Chapter 2
Recommender Systems

Recommender systems base their operation on past user purchases/ratings over
a collection of items, for instance, books, CDs, etc. In this chapter, we bring to
surface factors that affect the recommendation algorithmic process. Moreover, we
describe the most important problems related to recommender systems and give
some references to actual solutions. Finally, there is an economic and social report
regarding Recommender Systems, which examines them under a more market-
based angle.

2.1 Basic Approaches

Recommender systems are gaining widespread acceptance in e-commerce applica-
tions as a way of tackling the “information overload” problem. This problem affects
our everyday experience while searching for information on a topic. To overcome
this problem, we often rely on suggestions from others who have more experience
on the topic. However, in the Web case where there are numerous suggestions, it is
not easy to detect the trustworthy ones. The process of recommendation becomes
controllable by shifting from individual to collective suggestions,

Three parallel approaches have emerged in the context of recommender systems:
collaborative filtering (CF), content-based Filtering (CB) and hybrid methods.

Collaborative filtering algorithms recommend those items to the target user, that
have been rated highly by other users with similar preferences and tastes [24, 28].
In most CF approaches, only the item and users’ identifiers are accessible and
no additional information over items or users is provided. Websites that pro-
vide recommendations in the form, “Customers who bought item i also bought
item y”, typically fall under collaborative filtering approaches. Grouplens research
group [24] introduced a collaborative filtering algorithm, known as user-based CF,
because it employs users’ similarities for the formation of the neighborhood of
nearest users. Another CF algorithm proposed by Sarwar et al. [28], is known as
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item-based CF algorithm, because it employs items’ similarities for the formation
of the neighborhood of nearest users. A pitfall of CF is the cold start problem: new
items have received only few ratings, so they cannot be recommended; new users
have performed only few transactions, so other users similar to them can be hardly
found.

Content-based filtering assumes that each user operates independently. It
exploits only information derived from documents or item features (eg. terms
or attributes) [4,20,23]. In particular, it exploits a set of attributes, which describes
the items and recommends other items similar to those that exist in the user’s profile.
This way, the cold start problem for new items and new users are alleviated, provided
that users prefer items that are similar in content to those they have already chosen.
However, the pitfall of CB is that there is no diversity in the recommendations.
That is, the user gets recommendations that are very familiar to her, since the
recommended items are similar to those in her item profile.

Hybrid algorithms attempt to combine CB with CF. The combination of content
with rating data helps capture more effective correlations between users or items,
which yields more accurate recommendations. The Fab System [1], combines CB
and CF in its recommendations, by measuring similarity between users after first
computing a profile for each user. Fab initially categorizes documents by a CB filter
and then recommends them to the test user based on his relevance feedback. In
contrast, the CinemaScreen System [25] runs CB on the results of CF. In particular,
the CinemaScreen system computes predicted rating values for movies based on CF
and then applies CB to generate the recommendation list.

Finally, apart from blending the content with rating data, Social web has allowed
the emergence of new data combinations that can provide even more robust
recommendations [22]. For instance, social networks such as Facebook, LinkedIn,
etc., include information about the connections (link data) between humans. There
are two main types of recommendations in social networks. The first one is related
to the link prediction task, whereas the second one refers to the rating prediction and
item recommendation task.

2.2 Definitions and Basic Factors

In this section, we identify the major factors that critically affect all CF algorithms,
since they are among the most popular methods in recommender systems. Our
analysis focuses on the basic operations of the CF process, which consists of three
stages.

e Stage I: formation of the user or item neighborhood with objects of similar
ratings and behavior.

o Stage 2: generation of a top-N list with algorithms that construct a list of best
item recommendations for a user.

* Stage 3: quality assessment of the top-N list.
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Table 2.1 Factors affect CF algorithms

Factor name Short description Stage

Sparsity Limited percentage of rated products 1

Scalability Computation increase by the number 1
of users and items

Train/test data size Data are divided into training and 1,3
evaluation or test

Neighborhood size Number of neighbors used for 1
the neighborhood formation

Similarity measure Measures that calculate proximity of 1
two objects

Recommendation list size Number of top-N recommended items 2

Recommendation list creation ~ Algorithms for the top-N list generation 2

Positive rating threshold Positive and negative ratings segregation 2,3

Evaluation Metrics Metrics that evaluate the quality of 3
top-N list

Setting a Baseline method A simple method against which 3
performance is compared

Past/future items The segregation between a priori known 3

and unknown items

In the rest of this section we elaborate on the aforementioned factors, which
are organized with respect to the stage where each one is involved. The examined
factors,which are detailed in the following, are succinctly described in Table 2.1.

