Chapter 2
Incompressible Navier—Stokes Equations

Abstract We aim to derive the incompressible Navier—Stokes equations from
classical mechanics. We define Lagrange and Euler coordinates and the mass density
within the framework of measure theory. This yields a mathematical statement
that expresses the mass conservation principle, which allows to derive the mass
conservation equation. We introduce the incompressible flows and focus on their
kinematic, starting with the deformation tensor and the vorticity and then the
local deformations of a ball of fluid in an incompressible flow by standard ODE:s.
We introduce the fluid motion equation for Newtonian fluids through appropriate
measures, based on the fundamental law of classical mechanics and the expression
of the stress tensor in terms of the deformation tensor. The mass conservation equa-
tion coupled to the fluid motion equation yields the incompressible Navier—Stokes
equations. This chapter ends with a comprehensive list of boundary conditions
associated with the Navier—Stokes equations.

2.1 Introduction

The aim of this chapter is to lay the foundations for basic fluid mechanics, in order
to prepare the ground for the mathematical modeling of turbulent flows performed
in Chaps. 3,4, and 5.

We consider a fluid, liquid, or gas, moving in a domain §2 included in R?. We aim
to find a mathematical description of this motion, which is a difficult task since this
is a nonlinear physical phenomenon involving many unknowns. The main unknowns
are the mass density, the pressure, the velocity, and the temperature, but the list may
be longer depending on the particular case being studied.

In this chapter, we derive from physical and mathematical considerations the
incompressible Navier—Stokes equations for Newtonian fluids:

v+ (v-V)v—=V.-(Q2vDv)+Vp =T, (2.1
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8 2 Incompressible Navier—Stokes Equations
V.v=0, (2.2)

where v is the velocity of the flow, Dv = (1/2)(Vv + VV') its deformation tensor,
and p its pressure. The momentum equation (2.1) is inherited from Newton’s law,
while equation (2.2) is the mass conservation equation for incompressible flows.

We define the mass density of the fluid p and the velocity v in Sect. 2.2. To do
so, we outline the Lagrangian and Eulerian descriptions of the motion, although we
shall only deal with the Euler description after Sect. 2.2. We shall also prove some
useful abstract results.

In Sect. 2.3, we obtain the general mass conservation equation satisfied by v
and p:

dp+V-(vp) =0. (2.3)

Two procedures are developed to derive this equation. One is heuristic and shows
the physical features of the mass balance. The other is mathematically rigorous,
making use of the abstract results of Sect. 2.2.

We describe in Sect. 2.4 various approximations in the mass conservation
equation, which leads to the notion of incompressibility and how equation (2.2)
is deduced from equation (2.3) within this framework.

Section 2.5 is concerned with the kinematics of incompressible flows. We
study the transformations of an infinitesimal fluid body §V in the flow, over an
infinitesimal time period §P = [t,¢ + §T]. This yields the introduction on the one
hand of the deformation tensor Dv, which governs the stability of §V over §P, and
on the other hand of the vorticity @, being the angular velocity of § 1.

In Sect. 2.6, we perform the analysis of the internal forces acting on the fluid
during its motion. The dynamic pressure p is introduced at this stage. This analysis
yields the derivation of the momentum equation (2.1) from Newton’s law, and finally
the incompressible Navier—Stokes equations, presented in their various forms at the
end of Sect. 2.6.

A comprehensive list of boundary conditions is presented in Sect. 2.7, describing
some examples that are often studied, depending on different flow geometries as
well as different approximations.

2.2 General Framework

2.2.1 Aim of the Section

A fluid is a continuous medium that can be continually subdivided into infinitesimal
particles of fluid material having a mass. Each particle of fluid sits on an abstract
point X in §2 at time ¢ > 0. The measure dm (¢, X) is the mass of the particle that sits
on x at time #, which will be defined by the end of Sect. 2.2.3.
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The measure d m is absolutely continuous with respect to the Lebesgue’s measure
dx,dm = pdx, where p = p(t, x) is the mass density at a time ¢ and a point X, that
defines the mass of fluid per unit volume, expressed in kilograms per meter cubed.
The total mass of fluid contained in a fixed subdomain w of §2 at time ¢, m(t, ®), is
given by

m(t,a)):/p(t,x)dx, 2.4)

provided that p(¢,-) is locally integrable on 2, which we shall assume to be the
case.

To begin with, we define the Lagrange and Euler coordinate systems. The
Lagrange description helps initially, but after this section we shall only use the
Euler description. We refer to [7, 8] and [11] for further details about the Lagrange
description.

We define the Lagrange and Euler velocities V and v in Sect. 2.2.2. The technical
lemma 2.1 in Sect. 2.2.3.1 below points out how V-v is involved in volume variations
during the motion. The local volume d v, being a form on the tangent space at a given
point (¢, x), and the associate mass dm = pdv are defined in Sect. 2.2.3.

2.2.2 Euler and Lagrange Coordinates and Velocities

Let us consider a particle of fluid sitting on a point X = (X1, X», X3) € §2 at time
t = 0. Assume that this particle moves to a point X = (x, X3, x3) € §2 at a given
time ¢ and that there exists a map

F:Ryx2—> 82

such that
x = F(t,X) = (Fi1(t,X), F,(t,X), F5(t,X)). 2.5)

Assumption 2.1. We assume that for each fixed t > 0, the restricted map F(t,-) is
a C' diffeomorphism on £2.

Thus the relation x = F (¢, X) can be inverted to give
X = G(¢,x).

We shall say that X is the Lagrangian coordinate of the particle whereas x is its
Eulerian coordinate.

Definition 2.1. The Lagrangian velocity at point (¢,X) € R} of the fluid is the
field V= V(,X):

V(it,X) =0, F(,X), V=(1,VV), (2.6)
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where 9, = 0/0t is the time derivative. The Eulerian velocity at a point (¢,x) € R}
is the field v = v(z, x):

v(t.x) =V, G(.x), v=(v.v2,3). 2.7)
For a better understanding of the Eulerian velocity, let us consider a fixed point X in
£2 and a physical fluid particle going past x at time ¢ with an Eulerian velocity v.
Therefore this particle moves approximately to the point x 4+ vé¢ at the time ¢ + §¢

for some small §¢ > 0. We note that at a time ¢’ # ¢, there is a chance that another
physical particle goes past the same point x.

2.2.3 Volume and Mass

2.2.3.1 Fundamental Kinematic Relation

We show the fundamental relation (2.12) linking Vy - v and det Vx F, where

oF; v
VxF = — , Vy-v=—. 2.8
X (BXj)lgi,jg ' 0x; 28

Let §;; denote the Kronecker tensor:
Sy =1ifi=j & =0ifi#] (2.9)
Let ¢;;; denote the Levi-Civita tensor that is fully characterized by
€123 = 1; &;j1 is antisymmetric against the indices.

Onone hand, let E = (E|, E», E3) and F = (F}, F,, F3) be two given vector fields.
Then the i component of their cross product E x F is given by

(ExF); =g E; Fy, (2.10)

where the Einstein summation convention is used. On the other hand, the determi-
nant of any 3 x 3 matrix A = (a;;)1<i,j<3 is equal to

1
detA = Esijkepq,.aipajqa,-,., 2.11)

Lemma 2.1. Assume that F defined by (2.5) is of class C> on Ry x 2 = Q. Then

3,(det Vx F) = (Vy - v) det Vx F, 2.12)
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Proof. From (2.11), we have

RS OF; OF; 0F;
e = —€ijkEpgr o T .
XU T 6 UK X, 0X, 0X,

Therefore

9, det Vx F =
1 PF OF OF | OF, 9°F; OF | OF, OF; 9'F
—&ijkEpgr | = T — — .
6 UKrr | drox, 0X, 0X, | 0X, 010X, 0X, = 0X, 0X, 910X,

(2.13)

Since F is of class C2, the Schwarz theorem applies [5] and we have

PF  PF
010X, B anat’

regardless of £. Moreover, all indices play the same role in the formula (2.13).
Therefore, we may exchange their positions, reorder the terms, and use the
antisymmetry of &;;;, which yields

