
Chapter 2
Observed Score Equating Using the Random
Groups Design

As was stressed in Chap. 1 the same specifications property is an essential property of
equating, which means that the forms to be equated must be built to the same content
and statistical specifications. We also stressed that the symmetry property is essential
for any equating relationship. The focus of the present chapter is on methods that
are designed to achieve the observed score equating property, along with the same
specifications and symmetry properties. As was described in Chap. 1, these observed
score equating methods are developed with the goal that, after equating, converted
scores on two forms have at least some of the same score distribution characteristics
in a population of examinees.

In this chapter, these methods are developed in the context of the random groups
design. Of the designs discussed thus far, the assumptions required for the random
groups design are the least severe and most readily achieved. Thus, very few sources
of systematic error are present with the random groups design. Because of the minimal
assumptions required with the random groups design, this design is ideal for use in
presenting the basic statistical methods in observed score equating, which is the focus
of the present chapter.

The definitions and properties of mean, linear, and equipercentile equating meth-
ods are described in this chapter. These methods are presented, initially, in terms of
population parameters (e.g., population means and standard deviations) for a specific
population of examinees. We also discuss the process of estimating equating rela-
tionships, which requires that statistics (e.g., sample means and standard deviations)
be substituted in place of the parameters. The methods then are illustrated using a
real data example. Following the presentation of the methods, issues in using scale
scores are described and illustrated. We then briefly discuss equating using the single
group design.

An important practical challenge in using the random groups design is to obtain
large enough sample sizes so that random error (see Chap. 7 for a discussion of
standard errors) is at an acceptable level (rules of thumb for appropriate sample sizes
are given in Chap. 8. For the equipercentile equating method, in Chap. 3 we describe
statistical smoothing methods that often are used to help reduce random error when
conducting equipercentile equating using the random groups design.

M. J. Kolen and R. L. Brennan, Test Equating, Scaling, and Linking, 29
Statistics for Social and Behavioral Sciences, DOI: 10.1007/978-1-4939-0317-7_2,
© Springer Science+Business Media New York 2014

http://dx.doi.org/10.1007/978-1-4939-0317-7_1
http://dx.doi.org/10.1007/978-1-4939-0317-7_1
http://dx.doi.org/10.1007/978-1-4939-0317-7_7
http://dx.doi.org/10.1007/978-1-4939-0317-7_8
http://dx.doi.org/10.1007/978-1-4939-0317-7_3
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For simplicity, the statistical methods in this chapter are developed using a testing
situation in which tests consist of test items that are scored correct (1) or incorrect
(0), and where the total score is the number of items answered correctly. Near the
end of the chapter, a process for equating tests that are scored using other scoring
schemes is described.

2.1 Mean Equating

In mean equating, Form X is considered to differ in difficulty from Form Y by a
constant amount along the score scale. For example, under mean equating, if Form
X is 2 points easier than Form Y for high-scoring examinees, it is also 2 points easier
than Form Y for low-scoring examinees. Although a constant difference might be
overly restrictive in many testing situations, mean equating is useful for illustrating
some important equating concepts.

As was done in Chap. 1, define Form X as the new form, let X represent the
random variable score on Form X, and let x represent a particular score on Form
X (i.e., a realization of X ); and define Form Y as the old form, let Y represent the
random variable score on Form Y, and let y represent a particular score on Form Y
(i.e., a realization of Y ). Also, define μ(X) as the mean on Form X and μ(Y ) as the
mean on Form Y for a population of examinees. In mean equating, scores on the two
forms that are an equal (signed) distance away from their respective means are set
equal:

x − μ(X) = y − μ(Y ). (2.1)

Then solve for y and obtain

mY (x) = y = x − μ(X) + μ(Y ). (2.2)

In this equation, mY (x) refers to a score x on Form X transformed to the scale of
Form Y using mean equating.

As an illustration of how to apply this formula, consider the situation discussed
in Chap. 1, in which the mean on Form X was 72 and the mean on Form Y was 77.
Based on this example, Eq. (2.2) indicates that 5 points would need to be added to
a Form X score to transform a score on Form X to the Form Y scale. That is,

mY (x) = x − 72 + 77 = x + 5.

For example, using mean equating, a score of 72 on Form X is considered to indicate
the same level of achievement as a score of 77 (77 = 72 + 5) on Form Y. And, a
score of 75 on Form X is considered to indicate the same level of achievement as
a score of 80 on Form Y. Thus, mean equating involves the addition of a constant
(which might be negative) to all raw scores on Form X to find equated scores on
Form Y.

http://dx.doi.org/10.1007/978-1-4939-0317-7_1
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2.2 Linear Equating

Rather than considering the differences between two forms to be a constant, linear
equating allows for the differences in difficulty between the two test forms to vary
along the score scale. For example, linear equating allows Form X to be more diffi-
cult than Form Y for low-achieving examinees but less difficult for high-achieving
examinees.

In linear equating, scores that are an equal (signed) distance from their means
in standard deviation units are set equal. Thus, linear equating can be viewed as
allowing for the scale units, as well as the means, of the two forms to differ. Define
σ(X) and σ(Y ) as the standard deviations of Form X and Form Y scores, respectively.
The linear conversion is defined by setting standardized deviation scores (z-scores)
on the two forms to be equal such that

x − μ(X)

σ(X)
= y − μ(Y )

σ(Y )
. (2.3)

If the standard deviations for the two forms were equal, Eq. (2.3) could be simplified
to equal the mean equating Eq. (2.2). Thus, if the standard deviations of the two forms
are equal, then mean and linear equating produce the same result. Solving for y in
Eq. (2.3),

lY (x) = y = σ(Y )

[
x − μ(X)

σ(X)

]
+ μ(Y ), (2.4)

where lY (x) is the linear conversion equation for converting observed scores on Form
X to the scale of Form Y. By rearranging terms, an alternate expression for lY (x) is

lY (x) = y = σ(Y )

σ(X)
x +

[
μ(Y ) − σ(Y )

σ(X)
μ(X)

]
. (2.5)

This expression is a linear equation of the form slope (x) + intercept with

slope = σ(Y )

σ(X)
, and intercept = μ(Y ) − σ(Y )

σ(X)
μ(X). (2.6)

What if the standard deviations in the mean equating example were σ(X) = 10 and
σ(Y ) = 9? The slope is 9/10 = .9, and the intercept is 77 − (9/10)72 = 12.2. The
resulting conversion equation is lY (x) = .9x + 12.2. What is lY (x) if x = 75?

lY (75) = .9(75) + 12.2 = 79.7.

How about if x = 77 or x = 85?

lY (77) = .9(77) + 12.2 = 81.5, and

lY (85) = .9(85) + 12.2 = 88.7.
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These equated values illustrate that the difference in test form difficulty varies with
score level. For example, the difference in difficulty between Form X and Form Y
for a Form X score of 75 is 4.7(79.7 − 75), whereas the difference for a Form X
score of 85 is 3.7(88.7 − 85).

2.3 Properties of Mean and Linear Equating

In general, what are the properties of the equated scores? From Chapter 1, E is the
expectation operator. The mean of a variable is found by taking the expected value
of that variable. Using Eq. (2.2), the mean converted score mY (x), for mean equating
is

E[mY (X)] = E[X − μ(X) + μ(Y )] = μ(X) − μ(X) + μ(Y ) = μ(Y ). (2.7)

That is, for mean equating the mean of the Form X scores equated to the Form Y scale
is equal to the mean of the Form Y scores. In the example described earlier, the mean
of the equated Form X scores is 77 [recall that mY (x) = x + 5 and μ(X) = 72], the
same value as the mean of the Form Y scores. Note that standard deviations were not
shown in Eq. (2.7). What would be the standard deviation of Form X scores converted
using the mean equating Eq. (2.2)? Because the Form X scores are converted to Form
Y by adding a constant, the standard deviation of the converted scores would be the
same as the standard deviation of the scores prior to conversion. That is, under mean
equating, σ[mY (X)] = σ(X).

Using Eq. (2.5), the mean equated score for linear equating can be found as fol-
lows:

E[lY (X)] = E
[

σ(Y )

σ(X)
X + μ(Y ) − σ(Y )

σ(X)
μ(X)

]

= σ(Y )

σ(X)
E(X) + μ(Y ) − σ(Y )

σ(X)
μ(X)

= μ(Y ), (2.8)

because E(X) = μ(X).
The standard deviation of the equated scores is found by first substituting Eq. (2.5)

for lY (X) as follows:

σ[lY (X)] = σ

[
σ(Y )

σ(X)
X + μ(Y ) − σ(Y )

σ(X)
μ(X)

]

To continue, the standard deviation of a score plus a constant is equal to the standard
deviation of the score. That is, σ(X +constant) = σ(X). By recognizing in the linear
equating equation that the terms to the right of the addition sign are a constant, the
following holds:

http://dx.doi.org/10.1007/978-1-4939-0317-7_1
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σ[lY (X)] = σ

[
σ(Y )

σ(X)
X

]
.

Also note that the standard deviation of a score multiplied by a constant equals the
standard deviation of the score multiplied by the constant. That is, σ(constant X) =
constant σ(X). Noting that the ratio of standard deviations in the large parentheses
is also a constant that multiplies X ,

σ[lY (X)] = σ(Y )

σ(X)
σ(X) = σ(Y ). (2.9)

Therefore, the mean and standard deviation of the Form X scores equated to the Form
Y scale are equal to the mean and standard deviation, respectively, of the Form Y
scores. In the example described earlier for linear equating, the mean of the equated
Form X scores is 77 and the standard deviation is 9; these are the same values as the
mean and standard deviation of the Form Y scores.

