Chapter 2
Eigenvalues of Transfer Operators
for Dynamical Systems with Holes

Oscar F. Bandtlow and Oliver Jenkinson

Abstract For real-analytic expanding open dynamical systems in arbitrary finite
dimension, we establish rigorous explicit bounds on the eigenvalues of the corre-
sponding transfer operators acting on spaces of holomorphic functions. In dimen-
sion 1 the eigenvalue decay rate is exponentially fast, while in dimension d it is
O(Q"I/d) asn — oo forsome 0 < 6 < 1.

2.1 Introduction

For an expanding map 7 : X — X, the Perron-Frobenius operator & defined by

f)
|7’ (y)l

Pfx)= >

Ty=x

and more general transfer operators .Z defined by

Lfx) =Y eV f(y)

Ty=x

with potential function ¢ : X — R are important objects in the thermodynamic
formalism approach to ergodic theory.

Given a subset H C X, which we regard as a hole in X, it is natural to
consider modified operators &y and £y, defined by setting Py f = Z(f xx\u)
and Ly f = Z(fxx\m), in view of their connections with escape rate (see, e.g.
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[6,9]) and various equilibrium measures supported by the survivor set Xoo =
N, T(X \ H).

The purpose of this note is to describe, in the case where T is piecewise analytic
and H is a suitable hole, explicit estimates on the spectral asymptotics of #y and
%y when acting on various Banach spaces of holomorphic functions.!

Specifically, we take X C R to be compact and connected and 2~ = {X;}ic.s
a finite partition (consisting of non-empty pairwise disjoint subsets of X, each one
open in R?, whose union is dense in X). The map T : X — X is assumed Borel
measurable, with T'(X;) open in R foreachi € .#,and Ty, : X; — T(X;) aC'!
diffeomorphism which can be extended to a C! map on X;. We assume that 7 is
full branch, i.e. T(X;) = X foralli € ., and expanding, i.e. there exists § > 1
such that if x,y € X; for some i € .#, then ||T(x) — T(y)| = B |lx — y|. Each
T |x, has an inverse branch T;, defined so that T o T; is the identity on the interior
of X, and T; o T the identity on X;, and satisfying sup,¢;,;(x) || T/ (x) || Lrd) = B!

for all i € .#, where || - || (gs) denotes the induced operator norm on L(RY) =
L(RZ, | - |])). We assume that T : X — X is real analytic, i.e. there is a bounded
connected open set D C C?, with X C D, such that each 7; has a holomorphic
extension to D.

For simplicity we shall take the hole H to be a union of some (but not all)
elements of 2. In fact with some extra effort, and more cumbersome notation,
the techniques described here extend to the case where H is a union of members of
some refinement V/Z) 77" 2" (a so-called Markov hole). Let _# C .# be such that
Uie # Xi = X \ H. Transfer operators £ for the open dynamical system T'|y\y
then take the form

Luf =) wi(foTy), @.1)
i€ g

where the weight functions w; are related to the potential function ¢ by setting w; =
exp(¢ o T;) on X and assumed to admit a holomorphic extension to D which in
turn extends continuously to D. In the particular case ¢ = —log|T”|, when w; are
the holomorphic extensions to D of |T/| on X, the corresponding transfer operator
is precisely the modified Perron-Frobenius operator &7y . We shall always assume
that D has the property that the closure of U;e »T; (D) lies inside D itself, referring
to such domains D as being admissible for the map T'; this technical requirement,
which we always assume without further comment, will ensure that % preserves
suitable Banach spaces of functions holomorphic on D.

