
Preface

Researchers in graph theory, including graduate students, are the primary audience
for this book. Although it is assumed that the reader is acquainted with the basic
concepts in graph theory, this book is self-contained in that all concepts and
terminology needed for the topic are clearly presented and illustrated. This book can
be used for a reading course, a seminar or a short course for graduate students who
are interested in Eulerian and Hamiltonian properties of graphs as well as covering
walks of graphs in general. In addition, this book contains the background needed
to begin a research program on a variety of topics concerning covering walks in
graphs and provides easy access to recent results and open problems in this area of
research.

Many theorems involving walks in graphs can be traced back to problems that
led to some of the best-known and most-studied concepts in graph theory. A walk in
a graph G begins at some vertex u of G, proceeds to an edge e D uu0 incident with
u, then proceeds to u0 and next to an edge incident with u0 (possibly e again). This
continues until the procedure stops at some vertex v, producing a u � v walk W . If
W contains every edge of G, then W is an edge-covering walk, while if W contains
every vertex of G, then it is a vertex-covering walk.

Graph theory is considered to have begun in 1736 when the great Swiss
mathematician Leonhard Euler solved the famous Königsberg Bridge Problem,
which asks whether it is possible to walk about the city of Königsberg (located
in Prussia at the time) and cross each of its seven bridges in the city exactly once.
Eventually it was seen that the Königsberg Bridge Problem could be expressed as
a problem in graph theory, an area of mathematics that did not exist in 1736. This
led to the concept of Eulerian graphs and later to the more general concept of edge-
covering walks in graphs. This is the topic of Chap. 1.

After presenting Euler’s characterization of Eulerian graphs as those con-
nected graphs containing only even vertices, graphs containing Eulerian trails are
described as those connected graphs containing exactly two odd vertices. Oswald
Veblen’s characterization of Eulerian graphs as those connected graphs that can
be decomposed into cycles is presented. From this theorem, a number of results
and conjectures emanated. One of the recent conjectures is the Eulerian Cycle
Decomposition Conjecture. Many results obtained on this conjecture are presented.

Several results are presented that deal with connected graphs containing a
specified number of odd vertices. While connected graphs with odd vertices do
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not have circuits containing each edge exactly once, they do contain closed walks
containing each edge at least once. Determining the minimum number of edges in
such a closed walk is the famous Chinese Postman Problem. This led to the recent
study of irregular Eulerian walks in which no two edges are encountered the same
number of times in the walk.

Some Eulerian graphs contain vertices u having the property that every trail with
initial vertex u can be extended to an Eulerian circuit. Graphs with this property are
described. The analogous result for connected graphs with two odd vertices is also
presented.

Chapter 2 deals with graphs that possess closed vertex-covering walks. This
concept emanates from the so-called Icosian Game of the Irish mathematician
William Rowan Hamilton and his Around the World puzzle, which dealt with cycles
in a dodecahedron containing every vertex. This led to the concepts of Hamiltonian
cycles and Hamiltonian graphs. Although no characterization of Hamiltonian graphs
has ever been found, many sufficient conditions for a graph to be Hamiltonian have
been discovered, the first of which was a 1952 theorem of the Danish mathematician
Gabriel Andrew Dirac, who proved that if the minimum degree of a graph is at least
half of the order of the graph, then that graph is guaranteed to be Hamiltonian.
This was extended somewhat by the Norwegian mathematician Oystein Ore, who
showed that if the sum of the degrees of every two nonadjacent vertices in a graph is
at least its order, then that graph is Hamiltonian. This led to the study of the closure
of graphs and its connection with Hamiltonian graphs.

The best-known necessary condition for a Hamiltonian graph is one that states
that every Hamiltonian graph G has the property that when a set of vertices is
removed from G, then the number of components in the resulting graph never
exceeds the number of vertices removed. This observation led to the well-studied
concept of toughness in graphs and its relationship to Hamiltonian graphs. The
famous Traveling Salesman Problem is also described.

Of a number of operations defined on a graph that result in new graphs, two of the
most common are the line graph and powers of a graph. There have been numerous
theorems dealing with those operations that result in Hamiltonian graphs and graphs
with related properties.

Although many connected graphs do not contain Hamiltonian cycles, every
connected graph contains a closed vertex-covering walk. The major interest here
is the minimum length of such walks in a graph, which is the Hamiltonian number
of the graph. Recent research showed that the Hamiltonian number of a graph G can
be determined by computing the sum of the distances of consecutive terms in each
cyclic ordering of the vertices of G and then finding the minimum of these sums.
The maximum of these sums is the upper Hamiltonian number of G and results on
this topic are presented as well in Chap. 2. Furthermore, several results on the set of
all such numbers obtained in this manner are discussed.

In Chap. 3, the emphasis changes from closed vertex-covering walks in a
connected graph G to the recent research topic of open vertex-covering walks in G.
Such a walk of minimum length is referred to as a traceable walk and its length
is the traceable number of G. Here too it is seen that the traceable number of G
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can be obtained by first computing the sum of the distances of consecutive terms
in each linear ordering of the vertices of G. The minimum value of such a sum is
the traceable number of G; the maximum such sum is the upper traceable number
of G. Special attention is given to these two parameters of trees. Also, comparisons
between the Hamiltonian and traceable numbers are described as are comparisons
between the upper Hamiltonian and upper traceable numbers of given graphs.

One of the differences between closed vertex-covering walks and open vertex-
covering walks in a graph is that, for an open vertex-covering walk, its length
depends on which vertex the walk begins (or ends). For this reason, for each vertex
v in a graph, sequences of the vertices of the graph with v as their initial term and the
resulting sums of distances of consecutive terms are considered. The minimum such
sum is the traceable number of v. Related concepts such as the maximum vertex-
traceable numbers of graphs, traceably singular graphs, and the total traceable
numbers of graphs are described.

The numerous new areas of research presented in this book have led to a number
of conjectures and open problems, which are described throughout the book.
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