
2Hamiltonian Walks

2.1 The Icosian Game

The year 1857 saw the introduction of a two-person game called the Icosian Game.
In this game, one player is to place some of 20 given pieces on the points of a
playing board (in the shape of dodecahedron) as shown in Fig. 2.1 so that successive
pieces are placed along the lines of the board. These pieces may be required to
fulfill other conditions as well. The other player then has the responsibility to place
the remaining pieces on the remaining points in such a way that every consecutive
pair of pieces lie along a line of the board and that the twentieth piece lies along a
line of the first piece. Sometimes this can be done, sometimes it cannot.

This game was the invention of William Rowan Hamilton. Before discussing this
game in more detail, let us go back in history to learn some facts about Hamilton.

Hamilton was born in Dublin, Ireland in 1805. He was brought up by his
uncle, who educated him. Very early on, it became clear that Hamilton was an
extraordinarily talented individual. Indeed, at age 5, young William had mastered
the languages Latin, Greek, and Hebrew. By the time he reached 12 years of age, he
had become quite accomplished with mental arithmetic. At age 15, he had studied
the work of Sir Isaac Newton and Pierre-Simon Laplace. That Hamilton discovered
an error in Laplace’s work on celestial mechanics brought him to the attention of the
Astronomer Royal of Dublin. At the age of 18, Hamilton became a student at Trinity
College Dublin. There he placed first in every examination in every subject. During
his first year he was awarded “optime” in classics, which had not been awarded in
20 years. Later he was awarded “optime” in physics, an unheard of distinction to
receive two such awards in different subjects. His education stopped at age 21 when
he became Professor of Astronomy at Trinity College. With this came the title of
Royal Astronomer of Ireland.

In 1832 Hamilton predicted that a ray of light passing through a biaxial crystal
would be refracted into the shape of a cone. When this was experimentally
confirmed, this resulted in a major scientific announcement. Hamilton was knighted
for his discovery in 1835, thereby becoming Sir William Rowan Hamilton.
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Fig. 2.1 The Icosian Game

In 1835 Hamilton observed that complex numbers could be represented as
ordered pairs of real numbers. For the next 8 years, Hamilton attempted to extend
his theory to ordered triples but he was never successful. In 1843, however, while
walking across the Brougham Bridge on the Royal Canal in Dublin, Hamilton
discovered a set of 4-dimensional numbers aCbiCcjCdk, where a, b, c, and d are
real numbers, called quaternions. This was the first example of non-commutative
algebra. He was so excited that he carved the formula he had discovered into the
bridge. Today, on a plaque attached to the bridge, the following is written:

Here as he walked by
on the 16th of October 1843
Sir William Rowan Hamilton
in a flash of genius discovered
the fundamental formula for
quaternion multiplication

i2 D j2 D k2 D ijk D �1.

As a consequence of doing this, Hamilton had essentially introduced the cross
product and dot product for vector algebra.

In 1856 Hamilton discovered a non-commutative algebraic structure referred
to as the Icosian Calculus. This discovery came from his failed attempts to find
an algebra of ordered triples that would reflect the three Cartesian axes in the
Euclidean 3-space just as ordered pairs reflect the two Cartesian axes in the
Euclidean plane. The symbols Hamilton used in his Icosian Calculus represented
moves between vertices on a dodecahedron. This led to Hamilton’s invention of
the Icosian Game, which he used as a means of illustrating and popularizing his
mathematical discovery. The Icosian Game was introduced to the public in 1857 at
a meeting of the British Association in Dublin.

How Hamilton thought of connecting his Icosian Calculus to traveling along the
edges of a dodecahedron is unknown. The mathematician John Graves was one of
Hamilton’s best friends. In 1859 a friend of Graves manufactured a version of the
Icosian Game in the form of a small table consisting of a game board with legs,
which was sent to Hamilton. Graves put Hamilton in contact with John Jaques,
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Fig. 2.2 The traveler version
of the Icosian Game

whose company John Jaques and Son manufactured toys and games. Hamilton sold
the rights to his game for 25 pounds to this manufacturer, which was later known as
John Jaques of London and then Jaques of London. This company, still in existence
after two centuries, is known for the chess sets it sells. It also invented the game of
ping pong.

Two versions of Hamilton’s game were manufactured by Jaques, one played on
a flat board and another for a “traveler,” played on an actual dodecahedron. The
traveler version of the game was labeled as:

NEW PUZZLE
TRAVELLER’S DODECAHEDRON

or
A VOYAGE ROUND THE WORLD

Here the 20 vertices of the dodecahedron are labeled with the 20 consonants of the
English alphabet (see Fig. 2.2), which stands for the following 20 cities:

B. Brussels N. Naples
C. Canton P. Paris
D. Delhi Q. Quebec
F. Frankfort R. Rome
G. Geneva S. Stockholm
H. Hanover T. Toholsk
J. Jeddo V. Vienna
K. Kashmere W. Washington
L. London X. Xenia
M. Moscow Z. Zanzibar

The goal of this game was to construct a round trip in which each of the 20 cities
would be visited exactly once. Hamilton played a role in marketing the game. The
preface to the instruction pamphlet, written by Hamilton, began as follows:
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In this new Game (invented by

Sir WILLIAM ROWAN HAMILTON, LL.D., & c., of Dublin,

and by him named Icosian from a Greek word signifying ‘twenty’) a player is to place the
whole or part of a set of twenty numbered pieces or men upon the points or in the holes of
a board, represented by the diagram above drawn, in such a manner as always to proceed
along the lines of the figure, and also to fulfill certain other conditions, which may in various
ways be assigned by another player. Ingenuity and skill may thus be exercised in proposing
as well as in resolving problems of the game. For example, the first of the two players may
place the first five pieces in any five consecutive holes, and then require the second player to
place the remaining fifteen men consecutively in such a manner that the succession may be
cyclical, that is, so that No. 20 may be adjacent to No. 1; and it is always possible to answer
any question of this kind. Thus, if B C D F G are the five given initial points, it is allowed
to complete the succession by following the alphabetical order of the twenty consonants,
as suggested by the diagram itself; but after placing the piece No. 6 in hole H, as above,
it is also allowed (by the supposed conditions) to put No. 7 in X instead of J, and then to
conclude with the succession, W R S T V J K L M N P Q Z. Other examples of Icosian
Problems, with solutions of some of them, will be found in the following page.

2.2 Hamiltonian Graphs

Hamilton’s Icosian Game gave rise to a much-studied class of graphs named for
him. A path containing all the vertices of a graph G is a Hamiltonian path in G,
while a cycle containing all the vertices of G is a Hamiltonian cycle in G. If G

contains a Hamiltonian path, then G is connected; if G contains a Hamiltonian
cycle, then G is 2-connected (that is, G � v is connected for every v 2 V.G/).
A graph is Hamiltonian if it contains a Hamiltonian cycle and a graph is traceable
if it contains a Hamiltonian path. While the graph of the dodecahedron (shown in
Figs. 2.1 and 2.2) and the graph G1 of Fig. 2.3 are both Hamiltonian, none of the
graphs G2, G3, and G4 of Fig. 2.3 are Hamiltonian. The graphs G2 and G3 have
Hamiltonian paths, however. The graph G4 does not contain a Hamiltonian path.
Therefore, G1, G2, and G3 are traceable but G4 is not.

In 1855, the year before Hamilton invented the Icosian Game, Thomas Penyngton
Kirkman studied questions as to whether all vertices of a polyhedron could be visited
exactly once by moving along edges of a polyhedron and returning to the starting
vertex. So even though Kirkman had considered this concept before Hamilton did,
these paths, cycles, and graphs were named for Hamilton, not Kirkman.

Determining conditions under which a graph is Hamiltonian did not occur until
1952 when Gabriel Andrew Dirac [29] introduced a sufficient condition for a graph
to be Hamiltonian in terms of the degrees of the vertices of a graph. Gabriel Dirac
was the stepson of Paul Adrien Maurice Dirac, who was awarded a Nobel Prize in
Physics in 1933. The smallest and largest degrees among the vertices of a graph G

are the minimum degree ı.G/ and maximum degree �.G/, respectively, of G.
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Fig. 2.3 Illustrating
Hamiltonian and traceable
graphs

Theorem 2.1 (Dirac’s Theorem). If G is a graph of order n � 3 and ı.G/ � n=2,
then G is Hamiltonian.

Proof. Assume that this statement is false. Then for some integer n � 3, there is a
non-Hamiltonian graph G of order n and maximum size for which deg v � n=2 for
each vertex v of G. Surely G is not complete, so G contains pairs of nonadjacent
vertices. Let u; v be such a pair. Thus GC uv is Hamiltonian and every Hamiltonian
cycle of GCuv necessarily contains the edge uv. This in turn implies that G contains
a Hamiltonian u � v path .u D v1; v2; : : : ; vn D v/. Let vnC1 D v1 and define
A D fvi W uviC1 2 E.G/g and B D fvi W vvi 2 E.G/g: Since vn … A[B , it follows
that jA [ Bj � n � 1. Corresponding to each vertex adjacent to u is an element of
A; that is, jAj D deg u. Similarly, jBj D deg v. Thus, jAj C jBj � n.

If there exists a vertex vi� belonging to A \ B , then 2 � i� � n � 2 and
uvi�C1; vvi� 2 E.G/. However then,

.u; vi�C1; vi�C2; : : : ; vn D v; vi� ; vi��1; : : : ; v2; v1 D u/

is a Hamiltonian cycle in G, producing a contradiction. Thus A \ B D ; and so
n � jAj C jBj D jA [ Bj � n � 1; which is clearly impossible. ut

In 1960 Oystein Ore [56] generalized Dirac’s theorem. In fact, the proof of
Theorem 2.1 given above also serves as a proof of Ore’s theorem.

Theorem 2.2 (Ore’s Theorem). If G is a graph of order n � 3 such that deg uC
deg v � n for every pair u; v of nonadjacent vertices of G, then G is Hamiltonian.

Suppose that G is a nontrivial graph and consider the graph H D G _ K1, the
join of G and a vertex. This new graph H is certainly Hamiltonian if H satisfies
the condition in either Theorems 2.1 or 2.2. Since G is traceable if and only if H is
Hamiltonian, we obtain the following as a corollary.
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Theorem 2.3. Let G be a graph of order n � 2.
(a) If ı.G/ � .n � 1/=2, then G is traceable.
(b) If deg uC deg v � n � 1 for every pair u; v of nonadjacent vertices of G, then

G is traceable.

