Chapter 2
Lipid Nephrotoxicity: New Concept
for an Old Disease

Xiong Zhong Ruan, Zac Varghese, and John Moorhead

Introduction

In 1982 Moorhead and colleagues published the “Lipid Nephrotoxicity Hypothesis”
in Lancet [1], which stimulated lipid studies in the context of kidney diseases. This
chapter was the first to introduce the concept that the compensatory hepatic synthe-
sis of lipoproteins in response to urinary loss of albumin could cause progressive
kidney disease and that pathogenesis of atherosclerosis and renal injury and glo-
merulosclerosis could have a common pathway. In this “two-hit” model, the origi-
nal disease could coexist or be replaced by lipid-mediated damage. Persistent
albuminuria stimulates excess lipoprotein synthesis by the liver, thereby maintain-
ing the lipid injury cycle. It also proposed that many of the features of progressive
glomerular and tubulo-interstitial diseases share biological mechanisms with those
of atherosclerosis, including dyslipidemia, oxidative stress, inflammatory stress,
and genetic factors. The term glomerular atherosclerosis was proposed. Lipid-
loaded cells derived from macrophages and mesangial cells (MCs), which share
many properties of vascular smooth muscle cells (VSMCs) and take up both unal-
tered and altered LDL cholesterol, should be considered in the context of lipid-
mediated vascular and renal injury. Against this background, it is not surprising that
cardiovascular disease (CVD) is the most important cause of morbidity and mortal-
ity at all stages of progressive kidney disease and that chronic kidney disease (CKD)
is now considered as a risk factor for CVD.

Since then, many laboratory and clinical studies [1, 2] have supported the hypoth-
esis that hyperlipidemia resulting from compensatory hepatic synthesis of lipopro-
teins in response to urinary loss of albumin contributed to the progression of both
atherosclerosis and glomerulosclerosis. However, kidney injury does not always
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occur in the presence of hyperlipidemia alone; for example, the higher risk of
cardiovascular death in dialysis individuals is associated with low plasma choles-
terol (reverse epidemiology), suggesting that multiple factors accompanying with
CKD may interfere lipid-mediated kidney injury. In this chapter, we will discuss the
promises and exceptions to the original hypothesis, updating the lipid nephrotoxicity
hypothesis by analyzing dyslipidemia of CKD, the renal pathophysiological changes
induced by dyslipidemia, recent developments of and some apparent exceptions to
the hypothesis, and how inflammatory stress alters lipid homeostasis.

Original Lipid Nephrotoxicity Hypothesis:
Promises and Exceptions

Intensive laboratory studies have demonstrated that dyslipidemia in CKD can be
both consequence [3] and cause [1] of the progression of CKD and CVD, a disease
spectrum offering a substantial study platform for the original hypothesis. Although
many studies support the hypothesis that lipid abnormalities contribute to renal
injury, the latter does not occur in the presence of hyperlipidemia alone [4]. For
example, the Watanabe heritable hyperlipidemic (WHHL) rabbit model, which is
characterized by a deficiency of low-density lipoprotein (LDL) receptors and hyper-
cholesterolemia, develops atherosclerosis but not renal lesions [5]. There is also no
evidence of kidney disease in the hypercholesterolemic Nagase analbuminemic rat
model [6]. In humans familial hypercholesterolemia is not usually associated with
renal failure, and kidney disease rarely occurs in patients with primary hyperlipid-
emias [7]. In contrast normolipidemic patients with kidney disease often develop
both glomerulosclerosis and atherosclerosis [8, 9]. Interestingly, while atheroscle-
rosis regresses with reduction of serum cholesterol, human kidney disease does not.
In other words, the plasma level of cholesterol per se does not correlate with
glomerulosclerosis.

Since renal injury does not always occur in the presence of hyperlipidemia alone
[4], and glomerulosclerosis can occur without lipid deposition, a precursor condi-
tion such as intra-renal hypertension, increased glomerular capillary shear stress,
hyperfiltration, decreased nephron mass, or inflammatory stress appears to be
required for the induction and progression of lipid-induced renal dysfunction.