Table 2.2 summarizes the symbols used in the sequel. To ease the discussion, we
will use the running example illustrated in Fig. 2.1, where U;_ ¢ are users and /|—¢
are items. As shown, the example data set is divided into a training and a test set.
Null cells (no rating) are represented as zeros.

Note that, in addition, a few more factors have been identified, like the impact of
subjectivity during the rating or issues related to the preprocessing of data [3,19,27].
Nevertheless, we do not examine these factors, because their effect is less easily
determinable.

2.2.1 First Stage Factors

Sparsity: In most real-world cases, users rate only a very small percentage
of items. This causes data sets to become sparse. The problem of sparsity is
extensively studied. In such cases, the recommendation engine cannot provide
precise proposals, due to lack of sufficient information. A similar problem of CF
algorithms is cold-start, as mentioned previously [21].

In a few works [19, 27], there is a preprocessing step that fills missing values.
Several other works [11, 15, 28] focus only on very sparse data. Also, related
work provides benchmark data sets with different sparsity, e.g., the Jester data



10

2 Recommender Systems

Table 2.2 Symbols and

definitions Symbol Definition
k Number of nearest neighbors
N Size of recommendation list
NN (u) Nearest neighbors of user u
NN (@) Nearest neighbors of item i
P, Threshold for positive ratings
z Domain of all items
2 Domain of all users
u,v Some users
i,] Some items
Tu Set of items rated by user u
U; Set of users rated item i
Fui The rating of user u on item i
Tu Mean rating value for user u
T Mean rating value for item i
Dui Predicted rate for user « on item i
|T| Size of the test set
c Number of singular values
A Original matrix
U Left singular vectors of A
S Singular values of A
144 Right singular vectors of 4
A* Approximation matrix of A
u User vector
Upew Inserted user vector
n Number of training users
m Number of items
a b
I, | I | I3 | 14| Is | Ig I | Is | I3 | I, | Is | Ig

Uiy | 4 1 1 41010 Us 2 1 410 1 0

Us | 1 4 1 4]10]0]| 4 Ug 1 2 1 0|25

Us | 2 1 41010 4 Ug 4 1 2 1 1 0

Us | 1 2 1 1 010 Ug | 1 4 1 0410

Us | 4 1 2 0 1 0

Us | 1 51410 4]0

Fig. 2.1 (a) Training set (n X m), (b) test set

set [9] is dense; in contrast the Movielens data sets [10] are relatively sparse. The
degree of sparsity, however, depends on the application type. To provide particular
conclusions, someone has to experiment with the amount of sparsity as well.

Scalability: Scalability is important, since the number of users/items is very large
in real-world applications. Related work [27] has proposed the use of dimensionality
reduction techniques, which introduce a trade-off between the accuracy and the

execution time of CF algorithms.
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Train/Test Data Size: There is a clear dependence between the training set’s size
and the accuracy of CF algorithms [28]. Additionally, after an upper threshold of
the training set size, the increase in accuracy is less steep. However, the effect
of overfitting is less significant compared to general classification problems. In
contrast, small training set sizes impact accuracy in a negative way. Therefore, a
fair evaluation of CF algorithms should be based on adequately large training sets.
Though most related research uses a size around 80 %, there exist works that use
significantly smaller sizes [18]. From our experimental results we concluded that an
75 % training set size constitutes an adequate choice. But we have to notice that the
training/test size should not be data set independent. (In the running example, we
set training size at 60 %.)

Neighborhood Size: The number, k, of nearest neighbors used for the neighbor-
hood formation results in a tradeoff: a very small k leads to low accuracy, because
there are not enough neighbors to base the prediction. In contrast, a very large k
impacts precision too, as the particularities of user’s preferences can be blunted due
to the large neighborhood size. In most related works [10,26], k has been examined
in the range of values between 10 and 100. The optimum k value depends on the data
characteristics (e.g., sparsity). Therefore, for better tuning CF algorithms should be
evaluated against varying k (in the running example, we have set k = 3).

