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Abstract We review mathematical models of tumor growth based on conservation
laws in the full system of cells and interstitial liquid. First we deal with tumor
cords evolving in axisymmetric geometry, where cells motion is simply passive
and compatible with the saturation condition. The model is characterized by the
presence of free boundaries with constraints driving the free boundary conditions,
which in our opinion are particularly important, especially in the presence of
treatments. Then a tumor spheroid is considered in the framework of the so-called
two-fluid scheme. In a multicellular spheroid, on the appearance of a fully degraded
necrotic core, the analysis of mechanical stresses becomes necessary to determine
the motion via momentum balance, requiring the specification of the constitutive law
for the “cell fluid.” We have chosen a Bingham-type law that presents considerable
difficulties because of the presence of a yield stress, particularly with reference to
the determination of an asymptotic configuration. Finally, we report some recent
PDE-based models addressing complex processes in multicomponent tumors, more
oriented to clinical practice.
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1 Introduction

The literature on cancer modeling has been rapidly increasing during the present
century, paralleling the remarkable intensification and diversification of the
research in this field. The last International Conference in Industrial and Applied
Mathematics (ICIAM 2011, Vancouver) hosted a surprisingly large number of
talks on that subject, emphasizing many new and important areas of investigation,
including the rather new subject of the role of cancer stem cells (see, e.g., [42]).
Among the recent review papers we quote [4,7,25,26,34,51].

A feature that has been treated differently in many growth models is the one
of conservation laws, accompanying the choice of the phenomena to be included
in the model, such as cell displacement mechanisms (whether totally passive or
with a chemotactic or haptotactic component), drug actions, angiogenesis, and so
on. One of the main issues is mass conservation, which in several instances has
been disregarded with the aim of producing a treatable model. Raising a far too
obvious criticism may be simply not constructive, because the target of simplifying
a subject whose nature is so tremendously complicated, trying to preserve the basics
of biological behavior, has often proved to be useful and has to be rather assessed
on the basis of the results. Take for instance the paper [35] on the acid-mediated
invasion of healthy tissue by tumor cells, where only three species are present:
tumor cells, normal cells, and the HT ions produced by tumor cells and attacking
the other species. The model does not specify how the acidity is produced (thus
glucose metabolism is completely absent), it does not consider any interstitial fluid
carrying nutrients, and not even oxygen consumption. Nevertheless it reproduces
at least qualitatively the main biological phenomenon, emphasizing the presence
of a gap between the advancing and the receding species, represented in a one-
dimensional geometry by travelling waves, for appropriate values of the parameters.
The richness of that oversimplified model has been further clarified in the paper
[27]. A nontrivial extension has been presented very recently in [36]. In our opinion
this is a remarkable example of how effective a lean model can be, provided it is
constructed assembling the essential elements. Without entering the elegant and
appealing subject of travelling waves in tumors, we quote the recent paper [56]
in which a three-species model (tumor, normal, and dead cells) described by a
treatable system of PDEs describes the spread of an aggressive glioma in the form
of a diffusion-dominated spherical expanding wave.

“Completeness” remains of course a legitimate aspiration, worth to be pursued
with some caution. The quotation marks allude to the extremely hard task not
only of putting all the relevant ingredients but then of specifying how they
mutually interact. Such an attempt necessarily calls for choices, which in most
cases have some degree of arbitrariness: cell-cell and cell-matrix interactions,
active or passive cell displacement, cytoskeleton and membrane mechanics, cells
electrochemistry, signaling, cell metabolism (aerobic or anaerobic), proliferation,
death and degradation, mutations, interstitial fluids, angiogenesis (including vessels
sprouting, leaking and occlusion), metastatic processes, dormancy, etc. For each
element the model formulation requires the selection of constitutive laws, containing
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parameters of various nature, whose numerical value has to be provided, at least
in a reasonable range. In some cases the latter task may be prohibitive. When we
introduce the cell-killing action of drugs, we are faced with the problem of transport
through vasculature and through the interstitial liquids, with the interaction with the
cell membrane and with the various cell components. Not to speak of the mechanics
of the tumor mass as a whole and its modification following treatments it is, we
believe, sufficiently clear that completeness is an objective which makes sense only
leaving an exceedingly complex reality and restricting the area to specific aspects.
What is reasonable is trying to attain some degree of accuracy focusing on the most
relevant elements in the particular process considered. For sure in this framework
conservation laws are invariably the backbone of any mathematical schematization.

In this paper we want to go through the literature of the last decade or so taking
conservation laws as the leading subject, trying to emphasize the diversity of various
approaches, both in the modeling and in the scopes.

A striking example is the case we are going to deal with in Sect. 2, the so-called
tumor cords, for which we summarize a two-fluid model keeping the mechanics at
a very simple level but emphasizing some nontrivial mathematical aspects arising
in the presence of massive cell death due to treatments. In our opinion this crucial
feature has not received enough attention in the literature.

The other class of problems in cancer modeling with a simple geometry is the
one of multicellular spheroids, which, in the framework of continuum mechanics,
are treated as spheres with all quantities depending just on time and on the radial
coordinate. This kind of symmetry is even more treatable than the not-so-nice
axisymmetric geometry of tumor cords, since for instance all fluxes are just radial,
though it does not always allow to skip the analysis of the stress field. The literature
is huge and deals with many fundamental subjects. In the recent review paper [24]
the important question of incorporating glucose metabolism has been discussed at
length, together with the noticeable consequence of pH decrease. Therefore we
will not insist here on such a question. Instead in Sect.3 we analyze a refinement
of the two-fluid scheme in which the “cell fluid” exhibits a yield stress, i.e.,
a Bingham fluid. This approach, first presented in [2] and further developed in
[57], has been studied extensively in [15]. Occasionally we will point out some
basic differences accompanying the switch from axisymmetric geometry (cords)
to spherical symmetry, which for instance deeply influences the structure of the
necrotic region. In both cases it turns out that the mechanical behavior of the necrotic
region has a crucial influence on the evolution of the tumor, a fact that deserves to
be greatly emphasized and that has been discussed in the review paper [25].

The first two sections, based on our work, are mainly concentrated on mass and
momentum balance and its implications on the mechanical behavior of systems
possessing an idealized geometry. The models considered there incorporate the
continuous mass exchange between cells and interstitial fluid. In such a framework
it is possible to analyze the role of mechanics in full detail and to carry out a
complete investigation of the mathematical structure of the problem. The reader
may object that, in spite of its mathematical complexity, such an approach has
a rather limited target in the much wider horizon of malignancies and of their
treatments. Indeed, great efforts are being made to produce mathematical models
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for the growth of specific tumors and related therapies in the presence of concurrent
phenomena. For this reason in the last section we report some recent researches,
taken from the literature, addressing complex processes in multicomponent tumors,
confining our attention to the class of models expressed through systems of partial
differential equations. Though obviously not exhaustive, the choice is certainly quite
representative of the positive trend to get modeling closer to clinical practice.

2 Tumor Cords and the Doubly Constrained
Boundary Conditions

In the three papers [8—10] some peculiar features that may occur in cancer growth
have been pointed out for the first time in the framework of the microstructures,
mainly observed in experimental tumors, where tumor cells proliferating around
a blood vessel form an approximately axisymmetric aggregate called tumor cord.
Generally tumor cords have different sizes and orientation and may or may not be
surrounded by necrosis [44, 53, 65]. Despite its complexity, the model described in
[8,9] was based on a rather naive description of cell metabolism, since oxygen was
the only “nutrient” considered. A novel feature at that time was instead the analysis
of the flow of the interstitial fluid from the central vessel to the cord periphery
[10]. The introduction of free boundaries, such as the sharp interface between viable
and necrotic tissue, led to the formulation of boundary conditions depending on the
system evolution and regulated by suitable constraints. A fundamental simplification
was provided by the assumption that the cords are arranged in a regular array of
parallel identical elements, so that, because of symmetry, the cords are separated by
no-flux boundaries forming a bee nest structure. As a consequence, an individual
cord can be studied, approximating the hexagonal boundary with a cylinder, so that
the whole system is axisymmetric (Fig. 1).