Atherogenic Dyslipidemia in CKD: Enhanced Disease
Progression

The lipid profile of CKD patients is typified by high circulating levels of very low-
density lipoprotein (VLDL) triglycerides, intermediate-density lipoprotein (IDL)
and chylomicron remnants (CM), and low plasma high-density lipoprotein (HDL)
cholesterol. Reduced clearance and increased plasma levels of small dense LDL
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particles aid easier entrance into arterial walls where faster oxidation causes renal
and vascular damage [10]. The LDL cholesterol level is not usually increased and
may even be reduced. A higher risk of death from CVD is associated with low
plasma cholesterol (reverse epidemiology) [8, 11]. In addition to causing quantita-
tive reductions in HDL cholesterol and apoA-1 concentrations, CKD results in defi-
ciency of HDL-associated enzymes (paraoxonase, glutathione peroxidase, and
lecithin:cholesterol acyltransferase (LCAT)) and conversion of HDL from an
antioxidant/anti-inflammatory agent to a prooxidant and pro-inflammatory agent
[12, 13]. These abnormalities can compound the effects of HDL deficiency in
promoting an atherogenic diathesis in this population. Lp(a), and apolipoprotein
(apo)A-IV are also increased. This lipid profile is similar to the atherogenic dyslip-
idemia of diabetics, and may sometimes be observed in early stages of primary
kidney disease when measured glomerular filtration rate (GFR) is normal [14].

Renal Injury

It has long been established that cholesterol supplementation of the diets of several
animal species leads to focal and segmental glomerulosclerosis (FSGS). French
et al. showed that feeding guinea pigs a diet containing 1 % cholesterol caused
severe glomerular disease [15, 16]. Peric-Golia et al. have demonstrated that feeding
normal male Sprague—Dawley rats with a 3—4 % cholesterol diet resulted in hyper-
cholesterolemia accompanied by aortic damage and renal glomerular abnormalities
including lipid droplets, hyalinosis, glomerulosclerosis, and interstitial fibrosis
[17, 18]. The severity of glomerular injury is greatly increased if dietary-induced
hyperlipidemia is combined with either a loss of functioning nephrons, partial
nephrectomy, or hypertension [18, 20]. Rats that had a unilateral nephrectomy at 1
month that were fed a diet consisting of 4 % cholesterol developed significantly
higher glomerular scarring than cholesterol-fed rats with two kidneys. Chronic renal
failure induced by 5/6 nephrectomy results in accumulation of lipids in the remnant
kidney, which is associated with upregulation of receptors involved in the influx of
oxidized lipids and lipoproteins, activation of fatty acid biosynthesis, and inhibition
of pathways involved in fatty acid oxidation [19]. Studies using the puromycin
amino nucleoside (PAN) nephrotic rat model have also shown that cholesterol feed-
ing increases the severity of proteinuria and FSGS [18, 20]. Apo B and apo E were
encountered in increased amounts in the mesangium and co-localized with Oil Red
O-positive lipid deposits [21]. Animals with endogenous hyperlipidemia [22] also
develop progressive glomerular damage. Such models include the hyperlipidemic
Sprague-Dawley rat developed by Imai et al. [23], the spontaneously hypertensive
rat described by Koletsky [24], and the obese Zucker rat [22]. Glomerular injury is
also greater when systemic hypertension is combined with hyperlipidemia [25].
Several clinical studies have documented an association between dyslipidemia
and the progression of CKD. Atherosclerosis risk in communities (ARIC) [26] with
low HDL cholesterol and increased non-HDL cholesterol was associated with
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increased risk of developing a reduced GFR (<55 mL/min/1.73 m?). In the ARIC
study, higher HDL cholesterol levels were associated with a decreased risk of pro-
gression of CKD, although one study showed an association between high LDL
cholesterol levels and progression of kidney disease [27]. The weight of evidence,
therefore, suggests that hypertriglyceridemia, accumulation of LDL cholesterol and
low HDL cholesterol are associated with increased risk of progression of CKD.
Survival statistics in renal transplant patients have also demonstrated that survival
with declining renal function is far superior in patients with normalized lipid pro-
files [28, 29].