'"When acting on these spaces, &y has a strictly positive spectral radius 8, with § > 0 an
eigenvalue such that —log$ is the corresponding escape rate (see, e.g. [14] for one-dimensional
maps); thus escape is at an exponential rate, rather than anything faster. Moreover, 6 " 27,1 — o,
where o is the density function for the Pianigiani-Yorke measure [15].
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The structure of the article is as follows. We begin in Sect.2.2 by considering
transfer operators £y acting on the Banach space® U(D) of those holomorphic
functions on D which extend continuously to D equipped with the usual supremum
norm ||w||y(py = sup,ep |w(z)|. We show (Theorems 2.1 and 2.2) that in dimension
d = 1, the eigenvalues A, (Zy ) (arranged in order of decreasing modulus) converge
to zero exponentially fast, deriving an explicit bound for |A,(Zy)|. In higher
dimensions d > 2, there are similar explicit bounds (see Theorem 2.3), though here
the convergence to zero is’ 0(9"1/d) as n — oo, for some 6 € (0, 1). In Sect.2.3
we show that in fact the eigenvalues for £y : U(D) — U(D) are identical to those
for £y acting on a variety of Banach spaces A(D) of holomorphic functions. This
suggests the possibility of improving the bounds of Sect. 2.2 by judicious choice of
A(D), a strategy we pursue in Sect. 2.4 where A(D) is chosen to be Hilbert Hardy
space H?(D), yielding Theorems 2.6 and 2.7.

2.2 Eigenvalue Estimates via Weyl’s Inequality

We begin with an explicit estimate on the eigenvalues of the modified Perron-
Frobenius operator in dimension d = 1:

Theorem 2.1. For an expanding interval map, the eigenvalues of the modified
Perron-Frobenius operator Py : U(D) — U(D) satisfy

An(Py)| < 0" sup > |T/ (@) foralln =1, (2.2)

ZEDiE']

provided each T/ extends holomorphically to a disc D C C, where 6 < 1 is such
that Uje 4 T; (D) is contained in the concentric disc whose radius is 02 times that
of D.

The bounds in Theorem 2.1 are readily computed for specific maps T':

Example 2.1. As in [2], we consider the map

9x . 1
if0 <x <+
Tx)=3~* i 1?+l .
10x — 1 1fm<x§—,for1§1§9

2The study of transfer operators on this space U(D) was inaugurated by Ruelle [18].
3Ruelle [18], following Grothendieck [11], stated the asymptotics were O(#") as n — 00,
independent of the dimension d, though Fried [10] corrected this to 0(9”1/'1). One novelty of

our results, relative to Fried and Ruelle, is that the constant 6, as well as the implicit constant in
the big-O asymptotics, is rendered explicit.
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Note that the inverse branches {7} }o<; <9 are given by

X
9+ x

To(x) =

and
Ti(x) =(x+1i)/10 forl <i <9.

Choosing Markov hole H = [1/5, 1] corresponds to setting _# = {0, 1}.
We claim that the eigenvalues of the modified Perron-Frobenius operator Zy :
U(D) — U(D) are bounded by

A (Pr)| < %ﬁ(%) foralln > 1. 2.3)

In particular, note that the case n = 1 yields a bound on the escape rate y (see, e.g.
[6]) for this open dynamical system, namely, y > —log 77/320.

Let D be the disc of radius 1 centred at 0. Noting that To(—1) = —1/8, T1(—1) =
0, To(1) = 1/10 and T1(1) = 1/5, we see that U;e »T; (D) is contained in the disc
of radius 1/5 centred at 0. This means we may set & = 1/+/5 in Theorem 2.1. Note
that |7, (2)| + |T{(z)| = ﬁ + 11—0, and the supremum of this expression on D is

the value 77/320, attained (on the boundary of D) at z = —1. The bound (2.3) then
follows from (2.2).

In fact Theorem 2.1 is a special case of the following one-dimensional result:

Theorem 2.2. For an expanding interval map, the eigenvalues of the transfer
operator Ly : U(D) — U(D) satisfy

A (L)l < 0"/ sup Y Iwi(2)| foralln =1, 2.4)
z€D iej

provided each w; and T; extend holomorphically to the disc D C C, where 6 < 1 is
such that U;e 4 T; (D) is contained in the concentric disc whose radius is 02 times
that of D.

Proof. Let D’ denote the concentric disc whose radius is r = 62 times that
of D. First, we observe that Ly [ = Y ;¢ Wi (f o T;) defines a continuous
operator P U(D') — U(D). To see this, fix f € U(D’) and note that
wi(foTy) € UD) with [lwi (f o T)llyw) = IWilluw) I/ lyp for every i € 7.
But since we have | Zy /o) < Yic ; IWillyo) 1/ logory: s0 Zaf € U(D)
and Zy is continuous. Now || Ly < W =: sup, Zie] [wi(z)|, because
for f € U(D’) we have |f(T:(2)| = | fllyp) for every z € D, i € 7;

thus, by the maximum modulus principle, ||.Zy f lupy = sup.ep (Lu ) <
sup.ep Die g Wi @I LS (T @) = W flluw-
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Recall that if L : By — B, is a continuous operator between Banach spaces,
then for k > 1, its kth approximation number ay (L) is defined by

ap(L)y =inf{||L — K| : K: By — B, linear with rank(K) <k } .