Though computationally complicated, the partition of the cord (Fig.2) by means
of cylindrical interfaces separating homogeneous species has the advantage of facil-
itating the calculation of the cell and fluid velocity fields. In the quoted papers the
analysis of well posedness was fully performed, along with the study of important
qualitative properties. Concerning our principal theme, namely conservation laws,
the interstitial liquid plays the basic role of allowing the fulfillment of mass balance.
Indeed, the fluid provides the material for the production of new cells and receives
the material released by the degradation of dead cells in the necrotic region. The
cell-liquid mass exchange looks quite natural, but it requires the analysis of fluid
motion, which is not trivial. As a matter of fact, often in the literature the shortcut
is taken by simply ignoring the liquid. For example, in the early age of cancer
modeling, Greenspan [38] introduced some volume loss rate after necrosis and
his choice was adopted by many authors, even recently, though the actual removal
mechanism has never been specified. Such a particular aspect in cancer modeling
has been extensively discussed in [25] with special attention to the consequences
for the attainment of a steady state. It has to be said that, however strange it
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may look, models not including a basic element like the interstitial fluid can be
meaningful if, as we said in the introduction, such a simplification is introduced in
a suitable way, so as to capture anyway some essential phenomena. Moreover, in
the scheme below, the cell motion is completely passive, generated by proliferation,
thus disregarding the autonomous motility (haptotaxis, chemotaxis) as well as the
random motility (diffusion). Nevertheless, for the case of cords, and even more for
the case of multicellular spheroids that will be considered later, neglecting such
causes of motion looks reasonable.

Still considering the kinematic aspect, we note that once the tumor has spread
longitudinally along the vessel, the average motion of cells takes place in the radial
direction. The question of tumor progression along the vessel has been considered
in [5] in a different framework (cord expansion against a host tissue).

Coming back to the system sketched in Fig. 2, we treat the cell-liquid system as a
mixture, adopting the scheme of continuum mechanics. Clearly, this is not the only
possible choice. Discrete or hybrid models have been used extensively and with
some success (see, e.g., [1,43]). Continuum models are justified in the presence of
a sufficiently large number of cells. It could be objected that for the typical cord
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size (a radius of the order of ten cell diameters) the latter requirement is not met.
However, we must consider that a representative volume element is a cylindrical
shell of radius smaller than a cell diameter, extending over the whole length of
the vessel (up to 1 mm), actually intersecting a large number of cells, so that the
continuum approach ultimately makes sense.

A glance to Fig. 3 clarifies why the liquid velocity field can be taken axisymmet-
ric, but not radial, since the fluid must be allowed to leave the cord from the extreme
sections (z = & H ), while instead the cell velocity field (in the continuum sense) can
be taken essentially radial. Figure 3 shows also the spatial coordinates. The system
is symmetric with respect to the cross section z = 0. Living cells occupy the region
L: rg < r < pn, which lies between the vessel and the necrotic region N, and when
developed: py < r < B, where B is the outer radius of the cord. Living cells can be
either proliferating (volume fraction vp)' or quiescent (volume fraction vp). Dead
cells are actually disseminated in the cord (their volume fraction is denoted by v4),

but the region N is exclusively necrotic. We consider three possible causes of cell
death:

(i) extreme hypoxia, occurring when the oxygen concentration o does not exceed
a viability threshold oy,
(ii) the action of a cytotoxic drug (or radiation), taking place with a known kinetics,
and
(iii) apoptosis, also regulated by some kinetics.

As a consequence the region N is normally characterized by the inequality o < oy,
with the exception that will be clarified later.

A basic hypothesis is that the medium is saturated, so that the volume fraction
of the extracellular liquid vg is complementary to the total volume fraction of the

'Some authors adopt the extreme view point that proliferation takes place only at the tumor surface
because of contact inhibition (e.g., [17]) and then migrate, driven by the surface curvature. Here we
stick to the experimental observation that in the tumors we are talking about proliferation occurs
in the tumor mass, whenever enough oxygen is available.
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cells,v = vp +vg + vy = 1 —vg. All the components are assumed to have the
same density. Another fundamental assumption is that vg is constant.

One of the most difficult aspects in modeling a growing mass is the mechanical
behavior. Mixture theory (see, e.g., [58]) seems a perfect tool, since we are dealing
with a multicomponent system, but, independently of the constitutive law attached
to each component, the presence of mass conversion processes is a substantial
difficulty. Several papers have addressed this issue in various ways. One of the first
papers adopting mixture theory was [19]. In the recent paper [2] a very complex
analysis of the mechanics of the cellular component has been performed justifying
the presence of a yield stress and therefore of a Bingham-like constitutive law.

We will return to such a question in the next section. Here we are pursuing
the aim of keeping the mechanics as simple as possible. For this reason we
perform some operations that ultimately will circumvent the dynamical problem
almost completely, exploiting symmetry to bypass the necessity of writing down
the momentum balance equations. First of all, we adopt the so-called two-fluid
approach [18], assimilating the cell aggregate to a Newtonian fluid and considering
the interstitial fluid as inviscid. There are several conceptual limitations in the
two-fluid scheme that have been illustrated in [25], but the advantage of dealing
with clearly well-defined constituents, with the possibility of making suitable
assumptions on their mutual interaction, makes it extremely valuable. As we pointed
out in many instances, modeling cancer growth is a compromise between accuracy
and simplicity, so that the goal is to keep as much as possible of the biology,
limiting at the same time the number of physical parameters involved. Of course
the hypothesis attributing no viscosity to the interstitial fluid is justified by the fact
that its viscosity (comparable to the one of water) is by many orders of magnitude
smaller than the viscosity of the “cellular fluid.” Nevertheless, the interaction with
the cells is taken into account assuming that the flow relative to the cells obeys
Darcy’s law:

ve(v—u) = —«Vp, (D)
where « is the hydraulic conductivity of the cell aggregate experienced by the liquid
and p is the liquid pressure.