Following the publication of Ore’s theorem was a succession of new sufficient
conditions for a graph G to be Hamiltonian in terms of the degrees of the vertices
of G, each more general than those that preceded it. The most general of these was
based on Ore’s theorem and is due to J. Adrian Bondy and Vašek Chvátal.

Let G be a graph of order n. If u1 and v1 are two nonadjacent vertices such
that degG u1 C degG v1 � n, then join u1 and v1 by an edge producing the graph
G1 D G C u1v1. If, in G1, there are two nonadjacent vertices u2 and v2 such that
degG1

u2 C degG1
v2 � n, then join u2 and v2 by an edge producing the graph G2 D

G1 C u2v2. This procedure is continued until no such pairs of nonadjacent vertices
remain. This final graph is called the closure of G and is denoted by CL.G/. Adding
the edges described above can occur in many different orders but the resulting graph
is always the same graph, namely CL.G/. The primary importance of this concept
lies in the following theorem [12].

Theorem 2.4 (Bondy and Chvátal’s Theorem). A graph is Hamiltonian if and
only if its closure is Hamiltonian.

Proof. First, if a graph G is Hamiltonian, then surely CL.G/ is Hamiltonian.
Suppose then that G is a graph of order n � 3 such that CL.G/ is Hamiltonian.
Let G; G1; G2; : : : ; Gk�1; Gk D CL.G/ be a sequence of graphs produced during
the process of obtaining CL.G/. In particular, CL.G/ D Gk D Gk�1 C uv, where
u and v are nonadjacent vertices in Gk�1 and degGk�1

uC degGk�1
v � n. Therefore,

according to the proof of Theorem 2.1, Gk�1 is Hamiltonian. Proceeding backwards,
we see that Gk�2; Gk�3; : : : ; G2; G1 and finally G are Hamiltonian. ut

By Theorem 2.4, a graph G of order at least 3 is Hamiltonian if CL.G/ is
complete. A graph can be Hamiltonian without its closure being complete, however.
For example, for the n-cycles Cn, which are clearly Hamiltonian, CL.Cn/ D Cn ¤
Kn for n � 5.

The sufficient conditions presented for a graph to be Hamiltonian in Dirac’s and
Ore’s theorems are just that, namely, they are sufficient only. That is, a graph can be
Hamiltonian without satisfying either of these conditions. The fact that the cycles
of order at least 5 are Hamiltonian is not a consequence of any of the theorems by
Dirac, Ore, and Bondy and Chvátal. While Dirac’s theorem requires every vertex of
a graph G of order n � 3 to have degree at least n=2 in order to guarantee that G is
Hamiltonian and Ore’s theorem requires many vertices to have degree at least n=2,
neither theorem can be applied if the maximum degree of G is less than n=2.

There are some sufficient conditions for an r-regular graph G to be Hamiltonian
that do not require r � jV.G/j=2. One of these is due to Crispin Nash-
Williams [52].
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Fig. 2.4 The Petersen graph

Theorem 2.5 (Nash-Williams’ Theorem). Every r-regular graph of order 2r C
1 � 5 is Hamiltonian.

Proof. Let G be an r-regular graph of order 2r C 1, where then r is a positive
even integer. Since C5 is the unique 2-regular graph of order 5, suppose that
r � 4. By Theorem 2.3 (a), we may assume that G contains a Hamiltonian
path, say P D .v0; v1; : : : ; v2r /: Suppose, however, that G is not Hamiltonian.
For 1 � i � 2r , it follows that if v0vi 2 E.G/, then vi�1v2r … E.G/; for
otherwise, .v0; vi ; viC1; : : : ; v2r ; vi�1; vi�2; : : : ; v0/ is a Hamiltonian cycle of G,
which is impossible. Since degG v0 D degG v2r D r , it follows that exactly one
of v0vi and vi�1v2r belongs to E.G/ for 1 � i � 2r . We consider the following two
cases.

Case 1. N.v0/ D fv1; v2; : : : ; vrg. Then N.v2r / D fvr ; vrC1; : : : ; v2rg. If G � vr is
disconnected, then G � vr is a subgraph of 2Kr . However then, either ı.G/ < r

or degG vr D 2r , which contradicts the fact that G is r-regular. Thus, vr is not
a cut-vertex and so vi� vj � 2 E.G/ for some i� and j � satisfying 1 � i� �
r � 1 and r C 1 � j � � 2r � 1. However, then, this produces a Hamiltonian
cycle .v0; v1; : : : ; vi� ; vj � ; vj �C1; : : : ; v2r ; vj ��1; vj ��2; : : : ; vi�C1; v0/: Thus, this
case never occurs.

Case 2. N.v0/ ¤ fv1; v2; : : : ; vrg. Then there exists an integer i� such that v0vi� …
E.G/ and v0vi�C1 2 E.G/. Thus, v2r vi��1 2 E.G/ and v2r vi� … E.G/ and so
we have a 2r-cycle C D .v0; v1; : : : ; vi��1; v2r ; v2r�1; : : : ; vi�C1; v0/: Renaming
the vertices, let us write C D .u1; u2; : : : ; u2r ; u1/: Since deg vi� D r and G is
not Hamiltonian, it follows that either N.vi�/ D fu1; u3; : : : ; u2r�1g or N.vi�/ D
fu2; u4; : : : ; u2rg, say the former. Then for each u2i .1 � i � r/, the cycle obtained
from C by replacing u2i by vi� is also a 2r-cycle. This implies that N.vi�/ D
N.u2i / for 1 � i � r . It then follows that deg u1 � r C 1, which is again a
contradiction. ut

If G is r-regular and jV.G/j � 2r C 2, then G may or may not be connected.
(Consider, for example, G D 2KrC1.) Jackson [43] has shown that if G is
2-connected and its order is at most 3r , then G is guaranteed to be Hamiltonian. In
fact, Zhu, Liu, and Yu [72] showed that 3r can be replaced by 3r C 1 by excluding
the Petersen graph (see Fig. 2.4).
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Theorem 2.6. Every 2-connected r-regular graph of order at most 3r C 1 is
Hamiltonian unless it is the Petersen graph.

The following is therefore a consequence of the above theorem.

Theorem 2.7. Let r be a positive integer. If G is an r-regular graph of order 2rC2,
then either G is Hamiltonian or G D 2KrC1.

Proof. Let G be an r-regular graph of order 2rC2. If r D 1, then clearly G D 2K2.
For r � 2, it suffices to show by Theorem 2.6 that if G is not 2-connected, then
G D 2KrC1. Since G is disconnected if and only if G D 2KrC1, we may assume
that G is connected and has a cut-vertex v. Clearly G is not complete. Also, G being
r-regular implies that each component of G � v contains at least r vertices. Thus,
G � v consists of exactly two components, say G1 and G2, whose orders are r and
r C 1, respectively. However then, the vertices in G1 have degree r in G only if
N.v/ D V.G1/ and G1 D Kr , which then implies that G is already disconnected
even without deleting v. ut

Another sufficient condition for a graph to be Hamiltonian is due to Chvátal and
Paul Erdős [27]. Before presenting their result, let us state a few lemmas.

For a graph G that is not a forest, the length of a longest cycle in G is called the
circumference cir.G/ of G. Therefore, G is Hamiltonian if and only if cir.G/ D
jV.G/j � 3.

Lemma 2.1. If G is a graph with ı.G/ � 2, then G contains cycles and cir.G/ �
ı.G/C 1.

Proof. That G is not a forest is immediate. Suppose that P D .v0; v1; v2; : : : ; v`/

is a longest path in G. Since P cannot be extended any further, the neighborhood
of v0 must be a subset of V.P /nfv0g. Thus, there exists an integer `0 satisfying
ı.G/ � deg v0 � `0 � ` such that v`0 belongs to P and v0v`0 2 E.G/. Thus,
.v0; v1; : : : ; v`0�1; v`0 ; v0/ is a cycle in G whose length is at least ı.G/C 1. ut

For a graph G, consider a subset S � V.G/. The set S is independent if no
two vertices in S are adjacent in G. The independence number ˛.G/ of G is the
maximum number of vertices in an independent set of vertices of G. If G is not
complete and G � S is disconnected, then the set S is called a vertex-cut of G.
The cardinality of a minimum vertex-cut of G is the connectivity of G, denoted
by �.G/. When G is a complete graph, its connectivity is defined as jV.G/j � 1.
Observe that 1 � ˛.G/ � jV.G/j while 0 � �.G/ � jV.G/j � 1. If k is a positive
integer satisfying k � �.G/, then G is said to be k-connected. In other words, for a
k-connected graph G, deleting k � 1 arbitrary vertices from G does not disconnect
the graph. See [24, p. 92], for example, for the proof of the following well-known
result.
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Theorem 2.8. For every graph G, �.G/ � ı.G/.

Theorem 2.9 (Chvátal-Erdős’ Theorem). Let G be a k-connected graph of order
at least 3. If k � ˛.G/, then G is Hamiltonian.

Proof. Suppose that G is a k-connected graph containing more than two vertices,
where k � ˛.G/, and assume, to the contrary, that G is not Hamiltonian. Since
˛.G/ D 1 if and only if G is a complete graph, which is Hamiltonian, we may
assume that ˛.G/ � 2. Lemma 2.1 and Theorem 2.8 then imply that 3 � k C 1 �
cir.G/ � jV.G/j � 1: Suppose that C D .v1; v2; : : : ; v`; v`C1 D v1/ is a cycle in G

whose length is ` D cir.G/ and let H be a component in G � V.C /.
Consider the subsets S and S 0 of V.C / such that, for 1 � i � `, vi 2 S if and

only if vi is adjacent to a vertex in H if and only if viC1 2 S 0. Then S is nonempty
since G is connected. Note also that if S contains two distinct vertices, say u and v,
then G contains a u � v path of length at least 2 each of whose internal vertices is a
vertex in H . Therefore, by the fact that C is a longest cycle in G, no two consecutive
vertices on C belong to S , that is, S \ S 0 D ;. Thus, S is a vertex-cut of G and so
jS 0j D jS j � k.

We now verify that S 0 is an independent set. If this is not the case, then there
are integers i and j satisfying 1 � i < j � ` such that viC1; vj C1 2 S 0 and
viC1vj C1 2 E.G/. Then G contains the vi � vj path P , where

P D
8
<

:

.v1; v`; v`�1; : : : ; vj C1; v2; v3; : : : ; vj / if i D 1

.vi ; vi�1; : : : ; v1; viC1; viC2; : : : ; v`/ if j D `

.vi ; vi�1; : : : ; v1; v`; v`�1; : : : ; vj C1; viC1; viC2; : : : ; vj / otherwise.