Foam cells and lipid deposits are found in FSGS in human renal biopsies [30].
Patients with hereditary LCAT enzyme deficiency are unable to esterify choles-
terol normally, and their abnormally large lipid-laden HDL has a defective matura-
tion pattern. In these individuals, lipid deposition in the glomerulus is associated
with progressive renal insufficiency. Some patients with hepatorenal syndrome
who have lipoproteins with abnormal compositions have been reported to have
progressive glomerular damage. A unique form of the nephrotic syndrome was
reported in Japanese patients, where mesangial proliferation, mesangial expan-
sion, glomerular deposition of lipoproteins, and FSGS were associated with high
levels of circulating apoE [31]. Lee et al. found that 8.4 % of 631 CKD patients had
ultrastructurally detectable extracellular lipid in non-sclerotic glomeruli, which
suggests that there may be an early pre-sclerotic stage of lipoprotein-mediated
damage [30]. Takemura also demonstrated that predominant deposition of apo B
and apo E in the mesangial area in mesangial proliferative types of glomerulone-
phritis and that the distribution and staining intensity of these apolipoproteins
correlated with the grade of mesangial proliferation and proteinuria, but were inde-
pendent of plasma lipid levels [32].

Vascular Injury

The term glomerular atherosclerosis was proposed, because atherosclerosis shares
similar pathogenesis with glomerular sclerosis. CVD risk is increased in chronic
inflammatory states, up to 33-fold in patients with renal failure and allografts com-
pared to non-uremic subjects. Patients with an “inflammation profile” including
CKD, SLE, rheumatoid arthritis, psoriasis, and diabetes are especially prone to this
problem. On the face of it, these data could suggest that a relatively normal choles-
terol level in inflammatory conditions argues against a causative connection with
cardiovascular mortality, which may explain why the phenomenon is often ignored
by the atherosclerosis research community. The explanation for this may lie in the
fact that the clinical setting responsible for previously “hidden” mechanisms of
lipid-mediated vascular damage and cytotoxicity is more complex in CKD than in
the general population; the question one should ask is why cholesterol levels are
relatively normal or low under inflammatory stress?



2 Lipid Nephrotoxicity: New Concept for an Old Disease 13

Renal Pathophysiological Changes Driven by Atherogenic
Dyslipidemia

Lipid-loaded foam cells in the kidney and atherosclerotic plaques support patho-
physiological roles for lipids in the progression of both CKD and CVD.

Oxidative Stress

Though initial events involved in lipid-mediated renal damage are unclear, oxidative
stress is thought to be especially important. Hyperlipidemia causes significantly
higher rates of monocyte reactive oxygen species (ROS) generation, which is
strongly associated with impairment of endothelium-dependent relaxation and ele-
vated plasma levels of Ox-LDL. Arteries from hypercholesterolemic animals pro-
duced significantly higher rates of oxygen radical than control arteries.

The mechanisms by which hyperlipidemia contributes to systemic oxidative stress
in CKD remain unclear. Plasma HDL-cholesterol with its important antioxidant func-
tion is reduced in CKD [33]. Inflammatory mediators, including TNFa and IL-1f, are
ROS-activating factors in the kidney and may induce oxygen radical production by
MCs. Immune-mediated mesangial injury causes increased oxygen radical and
eicosanoid production [34]. An important source of ROS is NAD(P)H-oxidase (NOX).
The NOX family comprises seven members, Nox1-Nox7. Nox 1 and Nox2 (gp91phox-
containing NADPH oxidase), together with Nox4 and Nox5, have been identified in
the cardiovascular—renal systems and have been implicated in oxidative stress [35] in
kidney disease. In addition, the leukocyte-derived enzymes myeloperoxidase (MPO)
and xanthine oxidoreductase (XOR) may contribute to oxidative stress pathways in
end-stage renal disease (ESRD) with a role in cardiovascular dysfunction [36, 37].

Inappropriate ROS generation may contribute to tissue dysfunction in three
ways: (1) dysregulation of redox-sensitive signalling pathways; (2) oxidative dam-
age to biological structures including DNA, proteins, and lipids; and (3) activation
of macrophages [38]. Lipid peroxidation is the first step in the generation of
Ox-LDL, which can accumulate in renal mesangial cells [39]. The process of lipid
peroxidation itself generates free radicals and ROS.