Consider the equation for mean equating, Eq. (2.2), and the equation for linear
equating (2.5). If either of the equations were solved for x , rather than for y, the
equation for equating Form Y scores to the scale of Form X would result. These
conversions would be symbolized by m X (y) and lX (y), respectively. Equating rela-
tionships are defined as being symmetric because the equation used to convert Form
X scores to the Form Y scale is the inverse of the equation used to convert Form Y
scores to the Form X scale.

The equation for linear equating (2.5) is deceptively like a linear regression equa-
tion. The difference is that, for linear regression, the σ(Y )/σ(X) terms are multiplied
by the correlation between X and Y . However, a linear regression equation does not
qualify as an equating function because the regression of X on Y is different from
the regression of Y on X , unless the correlation coefficient is 1. For this reason,
regression equations cannot, in general, be used as equating functions. The com-
parison between linear regression and linear equating is illustrated in Fig. 2.1. The
regression Y on X is different from the regression of X on Y . Also note that there is
only one linear equating relationship graphed in the figure. This relationship can be
used to transform Form X scores to the Form Y scale, or to transform Form Y scores
to the Form X scale.

2.4 Comparison of Mean and Linear Equating

Figure 2.2 illustrates the equating of Form X and Form Y using the hypothetical test
forms already discussed. The equations for equating scores on Form X to the Form
Y scale are plotted in this figure.

Also plotted in this figure are the results from the “identity equating.” In the
identity equating, a score on Form X is considered to be equivalent to the identical
score on Form Y; for example, a 40 on Form X is considered to be equivalent to a 40
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Fig. 2.1 Comparison of linear
regression and linear equating
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on Form Y. Identity equating would be the same as mean and linear equating if the
two forms were identical in difficulty all along the score scale.

To find a Form Y equivalent of a Form X score using the graph, find the Form X
value of interest on the horizontal axis, go up to the function, and then go over to the
vertical axis to read off the Form Y equivalent.

How to find the Form Y equivalent of a Form X score of 72 is illustrated in the
figure using the arrows. This equivalent is 77, using either mean or linear equating.
The score 72 is the mean score on Form X. As indicated earlier, both mean and linear
equating will produce the same result at the mean.

Now refer to the identity equating line in the figure, and note that the line for
mean equating is parallel to the line for the identity equating. The lines for these
two methods will always be parallel. As can be seen, the line for mean equating is
uniformly 5 points vertically above the line for the identity equating, because Form
Y is, on average, 5 points less difficult than Form X. Refer to the line for linear
equating. This line is not parallel to the identity equating line. The linear equating
line is further above the identity equating line at the low scores than at the high scores.
This observation is consistent with the earlier discussion in which the difference in
difficulty between Form X and Form Y was shown to be greater at the lower scores
than at the higher scores.

Assume that the test in this example is scored number-correct. Number-correct
scores for this 100-item test can range from 0 to 100. Figure 2.2 illustrates that
equated scores from mean and linear equating can sometimes be out of the range of
possible observed scores. The dotted lines at 0 on Form X and at 100 illustrate the
boundaries of possible observed scores. For example, using linear equating, a score
of 100 on Form X equates to a score of approximately 102 on Form Y. Also, using
linear equating, a score of 0 on Form Y equates to a score of approximately −14 on
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Fig. 2.2 Graph of mean
and linear equating for a
hypothetical 100-item test
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Form X. There are a variety of ways to handle this problem. One way is to allow the
top and bottom to “float.” For example, the highest equated score might be allowed
to exceed the highest raw score. An alternative is to truncate the conversion at the
highest and lowest scores. In the example, truncation involves setting all converted
scores greater than 100 equal to 100 and setting all converted scores less than 0 equal
to 0. That is, all Form Y scores that equate to Form X scores below 0 would be set
to 0 and all Form X scores that equate to Form Y scores above 100 would be set to
100. In practice, the decision about how to handle equated scores outside the range
typically interacts with the score scale that is used for reporting scores. Sometimes
this issue is effectively of no consequence, because no one achieves the extreme raw
scores on Form X that equate to unobtainable scores on Form Y.

In summary, in mean equating the conversion is derived by setting the deviation
scores on the two forms equal, whereas in linear equating the standardized deviation
scores (z-scores) on the two forms are set equal. In mean equating, scores on Form X
are adjusted by a constant amount that is equal to the difference between the Form Y
and Form X means. In linear equating, scores on Form X are adjusted using a linear
equation that allows for the forms to be differentially difficult along the score scale.
In mean equating, the mean of the Form X scores equated to the Form Y scale is equal
to the mean of the Form Y scores; whereas in linear equating, the standard deviation
as well as the mean are equal. In general, mean equating is less complicated than
linear equating, but linear equating provides for more flexibility in the conversion
than does mean equating.



36 2 Observed Score Equating Using the Random Groups Design

2.5 Equipercentile Equating

In equipercentile equating, a curve is used to describe form-to-form differences
in difficulty, which makes equipercentile equating even more general than linear
equating. Using equipercentile equating, for example, Form X could be more difficult
than Form Y at high and low scores, but less difficult at the middle scores.

The equating function is an equipercentile equating function if the distribution of
scores on Form X converted to the Form Y scale is equal to the distribution of scores
on Form Y in the population. The equipercentile equating function is developed by
identifying scores on Form X that have the same percentile ranks as scores on Form Y.

The definition of equipercentile equating developed by Braun and Holland (1982)
is adapted for use here. Consider the following definitions of terms, some of which
were presented previously:

X is a random variable representing a score on Form X, and x is a particular value
(i.e., a realization) of X .

Y is a random variable representing a score on Form Y, and y is a particular value
(i.e., a realization) of Y .

F is the cumulative distribution function of X in the population.
G is the cumulative distribution function of Y in the same population.
eY is a symmetric equating function used to convert scores on Form X to the Form

Y scale.
G∗ is the cumulative distribution function of eY in the same population. That is,

G∗ is the cumulative distribution function of scores on Form X converted to the Form
Y scale.

The function eY is defined to be the equipercentile equating function in the pop-
ulation if

G∗ = G. (2.10)

That is, the function eY is the equipercentile equating function in the population if
the cumulative distribution function of scores on Form X converted to the Form Y
scale is equal to the cumulative distribution function of scores on Form Y.

Braun and Holland (1982) indicated that the following function is an equiper-
centile equating function when X and Y are continuous random variables:

eY (x) = G−1[F(x)], (2.11)

where G−1 is the inverse of the cumulative distribution function G.
As previously indicated, to be an equating function, eY must be symmetric. Define
eX as a symmetric equating function used to convert scores on Form Y to the

Form X scale, and
F∗ as the cumulative distribution function of eX in the population. That is, F∗ is

the cumulative distribution function of scores on Form Y converted to the Form X
scale.
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By the symmetry property,

e−1
X (x) = eY (x) and e−1

Y (y) = eX (y). (2.12)

Also,
eX (y) = F−1[G(y)], (2.13)

is the equipercentile equating function for converting Form Y scores to the Form X
scale. In this equation, F−1 is the inverse of the cumulative distribution function F .

Following the definitions in Eqs. (2.10–2.13), an equipercentile equivalent for the
population of examinees can be constructed in the following manner: For a given
Form X score, find the percentage of examinees earning scores at or below that Form
X score. Next, find the Form Y score that has the same percentage of examinees at
or below it. These Form X and Form Y scores are considered to be equivalent. For
example, suppose that 20 % of the examinees in the population earned a Form X
score at or below 26 and 20 % of the examinees in the population earned a Form Y
score at or below 27. Then a Form X score of 26 would be considered to represent the
same level of achievement as a Form Y score of 27. Using equipercentile equating,
a Form X score of 26 would be equated to a Form Y score of 27.

The preceding discussion was based on an assumption that test scores are con-
tinuous random variables. Typically, however, test scores are discrete. For example,
number-correct scores take on only integer values. With discrete test scores, the defin-
ition of equipercentile equating is more complicated than the situation just described.
Consider the following situation. Suppose that a test is scored number-correct and
that the following is true of the population distributions:

1. 20 % of the examinees score at or below 26 on Form X.
2. 18 % of the examinees score at or below 27 on Form Y.
3. 23 % of the examinees score at or below 28 on Form Y.

What is the Form Y equipercentile equivalent of a Form X score of 26? No Form Y
score exists that has precisely 20 % of the scores at or below it. Strictly speaking, no
Form Y equivalent of a Form X score of 26 exists. Thus, the goal of equipercentile
equating stated in Eq. (2.10) cannot be met strictly when test scores are discrete.