In each case, V.P / D V.C /. On the other hand, since both vi and vj belong to S ,
there is also a vi � vj path Q of length at least 2 in G such that V.C / \ V.Q/ D
fvi ; vj g. However, this is impossible since P and Q form a cycle in G whose length
is at least ` C 1 D cir.G/ C 1. Thus, S 0 is independent, as claimed. Furthermore,
for an arbitrary vertex x 2 V.H/, the set S 0 [ fxg is independent. However then,
k C 1 � jS 0 [ fxgj � ˛.G/, which contradicts our original assumption that k �
˛.G/. ut

Therefore, a graph of order at least 3 must be Hamiltonian provided its connec-
tivity is at least as large as its independence number. The complete bipartite graph
Kn;nC1 .n � 1/ shows that the bound is sharp as �.Kn;nC1/ D n D ˛.Kn;nC1/ � 1.
Note that Kn;nC1 is traceable although it is not Hamiltonian.

If G is a nontrivial k-connected graph with k � ˛.G/ � 1, then consider the
graph H D G _K1, the join of G and a vertex. One can verify that H is .k C 1/-
connected and ˛.H/ D ˛.G/. Hence, Theorem 2.9 guarantees that H contains a
Hamiltonian cycle, which in turn implies that G contains a Hamiltonian path.

Theorem 2.10 ([27]). If G is a nontrivial k-connected graph, where k � ˛.G/�1,
then G is traceable.
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2.3 The Toughness of a Graph

While a number of sufficient conditions have been derived for a graph to be
Hamiltonian, there is one well-known and useful necessary condition. We have
already stated that every Hamiltonian graph is 2-connected, that is, no Hamiltonian
graph contains a cut-vertex. Stated in another manner, no Hamiltonian graph G

contains a vertex v such that G � v contains two or more components. In fact,
every Hamiltonian graph satisfies an even more general condition. The number of
components in a graph G is denoted by k.G/.

Theorem 2.11. Let G be a Hamiltonian graph. Then k.G � S/ � jS j for every
nonempty proper subset S of V.G/.

Proof. Let S be a nonempty proper subset of V.G/. Suppose that k.G � S/ D
k � 2 and that G1; G2; : : : ; Gk are the k components of G � S . Therefore, each
vertex in Gi can only be adjacent to vertices in S or to other vertices in Gi . Let
C D .v1; v2; : : : ; vn; vnC1 D v1/ be a Hamiltonian cycle in G, where n D jV.G/j,
and let ij D maxfi W vi 2 V.Gj /; 1 � i � ng for 1 � j � k. Thus, the
set fvi1C1; vi2C1; : : : ; vikC1g is a subset of S containing k distinct vertices. It then
follows that jS j � k D k.G � S/. ut

Necessary conditions are typically most useful when stated in their contrapositive
forms.

Theorem 2.12. If G is a graph containing a nonempty proper subset S of V.G/

such that k.G � S/ > jS j, then G is not Hamiltonian.

As a consequence of Theorem 2.11, if G is Hamiltonian, then jS j=k.G � S/ � 1

for every nonempty proper subset S of V.G/. This observation led Chvátal to
introduce a new concept in 1973.

For a positive real number t , a noncomplete graph G is t -tough if

jS j
k.G � S/

� t

for every vertex-cut S of G. The toughness t .G/ of G is the maximum real number t

for which G is t -tough. For a complete graph Kn, its toughness is taken as t .Kn/ D
.n � 1/=2:

By our earlier observations, every Hamiltonian graph is 1-tough. The converse
is not true, however. For example, the graph G of Fig. 2.5 is 1-tough but is
not Hamiltonian. In addition, it is well known that the Petersen graph P is not
Hamiltonian; yet P is not only 1-tough, it is .4=3/-tough. In 1973, Chvátal [26]
made the following conjecture.
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Fig. 2.5 A non-Hamiltonian
1-tough graph

Fig. 2.6 Constructing the
Bauer-Broersma-Veldman
graph

Chvátal’s Toughness Conjecture. There exists a real number t0 such that every
t0-tough graph is Hamiltonian.

In 1985, Enomoto, Jackson, Katernis, and Saito [31] proved that every 2-tough
graph contains a 2-factor (a spanning 2-regular subgraph) and that there is no real
number t < 2 for which every t -tough graph contains a 2-factor. This added
credence to the following.

The 2-Tough Conjecture. Every 2-tough graph is Hamiltonian.

However, in 2000, Bauer, Broersma, and Veldman [9] showed that the 2-Tough
Conjecture is false by constructing the so-called Bauer-Broersma-Veldman graph, a
graph that is 2-tough but not Hamiltonian. This graph is formed by taking the join
of K2 and the graph of order 40 shown in Fig. 2.6. In fact, Bauer, Broersma, and
Veldman established the following.

Theorem 2.13 ([9]). For every real number t < 9=4, there is a t -tough nontrace-
able graph.

Hamiltonian-Connected Graphs

A graph G is Hamiltonian-connected if G contains a Hamiltonian u � v path for
every two distinct vertices u and v of G. Thus, every Hamiltonian-connected graph
of order at least 3 is Hamiltonian (but the converse is of course false as cycles show).
In fact, every edge in a Hamiltonian-connected graph belongs to a Hamiltonian cycle
in that graph.

A number of conditions for a graph to be Hamiltonian-connected are known
that are similar to those for a graph to be Hamiltonian. The following results are
analogous to Theorems 2.1, 2.2, 2.12, and 2.9, respectively.
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Theorem 2.14 ([58]). If G is a graph of order n � 4 such that deg uCdeg v � nC1

for every pair u; v of nonadjacent vertices of G, then G is Hamiltonian-connected.
Consequently, ı.G/ � .nC 1/=2 implies that G is Hamiltonian-connected.

Theorem 2.15. If G is a graph containing a nonempty proper subset S of V.G/

such that k.G � S/ > jS j � 1, then G is not Hamiltonian-connected.

Theorem 2.16 ([27]). If G is a k-connected graph satisfying k � ˛.G/C 1, then
G is Hamiltonian-connected.

2.4 The Traveling Salesman Problem

One of the best known problems concerning Hamiltonian cycles is of a more applied
nature.

The Traveling Salesman Problem. A salesman wishes to make a round trip that
visits certain cities once each. He knows the distance between each pair of cities.
What is the minimum total distance of such a round trip?

This problem can be expressed in terms of weighted graphs. In particular, let
G be a weighted complete graph whose vertices are the cities and where each
edge uv is assigned a weight equal to the distance between u and v. The weight
w.C / of a Hamiltonian cycle C in G is the sum of the weights of the edges of C .
Finding a solution to the Traveling Salesman Problem then consists of determining
the minimum weight of a Hamiltonian cycle in G.

If the number n of cities involved is large, then the number of Hamiltonian cycles
in G that need to be investigated is quite large. We can consider a Hamiltonian cycle
as beginning at any vertex v. Then the remaining n � 1 vertices can follow v in any
of .n � 1/Š orders. This produces .n � 1/Š Hamiltonian cycles whose weights we
need to compute. In fact, we need only consider .n � 1/Š=2 Hamiltonian cycles as
we would obtain the same sum if the order in which the vertices appear in a cycle
were reversed.

Even though the Traveling Salesman Problem is an extremely difficult problem in
general, there are instances where this problem has been solved for a large number of
cities. In 1998 Applegate, Bixby, Chvátal, and Cook [5] solved a Traveling Salesman
Problem for the 13,509 largest cities in the United States (those whose population
exceeded 500 at that time). They also solved a Traveling Salesman Problem for
15,113 German cities in 2001 and for 24,978 Swedish cities in 2004. Their ultimate
goal was to solve the Traveling Salesman Problem for every registered city or
town in the world plus a few research bases in Antartica (1,904,711 locations
in all). In 2006, the four wrote a book titled The Traveling Salesman Problem:
A Computational Study [6], in which they describe the history of the Traveling
Salesman Problem as well as the method they used to solve a range of large-
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scale problems. In 2012 Cook [28] wrote a book titled In Pursuit of the Traveling
Salesman for a more general audience.

2.5 Line Graphs and Powers of Graphs

There are two operations on graphs in which much attention has been focused
regarding Hamiltonian properties of the resulting graphs.

Line Graphs

The line graph L.G/ of a nonempty graph G is that graph whose vertices
correspond to the edges of G where two vertices of L.G/ are adjacent if and only if
the corresponding edges of G are adjacent. The line graph of a graph G is therefore
Hamiltonian provided the m edges of G can be listed as e1; e2; : : : ; em; emC1 D e1

in such a way that ei and eiC1 are adjacent for i D 1; 2; : : : ; m. As a consequence
of this observation, we have the following.

Theorem 2.17. The line graph of an Eulerian graph is Hamiltonian.

Each of the three graphs G1; G2; G3 in Fig. 2.7 is neither Eulerian nor Hamil-
tonian, while L.G1/ is Hamiltonian but not Eulerian, L.G2/ is Eulerian but not
Hamiltonian, and L.G3/ is neither Eulerian nor Hamitonian. The graph G1 shows
that the converse of Theorem 2.17 is not true. In fact, Harary and Nash-Williams
[39] characterized those graphs whose line graphs are Hamiltonian. A circuit C in
a graph G is called a dominating circuit if every edge of G is incident with at least
one vertex of C .

Theorem 2.18. Let G be a graph without isolated vertices. Then L.G/ is Hamil-
tonian if and only if either G is a star of size at least 3 or G contains a dominating
circuit.