Similarity Measure: Related works [11, 18, 19, 28] have mainly used Pearson
correlation and cosine similarity. In particular, user-based (UB) CF algorithms use
the Pearson correlation (Eq.(2.1)),! which measures the similarity between two
users, u and v. Item-based (IB) CF algorithms use a variation of adjusted cosine-
similarity (Eq. (2.2)),> which measures the similarity between two items, i and j,
and has been proved to be more accurate [18, 28], as it normalizes the bias from
subjective ratings.

Z (ru,i - 7l,t)(rv,i - 7U)

sim(u, v) = vics . S=1,Nn1I,. @2.1)

Do i =T Y (ri =)

VieS VieS

Z (ru,i _FM)(rM,j _Fu)

sim(i, j) = Vuer . T=UNU;. (22
Z (ru,i _714)2 Z (ru,j _Fu)z
YueU; VIAGU/‘

"Means 7,, 7, are the mean ratings of u and v over their co-rated items.
2Means 7, 7, are taken over all ratings of u and v.
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a b
U, U, U, U, U, Us 15NN | 25t NN 3T NN
U, |-0.19 | 0.19 1 -0.76 | 0.33 | -0.14 || U, U,(1) | Us(0.33) | U,(0.19)
Uy -0.5 | 0.44 [ 0.38 1 -0.82 | 0.67 Uy U,(1) | Us(0.67) | U,(0.44)
Uy 0.41 | -0.94 | 0.14 | -0.47 1 -0.95 Uy Us(1) U,(0.41) | U,(0.14)
Uy | -0.5 0.5 | -0.76 1 -0.82 | 0.67 U, | U,(1) | Ug(0.67) | U,(0.5)
c d
I, T, T, T, T, I 1NN | 2°' NN | 3°* NN
I, - -0.65 | -0.66 | 0.36 | -0.68 [ -0.42 I, | 1,(0.36) Z N
I, [ -0.65 - 0.18 [ -0.51 | 0.50 | -0.36 I, | 1,(0.50) | I5(0.18) N
I3 ] -0.66 | 0.18 - -0.66 | 0.10 | 0.67 I, | 15(0.67) | 1,(0.18) | I5(0.10)
I, [ 0.36 | -0.51 | -0.66 - 0 0 I, | 1,(0.36) - -
Is [-0.68 | 0.50 [ 0.10 0 - 0 I, | 1,(0.50) | 13(0.10) -
Is | -0.42 | -0.36 | 0.67 0 0 - I | 1,(0.67) - -

Fig. 2.2 (a) Users’ similarities matrix, (b) users’ nearest neighbors in descending similarity
matrix, (¢) items’ similarities matrix, (d) items’ nearest neighbors in descending similarity matrix

Herlocker et al. [11] proposed a variation of the previous measures, which
henceforth is denoted as Weighted Similarity (WS). If sim is a similarity measure
(e.g., Pearson or cosine), then WS is equal to % - sim, where c is the number
of co-rated items.

Equation (2.1) takes into account only the set of items, S, that are co-rated by
both users. This, however, ignores the items rated by only one of the two users. The
number of the latter items denotes how much their preferences differ. Especially for
the case of sparse data, by ignoring these items we discard significant information.
Analogous reasoning applies for Eq. (2.2), which considers (in the numerator) only
the set of users, T, that both co-rated the examined pair of items. The same applies
for WS, which is based on Eqgs.(2.1) or (2.2). To address the problem, in the
following, we will examine alternative definitions for S and 7.

The application of Pearson Correlation (Eq.(2.1)) to the running example is
depicted in Fig.2.2a and the resulting k-nearest neighbors(k-NN) are given in
Fig.2.2b. Respectively, the similarities between items, calculated with the adjusted
cosine measure (Eq.(2.2)), are given in Fig.2.2c, whereas Fig.2.2d depicts the
nearest neighbors. As only positive values of similarities are considered during the
neighborhood formation, the items have different neighborhood size.