The cytotoxic effects of Ox-LDL, produced in vitro by incubating LDL with
CuSO, include induction of podocyte [40] and endothelial cells apoptosis, which may
influence cellular turnover in vascular and renal injuries. All major cell types in the
artery wall and kidney, including endothelial cells, SMCs, monocyte—macrophages,
and MCs, have been shown to cause oxidative modification of LDL in vitro [41, 42].
Oxidative stress decreases renal NO production and availability [43] and stimulates
angiotensin II synthesis, suggesting that activation of the renin-angiotensin system
(RAS) may contribute to lipid-induced renal injury. It has been demonstrated that
angiotensin II increases TGF-p and plasminogen activator inhibitor-1 (PAI-1)
expression, thereby propagating glomerular fibrosis [44]. Oxidized LDL has also
been identified in the lesions of FSGS in vivo [45].
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Endoplasmic Reticulum Stress

Metabolic stress within the endoplasmic reticulum (ER) induces a coordinated
unfolded protein response (UPR), which helps the ER to cope with the accumula-
tion of misfolded proteins. UPR is initiated by three ER transmembrane proteins
(namely, PKR-like ER-regulated kinase (PERK), inositol-requiring enzyme-1
(IRE-1), and activating transcription factor-6 (ATF-6)) [46]. Recent studies
report that intracellular accumulation of saturated fatty acids and cholesterol
results in ER stress, resulting in apoptosis in macrophages; macrophage scaven-
ger receptor type A is essential in regulating ER stress-induced apoptosis [47].
Palmitate also induces ER stress by increasing IRE1 protein levels and activating
the c-Jun NH,-terminal kinase (JNK) pathway [48]. In both cultured cells and
whole animals, ER stress leads to activation of the JNK and IKK/NFkB path-
ways, promoting an inflammatory response. ER stress, in turn, leads to dysregu-
lation of the endogenous sterol response mechanism and concordantly activates
oxidative stress pathways [49].

Inflammatory Stress

The presence of oxidative and ER stress activates the NF-kB pathway, which has
been associated with inflammatory events in glomerulonephritis, as well the
progression of CKD [50]. In addition, lipids may act as pro-inflammatory media-
tors. At certain concentrations LDL, VLDL, and IDL enhanced the secretion of
inflammatory cytokines by MCs, including IL-6, PDGF, and TGFp. Since HDL
down-regulates VCAM-1 and E-selectin on endothelial surfaces and reduces NFkB,
low HDL cholesterol levels may augment inflammatory responses [51]. In apoE KO
mice [52], blocking the IL-6 receptor prevented progression of proteinuria and renal
lipid deposition, as well as the mesangial cell proliferation associated with severe
hyperlipoproteinemia. These results strongly support the role of pro-inflammatory
cytokines in the pathogenesis of hyperlipidemia-induced glomerular injury.
Inflammation also enhances both medial and intimal calcification, which contribute
to vascular, and perhaps also renal injury [53, 54].

Ox-LDL binds preferentially to the glomerulus when injected intra-arterially in
the rat and to mesangial cells in vitro [55]. Ox-LDL is a potent proinflammatory
chemoattractant for macrophages and T lymphocytes with a role in the recruitment
of circulating monocytes either directly or by inducing SMC, MCs, and/or endothe-
lial cells to produce chemotactic and adhesive factors such as MCP-1, monocyte
colony-stimulating factor (m-CSF), and IL-1f [56, 57]. Modified LDL may also
inhibit the motility of resident monocytes once they have differentiated into macro-
phages within the site [58]. Both oxidized LDL and minimally oxidized LDL stimu-
lated TNF-a secretion by MCs by activating the NFkB pathway [50].
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Mesangial Cell Proliferation and Matrix Expansion

MCs have been shown to bind LDL and Ox-LDL, leading to more cell proliferation
via multiple downstream effects. LDL also stimulates the expression of extracellu-
lar matrix proteins including fibronectin. Furthermore, glomerular macrophages
obtained from hypercholesterolemic animals displayed higher expressions of TGF-f
mRNA, which contributes to glomerular matrix expansion [59].

Inflammatory Stress Modifies Lipid Homeostasis

CKD is associated with a low-grade, long-term, and chronic inflammatory stress
characterized by elevated plasma CRP levels [60]. Inflammatory stress may modify
lipid homeostasis, thereby causing tissue lipid accumulation [61].