Proof. Let m be the size of G. If G is the star K1;m, then L.G/ D Km, which is
Hamiltonian for m � 3. Suppose then that G contains a dominating circuit C D
.v1; v2; : : : ; v`; v1/. It suffices to show that there exists an ordering s W e1; e2; : : : ; em

of the m edges of G such that ei and eiC1 are adjacent edges of G, for 1 � i � m�1,
as are e1 and em, since such an ordering s corresponds to a Hamiltonian cycle of
L.G/. Begin s by selecting, in any order, all edges of G incident with v1 that are not
edges of C , followed by the edge v1v2. At each successive vertex vi , 2 � i � `� 1,
select, in any order, all edges of G incident with vi that are neither edges of C nor
previously selected edges, followed by the edge vi viC1. This process terminates with
the edge v`�1v`. The ordering s is completed by adding the edge v`v1. Since C is a
dominating circuit of G, every edge of G appears exactly once in s. Furthermore,
consecutive edges of s as well as the first and last edges of s are adjacent in G.
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Fig. 2.7 Graphs and their
line graphs

Conversely, suppose that G is not a star but L.G/ is Hamiltonian. We show that
G contains a dominating circuit. Since L.G/ is Hamiltonian, there is an ordering
s W e1; e2; : : : ; em of the m edges of G such that ei and eiC1 are adjacent edges of
G for 1 � i � m � 1, as are e1 and em. For 1 � i � m � 1, let vi be the vertex
of G incident with both ei and eiC1. (Note that 1 � i ¤ j � m � 1 does not
necessarily imply that vi ¤ vj .) Since G is not a star, there is a smallest integer i1
exceeding 1 such that vi1 ¤ v1. Thus, the edges e1; e2; : : : ; ei1�1 are incident with v1

and ei1 D v1vi1 . Next, let i2 (if it exists) be the smallest integer exceeding i1 such that
vi2 ¤ vi1 . Then the edges ei1 ; ei1C1; : : : ; ei2�1 are incident with vi1 and ei2 D vi1vi2 .
Continuing in this fashion, we finally arrive at a vertex vi` such that ei` D vi`�1

vi` ,
where vi` D vm�1. Note that (i) v1 is incident with the edges e1; e2; : : : ; ei1 , (ii)
vij .1 � j � ` � 1/ is incident with the edges eij ; eij C1; : : : ; eij C1

, and (iii) vi`

is incident with the edges ei` ; ei`C1; : : : ; em. Since each edge of G appears exactly
once in s and 1 < i1 < i2 < � � � < i` � m � 1, we obtain a trail

T D .v1; vi1 ; vi2 ; : : : ; vi` D vm�1/ D .ei1 ; ei2 ; : : : ; ei` /

in G with the properties that every edge of G is incident with a vertex in T

and neither e1 nor em belongs to T . Thus, T itself is a dominating circuit if
v1 D vm�1. If not, let v0 be the vertex of G incident with both e1 and em. Now,
if v0 … fv1; vm�1g, then .ei1 ; ei2 ; : : : ; ei` ; em; e1/ is a dominating circuit. Otherwise,
v0 D v1 or v0 D vm�1. If v0 D v1, then em D v1vm�1 and so .ei1 ; ei2 ; : : : ; ei` ; em/ is a
dominating circuit. Similarly, if v0 D vm�1, then .ei1 ; ei2 ; : : : ; ei` ; e1/ is a dominating
circuit. ut
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It is an immediate corollary of Theorem 2.18 that L.G/ is Hamiltonian whenever
G is a graph that is either Eulerian or Hamiltonian. In fact, L.G/ is Hamiltonian if
G contains an Eulerian spanning subgraph. Another consequence of Theorem 2.18
is that if L.G/ is Hamiltonian, then every bridge in G must be a pendant edge.
Indeed, if G contains a bridge e D uv where neither u nor v is an end-vertex, then
the vertex in L.G/ corresponding to e is a cut-vertex. (See the graphs G1 and G3 in
Fig. 2.7, for example.)

For nearly every connected graph, successively taking the line graphs results in
Hamiltonian graphs. For a nonempty graph G, we write L0.G/ for G and L1.G/

for L.G/. By L2.G/, we mean L.L.G//. More generally, for a positive integer k,
the graph Lk.G/ is defined as L.Lk�1.G//.

If G is connected and r-regular, then L.G/ is a connected 2.r�1/-regular graph,
that is, L.G/ is Eulerian. In this case, L.G/ is Hamiltonian if r is even but the same
cannot be guaranteed when r is odd. (Consider, for example, the graph G2 in Fig. 2.7
and the complete graph K4. Both are 3-regular and L.G2/ is not Hamiltonian while
L.K4/ D K2;2;2 is.) Taking the line graph again, however, L2.G/ is a 2.2r � 3/-
regular graph that is both Eulerian and Hamiltonian for every integer r � 2. That
is, L2.G/ is always both Eulerian and Hamiltonian when G is a connected regular
graph containing three or more vertices. For those connected graphs that are not
regular, we have the following result due to Chartrand and Wall [17].

Theorem 2.19. If G is a connected graph with ı.G/ � 3, then L2.G/ is
Hamiltonian.

Proof. Let v be a vertex of G. Then the edges incident with v in G give rise to
a subgraph Gv in L.G/ which is isomorphic to a complete graph whose order
equals deg v .� 3/. Let Hv be a Hamiltonian cycle in Gv and define the spanning
subgraph H of L.G/ by V.H/ D V.L.G// and E.H/ D S

v2V.G/ E.Hv/: Then
H is connected and certainly has a cycle decomposition. Thus, H has an Eulerian
circuit, which is a dominating circuit of L.G/. The desired result now follows by
Theorem 2.18. ut

The graphs G2 and G3 in Fig. 2.7 show that Theorem 2.19 cannot be improved in
general, as neither L.G2/ nor L2.G3/ is Hamiltonian.

Note that L.Pn/ D Pn�1 for each integer n � 2. Thus Ln�1.Pn/ is trivial
and Lk.Pn/ is not defined for k � n. Also, L.Cn/ D Cn for every n � 3 and
L.K1;3/ D C3. Therefore, Lk.Cn/ D Cn for k � 0; while Lk.K1;3/ D C3 for
k � 1. If, however, G is a connected graph that is none of a path, cycle, and the star
K1;3 (called a claw), then we eventually arrive at some positive integer k such that
deg v � 3 for every vertex v of Lk.G/. The following is due to Chartrand [15].

Theorem 2.20. If G is a connected graph that is not a path, then there exists a
positive integer K such that Lk.G/ is Hamiltonian for every integer k � K.
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Powers of Graphs

Another operation on graphs is the k-th power of a graph for various positive
integers k, a topic discussed in Sect. 1.2. Recall for a connected graph G and a
positive integer k that the k-th power Gk of G is the graph with V.Gk/ D V.G/

and E.Gk/ D fuv W 1 � dG.u; v/ � kg.
If G is connected, then Gk is complete if and only if k � diam.G/. Thus, it

suffices to consider Gk only when 1 � k < diam.G/. Since G is a spanning
subgraph of Gk for every positive integer k, the graph Gk is certainly Hamiltonian
if G itself is. For a connected graph G of order n � 3, there is a smallest positive
integer k such that Gk is Hamiltonian. That G3 is Hamiltonian for every connected
graph of order 3 or more is a consequence of a result of Sekanina [61]. Recall that a
graph G is Hamiltonian-connected if G contains a Hamiltonian u� v path for every
two distinct vertices u and v of G.

Theorem 2.21. The cube of every connected graph is Hamiltonian-connected.

Proof. If H is a spanning subgraph of G and H 3 is Hamiltonian-connected, then G3

is also Hamiltonian-connected. Hence, it suffices to prove that the cube of every tree
is Hamiltonian-connected. We proceed by induction on n, the order of the tree. Since
the result is obvious for those graphs having diameter at most 3, assume for every
tree of order less than n that its cube is Hamiltonian-connected for some n � 5.
Let T be a tree of order n. For two arbitrary distinct vertices u; v 2 V.T /, let
.u D v1; v2; : : : ; vdC1 D v/ be the unique u � v path in T , where d D dT .u; v/.
Also, let T1 and T2 be the two components of T � v1v2, where vi belongs to Ti for
i D 1; 2. Thus, for each tree Ti , either Ti is trivial or T 3

i is Hamiltonian-connected.
We consider the following two cases.

Case 1. v D v2, that is, uv 2 E.T /. For each i D 1; 2, let wi 2 NTi .vi / if Ti is
nontrivial and let wi D vi otherwise. (Note that at most one of T1 and T2 is trivial.)
Then dT .w1; w2/ � 3 and so w1w2 2 E.T 3/. If we let P .i/ be a Hamiltonian vi �wi

path in T 3
i (which may be trivial) for i D 1; 2, then P .1/ and P .2/ with the edge

w1w2 form a Hamiltonian u � v path in T 3.

Case 2. v ¤ v2. Then T 3
2 contains a Hamiltonian v2 � v path P . Let P .1/ be a

Hamiltonian v1 � w1 path in T 3
1 , as described in Case 1. Since dT .w1; v2/ � 2, the

paths P .1/ and P with the edge w1v2 form a Hamiltonian u � v path in T 3. ut

The following is therefore immediate by the previous result.

Theorem 2.22. The cube of every connected graph of order at least 3 is
Hamiltonian.
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The graph of order 7 in Fig. 2.5 is the square of the tree obtained by subdividing
each edge of K1;3 exactly once. We have already seen that this graph is not
Hamiltonian. Consequently, even though the cube of every connected graph of order
at least 3 is Hamiltonian, such is not the case for the square. On the other hand, in
the 1960s, Plummer and Nash-Williams independently conjectured that the square
of every 2-connected graph is Hamiltonian. In 1974, this conjecture was verified by
Fleischner [33].

Theorem 2.23. The square of every 2-connected graph is Hamiltonian.

2.6 Hamiltonian Walks and Cyclic Orderings

Let G be a nontrivial connected graph. By a Hamiltonian walk in G is meant a
closed spanning walk of minimum length in G. Thus, while an Eulerian walk is a
closed edge-covering walk, not necessarily of minimum length, a Hamiltonian walk
is a closed vertex-covering walk of minimum length. The length of a Hamiltonian
walk in G is called the Hamiltonian number of G and is denoted by h.G/. Therefore,
h.G/ � jV.G/j and h.G/ D jV.G/j if and only if G is either Hamiltonian or K2.

For a connected graph G, recall that e.G/ denotes the minimum length of an
Eulerian walk in G. We saw in Sect. 1.4 that jE.G/j � e.G/ � 2jE.G/j. Therefore,
if G is a nontrivial connected graph, then

jV.G/j � h.G/ � e.G/ � 2jE.G/j: (2.1)

That the upper bound 2jE.G/j for h.G/ cannot be improved is shown in the next
result due to Goodman and Hedetniemi [37].

Theorem 2.24. If T is a tree of order n � 2, then h.T / D 2.n � 1/.

Proof. Since the size of a tree of order n is n � 1, it suffices to show by (2.1)
that h.T / � 2.n � 1/. Let W be a Hamiltonian walk in T and consider an edge
uv 2 E.T /. We may assume that u precedes v on W . Since uv is a bridge, it lies
on W . We may therefore assume that W begins with u and is immediately followed
by v. Since W terminates at u, the vertex u appears a second time on W and this
occurrence of u is immediately preceded by v. Thus the edge uv appears at least
twice on W . Hence h.T / � 2.n � 1/ and therefore h.T / D 2.n � 1/. ut

The proof of Theorem 2.24 in fact shows that every bridge in a connected graph
G must appear at least twice on any Hamiltonian walk in G. Since a Hamiltonian
walk in a spanning tree T of G is also a Hamiltonian walk in G, it follows that
h.G/ � h.T /. Thus we have the following.
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Fig. 2.8 Illustrating cyclic
orderings of the vertices in a
graph

Theorem 2.25. If G is a nontrivial connected graph of order n, then

n � h.G/ � 2.n � 1/:

In [23] Chartrand, Thomas, Saenpholphat, and Zhang described an alternative
way to compute the Hamiltonian number of a graph. If a graph G of order
n is Hamiltonian, then each Hamiltonian walk in G is a Hamiltonian cycle
C in G, say C D .v1; v2; : : : ; vn; v1/, and so h.G/ D n. Since the edges
v1v2; v2v3; : : : ; vn�1vn; vnv1 belong to G, it follows that there is a cyclic ordering
v1; v2; : : :, vn; vnC1 D v1 of the vertices of G such that

Pn
iD1 d.vi ; viC1/ D n.