2.2.2 Second Stage Factors

Recommendation List’s Size: The size, N, of the recommendation list results in
a tradeoff: with increasing N, the absolute number of relevant items (i.e., recall) is
expected to increase, but their ratio to the total size of the recommendation list (i.e.,
precision) is expected to decrease. (Recall and precision metrics are detailed in the
following.) In related work [15,28], N usually takes values between 10 and 50. (In
the running example, we set N = 2.)
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a

Vector GenTopMF (u, NN(u), I, N)
//User u

//Set NN(u)

b

Vector GenTopMF (u, NN(i), I, N)
//User u

//Set NN(4)

13

//int I,N //int I,N
begin begin
fori=1to I forj=1to1
fli] = 0; fl5] = 0;
foreach v € NN(u) forj=1to I
fori=1to [l if r[u][j] > Pr
if r[v][7] > Pr foreach v € NN(i)
ffi) = fli] + 13 ] = ] + L
sort(f); //descending order sort(f); //descending order
n=20;7=1; n=0;1=1;
while (n < N and f[¢] > 0) while (n < N and f[¢] > 0)
Aln] = 4 Aln] = 4
n=n-+1; n=n-+1;
return A; return A;
end. end.

Fig. 2.3 Generation of top-N list based on most frequent algorithm for (a) user-based algorithm
and (b) item-based algorithm

Positive Rating Threshold: It is evident that recommendations should be “pos-
itive”. It is not useful to recommend an item that will be rated with 1 in scale
1-5. Nevertheless, this issue is not clearly defined in several works. We argue that
“negatively” rated items should not contribute to increasing the accuracy, and we
use arating-threshold, P;, to recommended items with rating no less than this value.
If not a P; value is used, then the results may become misleading, since negative
ratings can contribute to the measurement of accuracy.

Recommendation List Creation: The most often used technique for the gen-
eration of the top-N list counts the frequency of each item inside the found
neighborhood, and recommends the N most frequent ones [26]. Henceforth, this
technique is denoted as Most-Frequent item recommendation (MF). MF can be
applied to both user-based and item-based CF algorithms. For example, assume that
we follow the aforementioned approach for the test user Uy, fork = 3 and N = 2.
For the case of user-based recommendation, the top-2 list includes items 73, I¢. In
contrast, for the case of item-based recommendation, the top-2 list includes 2 items
of Is or I, or Is because all three have equal presence. Figure 2.3 describes the
corresponding two algorithms (for the user and item-based CF, respectively).

We have to mention that these two algorithms, in contrast to the past work, in
addition include the concept of positive rating threshold (P t). Thus, “negatively”
rated items do not participate in the top- N list formation. Moreover, it is obvious that
the generation of top-N list for the user-based approach is more complex and time
consuming. The reason is that the former algorithm finds, firstly, user neighbors in
the neighborhood matrix and then counts presences of items in the user-item matrix.
In contrast, with the item-based approach the whole work is completed in the item
neighborhood matrix.
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Karypis [15] reports another technique, which additionally considers the degree
of similarity between items. This takes into account that the similarities of the
k neighbors may vary significantly. Thus, for each item in the neighborhood,
this technique counts not just their number of appearances, but the similarity
of neighbors as well. The N items with the highest sum of similarities are
finally recommended. Henceforth, this technique is denoted as Highest-Sum-of-
Similarities item recommendation (HSS). HSS is applicable only to item-based CF.
For our example, the top-2 list based on this algorithm includes the items /¢, I,
because they have the greater sum of similarities. Note that for both techniques, we
have to remove from the recommendation list, these items that are already rated
from the test user.

2.2.3 Third Stage Factors

Evaluation Metrics: Several metrics have been used for the evaluation of CF
algorithms in related works [11, 12]: for instance the Mean Absolute Error (MAE)
or the Receiving Operating Characteristic (ROC) curve. Although MAE has been
used in most of these works, it has received criticism as well [18]. MAE is able
to characterize the accuracy of prediction, but is not indicative of the accuracy
of recommendation, as algorithms with worse MAE many times produce more
accurate recommendations than others with better MAE. Since in real-world
recommender systems the experience of users mainly depends on the accuracy of
recommendation, MAE may not be the preferred measure. Other extensively used
metrics are precision and recall. These metrics are simple, well known, and effective
to measure the accuracy of recommendation procedure.

For a test user that receives a top-N recommendation list, let R denote the
number of relevant recommended items (the items of the top-N list that are rated
higher than P; by the test user). We define the following:

e Precision is the ratio of R to N.
¢ Recall is the ratio of R to the total number of relevant items for the test user (all
items rated higher than P; by her).

Notice that with the previous definitions, when an item of the top- N list is not rated
at all by the test user, it is considered as irrelevant and counts negatively to precision
(as we divide by N ). In the following, we also use F; = 2-recall-precision/ (recall +
precision). F; is used because it combines both the previous metrics.

