
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In the next two sections, we prove our results. To generate figures which appeared
on present paper, as more as, during proofs, we will do several computations running
over the numbers �n, all of which have been done by using Maple software and are
based on the tables of zeros of the Riemann zeta function due to Odlyzko [4].

2 Lambert W Function, the Key of Proof

The main idea to get explicit results similar to (2) is applying an explicit version of
the Riemann–von Mangoldt formula (1). This can be found in the following result
due to Rosser, which is Theorem 19 of [6].

Proposition 2.1. For any T > 2 we have jN.T /� F.T /j 6 R.T /, with

F.T / D T

2�
log

T

2�e
C 7

8
and R.T / D 137

1000
logT C 443

1000
log logT C 397

250
:

For our purpose, we need to modify the truth of above proposition as follows. For the
whole text, we set

` D 14

25
and u D 11

50
:

Lemma 2.1. Let

L.T / D 1

2�
T logT � `T and U.T / D 1

2�
T logT � uT: (5)

Then, for T > �1 � 10�5 we have

L.T / 6 N.T / 6 U.T /: (6)

Moreover, U.T / and L.T / are strictly increasing for T > e2�u�1 Ñ 1:465653 and
T > e2�`�1 Ñ 12:411008, respectively.

Proof. We consider Proposition 2.1 to writeF.T /�R.T / 6 N.T / 6 F.T /CR.T /
for T > 2. On the other hand, for T > �1�10�5 we haveF.T /CR.T / 6 U.T / and
L.T / 6 F.T /�R.T /. This proves both sides of (6). Monotonicity of the functions
U.T / and L.T / is straightforward. ut

The following lemma brings lower and upper bounds for N.T / to bounds for �n
in terms of inverses of mentioned bounds for N.T /.

Lemma 2.2. Assume that L.T / and U.T / are defined as in (5), and denote by
L�1.T / and U�1.T / their inverses, respectively. Then, for any integer n > 1

we have
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U�1.n/ 6 �n 6 L�1.n/: (7)

Proof. Assume that n > 1 is any arbitrary integer and ı 2 .0; 1/ is any arbitrary
real. We have N.�n/ D n. Thus, we get N.�n C ı/ > n and N.�n � ı/ 6 n � 1.
Therefore, we obtain

1CN.�n � ı/ 6 n 6 N.�n C ı/: (8)

Right-hand sides of (6) and (8) give �n C ı > U�1.n/. Thus, we get �n > U�1.n/.
Similarly, left-hand sides of (6) and (8) give L.�n � ı/ 6 N.�n � ı/ 6 n � 1 < n.
So, we get �n � ı 6 L�1.n/, and this implies validity of �n 6 L�1.n/. ut

In order to use inequalities (7), we need formulas for the inverses of the functions
L.T / andU.T /. This may be done in terms of the LambertW functionW.x/, which
is defined by the relation W.x/eW.x/ D x for x 2 Œ�e�1;C1/. The Lambert W
function has the asymptotic expansion W.x/ D logx C O.log logx/ as x ! 1,
(see [5, p. 111]). The following lemma summarizes what we need about the inverses
of the functions L.T / and U.T /.

Lemma 2.3. Assume that a and b are some positive real numbers, and let

f .T / D 1

a
T logT � bT:

We denote the inverse function of f by f �1. Then, for T > eab�1 the function f is
strictly increasing and we have

f �1.T / D aT

W.ae�abT /
: (9)

In particular, as T ! C1, we obtain f �1.T / � aT =logT .

Proof. Assume that T > 0. Then, by definition of the Lambert W function, we
imply that f .eW .ae�abT /Cab/ D T or equivalently f �1.T / D eW .ae�abT /Cab . Defi-
nition of the LambertW function also gives that aT D W.ae�abT /eW .ae�abT /Cab .
Thus, we obtain (9). The asymptotic relation comes from W.ae�abT / � logT ,
which is valid as T ! C1. ut

Finally, to get our desired explicit results, we need some explicit bounds for the
LambertW function. The following proposition, which is Theorem 2.8 of [2], offers
such sharp bounds.