The way of bypassing a finer description of the mechanics of the system

consists in averaging two quantities in the longitudinal direction, namely the radial
component of the liquid velocity v, (r, z, t) and pressure p(r,z, t), thus defining

1 H
vt = e / nnandz, @)

1 7
p(r,t) = SH /_H p(r,z,t)dz. 3)
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The first quantity, multiplied by 27 rH, provides the total radial discharge through
a surface coaxial with the central vessel. The mass balance of the components in the
region L is expressed by the system

d 10

% + ;a—r(ruvP) = fvp +Yvo —Avp — UpVp,

ad 190

=2 4~ = (ruvg) = —yvo + Ave — uovo.

a\)A + 1 8( ) +

— 4+ ——(ruvy) = 1% Vo — MUA4V4,

at ror 4 HEVE Tl = HaVd
VEV'V:MAVA—XVP, (4)

which, together with the saturation assumption, yields the global mass balance
V.[vu+vgv] =0. (5)

In (4) y is the proliferation rate, and the coefficients y, A are the transition
rates from the class Q (quiescent cells) to P (proliferating cells) and vice versa.
They are functions of the oxygen concentration o (y is nondecreasing and A
nonincreasing). i p, (o are death rates in the respective classes possibly depending
on the concentration of a cytotoxic drug; 1 4 is the mass conversion rate of apoptotic
cells (class A) to liquid, due to degradation. If we take the longitudinal average of
the longitudinal component of (5), exploiting the assumption that u is u(r, ¢) times
the outward directed radial unit vector, we get an equation containing the difference
v.(r, H,t) — v,(r,—H,t), whose product with vy gives the local liquid efflux rate
from the cord, for which we assume that

ve[v(r, H. 1) = v:(r,—H, 1)] = 28 (p(r,1) = Poo) - (©6)

In other words, the liquid loss rate is regulated by the pressure excess with respect
to a far-field pressure poo, established by the lymphatic system. The coefficient ,,,
may in principle depend on r, but is taken constant for simplicity. The procedure
just described leads to the equation

19 1 Sou
;a—r(rv)Z—E(XVP—MAVA-F#(P—Poo))- (7N

The longitudinal average of the radial component of (5) leads finally to express the
pressure in terms of the relative liquid-cell velocity:

1 _ r
p(r.t) = po(r) — Tv/ (' t) —u(r', 0)ldr . 8)
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An important feature of the model is the appearance of the new unknown py (),
i.e., the pressure at the blood vessel wall. Indeed, equation (7) requires the inlet
boundary condition

(1 =v)v(ro, 1) = &in(pr — po(2)). )

meaning that the liquid inflow rate from the blood vessel is proportional to the
pressure jump across the vessel wall.> The coefficient {;, is a positive constant,
and p, is the blood pressure in the specific vessel considered. It has to be said
that actually blood pressure decreases along the flow, so that p, is a function of
Z (averaging out time dependence, since the time scale of heart pulsation is much
smaller than the scale of tumor evolution). The feasibility of taking constant both
pp and, later on, the oxygen concentration in blood o, along the cord has been
discussed in the paper [10], concluding that for vessels shorter than a millimeter
(the case of capillaries in a vascular tumor) the approximation is compatible with
the many other sources of error included in the scheme. The equation governing the
cell velocity field can be derived in the form of a mass balance by summing the first
three equations in (4):

190

1
——(ru) = —(yvp — pava), (10)
ror v

to which the boundary condition
u(ro.1) =0 (1n

must be associated.

Concerning oxygen, because of its large diffusivity (Do, ~ 107> cm?/s) and
easy penetration through cell membrane, at each time its concentration is assumed
to be at the equilibrium profile satisfying the equation

Do, Ao = fp(o)vp + fo(o)vg, (12)

where the consumption rates fp > fo are of Michaelis-Menten type.
Oxygen concentration at the blood vessel wall is taken constant (see [10] for a
justification):

o(ro,t) =0p. (13)

2Here we neglect osmotic pressure.
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The conditions for o at the necrotic interface (when present) are far less obvious.
Considering the role of the threshold o, the natural conditions for » = py would be

o(pn.1) =oN (14)
o =0. (15)
or I'=pN

The second condition is a consequence of the absence of consumption in the
necrotic core and it implies that the oxygen profile in the N zone is flat. However,
a model accounting for treatments must be able to describe a sudden rise in oxygen
concentration due to massive cell death. When such a phenomenon takes place (an
increase in o, would have a similar effect), the necrotic interface cannot always be
identified as the level set by (14), for the simple reason that if o rises above threshold
at the necrotic interface, dead cells will not return to life. In that case o must be left
free to evolve, while the necrotic interface becomes a material surface, moving with
the velocity of the viable cells that stay on it:

u(pn (), 1) =pn (1) . (16)

The state described by (16) lasts as long as o (pw, ¢) remains above threshold. When
the threshold is recovered, the cells resume entering the necrotic region. In summary,
we conclude that:

(i) the following unilateral constraints have to be satisfied at each time instant:

o(pn.t) > on (17
u(pn (1), 1) > pn () (18)

(i1) when one constraint is satisfied in the strict sense, the other has to hold as an
equality;
(iii) equation (15) always holds true.

This very peculiar structure of the boundary conditions at the necrotic interface
makes the mathematics considerably difficult.

Unfortunately, when we come to modeling the necrotic region we find more
complications, because we realize that the necrotic region can be “prevalently solid”
or “prevalently liquid.” In the first case the degrading cells are in mutual contact and
can bear an external stress, while in the opposite case the task of sustaining external
stress is given to the liquid. Thus we have two regimes that we call N-solid and N-
liquid, respectively. The basic time-dependent quantities to be considered, besides
the interface r = py (¢), are

¢ The cord outer boundary r = B(¢)
* The volume occupied by the degrading cell Vi (¢)
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* The volume occupied by the liquid V}, (¢)
¢ The liquid pressure py (¢)

The total volume Vy (¢) of the necrotic region is
V(1) = Vi () + Vi () = 2 H(B” = py) . (19)
The two partial volumes evolve according to the equations

Vi = 4Hmpy (1= vp)[u(pn.1) = px] — v Vy . 20)
Vi = 4Hmpyve[v(pn . 1) — pn] + min Vi = Gou (1) . @n

In (20) the first term on the RHS is the contribution of cells entering the necrotic
region (always nonnegative, as we know); the second term is the rate of conversion
into liquid. In the second equation the only term to be explained is the last one:

N

Gou = 2 Vi(py — Poo) (22)

N

namely the liquid efflux rate from the cord ends z = +H, where £,

coefficient.
The solid volume fraction is subject to the constraint

is a positive

VC
N <wy <1, (23)
Vy

(for the sake of generality vy is distinguished from v, but in practice they can be
taken equal). Now, in the N-solid regime, the above constraint is at work, so we can
take

Vi =wvwwWy & V]{I =0—-vy)Vn, (24)

where Vy (¢) has the expression (19). Thus (20) yields a differential equation for the
difference B> — p3;:

vNUE pnlu(pn 1) = pv] = v (B> = o) | (25)

d
/(B2 =py) =2

and operating with (21) it is possible to express ¢,,; in terms of geometrical and
kinematical unknowns, which in turn allows to derive py (¢).

Let us now discuss the question of how to detect the transition to the N-liquid
regime and vice versa. The key point is to monitor the pressure py (¢), comparing it
with the pressure exerted on the cord by the surroundings, i.e., by the neighboring
cords. Such an external pressure is due to the reaction of the host tissue to the
expansion of the cord cohort and therefore is ultimately related with the size of
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the individual cords, that is, with their equivalent radius B. We denote it by ¥ (B),
a continuous increasing function. Clearly, the N-solid regime is characterized by
the fact that this pressure is fully sustained by the solid component, while py (¢) <
W (B(t)). Therefore the N-liquid regime sets in when

pn (1) = ¥(B()), (26)

which replaces (24), no longer valid as an equality but as the inequality Vy < vy Vy.
When (26) is enforced, V(¢) evolves according to (20) from which it can be
deduced as a functional of py (¢) and of u(¢).

In conclusion, we are back to a doubly constrained problem:

Vy <vwwWn. pnv =¥(B), 27)

with at least one of the two constraint being active.