F; OF; 0F;

e par e 007 Ok 2.14
FUkErararaX , 9X, 0X, 19

1
0;detVx F = 3

From the definition (2.6), we have

PF W
0X,0r  0X,

at every point (¢, X). Moreover, formula (2.7) can also be written as
v(t. F(t.X)) = V(. X), 2.15)

leading to the following identity:

Vi dv; OF,
AR l_"‘, (2.16)
0X, 0Oxq 0X,

regardless of i and p. We insert the formula (2.16) in the equality (2.14), leading to

1 8v,~ 8Fa 8Fj aFk
9, det Vx F = —g; 48 p0r i S0 &7 Ok
X ke ey 80X, 0X, X,

2.17)

In writing carefully the six nonvanishing terms of ¢;;x, which take values in {—1, 1},
we find that for any fixed indices «, j, and k,



12 2 Incompressible Navier—Stokes Equations

OF, OF; IF;
Frax, 9X, 0X,

gqjk det Vx F =

Then, the equality (2.17) becomes

1 av;
9, det Vx F = Esajksi,ka det Vx F. (2.18)
Using the relation
EajkEijk = 20ai, (2.19)
we have
1 av; v; dv;
—EyikEiih— = Oyi— = — = Vy-V. 2.20
28 jkEijk Xy " 0xg ax; v ( )

We combine (2.18) and (2.20), which yields
0y det Vx F = (Vx - v) det Vx F,

concluding the proof of Lemma 2.1. O

To better understand this result, recall that det Vx F' is involved in the change of
variables in integral calculus. Indeed, let g : £2 — R be an integrable function,
wp CC £2 be a measurable set, w, = F (¢, wp). Then

/g(x)dx:/ g(F(t,X))| det Vx F (¢, X)|d X.

Roughly speaking, det Vx F (¢, -) measures how the diffeomorphism transforms the
Lebesgue measure at time ¢. Formula (2.12) links its time evolution to Vy - v,
which will later appear to be the indicator of the fluid’s capacity to perform volume
variations, such as compressions or decompressions.

2.2.3.2 Volume Form and Mass Measure

Let X € £2 be a given point and Tx the tangent space at X, which is isomorphic to
R3 in this case [1]. The volume form d vy at X is defined by

Y (1.0.8) €Ty, dvo(X) (1,82, 83) = det(Cy, &, 53). (2.21)

Lett € R+ befixed, x = F(t, X), T; x be the tangent space at (¢, X), also isomorphic
to R3. Since F(t,-) is a diffeomorphism on £2,
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VxF(t,X) Tx — Tix

is an isomorphism. Therefore, for each (1, 12, 73) € Tt?x, there exists ({1, {2, 3) €
Ty such that

M1, 1m2,m3) = (VxF(,X) - 1, Vx F(t,X) - &, Vx F(1,X) - £3). (2.22)

This allows us to define a local volume form on 7,y denoted by dv(z,x) and
defined by

Y (01,12, m3) € T, dv(t.x)(n1,m2,m3) = det (1, n2,1m3) =
det(Vx F(¢,X) - &1, Vx F(t,X) - {2, Vx F (1, X) - {3).

(2.23)
The following relation holds true:

dv(t,x) = det Vx F(, X)d vo(X), (2.24)

following the classical determinant theory [4].

Since parallelepipeds generate a Borel algebra on 7 x, this allows the mass of a
particle of fluid that sits on x at time ¢, dm(t, X), to be defined as a measure on Tx
by the formula

dm(t,x) = p(t,x)dv(t,Xx). (2.25)
This is in accordance with the definition (2.4) since when ¢ is fixed, dv(z, x) = dx.
This may seem to be unnecessarily complicated at a first glance. However, we

shall see in Sect. 2.3.4 how it simplifies significantly the mathematical derivation of
the mass conservation equation (2.26) below.

2.3 Mass Conservation Equation

2.3.1 Aim of the Section

This section is devoted to the derivation of the mass conservation equation
9p+V-(vp) =0, (2.26)
satisfied at every (¢, x) € R4+ x £2, where we have set

JE; 9
VE=(E\ ExEy) =E(Lx) € C'(Ry x2) V-E=22 dip= B—’t’.
Xi
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From now on, each tensor field depends on x in space and no longer on X, and we
shall no longer explicitly specify x or X subscripts when writing derivatives with
respect to the space variable.

Equation (2.26) is called a “conservation law,” the mass being preserved during
the motion. Although it is easy to claim “the mass is preserved,” this is difficult to
define rigorously.

We derive equation (2.26) using two different procedures. One is heuristic, based
on rough approximations that are not rigorously true. Nevertheless, this procedure
presents the great advantage that we can simply derive the equation, which enables
a better understanding of the physics. This is the aim of Sect. 2.3.2.

The other procedure is based on the relation (2.12) and the definition (2.25) of
dm. This allows a rigorous definition of the mass conservation by imposing that
the total derivative of dm is equal to zero at each point (¢,x) € Q. Therefore, we
must first define the total derivative, which we do in Sect. 2.3.3, that specifies how
to derive in time along the flow trajectories. The rest of the program is implemented
in Sect. 2.3.4.

Throughout this chapter, we assume

Assumption 2.2. The fields p and v are of class C' on R x 2 = O,

without stating it systematically.

2.3.2 Heuristical Considerations

Let o CC §2 be a fixed open set strictly included in 2, I’ = dw its boundary,
n = n(x) the outward-pointing unit normal vector at any pointx € I".

Let 1 € R4, 8t > 0 be an infinitesimal time. We count how much mass of
fluid leaves w through I" over the time period [t,¢ + §¢], a quantity denoted by
Am(t,§t, w). Of course, some mass of fluid might also enter w through I" over the
same period. This will still be considered as leaving, counted with a nonpositive
sign.

The calculation of Am(t,8t, w) is made in two different ways. We first expand
Am(t,8t,w) around 6t = 0, using the expression (2.4). We secondly carry out
a local analysis at I" to express Am(t, 8¢, w) as an integral over I", and we use
the Stokes formula to transform it into an integral over w. We obtain two distinct
integrals over w that we equate, thus expressing that the mass budget is balanced
and deriving equation (2.26).

Since we require an algebraic loss in mass, the quantity we aim at computing is

Am(t,8t,w) = m(t,w) —m(t + §t,w).

Using the Taylor formula and the definition (2.4), we have
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Am(t,8t, w) —SI%/p(I,X)dX-i- 0(8t%)

(2.27)
—St/ 3:p(t,x)dx + O(81?).

We hold equality (2.27) in reserve for the moment, and we turn to a local analysis
at the boundary I".

Letx € I be a fixed point, §S C I" be an infinitesimal part of I", whose gravity
center is X, and n(x) be the outward-pointing unit normal vector at x. We assume
that the field (v, p) is constant in the vicinity of (¢, x) and equal to (v(z, x), p(¢, X)),
which is of course not satisfied exactly but is reasonable to first order.

We must characterize the particles that can leave w through 45 over the time
period [t, ¢ + 6¢].

From the assumption we made on v at (¢, x), a physical particle of fluid that sits
ony, a point near X at time ¢, moves to y + v(z,x)4¢ at ¢ + §z. Thus, the particles
we are looking for are those contained in the volume

8V =v(t,x)-n(x)§S 6t

at time ¢. This represents a mass of fluid 6m = p(¢,x)3V. We have to sum §m over
dw to compute the total mass of fluid going out w over the time period [z,¢ + §¢].
Hence, we have

Am(t,8t,w) = 8t/ o(t,x)v(t,x) -n(x)dS. (2.28)

dw

We apply the Stokes formula (see in [5,27]) to the right-hand side of (2.28), leading
to

Am(t,8t,w) = SI/ V- (p(t,x) v(t,x))dx. (2.29)

0]

We combine the equalities (2.27) and (2.29), divide by 6z > 0, and let it tend to
zero. Then we obtain the following relation:

/[B,p(t, x)dx + V- (p(t,x)v(t,x))]dx =0 (2.30)

which holds at every ¢+ > 0 and for every subdomain w of §2. As we assume v and
p of class C!, we deduce from the results of integration theory [26] that the relation
(2.30) yields the mass conservation equation (2.26). |
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2.3.3 Total Derivative

In the previous analysis, we considered that a particle sitting on a point x at time ¢
moves to the point X+ x = x+ 67 v(z, X) at time 7 4 6¢. It is as if the point x = x(¢)
was moving along a trajectory of the ordinary differential equation

X (t) = v(t,x(1)), (2.31)

where x’(¢) denotes the standard derivative with respect to ¢.
Let E = E(z, x) be any tensor field of class C! on Q. As the point x also depends
on ¢, so does

G(1) = E(t, x(1)).