In general, for a connected graph G of order n � 2 and a cyclic ordering s W v1;

v2; : : : ; vn; vnC1 D v1 of the vertices of G, the number d.s/ is defined as

d.s/ D
nX

iD1

d.vi ; viC1/: (2.2)

Since d.vi ; viC1/ � 1 for i D 1; 2; : : : ; n, it follows that d.s/ � n: To illustrate
this concept, consider the graph G D K2;4 shown in Fig. 2.8. The distance between
every two vertices of G is either 1 or 2. In every cyclic ordering of the vertices of
G, there are either two pairs or four pairs of consecutive vertices with distance 2.
Consider, for example, the two cyclic orderings s1 W v1; v3; v2; v4; v5; v6; v1 and s2 W
v1; v2; v3; v4; v5; v6; v1. Then d.s1/ D 8 and d.s2/ D 10.

We define the number h�.G/ D min fd.s/g ; where the minimum is taken over
all cyclic orderings s of the vertices of G. Then h�.G/ � n for each connected
graph G of order n � 3 and h�.G/ D n if and only if G is Hamiltonian. In the
graph G D K2;4 of Fig. 2.8, for every cyclic ordering s of V.G/, either d.s/ D 8 or
d.s/ D 10. Thus h�.G/ D 8.

The interest in the parameter h�.G/ lies in the following theorem.

Theorem 2.26. For every connected graph G, h�.G/ D h.G/:

Proof. The result clearly holds if the order of G is 2 and so we assume that
jV.G/j D n � 3. For a cyclic ordering s W v1; v2; : : : ; vn; vnC1 D v1 of V.G/ with
d.s/ D h�.G/, let P .i/ be a vi � viC1 geodesic in G for 1 � i � n. Then the walk
obtained by proceeding along the paths P .1/; P .2/; : : : ; P .n/ in the given order is a
closed spanning walk of G whose length equals h�.G/. Therefore, h.G/ � h�.G/.

Next, let W D .x0; x1; : : : ; x`/ be a Hamiltonian walk in G. Hence, L.W / D
h.G/ � n. Let vi D xi�1 for i D 1; 2. For 3 � i � n, let vi D xji ,
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where ji is the smallest positive integer such that xji … fv1; v2; : : : ; vi�1g. Then
s W v1; v2; : : : ; vn; vnC1 D v1 is a cyclic ordering of V.G/. For 1 � i � n, let Wi be
the vi � viC1 subwalk of W . Then

h�.G/ � d.s/ D
nX

iD1

d.vi ; viC1/ �
nX

iD1

L.Wi / D L.W / D h.G/;

which completes the proof. ut

By Theorems 2.25 and 2.26, h�.T / D h.T / D 2.n � 1/ for every tree T of
order n. In fact, trees are the only graphs G satisfying h.G/ D 2.jV.G/j � 1/.

Theorem 2.27 ([23]). Let G be a nontrivial connected graph of order n. Then
h.G/ D 2.n � 1/ if and only if G is a tree.

Proof. By Theorem 2.24, it remains to show that h.G/ < 2.n � 1/ if G contains
cycles. We proceed by induction on n. If n D 3, then G D K3 and the result is
immediate. Assume for an integer n � 4 that h.H/ < 2.n � 2/ for each connected
graph H of order n� 1 that is not a tree. Let G be a connected graph of order n that
is not a tree. Since h.Cn/ D n < 2.n � 1/, we may assume that G ¤ Cn.

We claim that G contains a vertex u such that G�u is connected but not a tree. If
G contains cut-vertices, then there is a vertex u in an end-block of G with the desired
property. Thus we may assume that G is 2-connected. Since G ¤ Cn, it follows that
G contains a cycle C whose length is less than n. Thus, there is a vertex u that is
not a cut-vertex and G � u still contains C . Since h.G � u/ < 2.n � 2/, there is a
cyclic ordering s0 W v1; v2; : : : ; vn�1; v1 of the vertices of G � u such that d.s0/ D
h.G � u/ < 2.n � 2/. Suppose that u is adjacent to the vertex vi and consider the
cyclic ordering s of V.G/ defined by s W v1; v2; : : : ; vi ; u; viC1; : : : ; vn�1; v1: Since
d.u; vi / D 1, it follows that d.u; viC1/ � d.u; vi /C d.vi ; viC1/ D 1C d.vi ; viC1/:

Hence

d.s/ D d.s0/ � d.vi ; viC1/C d.vi ; u/C d.u; viC1/

� d.s0/ � d.vi ; viC1/C 1C .1C d.vi ; viC1//

< 2.n � 2/C 2 D 2.n � 1/:

Therefore, h.G/ � d.s/ < 2.n � 1/. ut

In Theorem 1.23, we saw for a connected graph G of size m � 1 that e.G/ D 2m

if and only if G is a tree. It then follows by Theorem 2.24 that if G is a tree of order
n, then h.G/ D e.G/ D 2.n � 1/. It was shown in [37] that there are connected
graphs G that are not trees and yet h.G/ D e.G/. In order to describe a class
of graphs with this property, it is useful to introduce a new term. A cycle C in a
connected graph G is a cut-cycle of G if G �E.C / is disconnected.
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For an Eulerian walk W of a connected graph G, let M be the multigraph
obtained from G by replacing each edge uv of G by i parallel edges, where i

equals the number of times the edge uv is encountered on W . In this case, M is
said to be induced by W . In other words, M is the multigraph induced by E.W /.
Consequently, M is Eulerian and V.M/ D V.G/.

Theorem 2.28. If G is a connected graph such that h.G/ D e.G/, then every cycle
of G is a cut-cycle.

Proof. If G is a tree, then h.G/ D e.G/ and the result follows vacuously.
Otherwise, we may assume, to the contrary, that h.G/ D e.G/ and G contains
a cycle C that is not a cut-cycle. Therefore, G � E.C / is a connected spanning
subgraph of G. Suppose that C is an `-cycle. Let W be an Eulerian walk of
G with L.W / D e.G/ and let M be the multigraph induced by E.W /. Then
M is an Eulerian multigraph and V.M/ D V.G/. Since C is not a cut-cycle,
M � E.C / is an Eulerian spanning submultigraph of M . An Eulerian circuit in
M � E.C / gives rise to a closed spanning walk in G � E.C / and so in G. Hence
h.G/ � jE.M/ �E.C /j D e.G/ � ` < e.G/, which is a contradiction. ut

Theorem 2.28 was strengthened in 1974 by Goodman and Hedetniemi [37].

Theorem 2.29. If a connected graph G contains a cycle such that more than half
of its edges can be removed without disconnecting G, then h.G/ < e.G/.

Proof. Let W be an Eulerian walk of G with L.W / D e.G/ and let M be the
Eulerian multigraph induced by W . Let C be a cycle of G such that E.C / can be
partitioned into E1 and E2 with jE1j > jE2j and G � E1 is connected. Certainly,
C is a cycle in M . Also, M � E1 is a connected spanning submiltigraph of M ,
since G � E1 � M � E1 and G � E1 is connected. For each edge e D uv in E2,
we add an additional edge joining u and v in M � E1. This produces an Eulerian
multigraph M 0 whose vertex set is V.G/. An Eulerian circuit in M 0 gives rise to a
closed spanning walk in G�E1 and so in G. Hence h.G/ � jE.M/j�jE1jCjE2j D
jE.M/j � .jE1j � jE2j/ < jE.M/j D e.G/. ut

The converse of Theorem 2.29 is false. For example, consider G D K2;3, where
h.G/ D 6 and e.G/ D 8. In this case, the removal of more than half of the edges
of every cycle results in a subgraph of K1 C P4, which is disconnected. On the
other hand, if G is an Eulerian graph, then the converse is true, as the next result
shows [37]. In order to present a proof of this result, we first make some preliminary
observations. We saw that if W is an Eulerian walk of minimum length in a graph
G, then each edge of G appears at most twice in W: It was shown in [37] that this is
also the case for a Hamiltonian walk in a graph.

Theorem 2.30. Every edge in a connected graph G appears at most twice in a
Hamiltonian walk in G.
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Proof. Suppose that there exists some edge uv of a connected graph G that appears
at least three times in a Hamiltonian walk W in G. We may assume that W has one
of the following two forms

W 0 D .u; v; W1; u; v; W2; u; v; W3/ and W 00 D .u; v; W1; u; v; W2; v; u; W3/;

where W1; W2; W3 are (possibly empty) subwalks in W . Let
 �
W i denote the reverse

of the subwalk Wi . If W D W 0, then the walk .u;
 �
W 1; v; W2; u; v; W3/ is a closed

spanning walk of G which is shorter than W . This contradicts the defining property

of W . Similarly, if W D W 00, then the walk .u;
 �
W 1; v; W2; v; u; W3/ is a closed

spanning walk of G which is shorter than W , another contradiction. ut

The following theorem deals with Hamiltonian walks in Eulerian graphs.

Theorem 2.31. Let G be an Eulerian graph. Then h.G/ < e.G/ if and only if
G contains a cycle such that more than half of its edges can be removed without
disconnecting G.

Proof. By Theorem 2.29, we only show that an Eulerian graph G with h.G/ <

e.G/ has a cycle the removal of more than half of whose edges from G does not
disconnect G. Let G be an Eulerian graph and consider a Hamiltonian walk W of
G. By Theorem 2.30, we have a partition fE0; E1; E2g of E.G/ such that e 2 Ei if
and only if e appears i times in W for 0 � i � 2. Therefore, E0 is not an edge-cut of
G. Also, h.G/ D L.W / D jE1jC2jE2j and e.G/ D jE.G/j D jE0jCjE1jCjE2j.
Thus, h.G/ < e.G/ implies that jE0j > jE2j.