We remark that the fact that the boundary conditions are actually selected by the
constraints, which come into play depending on the evolution of the system, has
deep consequences on the mathematical structure. In particular, one has to be aware
that not necessarily the various types of boundary conditions alternate over finite
time intervals, since it cannot be excluded a priori that there are accumulation points
of switching times. This circumstance requires the adoption of particular techniques
in the existence proof (see the reference papers [9, 10]). It is really surprising
that even at the level of a model including just some minimal requirements
and with substantial simplifications, the corresponding mathematical structure is
necessarily quite complicated. It seems to us that the presence of the constraints
here emphasized is a major feature of the model. The fact that they actually come
into play is unquestionably put in evidence by numerical simulations, as illustrated
by Fig.4 taken from [26], which shows an example of the time evolution of the
cord in case of a drug affecting mainly the proliferating cells. Panel A illustrates the
evolution induced by the treatment of the viable cell population, showing the ratio
between the total volume per unit cord length of viable cells (P4+Q) and its value at
t =0. The decrement of the amount of viable cells reduces oxygen consumption and
thus causes a transient increase of the mean oxygen concentration (panel B). The re-
oxygenation of the cord produces a recruitment of quiescent cells into proliferation.
Thereafter, the populations P and Q tend to the stationary value (panel A). The radius
pn shows an initial shrinkage [52] followed by a regrowth (panel C). The interface
pn quickly becomes a material boundary, so satisfying (16), and remains material
until, at about 7y = 3, it becomes nonmaterial again, an event marked by a slope
discontinuity. In the same panel, the time course of the boundary B is plotted. Panel
D shows the time evolution of the pressure py and of the cellular fraction in the
necrotic region. In the initial state the constraint (23) is satisfied with the equality
sign and py < ¥(B). Due to the increased influx of liquid caused by cell death,
pn increases reaching ¥ (B) at ty >~ 0.5. At this point the regime changes, with
pn = W(B), and the cellular fraction goes below vy . During the cord regrowth, the
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viable cells / viable cells at t
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pN/ro » Birg
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Fig. 4 Panel A: time course of the viable cell subpopulations after a single-dose treatment; P
proliferating cells, Q quiescent cells. Panel B: mean oxygen concentration. Panel C: cord radius
pn and outer boundary B. Panel D: pressure and cell fraction in the necrotic region. Parameters
values given in [26]

influx of liquid decreases and the system switches again to the regime characterized
by a cellular fraction equal to vy (fy ~5.5).

We conclude this short review about the tumor cords recalling that besides the
existence and uniqueness theorem and some qualitative analysis for the doubly
constrained free boundary problem, much more has been done in the wake of the
papers [9, 10]. A specific analysis of interstitial pressure has been performed in
[12]. One of the main aspects to be kept into account in modeling treatments is
the re-oxygenation of the tumor following massive cells destruction [8]. The effects
of delayed exit from quiescence after re-oxygenation were considered in [11]. The
consequence of re-oxygenation on chemo- and radiotherapy has been investigated in
[13,14], including the analysis of the possible advantages of dose splitting, a subject
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treated in the literature in the context of the optimal fractionation of radiation dose
[16, 66]. For the more general context of the application of optimization in cancer
treatment, see, e.g., [49].

3 What Kind of a Fluid Can the ‘““Cell Fluid” Be? A Model
for Bingham-Like Spheroids

We have mentioned the advantages of the two-fluid approach, which, despite all
the internal contradictions, have been responsible for its success. It is quite evident
that the choice of identifying cells with a Newtonian fluid, which is frequent in
this context, is arbitrary. In such a fluid the shear stress is generated by viscosity,
whose physical origin in the case of cells should be a kind of mutual “friction.”
However, cells do not just slide one upon the other. Their mutual adherence is due
to bonds that can resist some traction and that, when destroyed, can be restored in
a different configuration. Such a situation is much more similar to what happens in
“fluids” possessing some fragile internal structure, breakable by a stress beyond a
threshold. This is precisely the main characteristic of Bingham fluids. Cell-exerted
tractions have been measured [55] and can be surprisingly strong. Therefore it
seems that resistance to motion comes primarily from the necessity of overcoming
mutual bonds and then from the membrane-to-membrane friction. Accordingly, we
may associate to these phenomena a nonnegligible yield stress and a viscosity,
namely the two quantities intervening in the constitutive law of a Bingham fluid.
The problem of finding possible steady states for a spheroid with an inner liquid
core originated by dead cells degradation has been addressed in [29,30], both in the
Newtonian and in the Bingham framework, imposing the continuity of the normal
stress throughout the system. Fasano et al. [29] follows a previous attempt [28] to
solve the same problem imposing energy balance, stemming from the approximation
that proliferating cells produce a known amount of mechanical power.

The passage from Newtonian to Bingham is by no means trivial. It is well
known that defining a Bingham fluid is relatively easy in 1-D cartesian flows, but
it offers different options in higher dimensions. In [15] the difficulty of selecting
a constitutive law compatible with the radial motion to be found in spheroids has
been emphasized, showing for instance that the definition proposed in [6] leads to
a contradiction, which would make impossible to describe the early stage of the
spheroid evolution. It was found in [15] that the following way of defining the stress
tensor of the cell component of the mixture suites our purposes. The cellular Cauchy
stress tensor in the viable region is given by

2
Te =—v (pc+§nCV-u)I+v1:, (28)
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where v is the cell volume fraction, p¢ is the cell pressure, n¢ is the so-called
Bingham viscosity, and t is the deviatoric stress tensor defined as

70

m)"

in which, as usual, D is the strain rate tensor and its second invariant I/ is given in
the form

= (2?7c + (29)

1
IIp = ETrDz, (30)

provided /1, exceeds the threshold 7. In the opposite case we have D = 0. We refer
to [15] for additional comments on the definition (28).

The definition above applies to an aggregate of cells whose membrane is integer.
We will return to the case of degrading cells later on.

The task of describing the liquid is much simpler. We put (inviscid fluid)

Te = ve| — pel] (31
with vy = 1 — v, and we adopt Darcy’s law for its motion relative to the cells:
ve(v—u) = —«Vpg (32)

thus treating the cells aggregate as a porous medium.

Remark 1. 1t is important that pc and pg be kept distinct. As a matter of fact,
at the surface of the spheroid there may be forces acting differently on the
two components. For instance the so-called tumor surface tension, attributable to
stretched intercellular bonds, and the resistance of an external medium, like the
polymer network in a gel hosting the spheroid, are applied to cells only. The concept
that pc and pg are separate quantities has received some attention in the literature.
For instance, in [48] the inequality pc > pg was taken as a condition for cells
viability.

Living cells can be proliferating or quiescent. Instead of introducing transition
rates from one class to another, in [15] the two species have been separated by a
sharp interface. Of course this is an extreme schematization, but, in our opinion, it
does not make much difference, also owing to the uncertainty about the definition of
the transition rates. The separation of a proliferating region P and a quiescent region
Q, possibly surrounding a necrotic core, is very helpful to simplify the computation
of the velocity field.

Again, the structure of the necrotic core N is going to play a basic role in the
evolution of the system. Introducing a deterministic degradation time after which a
dead cell is turned into a material mechanically behaving like a liquid, the core N
is in turn divided into a liquid (NL) and a solid (NS) region. Despite the fact that
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this approach is rather extreme, it finds some support in experimental observations,
based on NMR techniques, pointing out a prevalence of free water in the spheroid
core [54], suggesting that the NS—NL transition is due to membrane degradation.
Still under the assumption that the two components have the same density and
that v is constant, the mass balance in the various regions is expressed by the system

V.u=y, in P,
V'“ZO, anUNS,
v .
V.v=—y——, inP,
1—v
V-v=0, inQUNSUNL (33)

where y is the cell proliferation rate. The supposed constancy of v eventually
provides global mass conservation in the form of a relationship between the two
radial velocity fields:

va+ vpgv =0. (34)

The fact that inertia is absolutely negligible and the analysis of the liquid-cell
interaction forces lead to express the momentum balance equation for the cell
component in the form

VE
V.-Tc= —u=-V-Tg. (35)
K

Recalling (28), the discontinuity of V - u across the P/Q interface creates a
singularity in (35), which however is easily overcome imposing the continuity of
the normal stress throughout the system. As a matter of fact, this is one of the main
assumptions in the model.