The question arises of how to express the time derivative G'(¢) in terms of d,E and
VE.

Lemma 2.2. Assume that E is of class C' on Q. We have

G'(t) = 9,E+v-VE, (2.32)

DE
The field G'(t) is denoted by D7 and is called the total derivative of E.

Proof. We expand G around §¢ = 0,
G(t + 6t) = E(t 4+ 6t,x(t + 6t)) = E(t + 6t,x + 8tv(t,x) + 0(61)), (2.33)
leading to
G(t + 8t) = G(t) + 8t (0,E(t,x) + v(¢,x) - VE(2,x)) 4+ 0(61), (2.34)
which is valid because E is of class C' on Q. We finally find

G(t + 1) — G(1)

G'(t) = sltiino 5 = 9,E(¢,x) + v(z,x) - VE(2,x), (2.35)

hence the result follows. O
Remark 2.1. The total derivative satisfies the usual derivative rules, namely
DE+F DE DF D(E-F DE DF
DE+F) _DE_DF DE®) _DE . DF
Dt Dt Dt Dt Dt Dt

Remark 2.2. The mass conservation equation (2.26) can be rewritten in terms of a
total derivative. Indeed, we have
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V.(vp) =v-Vp+pV.v, (2.37)
which allows equation (2.26) to be rewritten as

1 Dp

2.38
> D (2.38)

This form of the mass conservation equation may sometimes be useful.

2.3.4 Rigorous Derivation of the Mass Conservation Equation

Let us consider a fluid particle that sits on x = x(¢) at time ¢ and which moves to
x(t + &t) at time ¢ + &¢, almost along a trajectory of the ODE (2.31). Recall that
the mass dm = dm(t,x) = p(t,x)dv(t,x) of the particle at (¢,x) was defined by
(2.25).

The principle of mass conservation is that the mass of the particle remains
constant along the trajectory, which is expressed by the following equation:

Ddm) _

i (2.39)

We show in what follows that equation (2.39) is precisely the mass conservation
equation (2.26).
According to the definitions (2.25) and (2.32), we have

D(dm) D(dv)
D - @p+Vv-VV)dv+p Dr (2.40)

D(dv)

We insert the identity (2.12) of Lemmé 2.1 in the relation (2.24) that expresses
dv in terms of dvy and the Jacobian determinant, by noting that dvy(X) is totally
time independent. The point X denotes the Lagrangian coordinate of the particle,
which means its position at time ¢ = 0. Therefore, we find the relation

We must compute the total derivative

D(dv)
Di

= (V-v)dv, 2.41)

satisfied at every point (¢, x) € R4 x §£2. We combine equations (2.39), (2.40), and
(2.41). Since dv # 0, we obtain

0p+v-Vp+pV.-v=0, (2.42)

which is the mass conservation equation (2.26), following relation (2.37). ]
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2.4 Incompressibility

2.4.1 Basic Definition

Compressibility and incompressibility are natural physical notions that we all are
familiar with from everyday life. Generally speaking, we know that the volume
occupied by a fixed mass of gas can be reduced, but that in the case of a liquid, the
mass density remains more or less constant during motion. In the first case, we say
that the flow is compressible while in the second case it is incompressible, and so
the state equation can be written as

p=pEx)=p on Q=Ryx0, (2.43)

for some constant py > 0. In this case, the mass conservation equation (2.26)
becomes

V.v=0. (2.44)

The nature of equation (2.44) is kinematic. Moreover, experimental data [10]
indicate that there are flow motions, the velocity of which still satisfy equation
(2.44), but whose density is not constant. This suggests the global definition:

Definition 2.2. Any fluid flow on Q with v = v(¢,x) as velocity field is incom-
pressible on Q if and only if v satisfies equation (2.44) at each point (¢,x) € Q.

Incompressible flows preserve the volumes, according to Formula (2.12). Incom-
pressibility refers to the nature of the motion. This is why the term of incom-
pressibility is applied to the flow rather than the physical nature of the fluid. Some
gas motions might be considered as incompressible flows, depending on the scales
involved. Even if it is more difficult to conceptualize, some liquid motions may be
considered as compressible.

In the remainder of the section, we consider the example of oceanic flow
which is the typical example of an incompressible flow with a variable density.
We then evoke the Mach number, closely linked to the question of compressibil-
ity/incompressibility.

2.4.2 Incompressible Flow with Variable Density:
The Example of the Ocean

The density of the ocean varies by about 2 % around a mean value py =
1035 Kg.m™* ([10,21]), so that
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22| 22
o Po

<2.1073. (2.45)

This density change is mainly due to salt, which is not evenly distributed in the
water, as well as to temperature variations. As a result, the density p of the ocean
satisfies a state equation p = p(S, 8), where 6 denotes the temperature and S the
salinity (the mass of salt per unit of volume). This equation is nonlinear and may
vary according to the place of study [10]. In some situations, the pressure p may
also be involved. Simplified mathematical models use the linearized state equation:

p=po+as(S—So) + ap(th—0), (2.46)

forag > 0, a5 > 0, Sy > 0, and 6y > 0 constant.

Nevertheless, the bound (2.45) allows us to consider the ocean’s motion as
incompressible. To see this, we introduce a typical velocity magnitude U, a typical
time magnitude 7', and a typical length magnitude L. Those values may change,
according to the case we focus on. Their choice usually fixes the parameters for
numerical simulations: the time step is related to 7 while the mesh size is related to
L. We assume

U=LT". (2.47)

We examine the magnitude of each term in the mass conservation equation (2.38).
We denote by [E] the magnitude of any given field E. Therefore,

U
V-v]=—=T"7" (2.48)
L
Similarly,
1D D
[__p} =71 [—p} =2.107377". (2.49)
p Dt o

Therefore, in equation (2.38), the magnitude of the right-hand side (r.h.s.) differs
from that of the left-hand side (L.h.s.) by a coefficient ¢ = 1073. This is as if the
equation was written as

¢eE =F, (2.50)

where O(E) = O(F) = 1 and ¢ = o(1). This is a standard situation in
asymptotic analysis [3], and the result is that both £ and F must vanish to satisfy
equation (2.50), which yields

1D
Do _y

- = v=0,
p Dt

and hence we can conclude that the flow is incompressible according to the
definition 2.2.
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2.4.3 Incompressible Limit

An observer swimming in the sea with his head underwater may hear the sound of a
boat engine apparently close by, although the boat is actually a large distance away.
It seems that the speed of the sound in the water is infinite.

The study of sound propagation in fluids [20] led E. Mach to introduce in 1887
the dimensionless number

M =

U
e
where c is the speed of the sound. This number is now called the Mach number.

It can be shown that when M goes to zero, which implies an infinite speed of
sound, then the corresponding limit of the velocity satisfies the incompressible
equation (2.44). This is the incompressible limit, which can be derived from
asymptotic expansions in the compressible Navier—Stokes equations [22]. An
analysis based on physical arguments at small scales yields the same results [2].

Throughout the rest of this book, we assume the following:

Assumption 2.3. The flow specified by the vector field v = v(t,X) is incompress-
ible, thatis, V - v = 0.