How can equipercentile equating be conducted when scores are discrete? A tradi-
tion exists in educational and psychological measurement to view discrete test scores
as being continuous by using percentiles and percentile ranks. In this approach, an
integer score of 28, for example, is considered to represent scores in the range 27.5–
28.5. Examinees with scores of 28 are considered to be uniformly distributed in
this range. The percentile rank of a score of 28 is defined as being the percentage
of scores below 28. However, because only 1/2 of the examinees who score 28 are
considered to be below 28 (the remainder being between 28 and 28.5), the percentile
rank of 28 is the percentage of examinees who earned integer scores of 27 and below,
plus 1/2 the percentage of examinees who earned an integer score of 28. Placing the
preceding example in the context of percentile ranks, 18 % of the examinees earned
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Table 2.1 Form X score distribution for a hypothetical four-item test

x f (x) F(x) P(x)

0 .2 .2 10
1 .3 .5 35
2 .2 .7 60
3 .2 .9 80
4 .1 1.0 95

a Form Y score below 27.5 and 5 % (23–18 %) of the examinees earned a score
between 27.5 and 28.5. So the percentile rank of a Form Y score of 28 would be
18 % + 1/2(5 %) = 20.5 %. In the terminology typically used, the percentile rank
of an integer score is the percentile rank at the midpoint of the interval that contains
that score.

Holland and Thayer (1989) presented a statistical justification for using percentiles
and percentile ranks. In their approach, they use what they refer to as a continuization
process and a kernel smoothing process. Given a discrete integer-valued random
variable X and a random variable U that is uniformly distributed over the range
−1/2 to +1/2, they defined a new random variable, X∗ = X + U .

This new random variable is continuous. The cumulative distribution function of
this new random variable corresponds to the percentile rank function. The inverse of
the cumulative distribution of this new function exists and is the percentile function.
Holland and Thayer (1989) also generalized their approach to incorporate continuiza-
tion processes that are based on distributions other than the uniform.

This approach was developed further by von Davier et al. (2004) and is discussed
in more detail in Chap. 3. In the present chapter, the traditional approach to percentiles
and percentile ranks is followed.

The equipercentile methods presented next assume that the observed scores on
the tests to be equated are integer scores that range from zero through the number of
items on the test, as would be true of tests scored number-correct. Generalizations
to other scoring schemes are discussed as well.

2.5.1 Graphical Procedures

Equipercentile equating using graphical methods provides a conceptual framework
for subsequent consideration of analytic methods. A hypothetical four-item test is
used to illustrate the graphical process for equipercentile equating. Data for Form X
are presented in Table 2.1.

In this table, x refers to test score and f (x) to the proportion of examinees earning
the score x . For example, the proportion of examinees earning a score of 0 is .20.
F(x) is the cumulative proportion at or below x . For example, the proportion of
examinees scoring 3 or below is .9. P(x) refers to the percentile rank, and for an

http://dx.doi.org/10.1007/978-1-4939-0317-7_3
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Fig. 2.3 Form X percentile
ranks on a hypothetical
four-item test
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integer score it equals the percentage of examinees below x plus 1/2 the percentage
of examinees at x—i.e., for integer score x , P(x) = 100[F(x − 1) + f (x)/2].

To be consistent with traditional definitions of percentile ranks, the percentile rank
function is plotted as points at the upper limit of each score interval. For example, the
percentile rank of a score of 3.5 is 90, which is 100 times the cumulative proportion
at or below 3. Therefore, to plot the percentile ranks, plot the percentile ranks at
each integer score plus .5. The percentile ranks at an integer score plus .5 can be
found from Table 2.1 by taking the cumulative distribution function values, F(x),
at an integer and multiplying them by 100 to make them percentages. Figure 2.3
illustrates how to plot the percentile rank distribution for Form X.

A percentile rank of 0 is also plotted at a Form X score of −.5. The points are
then connected with straight lines. An example is presented for finding the percentile
rank of a Form X integer score of 2 using the arrows in Fig. 2.3. As can be seen, the
percentile rank of a score of 2 is 60, which is the same result found in Table 2.1.

In Fig. 2.3, percentile ranks of scores between −.5 and 0.0 are greater than zero.
These nonzero percentile ranks result from using the traditional definition of per-
centile ranks, in which scores of 0 are assumed to be uniformly distributed from −.5
to .5. Also, scores of 4 are considered to be uniformly distributed between 3.5 to 4.5,
so that scores above 4 have percentile ranks less than 100. Under this conceptual-
ization, the range of possible scores is treated as being between −.5 and the highest
integer score +.5.

Data from Form Y also need to be used in the equating process. The data for
Form Y are presented along with the Form X data in Table 2.2. In this table, y refers
to Form Y scores, g(y) to the proportion of examinees at each score, G(y) to the
proportion at or below each score, and Q(y) to the percentile rank at each score.
Percentile ranks for Form Y are plotted in the same manner as they were for Form X.
To find the equipercentile equivalent of a particular score on Form X, find the Form
Y score with the same percentile rank. Figure 2.4 illustrates this process for finding
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Table 2.2 Form X and Form Y distributions for a hypothetical four-item test

y g(y) G(y) Q(Y ) x f (x) F(x) P(x)
0 .1 .1 5 0 .2 .2 10
1 .2 .3 20 1 .3 .5 35
2 .2 .5 40 2 .2 .7 60
3 .3 .8 65 3 .2 .9 80
4 .2 1.0 90 4 .1 1.0 95

Fig. 2.4 Graphical equiper-
centile equating for a hypo-
thetical four-item test

0

10

20

30

40

50

60

70

80

90

100

-0.5 0.0 0.5 1.0 1.5 2.0 2.5 3.0 3.5 4.0 4.5

Pe
rc

en
til

e 
R

an
k

Raw Score

Form X

Form Y

A score of 2.00 on Form X is
equivalent to a score of 2.83 on
Form Y

the equipercentile equivalent of a Form X score of 2. As indicated by the arrows, a
Form X score of 2 has a percentile rank of 60. Following the arrows, it can be seen
that the Form Y score of about 2.8 (actually 2.83) is equivalent to the Form X score
of 2.

The equivalents can also be plotted. To construct such a graph, plot, as points,
Form Y equivalents of Form X scores at each integer plus .5. Then plot Form X
equivalents of Form Y scores at each integer plus .5. To handle scores below the
lowest integer scores +.5, a point is plotted at the (x, y) pair (−.5,−.5). The plotted
points are then connected by straight lines. This process is illustrated for the example
in Fig. 2.5. As indicated by the arrows in the figure, a Form X score of 2 is equivalent
to a Form Y score of 2.8 (actually 2.83), which is consistent with the result found
earlier. This plot of equivalents displays the Form Y equivalents of Form X scores.

In summary, the graphical process of finding equipercentile equivalents is as
follows: Plot percentile ranks for each form on the same graph. To find a Form Y
equivalent of a Form X score, start by finding the percentile rank of the Form X score.
Then find the Form Y score that has that same percentile rank. Equivalents can be
plotted in a graph that shows the equipercentile relationship between the two forms.

One issue that arises in equipercentile equating is how to handle situations in which
no examinees earn a particular score. When this occurs, the score that corresponds
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Fig. 2.5 Equipercentile
equivalents for a hypothet-
ical four-item test

-0.5

0.0

0.5

1.0

1.5

2.0

2.5

3.0

3.5

4.0

4.5

-0.5 0.0 0.5 1.0 1.5 2.0 2.5 3.0 3.5 4.0 4.5

R
aw

 S
co

re
 F

or
m

 Y

Raw Score Form X

A score of 2.00 on Form X is
equivalent to a score of 2.83 on
Form Y

Fig. 2.6 Illustration of per-
centile ranks when no exami-
nees earn a particular score

Pe
rc

en
til

e 
R

an
k

Score

--- ---0

100

20 

5 6 7 8 9

---

--- 

to a particular percentile rank might not be unique. Suppose for example that x has
a percentile rank of 20. To find the equipercentile equivalent, the Form Y score that
has a percentile rank of 20 needs to be found. Suppose, however, that there is no
unique score on Form Y that has a percentile rank of 20, as illustrated in Fig. 2.6.

The percentile ranks shown in Fig. 2.6 could occur if no examinees earned scores
of 6 and 7. In this case, the graph indicates that scores in the range 5.5 to 7.5 all have
percentile ranks of 20. The choice of the Form Y score that has a percentile rank of
20 is arbitrary. In this situation, usually the middle score would be chosen. So, in the
example the score with a percentile rank of 20 would be designated as 6.5. Choosing
the middle score is arbitrary, technically, but doing so seems sensible.
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2.5.2 Analytic Procedures

The graphical method discussed in the previous section is not likely to be viable
for equating a large number of real forms in real time. In addition, equating using
graphical procedures can be inaccurate. What is needed are formulas that provide
more formal definitions of percentile ranks and equipercentile equivalents. The fol-
lowing discussion provides such formulas. The result of applying these formulas is
to produce percentile ranks and equipercentile equivalents that are equal to those that
would result using the graphical procedures.

To define percentile ranks, let K X represent the number of items on Form X of a
test. Define X as a random variable representing test scores on Form X that can take
on the integer values 0, 1, . . . , K X . Define f (x) as the discrete density function for
X = x . That is,

f (x) ≥ 0 for integer scores x = 0, 1, . . . , K X ;
f (x) = 0 otherwise; and∑

f (x) = 1.

Define F(x) as the discrete cumulative distribution function. That is, F(x) is the
proportion of examinees in the population earning a score at or below x. Therefore,

0 ≤ F(x) ≤ 1 for x = 0, 1, . . . , K X ;
F(x) = 0 for x < 0; and

F(x) = 1 for x > K X .