Inflammation Changes Lipid Composition

Inflammation alters HDL structure and removes its anti-inflammatory functionality.
HDL levels are decreased in inflamed individuals without renal failure, and SAA
replaces the apo A-I that normally composes about half of the proteins in HDL [36].
The resulting loss of HDL’s protective ability during inflammatory stress renders
LDL prone to oxidation from increased activity of MPO, an abundantly expressed
enzyme of activated neutrophils that chlorinates a tyrosine residue on apo B100
[62]. Inflammation could be responsible for an increase in triglyceride levels in
CKD [63]. Ettinger showed that human recombinant TNF-a, IL-1p, and IL-6
resulted in dose-related reductions in the concentrations of apoA-I, apoB, and LCAT
activity in HepG2 cells, which may contribute to the hypocholesterolemia of acute
inflammation.

Inflammation Causes Cholesterol Redistribution

Recently, kinetic analysis of TG fractional catabolic rates (FCR) and production
rates (PR) demonstrated that CKD is associated with decreased clearance of TG-rich
lipoproteins without change in synthesis. However, catabolism of LDL cholesterol
is increased significantly [64], suggesting that both cholesterol production and deg-
radation are modified in CKD. LDL is the major carrier of cholesterol in humans
and plays a more important role than other lipids in forming foam cells. However,
the plasma LDL cholesterol level is not increased in CKD and hemodialysis patients



16 X.Z. Ruan et al.

and the relationship between cardiovascular mortality and plasma cholesterol levels
is reversed [8]. In this section, we will focus on recently observed connections
between inflammatory stress, cholesterol homeostasis, and renal injury.

In a retrospective study of nephrotic patients with progressive kidney disease,
heavy proteinuria and hypercholesterolemia accompanied kidney disease progres-
sion, but plasma cholesterol gradually fell to normal levels as patients approached
ESRD [65]. Recently, Liu et al. evaluated the association between plasma cholesterol
levels and mortality in 823 dialysis patients from 79 clinics in the United States.
They divided the patients into inflamed and non-inflamed on the basis of inflamma-
tion markers (CRP and IL-6). The non-inflamed dialysis patients showed a linear
relationship between cholesterol levels and mortality and behaved like the normal
population in that higher cholesterol was associated with higher mortality. In contrast
the higher mortality in inflamed dialysis patients was inversely associated with lower
cholesterol levels (J-shaped curve) [8], suggesting that inflammation may divert
plasma cholesterol to the tissue compartments, increasing cardiovascular mortality.

We have demonstrated that inflammatory cytokine IL-1f increases intracellular
cholesterol influx into VSMCs, MCs, and macrophages by inducing scavenger
receptor expression, disrupting LDL receptor feedback regulation and causing unre-
strained LDL receptor-mediated uptake [39, 66, 67]. Pro-inflammatory cytokine
IL-1p also inhibits ATP-binding cassette A1 (ABCA1)-mediated cholesterol efflux
from mesangial cells [68]. Furthermore, in vitro studies have shown that IL-1f
increases intracellular cholesterol synthesis in MCs, HepG2 [69], and VSMCs by
increasing HMG-CoA reductase transcription and activity, thereby enhancing
inflammation-mediated intracellular cholesterol synthesis and inhibiting HMG-CoA
reductase degradation. In vivo, chronic systemic inflammation induced by 10 %
subcutaneous casein in apoE KO mice and characterized by increased serum SAA
and TNF-a, lowered plasma LDL cholesterol and HDL cholesterol levels, and
enhanced lipid accumulation in the liver, vessels, and kidneys, promoting nonalco-
holic fatty liver disease (NAFLD), atherosclerosis, and renal injury [70]. However,
cholesterol biosynthesis and fatty acid oxidation were reported to be reduced in a
remnant rat kidney model [19, 71]. The possible reasons for the differences are that
inflammatory stress may differ between nephrectomy rat models (unilateral and
5/6th) and systemic casein-induced inflammatory stress in a mouse model. The
nephrectomy rat model is characterized by heavy proteinuria, marked elevation of
plasma total cholesterol, LDL cholesterol, triglyceride, and free fatty acid concen-
trations. While suitable for the investigation of renal pathophysiological changes,
this model does not adequately mirror lipid homeostasis in CKD patients whose
LDL cholesterol level is not increased; nor is the casein-induced systemic inflam-
matory stress model affected by uremia-related factors. These points reinforce
views that across-species cholesterol homeostasis may be differently regulated
according to the type and stage of kidney disease as well as variations in inflamma-
tory stress. HMG-CoA reductase-mediated cholesterol synthesis in kidney may be
decreased in the CRF nephrectomy rat model but increased in the presence of
serious inflammatory stress or in the early stages of CKD.
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Zhao et al., using a unilateral nephrectomy model, showed adipose tissue
redistribution to kidney from the peri-renal capsule, omentum, mesentery, and
abdominal wall, suggesting that lipid redistribution may also take place between
tissues [72, 73]. Furthermore, we and others have shown that inflammatory stress
causes cholesterol accumulation in the normally cholesterol-poor ER, indicating
that cholesterol redistribution can occur intracellularly between organelles.
Cholesterol relocation at this level could potentially trigger lipid-induced apoptosis
or ER stress [74].