2.5 Kinematic Features of Incompressible Flows

2.5.1 Aim of the Section

This aim of this section is to study the transformations of an infinitesimal body of
fluid §V during its motion in an incompressible flow, over an infinitesimal time
period. We assume the following:

Assumption 2.4. The body 8§V can be identified to an open set  C 2 at a given
time t and to w, C §2 attime t + t, T € [0,8T] for some §T > 0. We also assume
that w, has a boundary T, of class C' for all t € [0,8T]. We denote by n, the
outward-pointing unit normal vector on I%.

Recall that during its motion, the total volume §V is constant, thanks to the
incompressibility assumption.

The local analysis carried out in Sect.2.5.2 below reveals that the tensor field
Vv(t,x) = Vv defined by

Vy = (ﬂ(z,x)) (2.51)
dx; 1<i,j<3

J
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governs the first-order transformations of §1 over a time period 6P = [t,t + 677,
where we assume that over §P, the point X remains the gravity center of §V, §T =
o(1) as well as diam(§V) = o(1).

We write Vv at (¢, x) in the form

Vv = Dv + Viy, (2.52)

designating by V?v the antisymmetrical part of Vv and Dv the symmetric part of
Vv, namely

1 1
Dv = E(Vv + Vv, Viv= E(VV — Vv,

where A’ denotes the transpose of any matrix A. The tensor Dv is called the
deformation tensor.

We show in Sect. 2.5.3 that the spectral analysis of Dv determines in what
directions 8V remains stable and how it might deform. The incompressibility
assumption 2.3 makes the study of stability easy, since the trace of Dv is equal to
zero in this case. This analysis also explains why Dv is so important for expressing
the internal forces acting on the fluid, performed in Sect. 2.6.

Turning to the tensor Vv, we show (Lemma 2.3 in Sect. 2.5.4) that it is fully
specified through the vorticity vector

@ =VXxXV, = (w,w,ns). (2.53)

In Sect. 2.5.5, we study the contribution of the vorticity @ in the transformations of
sV
In the light of the decomposition (2.52), we distinguish three cases:

(i) Dvislarge compared to @, ||@|| << ||DV]|,
(il) o is large compared to Dv, ||Dv]| << ||®||,
(iii) they are of the same magnitude, || Dv|| =~ ||w]|,

where by default,

1
VE = (Ejie Di<ijke.<s |[E[[=1El=( Y Elg)2,
1<ijke..<3

or any equivalent norm. The conclusions of this section are the following.

In case (i), if §V has the form of a football at time ¢, it is then transformed into a
rugby ball.

In case (ii), 6V behaves like a rotating solid body, whose angular velocity is
(1/2)w. In regions where (ii) holds, small-scale vortices may be observed.

Case (iii) is more difficult. The transformation of § 7 might be anything because
both effects compensate. To illustrate this, we sketch out in Sect. 2.5.6 the typical
example of a shear flow, for which such a compensation occurs.
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2.5.2 Local Role of Vv and Fundamental ODE

Let x be the gravity center of §V at time # and y € §V be any other point. Let x(¢)
and y(¢) denote the position of two particles sitting on x and y at time ¢. Let us
consider

E=&() =x(1)—y(), (2.54)

Assume that the particles move to x + §x and y + 8y respectively at time ¢ + ¢ for
some §¢ > 0. Let us set §& = dx — Jy.
We perform the asymptotic expansions:

8x = v(t,x)8t + 0(8t), (2.55)
8y = v(t,y)ét + o(5t), (2.56)
v(t.x) —v(t,y) = Vv-& +o(|[§]]), (2.57)

where Vv = Vv(¢, x). We combine (2.55), (2.56) and (2.57) and we find

‘;—f = VV(.%) - & + ot + [IE]D. (2.58)

We take the limit in equation (2.58) as §¢ goes to 0, which yields the following
differential equation:

' = Vv(t.x)-§ +o(l&]]). (2.59)

This suggests the following local ODE, which corresponds to the first-order term in
equation (2.59):

E'(t+1)=Vv(t,x)-E( + 1), (2.60)

where now & = &(¢ + 7) is only time dependent, ¢ and £(¢) are given and fixed,
7 > 0, and &’ denotes the derivative with respect to 7.

Although equation (2.60) makes sense around =0 from the physical viewpoint,
as a linear ODE it possesses a unique global solution defined on R, for any initial
datum & [5].

However, without any specific information about the matrix Vv(¢,x) = Vv,
it is difficult to easily picture the overall appearance of the solutions to (2.60).
We can only get qualitative stability properties, by using the incompressibility
assumption. However, following the decomposition (2.52), it is natural to split the
ODE (2.60) into

g =Dv-&, 2.61)
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£ = Viv-E, (2.62)

In what follows, we study (2.61) and (2.62) separately after having first analyzed
the stability properties of equation (2.60).

2.5.3 Deformation Tensor

2.5.3.1 Stability

The question is whether & (f 4+ 7) goes to zero as T goes to infinity, for a given initial
data &(¢) # 0. If yes, we say that equation (2.60) is stable, otherwise we say it is
unstable. We follow the theory developed by A.M. Lyapunov in 1892 (see the details
in [13]). To do so, we take the inner product by & with both sides of (2.60), which
yields

(£.8)=(Vv-£.8). (2.63)
According to a well-known result of linear algebra,
(Vv-&,8) = (Dv-£,8§),
regardless of &. Therefore, equation (2.63) may be written as

1d)1&)P
2 dt

The inner product (Dv - £, &) is a Lyapunov function for the ODE (2.60) which
specifies local stability properties near the point (¢, X).

To check the stability properties of the flow, we use the symmetry of Dv, which
is therefore orthogonal diagonalizable [4]. Moreover, incompressibility yields

= (Dv-§,8). (2.64)

trDv =2V -v=0.

Assume first that Dv = 0. Then the velocity is locally constant around x and
particles move along straight lines.

Assume next that Dv # 0. Because of incompressibility, Dv has at least one
strictly negative eigenvalue, denoted by A1, and one strictly positive, denoted by A,.
The ODE is stable along the eigendirection associated with A; and unstable along
the one associated with A,.

In particular, let £(t) # 0 be an initial datum that is an eigenvector associated
with A, then £(¢ + 7) goes to zero when t goes to infinity. Let £(z) # 0 be an
initial datum that is an eigenvector associated with A,, then ||E(t + 7)|| goes to
infinity when 7 goes to infinity. If A3 # 0, its sign determines if stability holds
along a plane or along a line only.
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2.5.3.2 When Footballs Become Rugby Balls

Assume that Dv is large compared to Vv at (¢, x). At that point, the solutions to
the fundamental equation (2.60) are very close to those of equation (2.61) that we
solve in the eigen-coordinate system of Dv.

Let (aj, a;,a3) be an orthogonal eigenbasis of the tangent space T;x for Dv,
associated with the eigenvalues A, A5, A3. From now, we assimilate T}, to R? for
simplicity. We write

Et+0) =&0+a, (2.65)
where each §; satisfies
& = Aiki. (2.66)
Therefore, the solution to equation (2.61) is
E(t + 1) = M7 (a;. (2.67)
To picture what the solution looks like, assume that §1 is a ball of radius r = o(1)
centered on x at time 7. Then § V' instantaneously becomes a rugby ball, an ellipsoid

whose axes are defined by the vectors a;, a,, and a3 and its shape determined by the
sign of the eigenvalues.

2.5.4 Vorticity

If the body 6V were a solid body with x as its center of gravity, then the velocity of
eachy € 8V would be expressed by the law [15]:

v(t,y) = v(t.x) — £ x &, (2.68)
for some angular vector 2 to be determined.

We rewrite the asymptotic expansion (2.57) using the decomposition (2.52) as
follows:

v(t,y) = v(t,x) — Dv(t,x) - € — V¥v(t,x) - & + o(||€]]). (2.69)

We assume that Dv is negligible against V®v at (¢,x). Consequently, (2.68) is
similar to (2.69), provided that V®v - & can be written in the form 2 x .
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The appropriate vector field is the vorticity @ = V X v = (w;, w2, w3), as proved
by the following.