Consider a possible noninteger value of x . Define x∗ as that integer that is closest
to x such that x∗ − .5 ≤ x < x∗ + .5. For example, if x = 5.7, x∗ = 6; if x = 6.4,
x∗ = 6; and if x = 5.5, x∗ = 6. The percentile rank function for Form X is

P(x) = 100{F(x∗ − 1) + [x − (x∗ − .5)][F(x∗) − F(x∗ − 1)]},
−.5 ≤ x < K X + .5,

= 0, x < −.5,

= 100, x ≥ Kx + .5. (2.14)

To illustrate how this equation functions, consider the following example based on
the data in Table 2.1. Calculate the percentile rank for a score of x = 1.3, using
Eq. (2.14):

P(1.3) = 100{F(0) + [1.3 − (1 − .5)][F(1) − F(0)]}
= 100{.2 + [.8][.5 − .2]} = 100{.2 + .24} = 44.
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In this case, x∗ = 1.0, because 1 is the integer score that is closest to 1.3. The term
[F(1)− F(0)] = .5− .2 = .3 represents the proportion of examinees earning a score
of 1. These scores are considered to range from .5 to 1.5. The term [1.3−(1−.5)] = .8
indicates that the score of 1.3 is, proportionally, .8 of the distance between .5 and
1.5. So, [.8][.3] = .24 represents the probability of scoring between .5 and 1.3. The
probability of scoring below .5 is represented by F(0) = .2. Therefore, the percentile
rank of a score of 1.3 equals 44.

The inverse of the percentile rank function, which often is referred to as the per-
centile function, is symbolized as P−1. Two alternate percentile functions are given
as follows. These functions produce the same result, unless some of the probabilities
are zero. Given a percentile rank (e.g., the 10th percentile rank), this inverse function
is used to find the score corresponding to that percentile rank. To find this function,
solve Eq. (2.14) for x . Specifically, for a given percentile rank P∗, the percentile is

xU (P∗) = P−1[P∗] = P∗/100 − F(x∗
U − 1)

F(x∗
U ) − F(x∗

U − 1)
+ (x∗

U − .5), 0 ≤ P∗ < 100,

= K X + .5, P∗ = 100. (2.15)

In Eq. (2.15), for 0 ≤ P∗ < 100, x∗
U is the smallest integer score with a cumulative

percent [100F(x)] that is greater than P∗. An alternate expression for the percentile
is

xL(P∗) = P−1[P∗] = P∗/100 − F(x∗
L)

F(x∗
L + 1) − F(x∗

L)
+ (x∗

L + .5), 0 < P∗ ≤ 100,

= −.5, P∗ = 0. (2.16)

In Eq. (2.16), for 0 < P∗ ≤ 100, x∗
L is the largest integer score with a cumulative

percent [100F(x)] that is less than P∗. If the f (x) are nonzero at all score points
0, 1, . . . , K X , then x = xU = xL , and either expression can be used. If some of
the f (x) are zero, then xU �= xL for at least some percentile ranks. In this case, the
convention x = (xU + xL)/2 is used. This convention produces the same results
as the one described in association with Fig. 2.6 using the graphical procedures. In
most situations, it seems reasonable to assume that the f (x) are all nonzero over
the integer score range 0, 1, . . . , K X . For this reason, and to simplify issues, when
considering population distributions in the following discussion, only Eq. (2.15) is
used with xU = x . When considering estimates of population distributions, estimated
probabilities of zero are often encountered (i.e., when no examinees in a sample earn
a particular score).

As an example of how to use Eq. (2.15), find the score corresponding to a percentile
rank of 62 using the inverse of the percentile rank function using the data in Table 2.1.
In this case x∗

U = 2 because, in Table 2.1, it is the smallest integer score with F(x)
that is greater than .62. Then



44 2 Observed Score Equating Using the Random Groups Design

P−1(62) = 62/100 − F(1)

F(2) − F(1)
+ (2 − .5)

= .62 − .5

.7 − .5
+ (2 − .5) = .12/.20 + 1.5 = .60 + 1.5 = 2.1.

In equipercentile equating, the interest is in finding a score on Form Y that has
the same percentile rank as a score on Form X. Referring to y as a score on Form Y,
let KY refer to the number of items on Form Y, let g(y) refer to the discrete density
of y, let G(y) refer to the discrete cumulative distribution of y, let Q(y) refer to the
percentile rank of y, and let Q−1 refer to the inverse of the percentile rank function
for Form Y. Then the Form Y equipercentile equivalent of score x on Form X is

eY (x) = y = Q−1[P(x)], −.5 ≤ x ≤ K X + .5. (2.17)

This equation indicates that, to find the equipercentile equivalent of score x on the
scale of Form Y, first find the percentile rank of x in the Form X distribution. Then
find the Form Y score that has that same percentile rank in the Form Y distribution.
Equation (2.17) is symmetric. That is, to find the Form X equivalent of a Form Y
score, Eq. (2.17) is solved for y, giving eX (y) = P−1[Q(y)].

Analytically, to find eY (x) given by Eq. (2.17), use the analog of Eq. (2.15) for
the Form Y distribution. That is, use

eY (x) = Q−1[P(x)]
= P(x)/100 − G(y∗

U − 1)

G(y∗
U ) − G(y∗

U − 1)
+ (y∗

U − .5), 0 ≤ P(x) < 100,

= KY + .5, P(x) = 100. (2.18)

[Note that, to use this equation when some Form Y scores have zero probabilities,
it also is necessary to use y∗

L as described in the discussion following Eq. (2.16).]
Refer to Table 2.2. As an example of finding equipercentile equivalents, find the
Form Y equipercentile equivalent of a Form X score of 2. The percentile rank of a
Form X score of 2 is P(2) = 60, as is shown in Table 2.2. To find the equipercentile
equivalent, the Form Y score that has a percentile rank of 60 must be found. Because
3 is the score with the smallest G(y) that is greater than .60, y∗

U = 3. Thus, using
Eq. (2.18),

eY (x) = Q−1[60] = 60/100 − .5

.8 − .5
+ (3 − .5) = .1/.3 + 2.5 = 2.8333.

The raw score equipercentile equivalents that result typically are noninteger. Nonin-
teger scores arise through the continuization process used to define percentiles and
percentile ranks. Issues related to rounding to integers are considered later in the
discussion of scale scores.
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Table 2.3 Form Y equivalents of Form X
scores for a hypothetical four-item test

x f (x) eY (x)

0 .2 .50
1 .3 1.75
2 .2 2.8333
3 .2 3.50
4 .1 4.25

2.5.3 Properties of Equated Scores in Equipercentile Equating

Conducting equipercentile equating using Eq. (2.18) always results in equated scores
in the range −.5 ≤ eY (x) ≤ KY + .5. Thus, equipercentile equating has the desirable
property that the equated scores will always be within the range of possible scores
under the traditional conceptualization of percentiles and percentile ranks. The prob-
lem of having equated scores that are out of the range of possible scores which occur
with mean and linear equating does not occur with equipercentile equating.

Ideally, in equipercentile equating the equated scores on Form X would have the
same distribution as the scores on Form Y. As was previously indicated, if test scores
were continuous, then these distributions would be the same. However, test scores
are discrete. A continuization process involving percentiles and percentile ranks was
used to render the problem mathematically tractable. However, when the results of
equating are applied to discrete scores, the equated Form X score distribution will
differ from the Form Y distribution.

Consider the following illustration. Using the hypothetical four-item test from
Tables 2.2 and 2.3 provides the Form Y equivalents of scores resulting from the use
of Eq. (2.18). The moments that result are shown in Table 2.4, where skewness and
kurtosis are defined for Form X, respectively, as

sk(X) = E[X − μ(X)]3

[σ(X)]3 , and (2.19)

ku(X) = E[X − μ(X)]4

[σ(X)]4 . (2.20)

Central moments for other variables are defined similarly. To arrive at the moments
of the equated scores, eY (x), in Table 2.4, the Form X scores were equated to Form Y
scores. For example, as indicated in Table 2.3, the proportion of examinees earning
an eY (x) of .50 is .20.

Moments of these equated scores then were found. Ideally, the moments for eY (x)
in Table 2.4 would be equal to those for y. As can be seen, however, there are depar-
tures. These departures are a result of the discreteness of the scores. The departures
in Table 2.4 are relatively large because the test is so short. Departures likely would
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2.4 Moments for equating Form X and Form Y of a hypothetical
four-item test

Score μ σ sk ku

y 2.3000 1.2689 −.2820 1.9728
x 1.7000 1.2689 .2820 1.9728
eY (x) 2.3167 1.2098 −.0972 1.8733

be considerably less with longer, more realistic tests. For tests of realistic lengths,
not being able to achieve the equal distribution goal precisely often is more of a
theoretical concern than a practical one.

The approach taken here is to compare moments of the equated scores to the
moments of the Form Y scores as was just done. von Davier et al. (2004) introduced
the percent relative error index to compare these moments. The percent relative error
is computed by finding the difference between a particular moment for the equated
scores and that same moment for the Form Y scores. This difference is then divided
by the same moment for the Form Y scores.

2.6 Estimating Observed Score Equating Relationships

So far, the methods have been described using population parameters. In practice,
sample statistics are all that are available, and these sample statistics are substituted
for the parameters in the preceding equations.

One estimation problem that occurs in equipercentile equating is how to calculate
the function P−1 when the frequency at some score points is zero. The conventions
associated with Eqs. (2.15) and (2.16) for averaging the results is one procedure for
producing a unique result. Another procedure is to add a very small relative frequency
to each score, and then adjust the relative frequencies so they sum to one. If adj is
taken as this small quantity, then the adjusted relative frequencies on Form Y are

ĝadj(y) = ĝ(y) + adj

1 + (KY + 1) · adj
,

where ĝ(y) is the relative frequency that was observed. For example, if KY = 10,
adj = 10−6, and ĝ(2) = .02, then

ĝadj(2) = .02 + 10−6

1 + (10 + 1) · 10−6 = .02000078.