Note that in general ay (L1L,) < ||L1]| ax(L2) (see [16, 2.2]).
Now clearly &y = £y J, where J : U(D) — U(D’) denotes the canonical
embedding, so

a (L) < | Zulla(J) < Wap(J) forallk > 1. (2.5)

Moreover, it can be shown that . is compact; in fact, it is of exponential class (see
[3]) and in particular nuclear of any order.

Before proceeding recall that Weyl’s inequality (see, e.g. [12]) asserts that
[Tie) A (L) < 02 T1i, ak(Ly) forevery n € N4

Together with (2.5) this yields the inequality

n
A (L) < Wn'/? Hak(J)l/” foralln > 1, (2.6)
k=1

because A, (L] < [Tizy A (Lu)]V".
Using a result originally due to Babenko (see [1] or [17, Theorem VIIL.2.1]) we
see

ar(J)y <r'=' foralll > 1,
hence, ]_[;1:] a;(J)l/" < pin i=rl=1 = r=/2 50 (2.6) becomes
\n (L) < Wn!/2r0=D/2,
which is the desired bound (2.4). O

In higher dimension d the rate of eigenvalue decay is slower than exponential
and can be shown to be O(O”W) as n — oo, for some 0 € (0, 1). The main new
ingredient in the following result, proved in [5], is an estimate due to Farkov [8]
on the approximation numbers of the embedding operator J in higher dimensions,
namely a;(J) < r', where t; := k for (“"}*/) <1 < (*19).

Theorem 2.3. In dimension d > 1, suppose the Euclidean ball D C C? is such
that U; ¢ 7 T; (D) is contained in the concentric ball whose radius is r < 1 times that
of D. Setting W := sup_¢, Zie/ |wi (z)|, the eigenvalues of Ly : U(D) — U(D)
can be bounded by

4
A ()| < /2 pa T @ gl > 1 2.7
r

“4This is a Banach space version of Weyl’s original inequality [19] in Hilbert space; the constant
n"?is optimal (see [12]).
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2.3 The Common Spectrum

It turns out that a more oblique approach yields different, and sometimes better,
bounds on the eigenvalues of £y : U(D) — U(D). This approach consists of
varying the space upon which .Z acts. Clearly, in general U(D) is not the only
function space preserved by a transfer operator %, and we would expect the
spectrum of % to vary according to the space on which it acts. There is interest,
however, in identifying a class of spaces A(D) which are sufficiently closely related
to U(D) to ensure that the spectrum of .2 on these spaces is precisely the same as
that of £y : U(D) — U(D). This motivates the following definition:

Definition 2.1. For a non-empty open connected set D C C¢, a Banach space
A(D) of holomorphic functions f : D — C is called favourable if it contains
U(D), with the natural embedding U(D) < A(D) having norm 1, and if f +—
f(z) is continuous on A(D) for each z € D.

Transfer operators %y can be shown (see [5]) to preserve all favourable spaces’
A(D), with the eigenvalues of £y : A(D) — A(D) related to a certain entire
function:

Theorem 2.4. The transfer operator Ly defined by (2.1) preserves every
Sfavourable space A(D) of holomorphic functions on D. It has a well-defined
spectral trace T4py(Lu) = ZZOZI An (L | a(py) and spectral determinant dety(p),
related by

X n
Z
detan)(I — 2% |ap)) = exp (— > ;wm(ﬂ,)) : 2.8)
n=1
forall z € Cin a suitable neighbourhood of 0, and such that, counting multiplicities,
the zeros of the entire function z — det(I —z.Ly|a(p)) are precisely the reciprocals
of the eigenvalues of £y - A(D) — A(D).

