
Chapter 2
Eigenvalues of Transfer Operators
for Dynamical Systems with Holes

Oscar F. Bandtlow and Oliver Jenkinson

Abstract For real-analytic expanding open dynamical systems in arbitrary finite
dimension, we establish rigorous explicit bounds on the eigenvalues of the corre-
sponding transfer operators acting on spaces of holomorphic functions. In dimen-
sion 1 the eigenvalue decay rate is exponentially fast, while in dimension d it is
O.�n1=d

/ as n ! 1 for some 0 < � < 1.

2.1 Introduction

For an expanding map T W X ! X , the Perron-Frobenius operator P defined by

Pf .x/ D
X

TyDx

f .y/

jT 0.y/j

and more general transfer operators L defined by

L f .x/ D
X

TyDx

e'.y/f .y/

with potential function ' W X ! R are important objects in the thermodynamic
formalism approach to ergodic theory.

Given a subset H � X , which we regard as a hole in X , it is natural to
consider modified operators PH and LH , defined by setting PH f D P.f�XnH /

and LH f D L .f�XnH /, in view of their connections with escape rate (see, e.g.
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[6, 9]) and various equilibrium measures supported by the survivor set X1 D
\1

nD0T �n.X n H/.
The purpose of this note is to describe, in the case where T is piecewise analytic

and H is a suitable hole, explicit estimates on the spectral asymptotics of PH and
LH when acting on various Banach spaces of holomorphic functions.1

Specifically, we take X � R
d to be compact and connected and X D fXi gi2I

a finite partition (consisting of non-empty pairwise disjoint subsets of X , each one
open in R

d , whose union is dense in X ). The map T W X ! X is assumed Borel
measurable, with T .Xi / open in R

d for each i 2 I , and T jXi W Xi ! T .Xi / a C 1

diffeomorphism which can be extended to a C 1 map on Xi . We assume that T is
full branch, i.e. T .Xi / D X for all i 2 I , and expanding, i.e. there exists ˇ > 1

such that if x; y 2 Xi for some i 2 I , then kT .x/ � T .y/k � ˇ kx � yk. Each
T jXi has an inverse branch Ti , defined so that T ı Ti is the identity on the interior
of X , and Ti ı T the identity on Xi , and satisfying supx2int.X/

��T 0
i .x/

��
L.Rd /

� ˇ�1

for all i 2 I , where k � kL.Rd / denotes the induced operator norm on L.Rd / D
L..Rd ; k � k//. We assume that T W X ! X is real analytic, i.e. there is a bounded
connected open set D � C

d , with X � D, such that each Ti has a holomorphic
extension to D.

For simplicity we shall take the hole H to be a union of some (but not all)
elements of X . In fact with some extra effort, and more cumbersome notation,
the techniques described here extend to the case where H is a union of members of
some refinement _n�1

iD0T �iX (a so-called Markov hole). Let J � I be such that
[i2J Xi D X n H . Transfer operators LH for the open dynamical system T jXnH

then take the form

LH f D
X

i2J
wi .f ı Ti / ; (2.1)

where the weight functions wi are related to the potential function ' by setting wi D
exp.' ı Ti / on X and assumed to admit a holomorphic extension to D which in
turn extends continuously to D. In the particular case ' D � log jT 0j, when wi are
the holomorphic extensions to D of jT 0

i j on X , the corresponding transfer operator
is precisely the modified Perron-Frobenius operator PH . We shall always assume
that D has the property that the closure of [i2J Ti .D/ lies inside D itself, referring
to such domains D as being admissible for the map T ; this technical requirement,
which we always assume without further comment, will ensure that LH preserves
suitable Banach spaces of functions holomorphic on D.

1When acting on these spaces, PH has a strictly positive spectral radius ı, with ı > 0 an
eigenvalue such that � log ı is the corresponding escape rate (see, e.g. [14] for one-dimensional
maps); thus escape is at an exponential rate, rather than anything faster. Moreover, ı�nPn

H 1 ! %,
where % is the density function for the Pianigiani-Yorke measure [15].
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The structure of the article is as follows. We begin in Sect. 2.2 by considering
transfer operators LH acting on the Banach space2 U.D/ of those holomorphic
functions on D which extend continuously to D equipped with the usual supremum
norm kwkU.D/ D supz2D jw.z/j. We show (Theorems 2.1 and 2.2) that in dimension
d D 1, the eigenvalues �n.LH / (arranged in order of decreasing modulus) converge
to zero exponentially fast, deriving an explicit bound for j�n.LH /j. In higher
dimensions d � 2, there are similar explicit bounds (see Theorem 2.3), though here
the convergence to zero is3 O.�n1=d

/ as n ! 1, for some � 2 .0; 1/. In Sect. 2.3
we show that in fact the eigenvalues for LH W U.D/ ! U.D/ are identical to those
for LH acting on a variety of Banach spaces A.D/ of holomorphic functions. This
suggests the possibility of improving the bounds of Sect. 2.2 by judicious choice of
A.D/, a strategy we pursue in Sect. 2.4 where A.D/ is chosen to be Hilbert Hardy
space H 2.D/, yielding Theorems 2.6 and 2.7.