Lemma 2.3. Let

1 BV,' an
=5 o, "o
X 8x,~

be the general term of V2v. Then the following relation holds:

1
;ij = _Egijkwka (2.70)

forall 1 <i,j < 3. Furthermore,

Viv(t,x)- & = %w(l,x) x &, (2.71)

regardless of .
Proof. From now on and if no risk of confusion occurs, we shall write

0

= 2.72
o, (2.72)

forevery i = 1,2, 3. Following the formula (2.10) and using the antisymmetry of
the Levy-Civita tensor, we have

Ok = Epgk 0pVq, (2.73)
which yields &;jxwx = €;jk€pgk 9 pv4. The relation
€ijkEpgk = 8ip8jq — 8iqSjp (2.74)
shows
gijkwr = 0;v; — 0;v; = =28,

which proves the relation (2.70) as well as the identity (2.71) following (2.10),
combined with (2.70). O

As a consequence of the identity (2.71), the expansion (2.69) becomes

V03 = VX~ DY) £~ 00 xE +ollEl). 275

where we recall that § = x —y.
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Remark 2.3. By explaining the formula (2.73), we find

02v3 — 0312
® =\ 03vi—01v3 |,
01v2 — 0oy

which is the practical expression of the vorticity.

2.5.5 Vortices

When we compare the expansion (2.75) to the expression (2.68) by taking £2 =
(1/2)w, we observe that the vorticity characterizes the instantaneous rotation of
8V, provided w is large compared to Dv. In this case, the fundamental equation
(2.60) is very close to equation (2.62), which we rewrite as

g = %w x &, (2.76)

using the relation (2.71), in which @ = ®(¢,x) for a fixed (¢,x). Let us solve
equation (2.76).

If o = 0, then &(¢ + 7) = £(¢) regardless of 7. Let us assume that @ # 0, and
let us consider

b= .
|||

Let b, and b3 be such that (by, by, bs3) is an orthogonal basis of R3 that in particular
satisfies

b; xby = bz, baxbs; =b;, bz xb; =b,. (2.77)
We write
§=6b. (2.78)
Using the relations (2.77) and setting z = éz + i§3, we get

£ =0 = i@z, (2.79)

which yields

o
2

E+1) =50, 2t+1)=e"3"20). (2.80)
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Therefore, trajectories rotate around the axis spanned by @ with a frequency equal
to [|@]]/2.

The resolution of the ODE (2.76) explains why the vorticity is closely linked to
the notion of vortex (also called eddy) which plays a central role in the study of
turbulent flows.

However, the fact that @ # 0 in a given flow does not imply that an observer will
see vortices in the flow, essentially because the analysis carried above is local in
time as well as in space and therefore only makes sense for small scales. Moreover,
the deformation tensor effects may balance the vorticity effects when @ and D(v)
are of the same magnitude, as shown in the example discussed in Sect. 2.5.6.

The question of defining mathematically a “vortex” as we picture it at large scales
is hard. The simplest and popular criterium that is used in practical simulations to
locate where there may be vortices is the Q-criterium which says that vortices are
located in the set

{(t,x) e Ry x 2, 0(t,x) = =[|2(t.x)|* — |Dv(t,x)|*] > 0}. (2.81)

1
2
2.5.6 A Typical Example of a Shear Flow

In this example, we work in a dimensionless framework for simplicity, dimensional
analysis being detailed in Sect. 3.2.
Let v = (vi, v, v3) be the stationary vector field defined by

Vx=(x,y,2, wix.y,29) =2 x,y,2 =v(x,y,2 =0, (2.82)

where X = x e| + y ez +zej3. The field v satisfies V-v = 0. Basic calculations yield

001 00 %
Vv=]1000], Dv=]000]|, w=1]1]. (2.83)
000 1oo0
We notice that
ll@|[ = [|Dv|i = 1. (2.84)

Let§ = (x, y,2)" be given at time 7. The solution to equation (2.60), denoted by &,
at time ¢ + 7 and such that §, = £, is equal to

X+ 1z 107
&= y |=1010]-&=R & (2.85)
z 001
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For a given t > 0, the matrix R; is the matrix of a transvection [4]. Let us describe
carefully the transformation of §V" in the flow when §V = B(0, r) is a ball centered
at the origin. Three cases occur:

(a) Points in 8V N {z = 0} remain steady.

(b) Points x = (x, y,z) € 8V N{z > 0} are such that x — oo while y and z remain
constant when t — oco.

(c) Points x = (x, y,z) € 8V N {z < 0} are such that x — —oo while y and z also
remain constant when t — oo.

The ball §V is sheared in the region {sup(|y|, |z|) < 1} and fluid particles contained
in 8V at time ¢ are mixed in the whole strip, which is a typical process in turbulent
flows.

Transformations of bodies totally included in the region {z > 0} or {z < 0}, both
stable through R, are sheared along the x-axis.

We study equations (2.61) and (2.62) one by one. Equation (2.62) is already
solved by the general formula (2.80). The solution is a rotation whose frequency is
equal to 1/2, around the line spanned by w, that is, the line {x = z = 0}.

We turn to the ODE (2.61). The spectrum of Dyv is the set {—1/2,1/2,0}. The
eigenspace associated with the eigenvalue —1/2 is the line {x = —z, y = 0},
spanned by e; + es, which is a stability direction according to Sect. 2.5.3.1. The
eigenspace associated with the eigenvalue 1/2 is the line {x = z, y = 0}, spanned
by e; — e3, which is an unstable direction. Finally, the eigenspace associated with
the eigenvalue 0 is the y-axis that also coincides with the line spanned by . The
general solution is then given by

&, = (xcosh(r) — zsinh(z)) e; + y e; + (—x sinh(t) + zcosh(r)) e3, (2.86)

by noting that @ is neither a stable nor an unstable direction.

The overall impression is that the resolution of (2.61) and (2.62) does not
allow the transformations of §V to be pictured in this specific case. This is more
easily done by solving the fundamental equation (2.60), which is fortunately
straightforward. The solutions are highly unstable, especially when considering
bodies initially in both {z > 0}, {z < 0}.

Nevertheless, we suspect the fact that Dv has an eigenvalue equal to zero, whose
eigenspace is spanned by w, together with the result (2.84), may explain some of
the features of this example. No more can really be said, apart from noting the great
importance of shears in turbulent flows.
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2.6 The Equation of Motion and the Navier-Stokes Equation

2.6.1 Aim of the Section

We turn to the momentum equation, based on Newton’s law:
mass x acceleration = total applied forces, (2.87)

which a priori applies over a time period [t,¢ 4+ 7] to a body §V satisfying
assumption 2.4.

We start by modeling the total forces applied on 6V = w, at time ¢ + t. We
distinguish two different types of forces:

(i) The body forces, applied at distance on §V, such as gravity, electromagnetic
forces, and so on,

(i) The “internal forces” F(z, §V'), that are those the rest of the fluid applies on §V/
attime ¢ + 7.

As the internal forces are those that are hard to model, particular attention will be
paid to them. The appropriate tool is the stress tensor

0 = (0ij)i<ij<3 = 0(t,X)

(see [2,7,8,11, 14]) that is symmetric and such that

F(z,8V) :/ o -n,, (2.88)

T

which results in an internal force density equal to (V - )dv, according to Stokes’
formula. Therefore, we must specify o by making some reasonable assumptions.
This is the aim of Sect. 2.6.2, where the dynamic pressure is introduced through the
relation p = —(1/3)tre. Furthermore, we introduce the definition of a Newtonian
fluid together with the notion of dynamic viscosity u.

Next we consider a local point of view, just as we did when studying the mass
conservation energy in Sect. 2.3. Indeed, we prefer to apply Newton’s law to a
particle of fluid that sits on x at time #, rather than to a body 6V, which has been
useful in finding V - a. Once the acceleration of x at time ¢ has been calculated
in Sect. 2.6.3, we present the momentum equation for incompressible flows in as
general terms as possible.

We introduce the kinematic viscosity v in Sect. 2.6.4 and we take the opportunity
to present various forms of the incompressible Navier—Stokes equations, each form
being useful for theoretical investigations or for practical simulations.