Hence, inflammatory stress accompanied by CKD modifies cholesterol homeo-
stasis by diverting cholesterol from blood to tissues, which causes cholesterol to
accumulate in peripheral tissues such as kidney, vessel wall, and liver, lowering
circulating cholesterol levels. Tissue cholesterol redistribution and accumulation in
response to inflammation may occur at several levels and sites: from circulation to
tissue, tissue to tissue, and organelle to organelle. Therefore, plasma LDL choles-
terol in patients with CKD may be a poor marker of the risk of lipid-mediated vas-
cular or renal injury and unhelpful or even misleading in the evaluation of the
clinical efficacy of lipid-lowering drugs.

The Impact of Statins on CKD

Statins have revolutionized the treatment of high plasma cholesterol and atheroscle-
rosis, confirming their benefits in vascular disease [75]. They are effective in cor-
recting dyslipidemia and are relatively safe [76]. Statin prescription is now common
in patients with CKD, an approach endorsed by the recent Kidney Disease Outcomes
Quality Initiative (K/DOQI) guidelines, although its value in preventing the pro-
gression of CVD and CKD is not yet clear.

Effect of Statins on Renal Protection: Evidence from CVD Trial

The majority of clinical trials in statins excluded patients with kidney disease as
judged by serum creatinine (Cr), which leaves large subgroups of patients with nor-
mal Cr but abnormal estimated glomerular filtration rates (¢eGFR) using the modifi-
cation of diet in renal disease (MDRD) calculation. A post hoc subgroup analysis of
the Cholesterol and Recurrent Events trial (CARE) study [77] demonstrated that
pravastatin may slow renal function loss in individuals with moderate to severe
kidney disease, especially in those with proteinuria. The GREACE study, performed
to evaluate the effect of atorvastatin on renal function [78], demonstrated that statin
treatment prevented decline in renal dysfunction based on eGFR and potentially
improved renal function, offsetting an additional factor associated with CHD risk.
A pooled analysis of data demonstrated that among patients who received long-term
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rosuvastatin treatment (>96 weeks), eGFR was unchanged or tended to increase
rather than to decrease when compared with baseline [79]. Furthermore, a post hoc
subgroup analysis of data from three randomized double-blind controlled trials
(LIPID, CARE, and WOSCOPS) demonstrated that pravastatin (40 mg/day)
reduced the adjusted rate of kidney function loss by 34 % in patients with moderate
CKD [80]. These data suggest a protective effect of statins on renal function, though
the value may be limited due to the fact that the patients in these studies had preex-
isting cardiac disease.

Effect of Statins on Renal Protection:
Evidence from CKD Trials

The first meta-analysis of 13 controlled prospective studies demonstrated a lower,
though small, rate of decline in eGFR with treatment compared with controls [81].
In a second meta-analysis of 27 studies comprising 39,704 participants, 21 studies
included data for eGFR and 20 for proteinuria. Overall, the change in the weighted
mean differences for eGFR and reduction in proteinuria were significant in statin
recipients. Both analyses, together with small prospective controlled studies [82, 83],
support emerging trial evidence that treatment with statins reduces proteinuria and
possibly the rate of kidney function loss. However, recently the randomized, dou-
ble-blind, controlled SHARP trial involving patients with advanced CKD demon-
strate no benefit on renal protection [84]. The controversy may result from various
complicated conditions in CKD patients, such as the stages of the disease or pres-
ence or absence of other disorders. The types or doses of statin may also affect the
renal outcome.