A similar procedure could be used for Form X. The equating then can be done
using the adjusted relative frequencies. Experience has shown that a value around
adj = 10−6 can be used without creating a serious bias in the equating. A third
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solution to the zero frequency problem is to use smoothing methods, which are the
subject of Chap. 3.

Data for an example of an equating of Form X and Form Y of the original ACT
Mathematics test are presented in Table 2.5. This test contains 40 multiple-choice
items scored incorrect (0) or correct (1). Form X was administered to 4,329 examinees
and Form Y to 4,152 examinees in a spiral administration, which resulted in random
groups of examinees being administered Form X and Form Y. The sample sizes
for the two forms differ, in part, because Form X always preceded Form Y in the
distribution of booklets in each testing room. Thus, one more Form X than Form
Y booklet was administered in some testing rooms. In the table, a “∧” is used to
indicate an estimate of a population parameter, and NX and NY refer to sample sizes
for the forms. Consider, for example, a score of 10 on Form Y. From Table 2.5, 194
examinees earned a score of 10, and 857 examinees earned a score of 10 or below; the
proportion of examinees earning a score of 10 is .0467, the proportion of examinees
at or below a score of 10 is .2064, and the estimated percentile rank of a score of 10
is 18.30.

Percentile ranks for Forms X and Y are plotted in Fig. 2.7. The percentile ranks
are plotted for each score point plus .5. Form X appears to be somewhat easier than
Form Y, because the Form X distribution is shifted to the right. The relative frequency
distributions are shown in Fig. 2.8.

Both score distributions are positively skewed, and Form X again appears to be
somewhat easier than Form Y. Estimates of central moments for Form X and Form
Y are given in the upper portion of Table 2.6. Both forms have means, μ̂, less than 20
(which is 50 % of the 40 items), so it appears that the tests are somewhat difficult for
these examinees. Form X is, on average, nearly 1 point easier than Form Y. Based
on the standard deviations, σ̂, the distribution for Form X is less variable than the
distribution for Form Y. As indicated by the skewness values, ŝk the distributions
are positively skewed, where skewness for the population is defined in Eq. (2.19).
Based on the kurtosis estimates, k̂u, the distributions have lower kurtosis than a
normal distribution, which would have a kurtosis value of 3, where kurtosis for the
population is defined in Eq. (2.20).

The conversions for mean, linear, and equipercentile equating are shown in
Table 2.7 and are graphed in Fig. 2.9. The linear and equipercentile results were cal-
culated using the RAGE-RGEQUATE computer program described in Appendix B,
and are also described in Brennan et al. (2009, pp. 57–64). The moments for con-
verted scores are shown in the bottom portion of Table 2.6. As expected, the mean
converted scores for mean equating are the same as the mean for Form Y. For lin-
ear equating, the mean and standard deviation of the converted scores agree with
the mean and standard deviation of Form Y. The first four moments of converted
scores for equipercentile equating are very similar to those for Form Y. In Table 2.7,
it can be seen that mean and linear equating produce results that are outside the
range of possible raw scores. Because of the large number of values in Table 2.7 and
the considerable similarity of equating functions in Fig. 2.9, differences between the
functions are difficult to ascertain.

http://dx.doi.org/10.1007/978-1-4939-0317-7_3
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Table 2.5 Data for equating Form X and Form Y of the original ACT
mathematics test

Form Y Form X
NY · NY · NX · NX ·

Raw score ĝ(y) Ĝ(y) ĝ(y) Ĝ(y) Q̂(y) f̂ (x) F̂(x) f̂ (x) F̂(x) P̂(x)
0 0 0 .0000 .0000 .00 0 0 .0000 .0000 .00
1 1 1 .0002 .0002 .01 1 1 .0002 .0002 .01
2 3 4 .0007 .0010 .06 1 2 .0002 .0005 .03
3 13 17 .0031 .0041 .25 3 5 .0007 .0012 .08
4 42 59 .0101 .0142 .92 9 14 .0021 .0032 .22
5 59 118 .0142 .0284 2.13 18 32 .0042 .0074 .53
6 95 213 .0229 .0513 3.99 59 91 .0136 .0210 1.42
7 131 344 .0316 .0829 6.71 67 158 .0155 .0365 2.88
8 158 502 .0381 .1209 10.19 91 249 .0210 .0575 4.70
9 161 663 .0388 .1597 14.03 144 393 .0333 .0908 7.42
10 194 857 .0467 .2064 18.30 149 542 .0344 .1252 10.80
11 164 1021 .0395 .2459 22.62 192 734 .0444 .1696 14.74
12 166 1187 .0400 .2859 26.59 192 926 .0444 .2139 19.17
13 197 384 .0474 .3333 30.96 192 1118 .0444 .2583 23.61
14 177 561 .0426 .3760 35.46 201 1319 .0464 .3047 28.15
15 158 1719 .0381 .4140 39.50 204 1523 .0471 .3518 32.83
16 169 1888 .0407 .4547 43.44 217 1740 .0501 .4019 37.69
17 132 2020 .0318 .4865 47.06 181 1921 .0418 .4438 42.28
18 158 2178 .0381 .5246 50.55 184 2105 .0425 .4863 46.50
19 151 2329 .0364 .5609 54.28 170 2275 .0393 .5255 50.59
20 134 2463 .0323 .5932 57.71 201 2476 .0464 .5720 54.87
21 137 2600 .0330 .6262 60.97 147 2623 .0340 .6059 58.89
22 122 2722 .0294 .6556 64.09 163 2786 .0377 .6436 62.47
23 110 2832 .0265 .6821 66.88 147 2933 .0340 .6775 66.05
24 116 2948 .0279 .7100 69.61 140 3073 .0323 .7099 69.37
25 132 3080 .0318 .7418 72.59 147 3220 .0340 .7438 72.68
26 104 3184 .0250 .7669 75.43 126 3346 .0291 .7729 75.84
27 104 3288 .0250 .7919 77.94 113 3459 .0261 .7990 78.60
28 114 3402 .0275 .8194 80.56 100 3559 .0231 .8221 81.06
29 97 3499 .0234 .8427 83.10 106 3665 .0245 .8466 83.44
30 107 3606 .0258 .8685 85.56 107 3772 .0247 .8713 85.90
31 88 3694 .0212 .8897 87.91 91 3863 .0210 .8924 88.18
32 80 3774 .0193 .9090 89.93 83 3946 .0192 .9115 90.19
33 79 3853 .0190 .9280 91.85 73 4019 .0169 .9284 92.00
34 70 3923 .0169 .9448 93.64 72 4091 .0166 .9450 93.67
35 61 3984 .0147 .9595 95.22 75 4166 .0173 .9623 95.37
36 48 4032 .0116 .9711 96.53 50 4216 .0116 .9739 96.81
37 47 4079 .0113 .9824 97.68 37 4253 .0085 .9824 97.82
38 29 4108 .0070 .9894 98.59 38 4291 .0088 .9912 98.68
39 32 4140 .0077 .9971 99.33 23 4314 .0053 .9965 99.39
40 12 4152 .0029 1.0000 99.86 15 4329 .0035 1.000 99.83
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Fig. 2.7 Percentile ranks for equating Form X and Form Y of the original ACT Mathematics test
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Fig. 2.8 Relative frequency distributions for Form X and Form Y of the original ACT Mathematics
test

The use of considerably larger graph paper would help in such a comparison.
Alternatively, difference-type plots can be used, as in Fig. 2.10. In this graph, the
difference between the results for each method and the results for the identity equating
are plotted. To find the Form Y equivalent of a Form X score, just add the vertical
axis value to the horizontal axis value. For example, for equipercentile equating a
Form X score of 10 has a vertical axis value of approximately −1.8. Thus, the Form
Y equivalent of a Form X score of 10 is approximately 8.2 = 10 − 1.8. This value
is the same as the one indicated in Table 2.7 (8.1607), apart from error inherent in
trying to read values from a graph.
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Table 2.6 Moments for equating Form X and Form Y

Test Form μ̂ σ̂ ŝk k̂u

Form Y 18.9798 8.9393 .3527 2.1464
Form X 19.8524 8.2116 .3753 2.3024

Form X equated to Form Y scale for various methods

Mean 18.9798 8.2116 .3753 2.3024
Linear 18.9798 8.9393 .3753 2.3024
Equipercentile 18.9799 8.9352 .3545 2.1465

In Fig. 2.10, the horizontal line for the identity equating is at a vertical axis value
of 0, which will always be the case with difference plots constructed in the manner of
Fig. 2.10. The results for mean equating are displayed by a line that is parallel to, but
nearly 1 point below, the line for the identity equating. The line for linear equating
crosses the identity equating and mean equating lines. The equipercentile equating
relationship appears to be definitely nonlinear. Referring to the equipercentile rela-
tionship, Form X appears to be nearly 2 points easier around a Form X score of 10,
and the two forms appear to be similar in difficulty at scores in the range of 25 to 40.

The plot in Fig. 2.10 for equipercentile equating is somewhat irregular (bumpy).
These irregularities are a result of random error in estimating the equivalents. Smooth-
ing methods are introduced in Chap. 3, which lead to more regular plots and less
random error.