2.2 Eigenvalue Estimates via Weyl’s Inequality

We begin with an explicit estimate on the eigenvalues of the modified Perron-
Frobenius operator in dimension d D 1:

Theorem 2.1. For an expanding interval map, the eigenvalues of the modified
Perron-Frobenius operator PH W U.D/ ! U.D/ satisfy

j�n.PH /j � �n�1
p

n sup
z2D

X

i2J
jT 0

i .z/j for all n � 1 ; (2.2)

provided each T 0
i extends holomorphically to a disc D � C, where � < 1 is such

that [i2J Ti .D/ is contained in the concentric disc whose radius is �2 times that
of D.

The bounds in Theorem 2.1 are readily computed for specific maps T :

Example 2.1. As in [2], we consider the map

T .x/ D
(

9x
1�x

if 0 � x � 1
10

10x � i if i
10

< x � iC1
10

; for 1 � i � 9

2The study of transfer operators on this space U.D/ was inaugurated by Ruelle [18].
3Ruelle [18], following Grothendieck [11], stated the asymptotics were O.�n/ as n ! 1,
independent of the dimension d , though Fried [10] corrected this to O.�n1=d

/. One novelty of
our results, relative to Fried and Ruelle, is that the constant � , as well as the implicit constant in
the big-O asymptotics, is rendered explicit.
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Note that the inverse branches fTi g0�i�9 are given by

T0.x/ D x

9 C x

and

Ti .x/ D .x C i/=10 for 1 � i � 9 :

Choosing Markov hole H D Œ1=5; 1� corresponds to setting J D f0; 1g.
We claim that the eigenvalues of the modified Perron-Frobenius operator PH W

U.D/ ! U.D/ are bounded by

j�n.PH /j � 77

320

p
5n

�
1p
5

�n

for all n � 1 : (2.3)

In particular, note that the case n D 1 yields a bound on the escape rate � (see, e.g.
[6]) for this open dynamical system, namely, � � � log 77=320.

Let D be the disc of radius 1 centred at 0. Noting that T0.�1/ D �1=8, T1.�1/ D
0, T0.1/ D 1=10 and T1.1/ D 1=5, we see that [i2J Ti .D/ is contained in the disc
of radius 1=5 centred at 0. This means we may set � D 1=

p
5 in Theorem 2.1. Note

that jT 0
0.z/j C jT 0

1.z/j D 9

j9Czj2 C 1
10

, and the supremum of this expression on D is

the value 77=320, attained (on the boundary of D) at z D �1. The bound (2.3) then
follows from (2.2).

In fact Theorem 2.1 is a special case of the following one-dimensional result:

Theorem 2.2. For an expanding interval map, the eigenvalues of the transfer
operator LH W U.D/ ! U.D/ satisfy

j�n.LH /j � �n�1
p

n sup
z2D

X

i2J
jwi .z/j for all n � 1 ; (2.4)

provided each wi and Ti extend holomorphically to the disc D � C, where � < 1 is
such that [i2J Ti .D/ is contained in the concentric disc whose radius is �2 times
that of D.

Proof. Let D0 denote the concentric disc whose radius is r D �2 times that
of D. First, we observe that OLH f WD P

i2J wi .f ı Ti / defines a continuous

operator OLH W U.D0/ ! U.D/. To see this, fix f 2 U.D0/ and note that
wi .f ı Ti / 2 U.D/ with kwi .f ı Ti /kU.D/ � kwi kU.D/ kf kU.D0/ for every i 2 J .