For a vertex v 2 V.G/, let Ev be the set of the edges incident with v in G.
Of course, degG v D jEvj is even since G is Eulerian. Also, since the multigraph
M induced by E.W / is Eulerian whose vertex set equals V.G/, it follows that
degM v D jEv \ E1j C 2jEv \ E2j is also even, which in turn implies that jEv \
.E0 [E2/j is even. Thus, the graph G0 induced by E0 [E2 is a nonempty spanning
subgraph of G in which every nontrivial component is Eulerian. Thus, G0 has a cycle
decomposition according to Veblen’s Theorem and so G0 (and G as well) contains
a cycle C such that jE.C /\E0j > jE.C /\E2j. Now, G � .E.C / \E0/ must be
connected since E0 is not an edge-cut of G. ut

One of the best known sufficient conditions for a graph to be Hamiltonian is that
due to Ore (Theorem 2.2). This theorem can be stated in terms of the Hamiltonian
number of a graph as follows.

Theorem 2.32. If G is a graph of order n � 3 such that deg uCdeg v � n whenever
uv … E.G/, then h.G/ D n.
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Jean-Claude Bermond [10] generalized this result by showing that if G is a
connected graph of order n for which the minimum degree sum � of every two
nonadjacent vertices of G satisfies 2 � � � n, then h.G/ is no more than 2n � � .

Theorem 2.33 (Bermond’s Theorem). Let G be a connected graph G of order
n � 3. If deg u C deg v � � for every pair u; v of nonadjacent vertices of G and
2 � � � n, then h.G/ � 2n � � .

Among the results obtained by Goodman and Hedetniemi is the following [37].

Theorem 2.34. Let G be a connected graph having blocks B1; B2; : : : ; Bk . Then
the union of the edges in a Hamiltonian walk for each of the blocks Bi forms a
Hamiltonian walk for G and, conversely, the edges in a Hamiltonian walk of G that
belong to Bi form a Hamiltonian walk in Bi .

Theorem 2.34 implies that the study of Hamiltonian walks can be restricted
to 2-connected graphs. For k-connected graphs .k � 2/ of a specified diameter,
the following appears in [37]. The diameter of a connected graph G is the largest
distance between two vertices of G and is denoted by diam.G/.

Theorem 2.35. If G is a k-connected graph of order n having diameter d , then

h.G/ � 2.n � 1/ � 2 bk=2c .d � 1/:

The clique number of a graph G is the maximum order among the complete
subgraphs of G. In [59] an upper bound was established for h.G/ in terms of the
order and clique number of a connected graph G.

Theorem 2.36. If G is a nontrivial connected graph of order n having clique
number !, then h.G/ � 2n � !: Furthermore, for each integer ! with 2 � ! � n,
there exists a connected graph G of order n having clique number ! such that
h.G/ D 2n � !:

By Theorem 2.27, trees of order n are the only connected graphs of order n with
Hamiltonian number 2.n � 1/. All connected graphs of order n with Hamiltonian
number 2n� 3 or 2n� 4 are characterized in [59]. A connected graph with exactly
one cycle is called a unicyclic graph. Therefore, a unicyclic graph is a graph
obtained from a tree by joining two nonadjacent vertices. In other words, G is
unicyclic if G itself is a cycle or G contains exactly one block that is a cycle and
each of the remaining block is K2.

Theorem 2.37. Let G be a connected graph of order n � 3. Then h.G/ D 2n � 3

if and only if G is a unicyclic graph whose unique cycle is a triangle.
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Let G1 be the set of connected graphs G of order n � 5 with cut-vertices such that
G contains exactly two blocks that are K3 and each of the remaining blocks of G is
K2. Also, let G2 be the set of connected graphs G of order n � 5 with cut-vertices
such that G contains exactly one block that is one of the graphs in the set

fK4g [ fK2;n0�2; K1;1;n0�2 W 4 � n0 � n � 1g
and each of the remaining blocks of G is K2.

Theorem 2.38. Let G be a connected graph of order n. Then h.G/ D 2n�4 if and
only if (a) n � 4 and G 2 fK4; K2;n�2; K1;1;n�2g or (b) n � 5 and G 2 G1 [ G2.

We have seen that if T is a nontrivial tree of order n, then h.T / D 2.n � 1/,
which is clearly even. With the aid of the alternative definition of the Hamiltonian
number of a graph in terms of d.s/ defined in (2.2), we can extend this fact to all
connected bipartite graphs.

Theorem 2.39 ([35]). If G is a nontrivial connected bipartite graph, then d.s/ is
even for every cyclic ordering s of V.G/.

Proof. For an arbitrary cyclic ordering s W v1; v2; : : : ; vn; vnC1 D v1 of V.G/, where
n D jV.G/j, consider the set fi1; i2; : : : ; ikg of integers with 1 D i1 < i2 < � � � <
ik D nC2 (where the subscripts of the vertices are expressed as integers modulo n)
such that (i) vij and vij C1

belong to different partite sets .1 � j � k � 2/ and (ii)
the set Sj D fvi W ij � i < ij C1g is contained in a partite set .1 � j � k � 1/.
Since v1 D vnC1 belongs to both S1 and Sk�1, it follows that k must be even and
the partite sets of G are S1 [ S3 [ � � � [ Sk�1 and S2 [ S4 [ � � � [ Sk�2. Therefore,
d.vi ; viC1/ is odd if and only if i D ij � 1 .2 � j � k � 1/, that is, exactly k � 2

of the n summands in d.s/ are odd. ut

Alternatively, we may consider Theorem 2.39 as follows. For a nontrivial
connected graph G of order n, suppose that s W v1; v2; : : : ; vn; vnC1 D v1 is a cyclic
ordering of V.G/. If P .i/ is a vi � viC1 geodesic for 1 � i � n, then the walk
W obtained by traversing the n paths P .1/; P .2/; : : : ; P .n/ in this order is a closed
walk in which every vertex of G appears at least once. Furthermore, the length of
W equals d.s/. Since the length of a u � v walk in a bipartite graph is even if and
only if u and v belong to the same partite set, every closed walk in a bipartite graph
has even length.

Theorem 2.40. If G is a connected bipartite graph, then h.G/ is even.

Hamiltonian walks in maximal planar graphs were studied by Asano, Nishizeki,
and Watanabe [7, 8]. In [7], it was shown that if G is a maximal planar graph of
order n � 10, then G is Hamiltonian and so h.G/ D n. For a maximal planar graph
of order n � 11, an upper bound was established in terms of n.
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Theorem 2.41. If G is a maximal planar graph of order n � 11, then h.G/ �
1:5.n � 3/.

As indicated in [8], the problem of finding a Hamiltonian walk in a given graph
is NP-complete. This problem is a generalized Hamiltonian cycle problem and is a
special case of the Traveling Salesman Problem. With the aid of the techniques of
divide-and-conquer and augmentation, an approximation algorithm for this problem
on maximal planar graphs was presented in [8]. This algorithm finds in O.n2/

time, a closed spanning walk of length at most 3.n � 3/=2 in a given arbitrary
maximal planar graph of order n � 9. More recent results include the following by
Kawarabayashi and Ozeki [44].

Theorem 2.42. Let G be a 3-connected planar graph. Then h.G/ � 4.n � 1/=3,
where jV.G/j D n.

2.7 The Upper Hamiltonian Number of a Graph

In Sect. 2.6, we saw for the graph G D K2;4 (shown in Fig. 2.8) that d.s/ D 8 D
h.G/ or d.s/ D 10 for every cyclic ordering s of V.G/.

For a connected graph G in general, the upper Hamiltonian number hC.G/ is
defined as

hC.G/ D max fd.s/g ;
where the maximum is taken over all cyclic orderings s of the vertices of G. This
concept was introduced in [23]. Thus, h.G/ D 8 while hC.G/ D 10 for G D
K2;4. In fact, Theorem 2.39 implies that both h.G/ and hC.G/ are even when G is
bipartite.

Obviously, hC.G/ � h.G/ for every connected graph G in general, while the two
parameters are equal when G is complete. As another example, let us consider the
hypercubes Qn. Note that Q1 D K2 and so h.Q1/ D hC.Q1/ D 2. For n � 2, the
graph Qn is Hamiltonian and so h.Qn/ D 2n for each n � 1. The upper Hamiltonian
number of Qn was obtained in [23].

Theorem 2.43. For each integer n � 2, hC.Qn/ D 2n�1.2n � 1/:

Proof. First, we show that hC.Qn/ � 2n�1.2n � 1/: Let s be an arbitrary cyclic
ordering of V.Qn/ with d.s/ D hC.Qn/. Since diam.Qn/ D n and each vertex
v 2 V.Qn/ has exactly one vertex v0 2 V.Qn/ such that d.v; v0/ D n, at most 2n�1

terms in d.s/ are equal to n. Thus, hC.Qn/ D d.s/ � 2n�1n C 2n�1.n � 1/ D
2n�1.2n � 1/:

To verify that hC.Qn/ � 2n�1.2n � 1/, note that the result is straightforward
to verify for Q2 D C4 and so we may assume that n � 3. Let G D Qn. Then G

consists of two disjoint copies G1 and G2 of Qn�1, where corresponding vertices
of G1 and G2 are adjacent. For each vertex v of G, there is a unique vertex v0 of G
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such that d.v; v0/ D n D diam.Qn/. Necessarily, exactly one of v and v0 belongs to
G1. Let .v1; v2; : : : ; v2n�1 ; v2n�1C1 D v1/ be a Hamiltonian cycle in G1 and consider
the cyclic ordering s W v1; v0

1; v2; v0
2; : : : ; v2n�1 ; v0

2n�1 ; v1 of V.G/. By the triangle
inequality, d.viC1; v0

i / � d.vi ; v0
i / � d.vi ; viC1/ D n � 1 for 1 � i � 2n�1. Hence,

hC.Qn/ � d.s/ D 2n�1nC 2n�1.n � 1/ D 2n�1.2n � 1/: ut

The upper Hamiltonian numbers of trees and cycles have been calculated in
[23, 47].

Theorem 2.44. If T is a nontrivial tree of order n, then

2.n � 1/ D h.T / � hC.T / � �
n2=2

˘
:

Furthermore, hC.T / D 2.n � 1/ if and only if T is a star and hC.T / D �
n2=2

˘
if

and only if T is a path.

Theorem 2.45. For each integer n � 3, h.Cn/ D n and

hC.Cn/ D .n � 2/b.n � 1/=2c C 2d.n � 1/=2e:

Theorems 2.43–2.45 show, not surprisingly, that hC.G/ can be considerably
larger than h.G/. There are, however, only two graphs G of a fixed order for which
h.G/ D hC.G/, a fact established in [23]. Two vertices u and v are antipodal
vertices in a connected graph G if d.u; v/ D diam.G/.