2.7 Scale Scores

When equating is conducted in practice, raw scores typically are converted to scale
scores. As described in Chap. 9, scale scores are constructed to facilitate score inter-
pretation, often by incorporating normative or content information. For example,
scale scores might be constructed to have a particular mean in a nationally repre-
sentative group of examinees. The effects of equating on scale scores are crucial to
the interpretation of equating results, because scale scores are the scores typically
reported to examinees. A further discussion of methods for developing score scales
is provided in Chap. 9. The use of scale scores in the equating context is described
next.

2.7.1 Linear Conversions

The least complicated raw-to-scale score transformations that typically are used in
practice are linear in form. For example, suppose that a national norming study was

http://dx.doi.org/10.1007/978-1-4939-0317-7_3
http://dx.doi.org/10.1007/978-1-4939-0317-7_9
http://dx.doi.org/10.1007/978-1-4939-0317-7_9
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Table 2.7 Raw-to-raw score conversion tables

Form X Form Y equivalent using equating method
Score Mean Linear Equipercentile

0 −.8726 −2.6319 .0000
1 .1274 −1.5432 .9796
2 1.1274 −.4546 1.6462
3 2.1274 .6340 2.2856
4 3.1274 1.7226 2.8932
5 4.1274 2.8112 3.6205
6 5.1274 3.8998 4.4997
7 6.1274 4.9884 5.5148
8 7.1274 6.0771 6.3124
9 8.1274 7.1657 7.2242
10 9.1274 8.2543 8.1607
11 10.1274 9.3429 9.1827
12 11.1274 10.4315 10.1859
13 12.1274 11.5201 11.2513
14 13.1274 12.6088 12.3896
15 14.1274 13.6974 13.3929
16 15.1274 14.7860 14.5240
17 16.1274 15.8746 15.7169
18 17.1274 16.9632 16.8234
19 18.1274 18.0518 18.0092
20 19.1274 19.1405 19.1647
21 20.1274 20.2291 20.3676
22 21.1274 21.3177 21.4556
23 22.1274 22.4063 22.6871
24 23.1274 23.4949 23.9157
25 24.1274 24.5835 25.0292
26 25.1274 25.6722 26.1612
27 26.1274 26.7608 27.2633
28 27.1274 27.8494 28.1801
29 28.1274 28.9380 29.1424
30 29.1274 30.0266 30.1305
31 30.1274 31.1152 31.1297
32 31.1274 32.2039 32.1357
33 32.1274 33.2925 33.0781
34 33.1274 34.3811 34.0172
35 34.1274 35.4697 35.1016
36 35.1274 36.5583 36.2426
37 36.1274 37.6469 37.1248
38 37.1274 38.7355 38.1321
39 38.1274 39.8242 39.0807
40 39.1274 40.9128 39.9006
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Fig. 2.9 Results for equating Form X and Form Y of the original ACT Mathematics test
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Fig. 2.10 Results expressed as differences for equating Form X and Form Y of the original ACT
Mathematics test

conducted using Form Y of the 100-item test that was used earlier in this chapter to
illustrate mean and linear equating. Assume that the mean raw score, μ(Y ), was 70
and the standard deviation, σ(Y ), was 10 for the national norm group. Also assume
that the mean scale score, μ(sc), was intended to be 20 and the standard deviation
of the scale scores, σ(sc), 5. Then the raw-to-scale score transformation (sc) for
converting raw scores on the old form, Form Y, to scale scores is

sc(y) = σ(sc)

σ(Y )
y +

[
μ(sc) − σ(sc)

σ(Y )
μ(Y )

]
. (2.21)
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Substituting we have

sc(y) = 5

10
y +

[
20 − 5

10
70

]

= .5y − 15.

Now assume that scores on Form X are to be converted to scale scores based on the
equating used in the earlier linear equating example. As was found earlier, the linear
conversion equation for equating raw scores on Form X to raw scores on Form Y
was lY (x) = .9x + 12.2. To find the raw-to-scale score transformation for Form X,
substitute lY (x) for y in the raw-to-scale score transformation for Form Y. This gives

sc[lY (x)] = .5[lY (x)] − 15

= .5[.9x + 12.2] − 15

= .45x − 8.9.

For example, a raw score of 74 on Form X converts to a scale score of .45(74)−8.9 =
24.4. In this manner, raw-to-scale score conversions for all Form X raw scores can
be found. When another new form is constructed and equated to Form X, a similar
process can be used to find the scale score equivalents of scores on this new form.

2.7.2 Truncation of Linear Conversions

When linear transformations are used as scaling transformations, the score scale
transformation often needs to be truncated at the upper and/or lower extremes. For
example, the Form Y raw-to-scale score transformation, sc(y) = .5y −15, produces
scale scores below 1 for raw scores below 32. Suppose that scale scores are intended
to be 1 or greater. The transformation for this form then would be as follows:

sc(y) = .5y − 15, y ≥ 32,

= 1, y < 32.

Also, a raw score of 22 on Form X is equivalent to a raw score of 32 = .9(22)+12.2
on Form Y. So, the raw-to-scale score conversion for Form X is

sc[lY (x)] = .45x − 8.9, x ≥ 22,

= 1, x < 22.

Truncation can also occur at the top end. For example, truncation would be needed
at the top end for Form X but not for Form Y if the highest scale score was set to 35
on this 100-item test (the reader should verify this fact).
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Scale scores are typically rounded to integers for reporting purposes. Define scint ,
as the scale score rounded to an integer. Then, for example, scint[lY (x = 74)] = 24,
because a scale score of 24.4 rounds to a scale score of 24.

2.7.3 Nonlinear Conversions

Nonlinear raw-to-scale score transformations are often used in practice. Examples
of nonlinear transformations include the following: normalized scales, grade equiva-
lents, and scales constructed to stabilize measurement error variability (see Chap. 9).
The use of nonlinear transformations complicates the process of converting raw
scores to scale scores. The nonlinear function could be specified as a continuous
function. However, when using discrete test scores (e.g., number-correct scores) the
function is often defined at selected raw score values, and linear interpolation is
used to compute scale score equivalents at other raw score values. The scheme for
nonlinear raw-to-scale score transformations that is presented here is designed to be
consistent with the definitions of equipercentile equating described earlier.

The first step in describing the process is to specify sc(y), the raw-to-scale score
function for Form Y. In the present approach, the conversions of Form Y raw scores
to scale scores are specified at Form Y raw scores of −.5, KY + .5, and all integer
score points through and including 0 to KY . The first two columns of Table 2.8
present an example. As can be seen, each integer raw score on Form Y has a scale
score equivalent. For example, the scale score equivalent of a Form Y raw score of
24 is 22.3220. These equivalents resulted from an earlier equating of Form Y.

When Form X is equated to Form Y , the Form Y equivalents are typically non-
integer. These noninteger equivalents need to be converted to scale scores, so a
procedure is needed to find scale score equivalents of noninteger scores on Form Y .
Linear interpolation is used in the present approach. For example, to find the scale
score equivalent of a Form Y score of 24.5 in Table 2.8, find the scale score that is
halfway between the scale score equivalents of Form Y raw scores of 24 (22.3220)
and 25 (22.9178). The reader should verify that this value is 22.6199.

Note that scale score equivalents are provided in the table for raw scores of −.5
and 40.5. These values provide minimum and maximum scale scores when equiper-
centile equating is used. (As was indicated earlier, the minimum equated raw score
in equipercentile equating is −.5 and the maximum is KY + .5.)

To make the specification of conversion for Form Y to scale scores more explicit,
let yi refer to the i-th point that is tabled. For −.5 ≤ y ≤ KY + .5, define y∗

i as
the tabled raw score that is the largest among the tabled scores that are less than or
equal to y. In this case, the linearly interpolated raw-to-scale score transformation
is defined as

http://dx.doi.org/10.1007/978-1-4939-0317-7_9
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Table 2.8 Raw-to-scale score conversion tables

Form Y scale Form X scale scores
Raw Scores Mean equating Linear equating Equipercentile
Score sc scint sc scint sc scint sc scint