But since we have k OLH f kU.D/ � P
i2J kwi kU.D/ kf kU.D0/, so OLH f 2 U.D/

and OLH is continuous. Now k OLH k � W DW supz2D

P
i2J jwi .z/j, because

for f 2 U.D0/ we have jf .Ti .z//j � kf kU.D0/ for every z 2 D, i 2 J ;

thus, by the maximum modulus principle, k OLH f kU.D/ D supz2D j. OLH f /.z/j �
supz2D

P
i2J jwi .z/j jf .Ti .z//j � W kf kU.D0/.
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Recall that if L W B1 ! B2 is a continuous operator between Banach spaces,
then for k � 1, its kth approximation number ak.L/ is defined by

ak.L/ D inf f kL � Kk W K W B1 ! B2 linear with rank.K/ < k g :

Note that in general ak.L1L2/ � kL1k ak.L2/ (see [16, 2.2]).
Now clearly LH D OLH J , where J W U.D/ ,! U.D0/ denotes the canonical

embedding, so

ak.LH / � k OLH kak.J / � W ak.J / for all k � 1 : (2.5)

Moreover, it can be shown that LH is compact; in fact, it is of exponential class (see
[3]) and in particular nuclear of any order.

Before proceeding recall that Weyl’s inequality (see, e.g. [12]) asserts thatQn
kD1 j�k.LH /j � nn=2

Qn
kD1 ak.LH / for every n 2 N.4

Together with (2.5) this yields the inequality

j�n.LH /j � W n1=2

nY

kD1

ak.J /1=n for all n � 1 ; (2.6)

because j�n.LH /j � Qn
kD1 j�k.LH /j1=n.

Using a result originally due to Babenko (see [1] or [17, Theorem VIII.2.1]) we
see

al .J / � rl�1 for all l � 1 ;

hence,
Qn

lD1 al .J /1=n � r
1
n

Pn
lD1 l�1 D r.n�1/=2, so (2.6) becomes

j�n.LH /j � W n1=2r.n�1/=2 ;

which is the desired bound (2.4). ut
In higher dimension d the rate of eigenvalue decay is slower than exponential

and can be shown to be O.�n1=d
/ as n ! 1, for some � 2 .0; 1/. The main new

ingredient in the following result, proved in [5], is an estimate due to Farkov [8]
on the approximation numbers of the embedding operator J in higher dimensions,
namely al .J / � rtl , where tl WD k for

�
k�1Cd

d

�
< l � �

kCd
d

�
.

Theorem 2.3. In dimension d � 1, suppose the Euclidean ball D � C
d is such

that [i2J Ti .D/ is contained in the concentric ball whose radius is r < 1 times that
of D. Setting W WD supz2D

P
i2J jwi .z/j, the eigenvalues of LH W U.D/ ! U.D/

can be bounded by

j�n.LH /j <
W

rd
n1=2 r

d
dC1 .d Š/1=d n1=d

for all n � 1 : (2.7)

4This is a Banach space version of Weyl’s original inequality [19] in Hilbert space; the constant
nn=2 is optimal (see [12]).
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2.3 The Common Spectrum

It turns out that a more oblique approach yields different, and sometimes better,
bounds on the eigenvalues of LH W U.D/ ! U.D/. This approach consists of
varying the space upon which LH acts. Clearly, in general U.D/ is not the only
function space preserved by a transfer operator LH , and we would expect the
spectrum of LH to vary according to the space on which it acts. There is interest,
however, in identifying a class of spaces A.D/ which are sufficiently closely related
to U.D/ to ensure that the spectrum of LH on these spaces is precisely the same as
that of LH W U.D/ ! U.D/. This motivates the following definition:

Definition 2.1. For a non-empty open connected set D � C
d , a Banach space

A.D/ of holomorphic functions f W D ! C is called favourable if it contains
U.D/, with the natural embedding U.D/ ,! A.D/ having norm 1, and if f 7!
f .z/ is continuous on A.D/ for each z 2 D.

Transfer operators LH can be shown (see [5]) to preserve all favourable spaces5

A.D/, with the eigenvalues of LH W A.D/ ! A.D/ related to a certain entire
function:

Theorem 2.4. The transfer operator LH defined by (2.1) preserves every
favourable space A.D/ of holomorphic functions on D. It has a well-defined
spectral trace �A.D/.LH / D P1

nD1 �n.LH jA.D// and spectral determinant detA.D/,
related by

detA.D/.I � zLH jA.D// D exp

 
�

1X

nD1

zn

n
�A.D/.L

n
H /

!
; (2.8)

for all z 2 C in a suitable neighbourhood of 0, and such that, counting multiplicities,
the zeros of the entire function z 7! det.I � zLH jA.D// are precisely the reciprocals
of the eigenvalues of LH W A.D/ ! A.D/.