The unknown interfaces

e r = pp(t) between the regions P and Q
e r = py(t) between the regions Q and N

are defined implicitly via the system
Do,Ac(r,t) = f(o(r,t))v, inP,
Do,Ao(r,t) = %f(a(r, v, inQ,
o(R,t) =0*,

o-(vat) =0p,

[o-(pp. )] =0,
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o(pn.t) =on,
O-r(pNsZ) :Os (36)
e.g., with the choice

o
H+o'

flo)vy =nM

(n cell number density, M maximum consumption rate per cell, H Michaelis
constant, m > 1,06* > op > oy). It can be proved that, for a given R sufficiently
large, problem (36) is uniquely solvable. Actually the qualitative nature of the
solution depends on the spheroid size. The fully developed structure with the two
interfaces pp (¢), py (¢) is observable only for R exceeding some increasing function
Ry(0*), with 0 = oy throughout the region N. For R below this threshold and
greater than another increasing function Rp(c*) there is no necrotic core and the
last two conditions in (36) must be replaced with o0, (0, #) = 0. The latter condition
is still operating if R < Rp(0*), in which case only the region P is present.

Unlike the previous section, here we just consider Cauchy-type boundary data
on the necrotic interface, since we are only interested in the tumor growth towards
its possible steady state, with no cell death cause other than hypoxia. Thus, the
switch to a freely evolving oxygen concentration on the moving necrotic interface
never occurs. The necrotic core will appear at the time the spheroid radius reaches
the value Ry (0*). The structure of the necrotic region, though not simple because
of the ongoing degradation, is less complicated than in cords, for which there are
constraints to be satisfied. As we said, in the approach of [15] a deterministic
degradation time is introduced. Once the necrotic (hypoxic) region is formed, it
keeps being fed by cells arriving from the region Q. If the necrotic core is old
enough transition to “liquid” will take place, and dead cells are pushed inwards,
while degrading. Of course the assumption of a fixed degradation time is artificial,
not differently from all other thresholds that have been introduced. All phenomena
going on in the spheroid are characterized by some degree of stochasticity; therefore
all interfaces are just mathematical tools, approximating transition regions by means
of sharp surfaces. Therefore a question arises very naturally: why bother with
unreal pictures? The question does not apply just to the specific case at hand, but
it involves the whole domain of cancer modeling, since this particular branch of
biomathematics (like many others) inevitably goes through strongly simplifying
assumptions and compromises. A model with no interfaces would not necessarily be
more accurate, since it would anyway contain some gross approximation. Interfaces
simplify the computation of the velocity fields, and this largely compensates for the
mathematical complications connected to the presence of free boundaries.

If Op is the degradation time and #y is the (unknown) appearance time of the
necrotic core, the liquid necrotic region NL will appear at time tp = ty + 0p. From
that time on, the NL/NS interface r = pp(¢) will be present. Its evolution depends
on the feeding rate of the region NS, which is of course one of the unknowns.
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Before we move to illustrating the spheroid evolution, we have to deal briefly
with the boundary conditions on the outer moving surface r = R(¢).

The liquid pressure equals some given external pressure (typically atmospheric
pressure):

PE(R, 1) = pext 37

irrespective of whether the spheroid is grown in a water suspension or in a gel.

The computation of the cellular normal stress leads to the following equation,
expressing that a jump of normal stress across the boundary is produced by surface
tension. The resulting boundary condition is the following:

) W (R.1) + pevt + V(R) + 2L |

2
R,t)=—-= 2
pc(R,1) 3ncx+<nc+ R

T
JIIp(R. 1)

(38)

where 2% is the pressure exerted by surface tension, ¥ (R) is the one produced by
the reaction of the host medium (gel) to the spheroid expansion, and the symbol u’
is an abbreviation of %

It has to be stressed that, even if the steady state is reached, the velocity gradient
u’ will not vanish at the outer surface, according to the first equation in (33). The
function ¥ (R) is assumed to be nonnegative and Lipschitz continuous. Since it is
originated by the gel deformation, namely by the displacement of the gel polymer
network, it is expected to increase up to a certain value and then to stabilize.

A spheroid growing from an initial size so small that it consists entirely of the
region P, evolves through the following stages:

» Stage I: fully proliferating. It ends at the time ¢p at which R attains the value
Rp (O' * ) .

» Stage II: the interface r = pp(¢) appears, enclosing a quiescent core. It ends at
the time 7.

» Stage III: the region NS appears, with the boundary r = py (¢), but conversion
to liquid is not achieved yet. It ends at time 7.

« Stage IV: the interface r = pp(¢) is present.

We report the main results concerning the four stages, addressing the reader to
[15] for their derivation, which is definitely long and not simple. Useful pieces of
information when performing the calculations are:

(i) V -u constant = V - D = 0 (however, care is needed when crossing the
discontinuity of V - u);

(i) where V-D = 0 the only nonzero component of the vector V - [(277c + «/IIOTD)D:I

. . . w (__1 dp\ du
is the radial one, which takes the form «/ﬂ( 31Ty or ) e
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3.1 Stagel
All quantities can be computed explicitly:
u(r, 1) = gr, (39)
implying that the ODE providing the outer radius is readily solvable, leading to
_ X
R(t) = Ry exp(gt) ,

from which we get

Since
p=%1. 1,= %

Vt=V-D=0,

the integration of (35) with conditions (38) and (37) yields

2 2 v

pe(rt) = TO\/j + Pext + U(R) + =2 + LE(R2 12 (40)
3 R 6vK
PE(D) = pet — 2= (R* = 1?). @1

6k

3.2 Stage Il

Now we have to distinguish region P from region Q, which at this stage is an
immobile core. In region P we have

u(r,t) = gr[l - (pPr(t))3], (42)

where pp is a functional of R and R(¢) is found by integrating the equation

,OP(I))3:| '

R(t) = %R(t)[l —( R
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Equation (35) now gives

with

whose integration yields

~ 0 (V21 +2(22) PP 3 prreq/27|"

pc(r.0) _pC(R’t)_%<Wr —Zln[(—) +[§+(T)] ]r}

xET R —r? 3,1 1

Sl 3] (49
where

3

4 op\3 2 142(%) 2y

pe(R0) = snex () +uy S L e+ U (R @44

3 [1 n 2(%’)6]1/2

In the region Q, owing to the absence of motion, p¢ turns out to be uniform.
The discontinuity of the proliferation rate, i.e., of V - u, through the P/Q interface
produces a jump of pc which can be computed imposing the continuity of the
normal stress:

_ 4
pc(P;f)—Pc(Pp,f)=3770)(4'\/510. (45)

No discontinuity is experienced by pg which is found to be

R 3
+r_p_P)s pPSrERv

X
Pext _3_K(R_r)( 2 R (46)

pE(rvt) =
pe(pp,t), 0<r<pp.