Past/Future Data: In real-world applications, recommendations are derived only
from the currently available ratings of the test user. However, in most of related
works, all the ratings of each test user is considered a priori known. For a more
realistic evaluation, recommendations should consider the division of the items of
the test user into two sets [14]: (1) the past items of the test user, and (2) the future
items of the test user.
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In 1992, the Tapestry system [8] introduced Collaborative Filtering (CF). In
1994, the GroupLens system [24] implemented a CF algorithm based on common
users preferences, known as user-based CF algorithm, because it employs users’
similarities for the formation of the neighborhood of nearest users. Since then, many
improvements of user-based algorithm have been suggested, e.g., [3, 10].

In 2001, another CF algorithm was proposed. It was based on the items’
similarities for a neighborhood generation of nearest items [15,28] and is denoted
as item-based CF algorithm.

Most related work followed the two aforementioned directions (i.e., user-
based and item-based). Herlocker et al. [11] weight similarities by the number of
common ratings between users/items. Deshpande and Karypis [6] apply item-based
CF algorithm combined with conditional-based probability similarity and Cosine
Similarity. Xue et al. [33] suggest a hybrid integration of aforementioned algorithms
(memory-based) with model-based algorithms.

All aforementioned algorithms are memory-based. Their efficiency is affected
from scalability of data. This means that they face performance problems, when the
volume of data is extremely huge. To deal with this problem, many model-based
algorithms have been developed [3]. However, there are two conflicting challenges.
If an algorithm spends less execution time, this should not influence its quality. The
best outcome would be to improve quality with the minimum calculation effort.

Furnas et al. [7] proposed Latent Semantic Indexing (LSI) in the area of
Information Retrieval to deal with the aforementioned challenges. More specifically,
LSI uses SVD to capture latent associations between the terms and the documents.
SVD is a well-known factorization technique that factors a matrix into three
matrices. Berry et al. [2] carried out a survey of the computational requirements for
managing (e.g., folding-in®) LSI-encoded databases. They claimed that the reduced-
dimensions model is less noisy than the original data.

Sarwar et al. [27, 29] applied dimensionality reduction for the user based CF
approach. They also used SVD for generating predictions. In contrast to our work,
Sarwar et al. [27,29] do not consider two significant issues: (1) predictions should
be based on the users’ neighbors and not on the test (target) user, as the ratings of
the latter are not a priori known. For this reason we rely only on the neighborhood
of the test user. (2) The test users should not be included in the calculation of the
model, because they are not known during the factorization phase. For this reason,
we introduce the notion of pseudo-user to include a new user in the model (folding
in), from which recommendations are derived. Other related work also includes
Goldberg et al. [9], who applied Principal Components Analysis (PCA) to facilitate
off-line dimensionality reduction for clustering the users, and therefore, achieves

3Folding in terms or documents is a simple technique that uses existing SVD to represent new
information.
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rapid on-line computation of recommendations. Hofmann [13] proposed a model-
based algorithm, which relies on latent Semantic and statistical models. Moreover,
Symeonidis et al. [30, 31] proposed a novel CF algorithm, which uses Latent
Semantic Indexing (LSI) to detect rating trends and performs recommendations
accordingly. Recently, Koren [16, 17], who is member of the winning team in
the Netflix prize, proposed SVD++ method, which adds in the plain SVD also
information taken from user/item bias and other implicit feedback. As the Netflix
prize competition has demonstrated, matrix factorization models are superior to
classic nearest-neighbor techniques.

2.4 Recommender Systems Paradigms

This section presents and briefly analyzes three Web Sites based on the three parallel
approaches that have emerged in the context of recommender systems (i.e. CF, CB
and hybrid methods).

CF exploits other users and their preferences to justify a recommendation to the
target user. Usually the explanation is of the type “Customers who bought/rated
item X also bought/rated items Y, Z,...”. It relies on the premise that both
the target user and the users, which were used as an explanation have similar
interests. A representative commercial recommender system that provides such
recommendations is the online e-Commerce store Amazon.com.* As shown in
Fig. 2.4, the user is presented with similar items that other customers have chosen
to buy. The system assumes that the user is viewing an item, which they are already
interested in. The Amazon system then finds similar users, who have already bought
that specific item, and recommends the items that they bought to the user.

Customers Who Bought This Item Also Bought...