Theorem 2.46. Let G be a nontrivial connected graph. Then h.G/ D hC.G/ if
and only if G is either complete or a star.

Proof. Let G be a connected graph of order n � 2. For every cyclic ordering s of
V.G/, observe that d.s/ D n if G is complete while d.s/ D 2.n � 1/ if G is a star.
In other words, h.Kn/ D hC.Kn/ D n and h.K1;n�1/ D hC.K1;n�1/ D 2.n � 1/.

For the converse, suppose that G is a connected graph of order n and G ¤
Kn; K1;n�1. Thus, n � 4 and d D diam.G/ � 2. We may also assume by
Theorems 2.44 and 2.45 that G is neither a path nor a cycle. We now consider
two cases, according to whether d � 3 or d D 2.

Case 1. d � 3. Let P D .v1; v2; : : : ; vdC1/ be a v1 � vdC1 geodesic, where v1

and vdC1 are antipodal vertices in G. Since G itself is not a path, the set U D
V.G/ � V.P / is not empty. Write U D fu1; u2; : : : ; un�d�1g and define cyclic
orderings s and s0 of V.G/ by

s W v1; v2; v3; v4; : : : ; vdC1; u1; u2; : : : ; un�d�1; v1 (2.3)

s0 W v1; v3; v2; v4; : : : ; vdC1; u1; u2; : : : ; un�d�1; v1: (2.4)
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Fig. 2.9 Induced subgraphs
F1 and F2 of G

Observe then that hC.G/ � d.s0/ D d.s/C 2 � h.G/C 2.

Case 2. d D 2. Since G is not a star, G contains cycles. Let g be the girth (the
length of a smallest cycle) in G. So g � 3. Assume first that g D 3. Since G is
connected and not complete, there exists a set V � V.G/ such that the subgraph
induced by V in G is isomorphic to one of the graphs F1 and F2 in Fig. 2.9.

If n D 4, then the cyclic orderings s W v1; v2; v3; v4; v1 and s0 W v1; v3; v2; v4; v1

show that hC.G/ � h.G/ C 1. For n � 5, the set U D V.G/ � V is nonempty.
Then define the cyclic orderings s and s0 of V.G/ as described in (2.3) and (2.4) with
d D 3, respectively, and verify that d.s0/ D d.s/C 1. Thus, hC.G/ � h.G/C 1.

If g � 4, then let C D .v1; v2; : : : ; vg; v1/ be an induced cycle of G and let
U D V.G/ � V.C / D fu1; u2; : : : ; un�gg, which is nonempty since G ¤ Cn.
Again, by considering the cyclic orderings s and s0 of V.G/ as described in (2.3)
and (2.4) with d D g � 1, respectively, we see that hC.G/ � h.G/C 2. ut

The proof of Theorem 2.46 suggests that if G is a graph with hC.G/�h.G/ D 1,
then jV.G/j � 4, diam.G/ D 2, and G must contain a triangle. In order to obtain a
complete characterization of those graphs G for which the difference between h.G/

and hC.G/ is exactly 1, the following is useful. Note that G _H denotes the join
of vertex-disjoint graphs G and H (while G CH is the union of G and H ).

Lemma 2.2. For a graph G, let G1 D K1 _G and G2 D K1 _G. Then hC.G1/�
h.G1/ D hC.G2/ � h.G2/.

Proof. For a graph G of order n � 1 .� 1/, construct each of G1 and G2 by adding
a new vertex and joining it to every vertex of G and G, respectively. Let V D
V.G1/ D V.G2/. Since G1 D G2 D K2 if n D 2, we may assume that n � 3.
For every two distinct vertices u; v 2 V.G/, we have dG1.u; v/ C dG2.u; v/ D 3.
Therefore, dG1.s/ C dG2.s/ D 3n � 2 for every cyclic ordering s of V . Let s1

and s2 be cyclic orderings of V.G1/ D V.G2/ such that dG1.s1/ D h.G1/ and
dG2.s2/ D hC.G2/. Then 3n � 2 D dG1.s1/ C dG2.s1/ � h.G1/ C hC.G2/ �
dG1.s2/C dG2.s2/ D 3n � 2; implying that h.G1/C hC.G2/ D 3n � 2. Similarly,
h.G2/C hC.G1/ D 3n � 2. Therefore, hC.G1/ � h.G1/ D hC.G2/ � h.G2/. ut

For a set U � V.G/, where say jU j D `, an ordering v1; v2; : : : ; v` of the `

vertices in U is called a linear ordering of U .



2.7 The Upper Hamiltonian Number of a Graph 61

Theorem 2.47. Let G be a nontrivial connected graph of order n. Then hC.G/ �
h.G/ D 1 if and only if n � 4 and G D K1 _H , where

H 2 fK1;:::;1;2; K1;:::;1;2; K1;n�2; K1;n�2g:

Proof. For n � 4, let H1 D K1;n�2, H2 D K1;:::;1;2, H3 D H2, and H4 D H1. Then
it is straightforward to verify that

h.K1 _Hi / D hC.K1 _Hi / � 1 D
�

nC 2 � i if i D 1; 2

2n � i if i D 3; 4.

For the converse, suppose that G is a connected graph of order n and hC.G/ �
h.G/ D 1. Then n � 4 since G is neither complete nor a star by Theorem 2.46.
Furthermore, as we saw in the proof of Theorem 2.46, there is neither P4 nor C4 as
an induced subgraph in G. We may therefore assume that �.G/ D n � 1 and G

contains triangles. That is, G D K1 _ H for some graph H of order n � 1 that is
neither complete nor empty. For n D 4, therefore, H 2 fK1;2; K1;2g.

Now assume that n � 5. We next show that none of 2K2, P4, and C4 is an
induced subgraph in H . We have already seen that neither P4 nor C4 can be an
induced subgraph in G, that is, neither is contained in H as an induced subgraph.
Also, 2K2 D C 4 cannot be an induced subgraph in H by Lemma 2.2. For n D 5,
therefore, H 2 fK1;1;2; K1;1;2; K1;3; K1;3g or H 2 fH0; H 0g, where H0 D K1CP3.
One can quickly verify that h.K1 _H0/ D 6 D hC.K1 _H0/� 2 and so hC.K1 _
H0/ � h.K1 _H0/ D hC.K1 _H 0/ � h.K1 _H 0/ D 2 by Lemma 2.2.

Finally, assume that n � 6. We next show that degH v 2 f0; 1; n � 3; n � 2g
for every v 2 V.H/. Assume, to the contrary, that v1 is a vertex in H with 2 �
degH v1 � n � 4. Then let v2; v3; v4; v5 be vertices in H such that v2 and v3 are
adjacent to v1 while v4 and v5 are not. Let v0 be the vertex in G that is adjacent to
every vertex in H . Then by considering two orderings s1 W v2; v1; v3; v4; v0; v5; v2 and
s2 W v2; v0; v3; v4; v1; v5; v2 (and by inserting some fixed linear ordering of V.G/ �
fv0; v1; : : : ; v5g between v5 and v2 in each of s1 and s2 in case n � 7), we see that
hC.G/ � h.G/ � 2. This verifies the claim. Furthermore, �.H/ 2 f1; n � 3; n �
2g since H is nonempty. If �.H/ D 1, then H D K1;:::;1;2 since 2K2 cannot be
an induced subgraph in H . Thus, we now consider the following two cases. Let
V.H/ D fv1; v2; : : : ; vn�1g and degH v1 D �.H/.

Case 1. �.H/ D n � 3. Then suppose that v1v2 … E.H/. If degH v2 � 1, say
v2v3 2 E.H/, then we may assume that v3v4 … E.H/ since degH v3 � n � 3.
However, this implies that the subgraph induced by fv1; v2; v3; v4g is either C4 or P4,
which cannot occur. Hence, degH v2 D 0. If H ¤ K1;n�2, then H D K1 CK1;n�3

since degH v 2 f0; 1; n�3; n�2g for every v 2 V.H/. To see that this cannot occur,
observe that H is traceable and K1 _ H is Hamiltonian while dK1_H .s/ � n C 2

for any cyclic ordering of V.K1 _ H/ whose first three terms are v3; v1; v4. Thus,
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hC.K1 _ H/ � h.K1 _ H/ D hC.K1 _ H/ � h.K1 _ H/ � 2 by Lemma 2.2.
Therefore, H D K1;n�2 is the only possibility in this case.

Case 2. �.H/ D n�2. Then ı.H/ 2 f1; n�3g since H is not complete. If there are
two or more vertices having degree n � 2 in H , then ı.H/ D n � 3. Furthermore,
H D K1;:::;1;2 since C4 cannot occur as an induced subgraph in H . On the other
hand, if v1 is the only vertex whose degree in H equals n � 2, then the number of
end-vertices in H is either 1 or n� 2. If the former occurs, then H D K1CK1;n�3.
However, this is impossible by Case 1 and Lemma 2.2. Therefore, H D K1;n�2. ut

Observe that if s W v1; v2; : : : ; vn; vnC1 D v1 is any cyclic ordering of the vertices
of a connected graph, then for each vertex vi .1 � i � n/, both d.vi�1; vi / � e.vi /

and d.vi ; viC1/ � e.vi /, where e.vi / denotes the eccentricity of vi (the distance
from vi to a vertex farthest from vi ). Therefore, if G is a connected graph of order
n � 3 with V.G/ D fv1; v2; : : : ; vng, then

hC.G/ �
nX

iD1

e.vi /:

Since the eccentricity of a vertex in G is at most the diameter of G, we have the
following upper bound for hC.G/ in terms of the order and diameter of G.

Theorem 2.48. If G is a nontrivial connected graph of order n and diameter d ,
then hC.G/ � nd:

The upper bound in Theorem 2.48 has been shown to be sharp in [23]. A sharp
lower bound for the upper Hamiltonian number of a connected graph G, also in
terms of the order and diameter of G, was obtained by Král, Tong, and Zhu in [47].

Theorem 2.49. If G is a nontrivial connected graph of order n and diameter d ,
then

hC.G/ � nC dd 2=2e � 1:

Furthermore, for each pair n; d of integers satisfying 1 � d � n � 1, there is a
connected graph G of order n and diameter d with hC.G/ D nC dd 2=2e � 1.

2.8 The Hamiltonian Spectrum of a Graph

For a connected graph G, the Hamiltonian spectrum H .G/ of G is defined in
[47] as

H .G/ D fd.s/ W s is a cyclic ordering of the vertices of Gg:
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Fig. 2.10 Illustrating the
Hamiltonian spectrum of a
graph

Of course, this implies that h.G/; hC.G/ 2H .G/ and, in general,

H .G/ � fk W k D h.G/; h.G/C 1; : : : ; hC.G/g: (2.5)

The following is therefore an immediate consequence of Theorem 2.46.