3.3 Stage 111

The necrotic region is now present without “liquid” core. From the dynamical point
of view the situation is very similar to the previous stage, the only difference being
the presence of the necrotic interface r = py (¢), a known functional of R.
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3.4 StagelV

Stage IV evolves for ¢t > fp. As it frequently happens in tumor modeling, the
structure of the necrotic region has a decisive influence on the system evolution.
Here too, when entering the stage in which the liquid necrotic region appears, the
mathematical nature of the problem is deeply affected. The point is that, while the
liquid core is immobile, cells in its vicinity are moving inwards and we no longer
have information on their velocity at the interface, while in Stage III we knew that
the velocity was zero in NUQ, hence also at r = pp (¢). This fact introduces a very
substantial complication. We emphasize the fact that the need of studying the whole
stress field is originated by the necessity of determining precisely that unknown
velocity.

It was therefore natural in [15] to introduce a new unknown wy (¢) in the physical
range wy (¢) < 0, namely the velocity of the cells crossing the interface r = py (),
so that the quantity 4erf\,v(,[)N — wy) represents the feeding rate of the necrotic
region. At the beginning of Stage IV wy (fp) = 0.

Since for pp < r < pp the cell velocity field in that region is divergence free,
we have

1
u(r,t) = r—zpjzv(t)a)N(t), pp <r <pp, (47)
and
1, X P (1)
u(rt) = ok oy + L (r=F52) 0 e sr <R (48)

From the latter we deduce the differential equation for R(¢), namely
20\ P(r) — o2 X p3 3
RAOR(@) = py (o (@) + Z(R(1) = pp (1)) (49)

Of course the equation contains the new unknown wy (¢). Following the motion of a
dead cell through the region NS during the degradation time 6p, we find that pp ()
is expressed in terms of wy (¢) as follows:

S0 -s -0l = [ p@ey@dr. (50)

t—6p

At this point it is clear that the determination of the kinematic unknown wy (¢)
relies on the stress analysis. In order to proceed further, we have to say something
more on the degradation process, which affects the dynamical behavior. In [15] it
was assumed that membrane degradation is accompanied by a reduction of the yield
stress. This requires monitoring the age from death, 6(r, ¢), of cells located at a given
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point of NS. Proceeding as in the derivation of (50), the latter quantity is found to
have the implicit expression

t

P -se—oe] = [ e, G1)

t—0(rt)

Now the yield stress varies in NS according to the formula

o, Py =1 =R,

. 52
to[l—e(e—;t)]+,pp<r<p1v, ( )

To(r,t) =

i.e., it reduces linearly to zero in the time 6., which is between 0 and 6p. This
generates a new free boundary r = p,(¢), tending to py or to pp in the respective
limits 8; — 0 or 6, — Op.In any case, the yield stress is gone when the interface pp
is reached. Once more, the choice was to introduce a deterministic law, extrapolating
from the biological randomness of the phenomenon in agreement with the general
deterministic setting of the entire model.

The new condition at our disposal, which closes the model, is the continuity
of the normal stress across the interface pp. Concerning pr, we know that it
is continuous everywhere, while the just-mentioned condition of normal stress
continuity eventually yields the following limit for pc when approaching pp from
the “solid” side:

pc(ph.t) —=2ncu'(p}. 1) = pe(pp.1). (53)

In view of Remark 1 about the comparison between the two pressures pc, pg, the
following result from [15] is of some interest: wy < 0 = pc > pg, stressing the
physical relevance of the orientation of the cell motion at the necrotic interface.

We just report the full expression of (53) in the case 6, — 0, which requires a
special procedure, referring to [15] for the more general case:

2% = —¥(R) + 4ncp12v‘”fv(% B é) + g””[l N <%P)3]
- i{pw(p% - Q) AR5+ %)
or 3 1205
L2 (pN) [1 ) o(Jsph —V3rhow) ) 1} (54)
s |

3 2 50 6
(R) * 6(%p;f?§pjsz)2+<%)



Conservation Laws in Cancer Modeling 49

In (54), the fractions having pp in the denominator are potentially singular at the
beginning of Stage IV. The presence of the term wy /p3,, which cannot be balanced
by any other term, says in particular that, when t — tg', wy (¢) is infinitesimal (as
predicted) of the same order as p3},. Moreover, owing to the sign restriction over wy,
the limit of the ratio above has to be nonpositive. This requires a condition that, for
convenience, in [15], has been imposed in the strict sense. Again we write it only
with reference to the special case 8, — 0, namely

by - nea1 - (22) )+ oA (5+ 22
1+ /3

2z 2%
ﬁroln[(pN) (%)3 I (%)6} >0. (55)

This inequality is actually a limitation on the choice of the two quantities y and 1o,
but a biological explanation is missing.

Another assumption is made on the function f expressing the oxygen absorption
rate in (36) that we write in the form

fo) = f(o)+(m—1)f(op)H(o —0p), (56)

where H is the Heaviside function and f (o) is a continuously differentiable
function of Michaelis-Menten type. It is required that for all R > Rp,

#la-a(R) ) 1< @

2 3
which makes sense because the quantity Rz[% — %(%’V) + %(%") ] is bounded

for R > Rp.Inaddition, (m — 1) f (op) is supposed to be sufficiently small (for the
details see [15]).

The stated conditions on v, f, together with (55), have been employed in [15] to
show existence and uniqueness for Stage IV, first in a neighborhood of 7p and then
extended by means of a standard argument.

The proof is very long and it goes through the study of how o and the interfaces
pp, py depend on R. More precisely a priori estimates of the derivatives g—Z,, 33’%,
35’—1’{" have been obtained in terms of the data, which are instrumental in the fixed
point argument employed in the proof.

Besides the well-posedness analysis, in [15] numerical simulations have been
performed, dealing with the nontrivial question of selecting appropriate values for
the parameters and investigating the possible attainment of a steady state. The
problem is characterized by a rather large uncertainty about some critical parameters
in the model, a constant obstacle in this kind of research. The tumor hydraulic
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conductivity « appearing in Darcy’s law (32) is certainly one of such parameters.
A chosen value was k = 4 - 10~8cm?®s/g (or alternatively 4 - 107° cm?-s/g),
much larger than the values usually reported for solid tumors in consideration
of the relatively low value of the cell volume fraction (v ~ 0.6) in spheroids.
Concerning the rheological parameters of the Bingham-like cell fluid, the value
ne = 10* g/(cm-s) is acceptable, in view of the results of [45]. The determination
of the yield stress 7y can be deduced on the basis of the measurements of the force
F able to detach two adhering cells [55], according to the formula tp = F n?/3,
The so-called tumor surface tension y is apparently related to the upper bound of
adhesion forces, hence to o, as it was already observed in [29].

The interplay between 1 and y is crucial for the existence of a steady state. This
fact emerges very clearly when looking for the spheroid size at a possible steady
state. The investigation of the possible equilibrium can be performed with the help
of equation (54), in which wy has to be replaced with

X

=——" (R —p} 58

which is the cell velocity at the necrotic interface corresponding to a steady spheroid
of radius R. Indeed, for a spheroid at the steady state the cell velocity vanishes at the
outer surface, providing the information that allows the computation of the whole
velocity profile. The radius pp of the inner liquid core and the age from death 6(r)
can be found in terms of R:

ph = py — x0p(R>—p3), (59)

py =1’
00r)=—"5—5—. pp <1 = py. (60)
AR = pp)
Thus all elements are available to formulate the steady-state version of normal stress
continuity condition, which, still in the limit 8, — 0, turns out to be

4 R—p}  yR*(R pp\3y 3 PP \2
2+ RV = Sk = + 1= ()] = 5[ - ()]}

() i )

PN
where pp is expressed by (59) and pp, py are known functionals of R.
The above formula allows to establish the conditions ensuring the existence of
a steady state. For instance, in the case ¥ = 0, the plot in Fig.5 compares the

. (61)
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LHS 2y with the RHS in a case exhibiting an intersection. From (61) it is clear that
for a solution to exist it is necessary that y is large enough. Of course a mechanical
reaction from the environment, meaning ¥ > 0, helps in reaching the equilibrium.
Since the RHS of (61) can be shown to go to infinity as R — oo, the equation can
have two roots. The physical one is the smaller, since it is reached as an asymptotic
state. The larger one is normally too big and it looks nonphysical.