We conclude with Sect. 2.6.5, where we derive the equations satisfied by the
vorticity @ and the pressure p.
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2.6.2 Stress Tensor

2.6.2.1 Physical Evidences and Some History

The goal is the determination of F(t, §V'). Before doing any mathematics, we recall
some historic physical considerations which manifest such internal forces.

The well-known Archimedes’ principle (approximately year 250 B.C, see in [7])
may be stated as follows:

“Any object, wholly or partially immersed in a fluid, is buoyed up by a force equal to the
weight of the fluid displaced by the object.”

This law characterizes the internal force in the fluid at rest, which is the
hydrostatic pressure.

The famous experience carried out much later by E. Torricelli in 1644 (see
in [7]), who constructed the first mercury barometer, has highlighted existence of
atmospheric pressure, which varies depending on the weather.

Therefore, the first internal force exerted on any flow that comes to mind is
the pressure, although this was initially considered for steady fluids. This led
L. Euler to derive in 1757 a momentum equation based on Newton’s law. In Euler’s
equations (see in [2,7, 8, 14, 22]), which couple the incompressibility equation to
the momentum equation, the pressure is the only internal force, which is treated as
an unknown of the equation together with the velocity. A fluid governed by Euler’s
equations is called a perfect fluid. According to legend, D. Bernoulli is supposed to
have said a short time after Euler’s work:

“If a perfect fluid would exist, then the birds would not fly.”

Indeed, any body moving in a fluid faces a drag that yields an energy dissipation.
Moreover, Le Rond d’Alembert [19], shortly after Euler’s work, showed that the
drag in a perfect fluid is zero, highlighting what was regarded as a paradox at that
time. Therefore, something was missing in Euler’s model, though it still remains a
very exciting mathematical objet.

In the light of this, fluid dynamics was subject to intensive research, especially
experimentally. The notion of viscosity that quantifies the concept of drag in flows
rapidly emerged, leading in 1822 to the famous model due to Navier [24], who added
a term in the Euler equations to model the viscosity effects and the loss of energy by
dissipation during the motion. Stokes [28] made a significant contribution (1842-
1846), notably in studying the flow around a rigid sphere, that yields the Stokes law.

2.6.2.2 Constitutive Law for Newtonian Flows
The concept of stress tensor, as expressed by (2.88) above, exists for any material

that touches continuum mechanics. The stress tensor is often determined by
experiments and its expression varies depending on the material under study.
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It is convenient to split o as
o =—pl+ DD, (2.89)

where p is the dynamic pressure and D the deviatoric part of o. We have the
fundamental relation

1

It must be stressed that many experiments indicate that the dynamic pressure agrees
with the static pressure [2], so far that a static fluid is considered to be a fluid in
motion with a velocity equal to 0.

It remains to specify ID, which is responsible of the shear in the flow. The fluids
we are interested in are water and air because they are involved in oceanography,
meteorology, and climate, which are the applications we have in mind. For both
water and air, experiments indicate that DD is a linear function of Vv, thus defining
Newtonian fluids. The following definition holds.

Definition 2.3. Every fluid whose deviatoric tensor is a linear function of its
velocity gradient is called a Newtonian fluid.

In addition to air and water, most organic solvents and mineral oils are also
Newtonian fluids. Their main physical property consists in filling the space instan-
taneously when they are poured into some cavity. In contrast, fluids such as
paints, mustard, and ketchup do not behave in the same way and therefore are not
Newtonian fluids.

Throughout the book we assume the following:

Assumption 2.5. The fluid is Newtonian.
The Newtonian assumption 2.5 leads us to write D = (d;;)1<; ;<3 in the form
dij = Ajjredeuy, (2.91)
where (A;jke)1<i,j k<3 remains to be specified. We assume that D = (d;j)1<; j<3 is
isotropic, which means that it is invariant under coordinates changes. This implies

that the tensor A = (A4jjke)1<i,j k<3 is also isotropic. Because of this isotropic
assumption 2.3, we know that A is of the form [12]

Ajjie = w881 + 1'8ie8jk + "8 Sk, (2.92)

where i, i/, and u” are real numbers.
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From the incompressibility assumption, we have
8ij8keleur = Ogur =V -v=0. (2.93)
Therefore, (2.91), (2.92), and (2.93) yield
dij = u8i810cur + [1'8i08 jk dgux = pd;vi + p1'9;v;. (2.94)
Furthermore, since ¢ is symmetric, so is ID. Therefore we have u = u’ and
D =2uDv. (2.95)
Consequently
o =2uDv— plL (2.96)
The coefficient u is the dynamic viscosity, a typical unit of which is Pascal x
seconds. Since viscous effects are known from experiments to be dissipative, we

have ;¢ > 0. The dynamic viscosity varies depending on the temperature 6. For air
and many other gases, u satisfies Sutherland’s law:

3
0\ 6+ C
) 0+ (2.97)

= 9: _—
w = () “0(90 i1 C

where 19, 6y, and C are constants that must be fixed from experiments. For water
and many other liquids, u satisfies the exponential law

w=pu(0) = poe ", (2.98)

for some constants o and b.
To conclude this subsection, we notice that when we apply the Stokes formula to
(2.96), we obtain

F(z,8V) =/ V.o(t,x)dx. (2.99)

Therefore, the quantity V - ¢ can be understood as the density function of internal
strength. Therefore, we can define the force df;,,(f,x) exerted by the rest of the
fluid on a particle at x € £2 as a measure on £2 for a fixed ¢, by the formula

dfin (t,x) = (V-0(t,x)) dv(t,x), (2.100)

where dv was defined by the formula (2.24). This point of view will be useful in
what follows.



2.6 The Equation of Motion and the Navier—Stokes Equation 33
2.6.3 The Momentum Equation

We apply Newton’s law (2.87) to a given fluid particle that sits on x at time . We
recall that v satisfies the regularity assumption 2.2, that is, v is of class C! with
respect to ¢ and X.

We assume that the external forces exerted on x at time ¢ by the fluid can
be described by a density function f, (¢, x). This is completely true for gravity,
where f,,; (t, X) = p(t,x)g, g being the gravitational acceleration. Then the “sum of
applied forces” is equal to

dfin: (t,X) + forr (1. X)dV(t,X) = (V-0 + fors)d V. (2.101)

We aim at computing the acceleration of the particle. This particle moves to x +
u(t,x)8t +o(8t) at time ¢ 4 8¢, where its velocity is equal to v(¢ + 87, x+u(t, )8t +
0(8t)). Therefore its acceleration, denoted by y = (y1, ¥2, ¥3), is equal to

v(t + 8t,x + u(t,x)8t + 0(8t)) —v(t,x) _ Dv

y(t,x) = %E}}) 5 D—t(t,x). (2.102)

Following the arguments for proving formula (2.32) in Sect. 2.3.3, we find
component by component

yi(t.,x) =0,vi +v-Vv; = 0,v; +v;0,v;. (2.103)
The vector, whose coordinates are (v - Vv, v - Vv, v- Vvs) and which appears in
the expression of y, is denoted by (v- V) v.
From (2.101), Newton’s law applied to our particle at (¢, x) yields
pydv= (V-0 +1f,.)dv. (2.104)
We divide each side of this equation by dv # 0. We find the momentum equation
p(0, v+ (v-V)v) =V .0 +1,,,. (2.105)
By using formulas (2.89) and (2.95), this equation becomes

p@ v+ (v-V)V)=V-Q2uDv — pl) =f,,;. (2.106)

When we combine equation (2.106) with the incompressibility condition (2.44), we
get the Navier—Stokes equations in their initial form.
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2.6.4 The Navier-Stokes Equations: Various Forms

2.6.4.1 Basic Form

It is commonly accepted that any variations of the density p are negligible in the
momentum equation for incompressible flows ([2, 14]). Therefore, we take p = po
in equation (2.106), where py is a constant. For instance, pg = 1035 Kg.m™ for the
ocean ([10,21]).

We divide equation (2.106) by po, and we still denote by p the ratio p/po, which
becomes a “density of pressure per unit of mass and volume.” Consistent with usual
practice, we still call this new variable “the pressure.”