=

Pearson International Edition

In i 1 We n

A Network Approach
by John Lewis by Rob Williams by Eoghan Casey
rdrdrdiedr (2) 43.59€ iy (5) 38.28€ Hrifrdridirdr (1) 24.38€

Fig. 2.4 Recommendation in Amazon

“http://www.amazon.com


http://www.amazon.com
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Qur Justified Recommendations

[Movie id] [Movie title] [The reason is] [because you rated]

1526 Witness (1985 Ford, Harrison (I 21 movies with tt
1273 Willis. Bro "

1004
1442 Scarlet Letter, The (1
1044 Paper, The (1994 Close, Glenr
693 asino (199 De

274 Sabrina (1995 Po

egend (1993) Hackman, Geng 7 movi

)95 Oldman, Gary

Fig. 2.5 Recommendations in MoviExplain

One example of the combination of content with rating data is MovieExplain®
[32], which combines the rating user profile and the feature item profile to reveal
the favorite features of users. MoviExplain builds a feature profile for each user
and provides as explanation, the feature that influenced most a recommendation,
showing also how strong is this feature in the feature profile of a user. As shown in
Fig. 2.5, the link “The reason is” reveals the favorite feature that influenced most the
MoviExplain’s recommendations, whereas the link “because you rated” shows how
strong is this feature in the feature profile of a user.

In recent years, new innovations in online Social Networks have encouraged
more sharing between users even of different networks. The recommendations are
based on the common network that two users belong to. The most striking of these
innovations is Facebook Login (formerly Facebook Connect). The way it works is
that partner firms install Login buttons and plugins on their websites and devices,
which give Facebook users automatic access to information about their friends’
activities. Such an example is the HuffPost Social News. HuffPost® is a site run
by the Huffington Post, a well known American blog, where Facebook users can
see what their friends have been reading and exchange stories and comments about
them. The system’s user interface is shown in Fig. 2.6.

The personalized HuffPost Social News pages create a forum for users to
converse about news stories they have read, and in some cases add their relevant
information for Facebook friends to read. The Huffington Post creates a social news
experience with the “Recommendations” plugin on its home page, showing users
personalized recommendations along with explanations. The system’s user interface
is shown in Fig.2.6. The post recommendations (i.e. blog stories) are explained
based on both the preferences of a user’s friends and the ratings that these items
have received.

Shttp://delab.csd.auth.gr/MoviExplain
Shttp://www.huffingtonpost.com/
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Fig. 2.6 The HuffPo Social
News interface combined HuffPOS t S ocC 1 E:ll N ews

with Facebook
Your Friends

Arianna Huffington Read
Maddow Battles Dick Armey In
“Meet The Press”...e-VIDEO

Francine Hardaway Read
Rosa Parks Poster Torn Up At
McCaskill Town Hall «VIDEO
Commented on Health Care
Ruckus Drives Financial
Collapse...

Peter Shankman
Voted on Nowhere in

il Manhattan: Vote On These...
r——|

2.5 Social and Economic Report

The basic premise of recommenders is to reduce noise and filter out information,
which is not relevant to the user taste. From the social point of view, the use of
recommenders help people gain access to products or services that match their
tastes. However, recommenders enforce users to insert information in log files of
third party servers, arising privacy issues.

Regarding economy, there are several paradigms such as the Amazon.com, the
Netflix.com and the Google.com recommendation engines, which have been proved
as highly profitable. In particular, Amazon.com [5] claims that 35 % of products
sales result from recommendations. Moreover, almost 66 % of movies rented in
Netflix.com are recommended and Google News Recommendations generate 38 %
more click-throughs [5].

In the same direction, friend recommendations in social networks stimulates
users to expand their social circle, which is absolutely critical to retaining them and
increasing the power of the network itself. Eventually, this brings income to a social
network, based on the fact that companies invest their marketing budget except from
target markets as well in mass power social networks. Recently, the incorporation of
location to the recommendation process allows businesses to investigate new ways
of profit. For instance, Foursquare.com incorporated a venue recommender in its
mobile app. This recommender aims at offering to businesses a great advertising
channel using their location, distance and users check-in history logs to stimulate
users to visit the place.


http://www.Amazon.com
http://www.Netflix.com
http://www.Google.com
http://www.Amazon.com
http://www.Netflix.com
http://www.Foursquare.com
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