The whole evolution model has been numerically simulated in [ 15] with the same
data as in Fig.5. The results are shown in Fig. 6, in which the moving boundaries
entering the problem are followed from their origin to their asymptotic value (upper
panel) and the velocity wy (appearing simultaneously with the interface pp) is
shown to reach the final value (58).

As we said, equation (61) may have no solution at all, meaning that the spheroid
grows to infinity. Such a possibility has been numerically investigated too, but the
values to be attributed to y and 1o were out of the expected physical range.

It is legitimate to ask whether a tumor spheroid reaching equilibrium is actually
observable. In principle the answer is positive, and it has to be said that experimental
measurements (see, e.g., [33]) may suggest that this is indeed the case. However, it
is impossible from a few experimental points to infer more than a trend to reach
equilibrium, and experiments performed over a very long time show that spheroids
may go into a state of senescence [31] no longer describable with a model for a
viable system.
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Fig. 6 Upper panel: Time evolution of the external radius and of all the interfaces. The velocity
wy is reported in the lower panel. y = 1dyne/cm, ty = 10dyne/cm?. Other parameters given
in [15]

4 Recent Models for Multicomponent Systems

In this final section, we review some very recent cancer growth models taken from
the literature that include more elements than just a species of tumor cells. Active
cell displacement (chemotaxis and haptotaxis) along with diffusion transport is
considered, e.g., in the context of angiogenesis. Chemotaxis and reaction-diffusion
are very large subjects entering those kinds of models. For them we refer to the
important review papers [40,4 1], without mentioning their general features. Here we
are more concerned in highlighting the efforts in cancer modeling to tackle problems
having an immediate clinical impact. We confine our attention to models describing
the spatial structure of the tumor and utilizing partial differential equations. Among
compartmental models we quote for instance the paper [47], dealing with the
treatment of prostate cancer by means of the so-called androgen ablation therapy,
which is a very good example of how to keep the level of complexity within
manageable limits, still retaining the essential pieces of information, and reaching
conclusions of theoretical and practical interest. We summarize here just two models
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concerning systems with many cellular and molecular species. We remark that a
common trend is to ignore the contribution of interstitial fluids to the mass balance
and that in both instances the model setting is such to avoid the analysis of stresses.
In this sense the present section is complementary to the previous ones.

4.1 Gliomas Invasion and Angiogenesis: Diffusion
Driven Processes

Since the discovery of the tumor angiogenic factor (TAF) [32] (see [59] for the
historical aspects), the phenomenon of angiogenesis has been investigated for long
time in two main directions: modeling its development [3, 20, 50] and modeling
the action of antiangiogenic drugs [22, 39, 62]. Recently a new subject emerged,
related to the chaotic structure of tumor vascularization, partly immature and leaking
and with numerous loops, slowing down blood circulation in vascularized tumors
and consequently reducing the efficiency of drugs delivery within the tumor mass.
In [37,46] the so-called pruning procedure was illustrated, consisting in a partial
destruction of the vasculature preceding drug administration (see also [22]), so to
facilitate the tumor perfusion. Here we have no space to deal with the huge topics of
angiogenesis, and we concentrate on one very specific theme: the recent claim that
high-grade gliomas receive their aggressiveness from angiogenesis. The reference
paper is [64] (see also the literature quoted therein), which is in the wake of an
earlier model proposed in [63] where diffusion was assumed to be an important
(though slow) transport mechanism for cells. In the model of [64] the tumor cells
can be in two states (normoxic and hypoxic), depending on the vasculature density,
considered to be the direct oxygen source. Only normoxic cells proliferate. Death
rates are different for the two species. The vasculature development is driven by
VEGEF (vascular endothelial growth factor), produced by living tumor cells. The
unknowns are:

e ¢, normoxic cells concentration

e h, hypoxic cells concentration

¢ n, necrotic cells concentration

e vy, vascular endothelial cells concentration
¢ a, VEGF concentration

Moreover, the following fractions have some role:

e V =v/(c+h+v) (endothelial cells vs. the total oxygen consuming population)
* T = (¢c + h+ v+ n)/k (total number of cells compared to the carrying
capacity k).
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The model is summarized as follows (we do not comment on the meaning of the
parameters):

dc

T V-[DA=T)Vc]+ pc(1—=T)+ yhV — Bc(1 = V) —ayunc, (62)
% = V. [D( = T)VA] — yhV + Be(1 = V) —apnh —aph(1 — V),  (63)
on

o =ayh(1=V)+a,n(c +h+v), (64)
O VD1 = T)YV] + (1 = T) + yhV — (65)
T v N T a YRE T Gty

0 G (DyVa) + bec + S — g—1——v(1 — T) — wav — ra (66)
a a ot T T d v

Thus cell diffusion is limited by a crowding effect, expressed by the factor (1 — T'),
which also limits proliferation of normoxic cells and of endothelial cells; the factors
V and (1 — V) control the ¢ <> h transitions, and all the rest needs no explanations.
The model does not consider extracellular matrix and the consequent occurrence of
haptotaxis nor the chemotactic motion of endothelial cells.

The paper [64] contains an interesting discussion about the combined influence
on growth of angiogenesis, diffusivity, proliferation rate, and transitions 7 — ¢ and
¢ — h. The interesting conclusion is that increased aggressiveness is not necessarily
originated by mutations affecting D and p. Even if the invasion rate is known to be
strictly related to the parameters D and p, the final outcome is strongly conditioned
by the tumor ability of developing a vascularization.

As a final remark to this subsection, we stress the fact that cell motility is a
subject that has been approached in many different ways in the literature. For
instance, in connection with the role of diffusivity in cancer invasion, it is worth
mentioning the paper [43], preceding [64], which adopts a similar scheme in a
larger context, since, besides the equations for the three species of tumor cells,
and the equations for endothelial cells and for VEGF, it includes the equation
for oxygen diffusion-consumption and for the development of the extracellular
matrix (inducing haptotaxis of normoxic tumor cells). In that paper cell motility
is treated in a very different way, since hypoxic and apoptotic cells are considered
immobile and normoxic cells have a diffusivity made of two terms: a background
random diffusivity D, like in (62), and an additional term, which, with the same
symbols used above, is expressed by D, max[c — ¢*, 0], where ¢* is some threshold
concentration. The meaning of this extra term is a “pressure-driven” motility due to
crowding, thus representing an opposite point of view with respect to (62), where
crowding was opposing diffusion. More specifically, both D and D, are taken
to be of the same order 10™° cm?.s~!. Moreover, in [43] the equation governing
vascularization includes the usual chemotactic term, differently from the simpler
process described by (65).
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4.2 The Anti-angiogenic Role of Macrophages
During Cancer Growth

We are now back to angiogenesis, but in a different perspective. In the paper
[21] a mathematical model has been developed accounting for an important action
of tumor-associated macrophages (TAMs). In hypoxic conditions such cells are
chemically induced by tumor cells to produce VEGF, precisely as tumor cells
do. However, when treated with another growth factor, namely GM-CSF (gran-
ulocyte/macrophage colony stimulating factor), TAMs are strongly stimulated to
produce the VEGF inhibitor sVEGFR-1, namely the soluble VEGF receptor-1,
which neutralizes VEGF by binding to it [23]. The paper [21] is based on the
experimental work illustrated in [60, 61] about the influence of the transcription
factors HIF-1¢, HIF-2¢¢ on the production of VEGF and sVEGFR-1, respectively,
studied by comparing the tumor development in normal mice and in mice with
genetically induced deficiency of either factors. Interestingly enough, in view of
the discussion in the previous subsection, cells diffusivity is totally disregarded, as
it is very small in most tumors (here we are dealing with breast cancer). For the
reader’s convenience we try to preserve, as long as possible, the symbols already
adopted in the previous section. Differently from that approach, the model of [21]
does not deal with normoxic and hypoxic tumor cells as different species.