We denote by f the ratio f,,;/po, still called the “external forcing.” Finally, we
put

v =—, (2.107)
Po

which defines the kinematic viscosity, a typical unit of which is the square meter per
second (m2s™1).

We combine the momentum equation and the mass conservation equation to
obtain the main usual form of the incompressible Navier—Stokes equations (NSE
in the remainder) while noting

V-(pD) = Vp, (2.108)
in assuming p to be of class C!. We find

v+ (v-V)v—V.(Q2vDv)+ Vp =H{, (2.109)
V.v=0.
The unknowns are the pressure term p = p(¢,x) and the velocity v(¢,x). The
external forcing f = f(¢, x) and the initial value vp = vo(x) = v(0, x) are given.
Note that the pressure is not a prognostic variable, and so knowledge of its initial
value is not required.

2.6.4.2 The Nonlinear Term in Divergence Form

The i component of the vector (v- V) vis v;d;v;. Because of the incompressibility
condition, we have

vajvi =3j(v,-vj). (2110)
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The term 9, (v;v;) is the i™ component of the vector V-(v®V), where v®v denotes
the tensor v ® v = (v;v; )< j<3. This allows the NSE to be written as follows:

v+ V- (v®V)—V-(Q2uDv)+ Vp =, @.111)
V‘V:Oa .
or equivalently
v+ V-(v®v—20Dv+ pl) =T, (2.112)
V.v=0.

This last form might be interesting, especially when f is a restoring force,f = V-V,
such as gravity. Hence, the NSE can be considered as a conservative law of the form

v+ V-P(v,p)=0,
2.113
{ V.v=0. ( )
2.6.4.3 Form with the Vorticity
We note that
(v-V)v=Vyv.v, (2.114)

where the r.h.s. above is the product of the matrix Vv by the vector v (see in [4]).
Using the decomposition (2.52) combined with (2.71), we find

1
(v-V)v:Dv-v—i—wav, (2.115)
leading to
v)*
v-V)v=V > + o X V. (2.116)
The NSE then take the form

2
Btv+wxv—V-(2vDV)+V(p+ﬂ):f,

2 2.117)
V.v=0.
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2.6.4.4 Rotating Fluids

Up to now, we have calculated the acceleration of a particle using formulas (2.102)
and (2.103), which require the coordinate system to be Galilean.

In the case of “rotating fluids” such as the atmosphere and the ocean, the
acceleration is computed in a local system that turns with the earth, with an angular
velocity §2. Then we have ([10,15,21])

Dv
= — 22 .
y D[ XV

Therefore, for such flows the NSE become

v+ (v-V)v—=282 xv—V-Q2vDv)+ Vp =f,

V.v=0 (2.118)

which is the form primarily used to model the motion of the ocean. The term —242 x
v is commonly considered as a force, because any observer in a rotating reference
frame feels an eastward deflection, which is of prime importance in meteorology
and oceanography.

Although this effect has been known since Galileo, it is called the “Coriolis
Force,” because of G. Coriolis who formalized it in 1835 [6].

2.6.4.5 Case of a Constant Viscosity

We consider an adiabatic flow, whose viscosity v remains constant. For the record:

e v = 1.006.10"°m2s~! for the water at 20° C.
e v =15.6.10"°m2s~! for the air at 25° C.

In such case, we have
V-Q2vDv) =vV .- (Dv) =v(Av+ V(V-v)) = vAy, (2.119)
because Dv = (1/2)(Vv + Vv') with V - v = 0. Hence, the NSE become

v+ (v-V)v—vAv+ Vp =f,

2.12
V.v=0. (2.120)

2.6.5 Equations for the Vorticity and the Pressure

Throughout this section, we assume that the field v is of class C* and p is of class
C?, with respect to ¢ and x, while the source term f is of class C!. This regularity
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assumption is being made to justify the formal calculus carried out in this section.
We also assume that the viscosity v is constant for simplicity.

2.6.5.1 Vorticity Equation

To find the equation satisfied by @, we take the curl of the NSE in its form (2.117)
when applying (2.119). We check each term carefully.

On one hand, we observe that for any scalar field £, V x VE = 0. On the other
hand, the formula (2.74) gives the general rule

Vx(ExF)=V-(EQF)-V-(FRE)=(E-V)F—(F-V)E (2.121)

satisfied by any vector field E and F with free divergence. Due to the regularity
assumption, we can write

V.ew = 8,‘jkaiajuk = —ej,-kaja,-uk =-V.wo= 0, (2.122)

by using the antisymmetry of the Levy-Civita tensor. Hence, the general rule (2.121)
applies to v and w. Furthermore, regularity allows the Schwarz theorem to be
applied:

VxAv=A(V xV)=Aw, Vx0v=20((VXV)=0o.
Accordingly, by taking the curl of (2.117) with v constant, we find
0w+ (V- V)w —vAw = (0 - V) V+ V xf, (2.123)
The term (@ - V) v is called the vortex-stretching term. It is worth noting that in the
two-dimensional case, where things are simplest, this term does not appear in the
vorticity equation. This may be of relevance in the study of stratified flows such as

large-scale motions in the ocean or in the atmosphere, for example, cyclones and
anticyclones, which present some two-dimensional structure.

2.6.5.2 Pressure Equation

We take the divergence of the NSE in its form (2.120) and study each term
separately. We have

V- (Vp)=0;0ip) = Ap. (2.124)

Applying the Schwarz theorem together with the incompressibility assumption, we
obtain
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V-9,v=0;(V-v) =0, V-(Av)=A(V-v)=0,
which yields
Ap=V-((v-V)v)+ V-1 (2.125)
Furthermore, note that
V-((v-V)v) = 9;v;d;jv; = Vv: Vv
Equation (2.125) therefore takes the form

Ap=Vv:VvV' + V.1 (2.126)

2.7 Boundary Conditions

We derived the NSE from mathematical principles combined with experimental
observations. The equations are based on conservation, dynamics, and dissipation
principles, which are of course essential features of the flow. However, emphasis
must also be given to the role played by the boundary conditions, which are
crucial in order to provide a full mathematical description of the flow, which is our
main aim.

The boundary conditions describe macroscopic as well as microscopic effects
that can be considered as engines of the motion. For example, movements in the
air and the sea are essentially due to the heating by the sun, which supplies energy
to the sea/air system. This energy is converted into kinetic energy and dissipation.
Moreover, the air and sea exchange energy all the time, some of which is dissipated
during the transaction.

The energy process sketched above and many others are described through
boundary conditions (BC in what follows). They are often hard to model with
mathematics, and there are many possible ways of describing the same thing.
The choice may vary depending on the specific case under study. However,
boundary conditions may also be suggested—and even imposed—by numerical or
purely mathematical constraints. Moreover, some boundary conditions are simply
mathematical artifacts but relevant for a better understanding of the local nature of
the NSE.

In this section, we examine the following BC: periodic BC, the case of a full
space, no-slip BC, Navier BC, friction BC, and air/sea interface.
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2.7.1 Periodic Boundary Conditions

The periodic BC are certainly the least physical ones of all, but they still remain
very popular because they have the great advantage that Fourier analysis can be
used to study the NSE, especially when v is constant. This helps in getting a better
understanding of the interaction between small and large scales and the balance
between the convection term (v - V) v and the diffusion term vAv in the NSE, either
in the form (2.120) or in the form (2.111).

Let [0, L]? be a given box, for some L > 0. The “set of wave vectors” is defined
as the quotient set

2n 73
T3 = 7
The domain of study is the torus
0,L)}
Ts = [ 7] , (2.127)
3

within which the velocity v and the pressure p can both be decomposed into Fourier
series,

v(t,x) = Z W()e'™™,  pt.x) = Z pe()e™™,  (1.x) € Ry xTs. (2.128)
ke.Z ke 7

2.7.2 The Full Space

In this case, the flow domain is R?. Tt is assumed that the fluid is at rest at infinity,
which is not so unreasonable. Rather than forcing v to be zero at infinity, we impose
the integrability condition

VieRy v(t,-) e LX(RY), (2.129)

We emphasize that we do not require p to satisfy any boundary condition.