Motivated by the possibility that the trace and determinant do not in fact vary
with the choice of favourable space A.D/, we follow Ruelle [18] in considering the
following function:

Definition 2.2. For given weight functions wi , i 2 J , the associated dynamical
determinant is the entire function � W C ! C, defined for all z of sufficiently small
modulus by

�.z/ D exp

0

@�
X

n2N

zn

n

X

i2J n

wi .zi /

det.I � T 0
i .zi //

1

A ; (2.9)

5As always, we are making the standing assumption that D is an admissible domain, i.e. that the
closure of [i2J Ti .D/ lies in D.



2 Eigenvalues of Transfer Operators 37

where for i D .i1; : : : ; in/ 2 J n, we set Ti WD Tin ı � � � ı Ti1 , and wi WD Qn
kD1 wik ı

TPk�1i , where Pk W J n ! J k denotes the projection Pki D .i1; : : : ; ik/ with the
convention that TP0i D id, and zi denotes the (unique, by [7]) fixed point of Ti in D.

Theorem 2.5. For every favourable space A.D/, the determinant of the transfer
operator LH W A.D/ ! A.D/ defined by (2.1) is precisely the dynamical
determinant �, and its eigenvalue sequence is precisely the same as for L W
U.D/ ! U.D/.

Proof. The common trace formula

�A.D/.L
n
H / D

X

i2I n

wi .zi /

det.I � T 0
i .zi //

for all n � 1 (2.10)

can be established (see [5]), valid for every favourable space A.D/ on which LH

acts, so that equality of determinants follows from comparison of (2.8) and (2.9).
The equality of the eigenvalue sequences follows from the fact that the determinants
are spectral. ut

2.4 Hilbert Hardy Space

In view of Theorem 2.5, we are now at liberty to make particular choices of
favourable spaces, in the hope of obtaining interesting new bounds on the eigen-
values of the transfer operator L W U.D/ ! U.D/.

For p 2 Œ1; 1/, the Hardy space H p.D/ (see [13, Chap. 8.3]) is a favourable
space, and we will be particularly interested in the Hilbert Hardy space H 2.D/.6

The following eigenvalue bounds, valid in dimension 1, are obtained by choosing
favourable space A.D/ D H 2.D/ for D � C a disc:

Theorem 2.6. With the hypotheses and notation of Theorem 2.2,

j�n.LH /j � Wp
1 � �4

�n�1 for all n � 1 : (2.11)

6If D has C 2 boundary, then H 2.D/ can be identified with the L2.@D; 	/-closure of U.D/,
where 	 denotes .2d � 1/-dimensional Lebesgue measure on the boundary @D, normalised so
that 	.@D/ D 1. The inner product in H 2.D/ is given (see [13, Chaps. 1.5 and 8]) by .f; g/ DR

@D f � g� d	 , where, for h 2 H 2.D/, the symbol h� denotes the corresponding nontangential
limit function in L2.@D; 	/.
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Proof. As in the proof of Theorem 2.3, let D0 denote the concentric disc whose
radius is r D �2 times that of D, and let J W H 2.D/ ,! H 1.D0/ denote canonical
embedding. It can be shown that, for all n � 1,

j�n.LH /j � W

nY

kD1

ak.J /1=n ; (2.12)

an inequality which is superior to (2.6), by virtue of the original Hilbert space
version of Weyl’s inequality, namely

Qn
kD1 j�k.L/j � Qn

kD1 ak.L/ (see [16, 3.5.1],
[19]). An argument (see [4]) exploiting the interplay between the reproducing kernel
of H 2.D/ and an orthonormal basis for H 2.D/ then allows the estimate

an.J / � rn�1

p
1 � r2

; (2.13)

and substituting into (2.12) yields the result. ut
Example 2.2. Comparing (2.12) with (2.4), we see that Theorem 2.6 leads to
improved eigenvalue bounds whenever n > 1=.1 � �4/. In Example 2.1 we can
choose � D 1=

p
5; therefore, for all n � 2 > 25=24, the estimate

j�n.PH /j � 77

320

5p
24

�
1p
5

�n�1

derived from (2.12) is sharper than the previous bound (2.3) on the eigenvalues of
the modified Perron-Frobenius operator.

A more elaborate version of the proof of Theorem 2.6 (see [4] for details) gives
the following higher dimensional analogue, which for sufficiently large values of n

yields estimates which are superior to those of Theorem 2.3:

Theorem 2.7. With the hypotheses and notation of Theorem 2.3,

j�n.LH /j <
W

p
d

rd .1 � r2/d=2
n.d�1/=.2d/ r

d
dC1 .d Š/1=d n1=d

for all n � 1 : (2.14)
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