Thus, from the list of the previous section we remove the unknown /. Now ¢
represents the concentration of living tumor cells with no further specification, and
to the symbol list we add:

* m, macrophages concentration

* p,q, g, concentrations of specific cytokines (to be explained soon)
¢ 5, sVEGFR-1 concentration

* w, oxygen concentration

The cytokines entering the model are:

e MCP-1/CCL2 (monocyte chemoattractant protein-1: p), produced by TAMs in
response to M-CSF (g), acts as a chemoattractant to recruit more macrophages

e M-CSF (macrophage colony stimulating factor: ¢), produced by tumor cells,
stimulates the secretion of MCP-1/CCL2 by TAMs

* GM-CSF (g), already mentioned

The transcription factors HIF-1o, HIF-2¢¢ intervene by regulating the production
rates of VEGF, sVEGF-1 (without a kinetics of their own).

Let us write down the governing differential system, according to [21], which
includes also the tumor velocity field v:

dc

T+ Ve (cv) = we(l - %) — Aa(w)e — pec, (67)



56 A. Fasano et al.

where A1 (w) (proliferation rate) is a piecewise linear, increasing function connecting
zero (for low w) to the value A, through two thresholds w;, < wp, and A,(w)
(hypoxia-induced necrosis) is a piecewise linear, decreasing function connecting
the value A, (for low w) to zero across two thresholds w, < wy,. Then we have

9
DLV (V) = a(W)e + pec — pn—mn, (68)
ot wo

where the last term describes clearance by macrophages. Equations (67) and (68)
are to be solved in the unknown domain £2(¢) occupied by the tumor and embedded
in a larger domain D, in which the complement to §2(¢) is occupied by the host
tissue. Thus the problem contains the free boundary 052 (¢). Moreover,

aa—’? +V-(mv)==V-(k,mVp)—V-(kgmVg), (69)

expressing mass balance of macrophages under the two chemotactic motions
induced by p and g, to be solved in the whole domain D, as well as all the remaining
equations for the molecular components p, ¢, a, s, g. The mass balance equation
for the last cellular species is the one for endothelial cells:

% V() = —V - (kyvVa). (70)

Next we write the mass balance equations for the cytokines, VEGF and its
inhibitor, and the drug.

o +V-(pv) =V-(D,Vp) + As(w) 9

m— 71
ot q + qo KoP D

with A4(w) a stepwise increasing function with values (0, 0.414, A4) through the
same thresholds as A, (w),

0
8_3 +V.(qv)=V-(D;Vq) + Azc — uyq (72)

da

+V-(av) = V-(DyVa) + As(w)c + Oy Ag(w) —L

— hgSa— 73
Y. q+q0m MHsSa — [Lad (73)

where both A5(w) and A¢(w) are proportional to another piecewise linear function
¢ (w) increasing from 0 to 0.3 through three thresholds w,, < w* < wy. We remark
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the appearance of the coefficient 61, linked to the level of the transcription factor
HIF-1a (setequal to 1 for normal level). For the sVEGFR-1 and the oxygen we have:

0
kad +V-(sv)=V-(D,Vs) + 92)&7mm — [La@S — WS (74)
ot g+ 8o

ow

T 4+ V-(wv) =V -(D,Vw) + Agv — Agmw — Ajpcw (75)

where the coefficient 6, in (74) has for HIF-2« a role parallel to the one of 6; for
HIF-1« and the term Agv in (75) represents oxygen delivery by endothelial cells.
The mass balance equation introducing the treatment by GM-CSF is

B LV g) =V (D) + S0~ g 76)
with f(¢) expressing the drug injection rate.

All transport terms contain the velocity field v and, as we have seen in several
instances, its determination is a quite delicate issue, since in general it calls for
the investigation of the whole mechanics of the system (constitutive equations,
momentum balance, etc.). As in the case of Sect. 2, imposing saturation and dealing
with a simple geometry reduces that complex dynamical problem to a much simpler
kinematical condition, since transport velocity is ultimately forced by the ideal
arrangement imposed to the set of volume occupying components. Thus, if one
considers just a spherical geometry, with the tumor occupying a sphere r < R(t),
the velocity being purely radial, and takes the sum ¢ + n + m + v constant, the
equation for the only scalar component of v is derived summing up the equations for
all cells mass balance. Then imposing that the boundary » = R(¢) moves with the
cell velocity provides the necessary free boundary condition. After a long discussion
on the selection of the parameters, numerical simulations show the consistency of
the model with the experimental results of [60,61].

5 Conclusions

We have reviewed a few mathematical models of tumor growth based on conserva-
tion laws and pursuing different targets. In Sects. 2 and 3 we consider tumors with
only two components: cells and extracellular fluid, taking advantage of the small
number of constituents to carry out the analysis of mass and momentum balance, as
well as of the mathematics involved to a full extent.

The model in Sect. 2 deals with tumor cords evolving in axisymmetric geometry,
where the cells motion is simply passive and compatible with the saturation
condition. The main difficulty there consists in the presence of free boundaries
with constraints driving the free boundary conditions, with severe mathematical and
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numerical implications which in our opinion are particularly important. Though
those results are not extremely recent, we decided to include them anyway in
our review in order to reaffirm the crucial role of constraints, particularly in the
presence of treatments. All the other material here exposed is taken from quite recent
publications.

In Sect.3 a tumor spheroid is considered in the framework of the so-called
two-fluid scheme. In a multicellular spheroid, unlike the previous case, on the
appearance of a fully degraded necrotic core the analysis of mechanical stresses
becomes necessary to determine the motion via momentum balance, requiring the
specification of the constitutive law for the cell “liquid.” The case in which such a
liquid is of Bingham type presents considerable difficulties linked to the presence
of the yield stress that have been described, particularly with reference to the
determination of an asymptotic configuration.

Despite the formidable mathematical complexity of the models treated in Sects. 2
and 3, the fact remains that two-component tumors are in a sense too schematic
structures. Therefore, in the last section we illustrated two very recent studies
dealing with multicomponent tumors, in order to give at least a feeling of the trends
in the mathematical modeling of complex tumor structures, based on conservation
laws, though in a perspective rather different from the one pursued in the models
of Sects.2 and 3. The specific studies considered are (i) Gliomas invasion and
angiogenesis (reference paper [64]) and (ii) the anti-angiogenic role of macrophages
during cancer growth (reference paper [21]). These are extremely interesting cases
both for the modeling technique and under the perspective of their practical
implications.

We regret that, because of space limitations, we could only illustrate a limited
number of models. A typical feature of this research field is that it is expanding at
an impressive rate, and as mathematicians come closer to the clinical practice their
models become oriented to more specific targets. Despite its conciseness, we hope
that our exposition can be stimulating.
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