The Pleiotropic Effects of Statins

In addition to lowering lipids, statins may provide renal protection via pleiotropic
effects. Statins act by blocking 3-hydroxy-3-methylglutaryl coenzyme A reductase,
thereby inhibiting synthesis of mevalonic acid, a precursor of many nonsteroidal
isoprenoid compounds such as farnesyl pyrophosphate and geranylgeranyl-
pyrophosphate involved in subcellular localization and intracellular trafficking of
several membrane-bound proteins involved in oxidative stress injury (Rho, Ras,
Rac, Rab, Ral, and Rap). An important source of ROS is NOX. Statins inhibit the
activation of Racl, which is involved in the activation of NOX by preventing the
geranylgeranyl-dependent translocation of Racl from the cytosol to the cell mem-
brane thereby reducing ROS generation [85, 86]. By blocking geranylgeranylation
of Rho GTPase, statins also decrease the levels of the surface protein endothelin-1,
a potent vasoconstrictor and mitogen, which might play a role in retarding
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glomerulosclerosis [87]. Statins also prolong eNOS mRNA half-life and upregulate
eNOS expression, reducing hypertension-induced glomerular injury by inhibiting
the expression of Rho [88]. Statins also reduce LDL oxidation via the above mecha-
nisms. Statins suppress receptor CD36 expression on monocytes, which may inhibit
the uptake of Ox-LDL and their subsequent conversion to macrophage foam cells
[89]. Furthermore, statins have been shown to reduce levels of MCP-1, TNF-a,
TGF-p, IL-6, PDGF, and NF«xB [89-91], and reduce the proliferation of renal tubu-
lar epithelium by impairment of activator protein-1 (Ap-1) [92] as well as by pre-
venting monocytes from maturing into macrophages, inducing apoptosis of these
cells [93].

Statin Resistance Under Inflammatory Stress

Some recent experimental evidence showed that statins in therapeutic concentra-
tions failed to prevent cholesterol synthesis in these cells under inflammatory stress,
causing statin resistance [69]. The recent TNT study suggests a dose-related effect
of atorvastatin on GFR, with 80 mg/day eliciting a greater beneficial effect than
10 mg/day [94]. This raises the possibility that a variable response to statins may be
due to statin resistance in some patients, which higher statin doses and anti-
inflammatory treatments might overcome. A further point requiring investigation is
the presently unknown ability of statins to reduce apo B concentrations in many
clinical trials of CKD patients. Peripheral statin resistance might partly explain
why statins at ordinary doses did not reduce cardiovascular events or contributed to
the residual risk in large randomized trials (4D and AURORA) in dialysis patients
[95, 96].

How Long a Low LDL Cholesterol Status Should be
Maintained?

It seems that duration for cholesterol lowering is a very important issue. Recently, it
has been demonstrated that lifelong history of reduced LDL cholesterol in patients
with PCSK9 mutation was associated with a 28 % reduction in mean LDL choles-
terol and an 88 % reduction in the risk of CHD [97, 98], compared to only 40 %
reduction normally observed in most of the clinical trials completed in 5 years.
These data indicate that moderate lifelong reduction in the plasma level of LDL
cholesterol is associated with a substantial reduction in the incidence of coronary
events, even in populations with a high prevalence of non-lipid-related cardiovascu-
lar risk factors. It may imply that long-term use of lipid-lowering treatment may be
important, especially for the patients with chronic inflammatory stress, such as
CKD or dialysis.
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Conclusion

Clinical and experimental evidence suggest that dyslipidemia promotes progression
of CKD by activating inflammatory, oxidative, and ER stress. Inflammation also
fundamentally modifies lipid homeostasis by diverting cholesterol from plasma to
tissue compartments. Thus, the level of circulating cholesterol is not on its own a
reliable predictor of cardiovascular and renal risks in patients with inflammatory
stress. Therefore, we suggest that in kidney disease emphasis should be placed on
the role of inflammatory cytokines on cholesterol redistribution together with
plasma cholesterol levels or hypercholesterolemia. Increased understanding of the
pathogenesis of lipid-mediated renal and vascular injury will encourage a search for
reliable methods of risk assessment in at-risk patients in whom higher doses of
statins for longer periods, carefully monitored for side effects on liver, muscle, and
myocardium, may be required to prevent lipid-mediated renal and vascular injury.
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