Proposition 2.2. Assume that ˛ > 0 is real, and let

!˛.x/ WD logx � log logx C ˛
log logx

logx
:
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Then, for every x > e we have

!1
2
.x/ 6 W.x/ 6 ! e

e�1
.x/; (10)

with equality only for x D e.

3 Proof of Results

3.1 Proof of the Left-Hand Side of (2)

We let cu D 2�e�2�u. By applying the validity of Lemma 2.3, considering the left-
hand side of (7), and considering the right-hand side of (10), we obtain

�n > U�1.n/ D 2�n

W.cun/
> 2�n

! e
e�1
.cun/

;

for cun > e or equivalently for n > e
cu

Ñ 1:7. Moreover, by computation, for any
integer n > 1 we get

�n > 2�n

! e
e�1
.cun/

WD g.n/;

say. We let

h.n/ WD
g.n/ � 2�n

log n
n log log n

log2 n

:

Now, we note that the function h W .e;C1/ �! .�1; 2�/ defined by h.n/ is
continuous and strictly increasing. Moreover, we have

lim
n!eC

h.n/ D �1 and lim
n!C1h.n/ D 2�:

Therefore, for any real 	 2 .�1; 2�/, there exists unique n	 2 .e;C1/ such that
h.n/ > 	 for n > n	 with equality only for n D n	. Hence, for n > n	 we obtain

�n > 2�n

logn
C 	

n log logn

log2 n
: (11)

In Table 1 we list some values of 	 and related values of n	. We use information of
this table choosing 	 D 3�

2
, from which we obtain the inequality
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�n > 2�n

logn
C 3�n log logn

2 log2 n
;

for n > 4985. By computation, we confirm validity of it for 2 6 n 6 4984, too.
This completes the proof of left-hand side of (2).

3.2 Proof of the Right-Hand Side of (2)

Let c` D 2�e�2�`. We use the validity of Lemma 2.3, the right-hand side of (7), and
the left-hand side of (10) to get

�n 6 L�1.n/ D 2�n

W.c`n/
6 2�n

!1=2.c`n/
;

for c`n > e or equivalently for n > e
c`

Ñ 14:6. As more as, by computation, for any
integer n > 8, we obtain

�n 6 2�n

!1=2.c`n/
WD v.n/;

say. We set

z.n/ WD
v.n/ � 2�n

log n
n log log n

log2 n

:

Also, we let

y1 WD lim
n!1=c`C

1

z.n/
D log.� log c`/

2� log c`
Ñ �0:049167:

We note that the function y W .1=c`;C1/ ! .y1; 1=.2�// defined by y.n/ D
1=z.n/ is continuous and strictly increasing. Thus, there exists unique n0 > 1=c`
such that y.n0/ D 0. By computation, we observe that n0 Ñ 7:745051. Now, we
note that the function z W .n0;C1/ ! .2�;C1/ defined by z.n/ is continuous and
strictly decreasing. Moreover, we have

lim
n!nC

0

z.n/ D C1 and lim
n!C1 z.n/ D 2�:

Therefore, for any � 2 .2�;C1/, there exists unique n� 2 .n0;C1/ such that
z.n/ 6 � for n > n� with equality only for n D n�, and consequently, for n > n�
we get
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�n 6 2�n

logn
C �

n log logn

log2 n
: (12)

Table 2 includes some values of � and related values of n�. Considering our
computational tools, we choose � D 5� from this table, from which for n > 26246

we obtain the inequality

�n 6 2�n

logn
C 5�n log logn

log2 n
:

By computation, we confirm validity of it for 5 6 n 6 26245, too. This completes
the proof of right-hand side of (2).

3.3 Proof of Theorem 1.3

We note that inequalities (11) and (12) imply

lim inf
n!1 �n > 2� and lim sup

n!1
�n 6 2�;

respectively. This gives assertion of Theorem 1.3.
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