−.5 .5000 1 .5000 1 .5000 1 .5000 1
0 .5000 1 .5000 1 .5000 1 .5000 1
1 .5000 1 .5000 1 .5000 1 .5000 1
2 .5000 1 .5000 1 .5000 1 .5000 1
3 .5000 1 .5000 1 .5000 1 .5000 1
4 .5000 1 .5000 1 .5000 1 .5000 1
5 .6900 1 .5242 1 .5000 1 .5000 1
6 1.6562 2 .8131 1 .5000 1 .5949 1
7 3.1082 3 1.8412 2 .6878 1 1.1874 1
8 4.6971 5 3.3106 3 1.7681 2 2.1098 2
9 6.1207 6 4.8784 5 3.3715 3 3.4645 3
10 7.4732 7 6.2930 6 5.0591 5 4.9258 5
11 8.9007 9 7.6550 8 6.5845 7 6.3678 6
12 10.3392 10 9.0839 9 8.0892 8 7.7386 8
13 11.6388 12 10.5047 11 9.6489 10 9.2622 9
14 12.8254 13 11.7899 12 11.1303 11 10.8456 11
15 14.0157 14 12.9770 13 12.4663 12 12.1050 12
16 15.2127 15 14.1682 14 13.7610 14 13.4491 13
17 16.3528 16 15.3579 15 15.0626 15 14.8738 15
18 17.3824 17 16.4839 16 16.3109 16 16.1515 16
19 18.3403 18 17.5044 18 17.4321 17 17.3912 17
20 19.2844 19 18.4606 18 18.4729 18 18.4958 18
21 20.1839 20 19.3990 19 19.4905 19 19.6151 20
22 20.9947 21 20.2872 20 20.4415 20 20.5533 21
23 21.7000 22 21.0845 21 21.2813 21 21.4793 21
24 22.3220 22 21.7792 22 22.0078 22 22.2695 22
25 22.9178 23 22.3979 22 22.6697 23 22.9353 23
26 23.5183 24 22.9943 23 23.3214 23 23.6171 24
27 24.1314 24 23.5964 24 23.9847 24 24.2949 24
28 24.7525 25 24.2105 24 24.6590 25 24.8496 25
29 25.2915 25 24.8212 25 25.2581 25 25.3538 25
30 25.7287 26 25.3472 25 25.7400 26 25.7841 26
31 26.1534 26 25.7828 26 26.2104 26 26.2176 26
32 26.6480 27 26.2164 26 26.7684 27 26.7281 27
33 27.2385 27 26.7232 27 27.4343 27 27,2908 27
34 27.9081 28 27.3238 27 28.2070 28 27.9216 28
35 28.6925 29 28.0080 28 29.1886 29 28.7998 29
36 29.7486 30 28.8270 29 30.5595 31 30.1009 30
37 31.2010 31 29.9336 30 32.1652 32 31.3869 31
38 32.6914 33 31.3908 31 33.7975 34 32.8900 33
39 34.1952 34 32.8830 33 35.2388 35 34.2974 34
40 35.4615 35 34.3565 34 36.5000 36 35.3356 35
40.5 36.5000 36 34.9897 35 36.5000 36 36.5000 36
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sc(y) = sc(y∗
i ) + y − y∗

i

y∗
i+1 − y∗

i
[sc(y∗

i+1) − sc(y∗
i )], −.5 ≤ y ≤ KY + .5,

= sc(−.5), y < −.5,

= sc(KY + .5), y > Ky + .5, (2.22)

where y∗
i+1 is the smallest tabled raw score that is greater than or equal to y∗

i . Note
that sc(−.5) is the minimum scale score and that sc(KY + .5) is the maximum scale
score.

To illustrate how this equation works, refer again to Table 2.8. How would the
scale score equivalent of a raw score of y = 18.3 be found using Eq. (2.22)? Note
that y∗

i = 18, because this score is the largest tabled score that is less than or equal
to y. Using Eq. (2.22),

sc(y) = sc(18) + 18.3 − 18

19 − 18
[sc(19) − sc(18)]

= 17.3824 + 18.3 − 18

19 − 18
[18.3403 − 17.3824]

= 17.6698.

To illustrate that Eq. (2.22) is a linear interpolation expression, note that the scale
score equivalent of 18 is 17.3824. The scale score 18.3 is, proportionally, .3 of the way
between 18 and 19. This .3 value is multiplied by the difference between the scale
score equivalents at 19 (18.3403) and at 18 (17.3824). Then .3 times this difference
is .3[18.3403 − 17.3824] = .2874. Adding .2874 to 17.3824 gives 17.6698.

Typically, the tabled scores used to apply Eq. (2.22) will be integer raw scores
along with −.5 and KY + .5. Equation (2.22), however, allows for more general
schemes. For example, scale score equivalents could be tabled at each half raw
score, such as −.5, .0, .5, 1.0, etc.

In practice, integer scores, which are found by rounding sc(y), are reported to
examinees. The third column of the table provides these integer scale score equiv-
alents for integer raw scores (scint). A raw score of −.5 was set equal to a scale
score value of .5 and a raw score of 40.5 was set equal to a scale score value of 36.5.
These values were chosen so that the minimum possible rounded scale score would
be 1 and the maximum 36. In rounding, a convention is used where a scale score
that precisely equals an integer score plus .5 rounds up to the next integer score. The
exception to this convention is that the scale score is rounded down for the highest
scale score, so that 36.5 rounds to 36.

To find the scale score equivalents of the Form X raw scores, the raw scores on
Form X are first equated to raw scores on Form Y using Eq. (2.18). Then, substituting
eY (x) for y in Eq. (2.22),

sc[eY (x)] = sc(y∗
i ) + eY (x) − y∗

i

y∗
i+1 − y∗

i
[sc(y∗

i+1) − sc(y∗
i )],−.5 ≤ eY (x) ≤ K X + .5.

(2.23)
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In this equation, y∗
i is defined as the largest tabled raw score that is less than or equal

to eY (x). This definition of y∗
i as well as the definition of y∗

i+1 are consistent with
their definitions in Eq. (2.22). The transformation is defined only for the range of
Form X scores, −.5 ≤ x ≤ K X + .5. There is no need to define this function outside
this range, because eY (x) is defined only in this range in Eq. (2.17). The minimum
and maximum scale scores for Form X are identical to those for Form Y, which occur
at sc[eY (x = −.5)] and at sc[eY (x = K X + .5)], respectively.

As an example, Eq. (2.23) is used with the ACT Mathematics equating example.
Suppose that the scale score equivalent of a Form X raw score of 24 is to be found
using equipercentile equating. In Table 2.7, a Form X raw score of 24 is shown to
be equivalent to a Form Y raw score of 23.9157. To apply Eq. (2.22), note that the
largest Form Y raw score in Table 2.8 that is less than 23.9157 is 23. So, y∗

i = 23,
and y∗

i+1 = 24. From Table 2.8, sc(23) = 21.7000 and sc(24) = 22.3220. Applying
Eq. (2.22),

sc[eY (x = 24)] = sc(23.9157)

= sc(23) + 23.9157 − 23

24 − 23
[sc(24) − sc(23)]

= 21.7000 + 23.9157 − 23

24 − 23
[22.3220 − 21.7000]

= 22.2696.

For a Form X raw score of 24, this value agrees with the value using equipercentile
equating in Table 2.8, apart from rounding. Rounding to an integer, scint[eY (x =
24)] = 22.

Mean and linear raw score equating results can be converted to nonlinear scale
scores by substituting mY (x) or lY (x) for y in Eq. (2.22). The raw score equivalents
from either the mean or linear methods might fall outside the range of possible Form
Y scores. This problem is handled in Eq. (2.22) by truncating the scale scores. For
example, if lY (x) < −.5, then sc(y) = sc(−.5) by Eq. (2.22). The unrounded and
rounded raw-to-scale score conversions for the mean and linear equating results are
presented in Table 2.8.

Inspecting the central moments of scale scores can be useful in judging the accu-
racy of equating. Ideally, after equating, the scale score moments for converted Form
X scores would be identical to those for Form Y. However, the moments typically
are not identical, in part because the scores are discrete. If equating is successful,
then the scale score moments for converted Form X scores should be very similar
(say, agree, to at least one decimal place) to the scale score moments for Form Y.
Should the Form X moments be compared to the rounded or unrounded Form Y
moments? The answer is not entirely clear. However, the approach taken here is to
compare the Form X moments to the Form Y unrounded moments. The rationale for
this approach is that the unrounded transformation for Form Y most closely defines
the score scale for the test, whereas rounding is used primarily to facilitate score
interpretability. Following this logic, the use of Form Y unrounded moments for
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Table 2.9 Scale score moments

Test Form μ̂sc σ̂sc ŝksc k̂usc

Form Y
unrounded 16.5120 8.3812 −.1344 2.0557
rounded 16.4875 8.3750 −.1025 2.0229

Form X equated to Form Y scale for various methods

Mean
unrounded 16.7319 7.6474 −.1868 2.1952
rounded 16.6925 7.5965 −.1678 2.2032

Linear
unrounded 16.5875 8.3688 −.1168 2.1979
rounded 16.5082 8.3065 −.0776 2.1949

Equipercentile
unrounded 16.5125 8.3725 −.1300 2.0515
rounded 16.4324 8.3973 −.1212 2.0294

comparison purposes should lead to greater score scale stability when, over time,
many forms become involved in the equating process.

Moments are shown in Table 2.9 for Form Y and for Form X using mean, linear,
and equipercentile equating. Moments are shown for the unrounded (sc) and rounded
(scint ) score transformations. Note that the process of rounding affects the moments
for Form Y. Also, the Form X scale score mean for mean equating (both rounded
and unrounded) is much larger than the unrounded scale score mean for Form Y.
Presumably, the use of a nonlinear raw-to-scale score transformation for Form Y is
responsible. When the raw-to-scale score conversion for Form Y is nonlinear, the
mean scale score for Form X is typically not equal to the mean scale score for Form
Y for mean and linear equating. Similarly, when the raw-to-scale score conversion
for Form Y is nonlinear, the standard deviation of the Form X scale scores typically
is not equal to the standard deviation of Form Y scale scores for linear equating.