Motivated by the possibility that the trace and determinant do not in fact vary
with the choice of favourable space A(D), we follow Ruelle [18] in considering the
following function:

Definition 2.2. For given weight functions w;, i € _#, the associated dynamical
determinant is the entire function A : C — C, defined for all z of sufficiently small
modulus by

_ wi (Zt
A@) = exp Z n Z det(I — T (z;)) T/(z) |’ @9

neN iegn

3 As always, we are making the standing assumption that D is an admissible domain, i.e. that the
closure of Uje »T; (D) lies in D.
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where fori = (iy,...,i,) € 7", wesetT; :=T; o---oT;,andw; := [[;_, wi, ©
Tp,_,i, where Py : ¢" — /k denotes the projection Pxi = (iy,...,i) with the
convention that Tp; = id, and z; denotes the (unique, by [7]) fixed point of 7; in D.

Theorem 2.5. For every favourable space A(D), the determinant of the transfer
operator XLy : A(D) — A(D) defined by (2.1) is precisely the dynamical
determinant A, and its eigenvalue sequence is precisely the same as for £
U(D) - U(D).

Proof. The common trace formula

. wi(zi)
TA(D)(«:?H) = Z m for all n > 1 (210)
iegn i\~

can be established (see [5]), valid for every favourable space A(D) on which %y
acts, so that equality of determinants follows from comparison of (2.8) and (2.9).
The equality of the eigenvalue sequences follows from the fact that the determinants
are spectral. O

2.4 Hilbert Hardy Space

In view of Theorem 2.5, we are now at liberty to make particular choices of
favourable spaces, in the hope of obtaining interesting new bounds on the eigen-
values of the transfer operator £ : U(D) — U(D).

For p € [1,00), the Hardy space H? (D) (see [13, Chap. 8.3]) is a favourable
space, and we will be particularly interested in the Hilbert Hardy space H?(D).°
The following eigenvalue bounds, valid in dimension 1, are obtained by choosing
favourable space A(D) = H?(D) for D C C a disc:

Theorem 2.6. With the hypotheses and notation of Theorem 2.2,

w
|An(ZLr)| < = 0" ' foralln>1. .11

SIf D has C? boundary, then H?(D) can be identified with the L2(3dD, o)-closure of U(D),
where o denotes (2d — 1)-dimensional Lebesgue measure on the boundary dD, normalised so
that 0(dD) = 1. The inner product in H2(D) is given (see [13, Chaps. 1.5 and 8]) by (f.g) =
Jop £* g% do, where, for h € H?(D), the symbol 4* denotes the corresponding nontangential
limit function in L2(3D, o).
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Proof. As in the proof of Theorem 2.3, let D’ denote the concentric disc whose
radius is r = 6 times that of D, and let J : H*>(D) — H%(D’) denote canonical
embedding. It can be shown that, for all n > 1,

(L) = W [ Jau(D)V", 2.12)
k=1

an inequality which is superior to (2.6), by virtue of the original Hilbert space
version of Wey!’s inequality, namely [} _; [Ac(L)] < [Ti=; ax (L) (see [16, 3.5.1],
[19]). An argument (see [4]) exploiting the interplay between the reproducing kernel
of H?(D) and an orthonormal basis for H?(D) then allows the estimate

n—1
V=2’

and substituting into (2.12) yields the result. O

a,(J) < (2.13)

Example 2.2. Comparing (2.12) with (2.4), we see that Theorem 2.6 leads to
improved eigenvalue bounds whenever n > 1/(1 — 6*). In Example 2.1 we can
choose 6 = 1/ /5 therefore, forall n > 2 > 25 /24, the estimate

77 5 ( 1\
M(Pi)| < o= | —=
) 320m(ﬁ)

derived from (2.12) is sharper than the previous bound (2.3) on the eigenvalues of
the modified Perron-Frobenius operator.

A more elaborate version of the proof of Theorem 2.6 (see [4] for details) gives
the following higher dimensional analogue, which for sufficiently large values of n
yields estimates which are superior to those of Theorem 2.3:

Theorem 2.7. With the hypotheses and notation of Theorem 2.3,

WAd
Mn(gH)l < I’d \/_

W n(d—l)/(2d) rdi_q_l(d!)l/dnl/d for alln Z 1 X (214)
—-r
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