Remark 2.4. Leray [18] and Oseen [25], who pioneered the mathematical analysis
of the NSE, considered this type of BC, with v constant. However, we impose
v(t,-) € L*(R?) at all times because of the continuity assumption 2.2 that holds for
local time solutions such as those studied by C. Oseen. J. Leray obtained a global
time solution to the NSE in this case, which he called a “turbulent solution” (see
also Sect. 3.4.2 in Chap. 3), but we do not know if this satisfies assumption 2.2 or
not, when vy € L?(R?) is continuous on R*. Therefore, the right BC should be “at
almost all ¢ € Ry, v(¢,-) € L2(R?)” as introduced in [18]. The same applies to the
other BC below, where “at all” should be replaced by “at almost all.”
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2.7.3 No-Slip Condition

Let £2 denote the flow domain with a boundary I". The three typical cases are:

1. £2 is a half space and I" is a plane.
2. 2 =R3*\ V, where V is a bounded smooth set in R3 and I" = 9V,
3. R is a bounded domain in R?.

In case 1, the plane I" may be the fixed bottom of an infinite ocean, which has
meaning for an observer very deep in the sea.

Case 2 models a body moving in a fluid, such as a plane flying in the air, a fishing
net being pulled in the ocean, and many similar examples, in particular the sphere
which is the most studied since the initial work by Stokes [28]. The body’s velocity
is known and denoted by U. We aim to describe the flow structure around the body
and to calculate the constrains exerted on it by the fluid. It is more convenient to
consider that the body is at rest and that the velocity of the fluid is equal to —U at
infinity.

Case 3 models a flow in a closed cavity, such as fuel in an engine.

The “no-slip condition” is of the form

Vi, x)e Ry xI, v(t,x)=0, (2.130)
or more simply
vir =0. (2.131)

Here too, no special condition on the pressure is required at I". We sometimes say
the “homogeneous Dirichlet BC” instead of “no-slip condition,” in line with the
terms used in the study of partial differential equations.

The argument that yields the condition (2.131) is based on a microscale
observation. Indeed, even if a physical surface I" may seem very smooth at a
macroscale, a closer examination at a microscale reveals many irregularities, which
are however very large in comparison with the scale of the fluid at which the NSE
hold. Hence, the fluid particles are stuck in the surface’s irregularities, leading to the
no-slip condition.

2.7.4 Navier Boundary Condition

Although the no-slip condition has been popular for a long time, it has also been very
controversial. We may imagine that the fluid slips on the boundary while considering
the possibility of friction, for example, a body experiencing drag when it moves in
the fluid. The Navier condition represents a balance between slip and friction.
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Let w = w(x) be any vector field defined on I". We introduce the tangential part
of w(x) at x € I, denoted by w.(x):

w.(x) = w(x) — (W(X) - n(x)) n(x). (2.132)

Lett € R4 be a fixed time, x € I". We note n = n(x), v = v(¢, x) for simplicity.
We assume that I is not porous, such that no fluid particle crosses I", which means
v = v, almost everywhere on I" or in other words

ven|r =0. (2.133)

The calculation of the friction at the boundary is based on the principles introduced
in Sect. 2.6.2. Taking the view that the force applied by the fluid on I" is equal to
o - n, we take as friction the corresponding tangential part denoted by (o - n)..

The Navier-slip condition is based on the observation that the fluid is slowed by
the frictional force at I, resulting in the relation

V. =v=—u(0o -n),, (2.134)
for some o > 0. In conclusion, Navier BC are
v-n|p =0, (v+a(o-n),)|=0 «a>0. (2.135)

Note that when « goes to zero, the Navier condition (2.135) converges to the no-slip
condition (2.131), at least formally. When « goes to infinity, we find (o -n). | = 0,
which is the total slip condition, which only holds in the case of a perfect fluid.

2.7.5 Friction Law

We show in this subsection another way of computing the force exerted by the fluid
on a given body V' moving with a constant velocity U. Equating the result with ¢ - n
yields another type of BC.

Let G be the center of gravity of V' and S its effective area. Assume that at time
t, G sits on x. At time ¢ + 8¢, G sits on x + Ué§¢. Therefore, the total volume of
fluid displaced is equal to S|U|éz, the mass of which is equal to §m = pS|U|ét.
The momentum carried by the sphere, denoted by §ps, is equal to

$ps = Usm = pSU|U|St. (2.136)

The fluid slides with friction on the body. This suggests that only one part of the
momentum of the sphere is transmitted to the fluid. Therefore, the momentum of
the displaced fluid is equal to

§p = CpSU|U|St, (2.137)
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where C €]0, 1] is a constant that is determined by experiment. Therefore, the force
applied on the body by the fluid is equal to

. 8p
Sltlino 5 o-n=CpSU|U|. (2.138)

This law was firstly stated by Gauckler [9], then redeveloped by Manning [23],
and therefore is often called the Gauckler—Manning law. Engineers also call it the
Plotter—Landweber law [16], depending on the context in which they use it. Anyway,
this law is in agreement with experiments and is used in numerical simulations (see
in [17], for instance).

A natural general BC based on (2.138), which is used, for instance, in the
modelization of the ocean—atmosphere interface considered in the next subsection, is

v-nlp =0, (0-n)|r=CU—v,)|Uy— v, (2.139)

for some given Uy. Moreover, we shall derive the same law from the turbulence
modeling process carried out in Sect. 5.3 in Chap. 5. In this case, we call it the wall
law, to which we shall pay attention from Chap. 6.

2.7.6 Ocean—Atmosphere Interface

We conclude this section with the ocean—atmosphere coupling. The usual assump-
tion, known as the rigid lid assumption, is that the interface between the ocean and
the atmosphere is a fixed surface, denoted by I".

Although this assumption is not very realistic, it is commonly used. Indeed, many
highly complicated physical effects occur at the mixing layer between both media.
Because of this complexity, we prefer to replace the physical mixing layer by an
averaged thin layer called the rigid lid, especially when considering large scales. The
energy processes between air and water are then modeled through suitable boundary
conditions.

The processes involved in the air/sea coupling are dynamic as well as thermody-
namic. We will only briefly outline the dynamic part in this subsection. The BC that
we obtain is based on the law (2.139), considering friction between air and water.

For simplicity, we sit on a local earth coordinate frame. Let k be the vertical
unit vector and (i, j) the unit vectors spanning I" viewed as a plane in R>. The
coordinates are denoted by (x, y, z).

Note that k is the outward-pointing unit normal vector n" of the ocean at I,
while —Kk is the outward-pointing unit normal vector n* of the atmosphere at I".

Let v and v* denote the water velocity and the air velocity, respectively. We split
these into a horizontal part and a vertical part:

V= (VY v = (VY)Y = @), vE = fvY). (2.140)
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The rigid lid assumption yields

ler = W“|p =0. (2141)

This is consistent with the condition (2.133) above, since
wp=v"-n", w'lp=v"-n

For the moment, we focus on the ocean. We shall adapt the condition (2.139), where
we have to take into account the relative velocity at I equal to v¢ — v". Note that
[v¢ —v"| = |v{ —v]/| at I due to (2.141).

Let us compute 6" - n” = ¢" - Kk, where " = 2u,,D(v") — p"1. Applying the
basic definitions yields

ou” + d,w”
" k=[]0 +a,w" |. (2.142)
20w + p

We consider just the two first components of ¢ - k. From (2.139), we find that on I"

w

9
2t av b= C(v — V)V — v, (2.143)
Z

The same analysis holds for the atmosphere by the action and reaction principle, by
using v — v instead of v¢ — v". Notice that the third component in the relation
(2.142) is useless.
In summary, the BC on I" is given by (2.141), together with
w a
h

v a WY [, 4 w aVh w a w a
zluwa_z =C (v —v )|V -V I’ 2pq 9z =GV —v )|V -V Iv (2.144)

where C; and C, are two constants that must be fixed from observations [10].
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