For equipercentile equating, the unrounded moments for Form X are similar to
the unrounded moments for Form Y. The rounding process results in the mean of
Form X being somewhat low. Is there anything that can be done to raise the mean of
the rounded scores? Refer to Table 2.8. In this table, a raw score of 23 converts to an
unrounded scale score of 21.4793 and a rounded scale score of 21. If the unrounded
converted score had been only .0207 points higher, then the rounded converted score
would have been 22. This observation suggests that the rounded conversion might
be adjusted to make the moments more similar. Consider adjusting the conversion
so that a raw score of 23 converts to a scale score of 22 (instead of 21) and a raw
score of 16 converts to a scale score of 14 (instead of 13). The moments for the
adjusted conversion are as follows: μ̂sc = 16.5165, σ̂sc = 8.3998, ŝksc = −.1445,
and k̂usc = 2.0347. Overall, the moments of the adjusted conversion seem closer
to the moments of the original unrounded conversion. For this reason, the adjusted
conversion might be used in practice.
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Should the rounded conversions actually be adjusted in practice? To the extent
that moments for the Form X rounded scale scores are made more similar to the
unrounded scale score moments for Form Y, adjusting the conversions would seem
advantageous. However, adjusting the conversions might lead to greater differences
between the cumulative distributions of scale scores for Form X and Form Y at some
scale score points. That is, adjusted conversions lead to less similar percentile ranks
of scale scores across the two forms. In addition, adjusted conversions affect the
scores of individual examinees.

Because adjusting can lead to less similar scale score distributions, and because it
adds a subjective element into the equating process, we typically take a conservative
approach to adjusting conversions. A rule of thumb that we often follow is to consider
adjusting the conversions only if the moments are closer after adjusting than before
adjusting, and the unrounded conversion is within .1 point of rounding to the next
higher or lower value (e.g., 21.4793 in the example is within .1 point of rounding to
22). Smoothing methods are considered in Chap. 3, which might eliminate the need
to consider subjective adjustments.

In the examples, scale score equivalents of integer raw scores were specified and
linear interpolation was used between the integer scores. If more precision is desired,
scale score equivalents of fractional raw scores could be specified. The procedures
associated with Eqs. (2.22) and (2.23) are expressed in sufficient generality to handle
this additional precision. Procedures using nonlinear interpolation also could be
developed, although linear interpolation is likely sufficient for practical purposes.

When score scales are established, the highest and lowest possible scale scores
are often fixed at particular values. For example, the ACT score scale is said to range
from 1 to 36. The approach taken here to scaling when using nonlinear conversions
is to fix the ends of the score scale at specific points. Over time, if forms become
easier or more difficult, the end points could be adjusted. However, such adjustments
would require careful judgment. An alternative procedure involves leaving enough
room at the top and bottom of the score scale to handle these problems. For example,
suppose that the rounded score scale for an original form is to have a high score of
36 for the first form developed. However, there is a desire to allow scale scores on
subsequent forms to go as high as 40 if the forms become more difficult. For the initial
Form Y, a scale score of 36 could be assigned to a raw score equal to KY and a scale
score of 40.5 could be assigned to a raw score equal to KY + .5. If subsequent forms
are more difficult than Form Y, the procedures described here could lead to scale
scores as high as 40.5. Of course, alternate interpolation rules could lead to different
properties. Rules for nonlinear scaling and equating also might be developed that
would allow the highest and lowest scores to float without limit. The approach taken
here is to provide a set of equations to be used for nonlinear equating and scaling
that can adequately handle, in a consistent manner, many of the situations we have
encountered in practice.

One practical problem sometimes occurs when the highest possible raw score
does not equate to the highest possible scale score. For the ACT, for example, the
highest possible raw score is assigned a scale score value of 36, regardless of the
results of the equating. For the SAT (Donlon 1984, p. 19), the highest possible raw

http://dx.doi.org/10.1007/978-1-4939-0317-7_3
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score is assigned a scale score value of 800, and other converted scores are sometimes
adjusted, as well.

2.8 Equating Using Single Group Designs

If practice, fatigue, and other order effects do not have an effect on scores, then
the statistical process for mean, linear, and equipercentile equating using the single
group design (without counterbalancing) is essentially the same as with the random
groups design. However, order typically has an affect, and for this reason the single
group design (without counterbalancing) is not recommended.

When the single group design with counterbalancing is used, the following four
equatings can be conducted:

1. Equate Form X and Form Y using the random groups design for examinees who
were administered Form X first and Form Y first.

2. Equate Form X and Form Y using the random groups design for examinees who
were administered Form X second and Form Y second.

3. Equate Form X and Form Y using the single group design for examinees who
were administered Form X first and Form Y second.

4. Equate Form X and Form Y using the single group design for examinees who
were administered Form X second and Form Y first.

Compare equatings 1 and 2. Standard errors of equating described in Chap. 7 can
be used as a baseline for comparing the equatings. If the equatings give different
results, apart from sampling error, then Forms X and Y are differentially affected
by appearing second. In this case, only the first equating should be used. Note that
the first equating is a random groups equating, so it is unaffected by order. The
problem with using the first equating only is that the sample size might be quite
small. However, when differential order effects occur, then equating 1 might be the
only equating that would not be biased.

If equatings 1 and 2 give the same results, apart from sampling error, then Forms
X and Y are similarly affected by appearing second. In this case, all of the data
can be used. One possibility would be to pool all of the Form X data and all of the
Form Y data, and equate the pooled distributions. Angoff (1971) and Petersen et al.
(1989) provided procedures for linear equating. von Davier et al. (2004) described
a systematic scheme that is based on statistical tests using log-linear models for
equipercentile equating under the single group counterbalanced design.

2.9 Equating Using Alternate Scoring Schemes

The presentation of equipercentile equating and scale scores assumed that the tests
to be equated are scored number-correct, with the observed scores ranging from 0
to the number of items. Although this type of scoring scheme is the one that is used
most often with educational tests, alternative scoring procedures are becoming much

http://dx.doi.org/10.1007/978-1-4939-0317-7_7
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more popular, and the procedures described previously can be generalized to other
scoring schemes. For example, whenever raw scores are integer scores that range
from 0 to a positive integer value, the procedures can be used directly by defining K
as the maximum score on a form, rather than as the number of items on a form as
has been done.

Some scoring schemes might produce discrete scores that are not necessarily inte-
gers. For example, when tests are scored using a correction for guessing, a fractional
score point often is subtracted from the total score whenever an item is answered
incorrectly. In this case, raw scores are not integers. However, the discrete score
points that can possibly occur are specifiable and equally spaced. One way to con-
duct equating in this situation is to transform the raw scores. The lowest possible
raw score is transformed to a score of 0, the next lowest raw score is transformed
to a score of 1, and so on through K , which is defined as the transformed value of
the highest possible raw score. The procedures described in this chapter then can be
applied and the scores transformed back to their original units.

Equipercentile equating also can be conducted when the scores are considered
to be continuous, which might be the case when equating forms of a computerized
adaptive test. In many ways, equating in this situation is more straightforward than
with discrete scores, because the definitional problems associated with continuiza-
tion do not need to be considered. Still, difficulties might arise in trying to define
score equivalents in portions of the score scale where few examinees earn scores.
In addition, even if the range of scores is potentially infinite, the range of scores for
which equipercentile equivalents are to be found needs to be considered.

2.10 Preview of What Follows

In this chapter, we described many of the issues associated with observed score
equating using the random groups design, including defining methods, describing
their properties, and estimating the relationships. We also discussed the relationships
between equating and score scales. One of the major relevant issues not addressed
in this chapter is the use of smoothing methods to reduce random error in estimating
equipercentile equivalents. Smoothing is the topic of Chap. 3. Also, as we show in
Chaps. 4 and 5, the implementation of observed score equating methods becomes
much more complicated when the groups administered the two forms are not ran-
domly equivalent. Observed score methods associated with IRT are described in
Chap. 6. Estimating random error in observed score equating is discussed in detail
in Chap. 7, and practical issues are discussed in Chap. 8. Scaling and linking are
discussed in Chaps. 9 and 10.
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Table 2.10 Score distributions for exercise 2.4

x f (x) F(x) P(x) y g(y) G(y) Q(y)

0 .00 0 .00
1 .01 1 .02
2 .02 2 .05
3 .03 3 .10
4 .04 4 .20
5 .10 5 .25
6 .20 6 .20
7 .25 7 .10
8 .20 8 .05
9 .10 9 .02
10 .05 10 .01

Table 2.11 Equated scores for exercise 2.4

x mY (x) lY (x) eY (x)

0
1
2
3
4
5
6
7
8
9
10

2.11 Exercises

2.1. From Table 2.2 find P(2.7), P(.2), P−1(25), P−1(97).
2.2. From Table 2.2, find the linear and mean conversion equation for converting

scores on Form X to the Form Y scale.
2.3. Find the mean and standard deviation of the Form X scores converted to the

Form Y scale for the equipercentile equivalents shown in Table 2.3.
2.4. Fill in Tables 2.10 and 2.11.
2.5. If the standard deviations on Form X and Y are equal, which methods, if any,

among mean, linear, and equipercentile will produce the same results? Why?
2.6. Suppose that a raw score of 20 on Form W was found to be equivalent to a

raw score of 23.15 on Form X. What would be the scale score equivalent of a
Form W raw score of 20 using the Form X equipercentile conversion shown in
Table 2.8?
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2.7. Suppose that the linear raw-to-scale score conversion equation for Form Y was
sc(y) = 1.1y + 10. Also suppose that the linear equating of Form X to Form
Y was lY (x) = .8x + 1.2. What is the linear conversion of Form X scores to
scale scores?

2.8. In general, how would the shape of the distribution of Form X raw scores
equated to the Form Y raw scale compare to the shape of the original Form X
raw score distribution using mean, linear, and equipercentile equating?
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