Theorem 2.50. The Hamiltonian spectrum of a connected graph G consists of a
single number if and only if G is either a complete graph or a star.

As another illustration, consider the Petersen graph P in Fig. 2.10. Since P is a
non-Hamiltonian graph of order 10, it follows that h.P / � 11. On the other hand,
hC.P / � 20 by Theorem 2.48. Therefore, 11 � h.P / < hC.P / � 20: In fact,
h.P / D 11 and hC.P / D 20. Consider the sequences si .1 � i � 10/ given by

s1 W u1; u2; u3; u4; u5; v5; v2; v4; v3; v1; u1

s2 W u1; u2; u3; u4; u5; v5; v2; v3; v4; v1; u1

s3 W u1; u2; u3; u5; u4; v4; v2; v3; v5; v1; u1

s4 W u1; u3; u5; u2; u4; v4; v2; v5; v3; v1; u1

s5 W u1; u3; u5; u2; u4; v3; v5; v2; v4; v1; u1

s6 W u1; u3; u5; u2; u4; v5; v2; v4; v3; v1; u1

s7 W u1; u3; u5; u2; u4; v3; v5; v4; v2; v1; u1

s8 W u1; u3; u5; u2; v2; u4; v3; v4; v5; v1; u1

s9 W u1; u3; u5; u2; u4; v2; v3; v4; v5; v1; u1

s10 W u1; u3; u5; u2; u4; v1; v2; v3; v4; v5; u1:

Since d.si / D 10 C i for 1 � i � 10, it follows that H .P / D f11; 12; : : : ; 20g,
that is, equality holds in (2.5). On the other hand, Theorem 2.39 implies that the
Hamiltonian spectrum of a connected bipartite graph consists only of even integers,
that is, equality in (2.5) does not hold in general.

The Hamiltonian spectrum of an n-cycle was determined in [47] for each integer
n � 3. Recall that hC.Cn/ D .n � 2/b.n � 1/=2c C 2d.n � 1/=2e.

Theorem 2.51. Let n � 3 be an integer.
(a) If n is even, then H .Cn/ D fn; nC 2; : : : ; hC.Cn/ � 2; hC.Cn/g:
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(b) If n is odd, then

H .Cn/ Dfn; nC 2; : : : ; 2n � 5; 2n � 3g[
f2n � 2; 2n � 1; : : : ; hC.Cn/ � 2g [ fhC.Cn/g:

The Hamiltonian spectrum of a tree was determined by Liu [50]. In order to
present this result, we introduce some additional definitions. For a vertex v of a
connected graph G, the total distance td.v/ of v is the sum of the distances from v
to all vertices of G. The minimum total distance over all vertices of G is the median
number of G and is denoted by med.G/.

Theorem 2.52. For a nontrivial tree T of order n,

H .T / D f2k W k D n � 1; n; nC 1; : : : ; med.T /g:

The following is a consequence of Theorem 2.52.

Theorem 2.53. The upper Hamiltonian number of a nontrivial tree T equals
2 med.T /.

According to Theorems 2.44 and 2.53 (or Theorem 2.39), the upper Hamiltonian
number of a tree of order n is an even integer between 2.n � 1/ and

�
n2=2

˘
. In

fact, for each integer n � 3, every even integer between 2.n � 1/ and
�
n2=2

˘
is

the upper Hamiltonian number of some tree of order n. In order to show this, we
first present some preliminary results. A vertex of a connected graph G whose total
distance equals the median number of G is a median vertex of G. The subgraph
of G induced by its median vertices of G is the median of G. The following two
lemmas will be useful to us, the first of which is an easy observation and the second
of which was established by Truszczyński [65].

Lemma 2.3. No end-vertex of a tree T of order at least 3 is a median vertex of T .

Lemma 2.4. The median of every connected graph G lies in a single block of G.

It therefore follows by Lemma 2.4 that the median of a tree is either K1 or K2.

Theorem 2.54. For each pair n; k of integers satisfying 1 � n � 1 � k � bn2=4c,
there exists a tree T of order n such that hC.T / D 2k.

Proof. By Theorem 2.44, the result holds when k 2 fn�1; bn2=4cg. Thus, let n � 5

be a fixed integer and suppose that k is an integer satisfying nC 1 � k � bn2=4c
and there exists a tree Tk of order n with hC.Tk/ D 2k. We show that there exists a
tree T of order n with hC.T / D 2.k � 1/.
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Let x be a median vertex of Tk and select a vertex y farthest from
x. Thus, y is an end-vertex in Tk while x is not by Lemma 2.3. Also,
tdTk

.x/ D med.Tk/ D k by Theorem 2.53. Now consider the y � x geodesic
P D .y D v0; v1; v2; : : : ; ve.x/ D x/, where e.x/ is the eccentricity of x. Note that
e.x/ � 2 since Tk is not a star. Let T be the tree obtained from Tk by deleting the
edge v0v1 and adding the edge v0v2. Then y is an end-vertex in T while v1 may or
may not. We claim that med.T / D k � 1. For each vertex v 2 V.T /� fyg, observe
that

tdT .v/ D
�

tdTk
.v/C 1 if v 2 V.T 0/

tdTk
.v/ � 1 otherwise,

where T 0 is the component of T �v1v2 containing v1. Since tdT .y/ > med.T / again
by Lemma 2.3, it follows that med.T / D tdT .x/ D k�1 and so hC.T / D 2.k�1/

by Theorem 2.53. ut

As we have seen earlier, d.s/ and d.s0/ are of the same parity for every two cyclic
orderings s and s0 of V.G/ if G is either complete or bipartite. In fact, these are the
only two classes of connected graphs with this property.

Theorem 2.55 ([35]). A nontrivial connected graph G has the property that d.s/

and d.s0/ are of the same parity for every two cyclic orderings s and s0 of V.G/ if
and only if G is complete or bipartite.

Proof. By the discussion above, we may assume that G is neither complete nor
bipartite. We consider two cases.

Case 1. G contains a triangle. Let G0 D K! be a largest clique in G, where then
! � 3. Since G is not complete and G is connected, there is a vertex in V.G/ �
V.G0/ that is adjacent to some but not all vertices of G0. Thus, there is a triangle
.v1; v2; v3; v1/ and a vertex v4 2 V.G/ � fv1; v2; v3g such that v2v4 … E.G/ and
v3v4 2 E.G/. For a fixed linear ordering s of V.G/ � fv2; v3; v4g whose terminal
vertex is v1, let s1 be the ordering v1; v2; v3; v4 followed by s. Similarly, let s2 be
the ordering v1; v3; v2; v4 followed by s. Then both s1 and s2 are cyclic orderings of
V.G/ and d.s2/ � d.s1/ D 1. Hence, d.s1/ and d.s2/ are of opposite parity.

Case 2. G is triangle-free. Let C D .v1; v2; : : : ; v`; v1/ be a shortest odd cycle in G.
Thus, ` � 5 and C is an induced subgraph of G. We consider two subcases.

Subcase 2.1. ` D 5. If G itself is a cycle, that is, if n D ` D 5, then let s1 W
v1; v3; v2; v4; v5; v1 and s2 W v1; v3; v4; v2; v5; v1 be two cyclic orderings of the vertices
of G. Hence, d.s1/ D 7 and d.s2/ D 8. If n � 6, then let s be a fixed linear ordering
of the vertices of V.G/ � fv2; v3; v4; v5g whose terminal vertex is v1. Now consider
s0

1 W v1; v3; v2; v4; v5 and s0
2 W v1; v4; v2; v3; v5. For i D 1; 2, let si be the ordering s0

i

followed by s. Then si is a cyclic ordering of V.G/ and d.s2/ � d.s1/ D 1.
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Subcase 2.2. ` � 7. Let s be a fixed linear ordering of the set V.G/�fv2; : : : ; v`�1g
whose terminal vertex is v1. Let `� D .`C 1/=2 and consider

s0
1 W v1; v`� ; v2; v3; : : : ; v`��1; v`�C1; v`�C2; : : : ; v`�1

s0
2 W v1; v`�C1; v2; v3; : : : ; v`� ; v`�C2; v`�C3; : : : ; v`�1:

For i D 1; 2, let si be the ordering s0
i followed by s. Then both s1 and s2 are cyclic

orderings of V.G/ and d.s2/ � d.s1/ D 1. ut

The following is an immediate consequence of the proof of Theorem 2.55.

Theorem 2.56. If G is a nontrivial connected graph that is neither complete nor
bipartite, then there are cyclic orderings s and s0 of V.G/ such that d.s/�d.s0/ D 1.
In other words, H .G/ contains two consecutive integers.

We have seen that the Hamiltonian spectrum of a graph G consists of a single
element if and only if G is either complete or a star. Suppose now that G is a graph
for which H .G/ contains exactly two elements. If G is not bipartite, then it follows
by Theorem 2.56 that hC.G/ � h.G/ D 1. Such graphs have been completely
characterized in Theorem 2.47.

A tree T is a double star if it contains exactly two vertices that are not end-
vertices. Necessarily, these two vertices are adjacent in T . If their degrees are r and
s .r; s � 2/, respectively, then we write T D Sr;s . For those graphs G that are
bipartite and jH .G/j D 2, we have the following.

Theorem 2.57 ([35]). Let G be a nontrivial connected bipartite graph of order n.
Then jH .G/j D 2 if and only if n � 4 and G is either S2;n�2 or K2;n�2.

Combining Theorems 2.56 and 2.57, we have the following.

Theorem 2.58. Let G be a nontrivial connected graph of order n. Then jH .G/j D
2 if and only if n � 4 and either
(a) G 2 fS2;n�2; K2;n�2g or
(b) G D K1 _H , where H 2 fK1;:::;1;2; K1;:::;1;2; K1;n�2; K1;n�2g:
Furthermore, the two integers in H .G/ are of the same parity if and only if
(a) occurs.

Theorem 2.59 ([35]). If G is a connected graph of order n such that hC.G/ �
h.G/ D 2, then exactly one of the following (a)–(c) occurs:
(a) n � 4 and G 2 fS2;n�2; K2;n�2g.
(b) n � 5 and G D H1 _H2, where H1 is complete and

i. n � 6 and H2 D K3 or
ii. n � 5 and H2 D K2;2 or

iii. n � 5 and H2 D K1 CK`, where 2 � ` � n � 3.
(c) n � 5 and G is neither bipartite nor Hamiltonian.
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