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           Introduction 

 In 1982 Moorhead and colleagues published the “Lipid Nephrotoxicity Hypothesis” 
in Lancet [ 1 ], which stimulated lipid studies in the context of kidney diseases. This 
chapter was the fi rst to introduce the concept that the compensatory hepatic synthe-
sis of lipoproteins in response to urinary loss of albumin could cause progressive 
kidney disease and that pathogenesis of atherosclerosis and renal injury and glo-
merulosclerosis could have a common pathway. In this “two-hit” model, the origi-
nal disease could coexist or be replaced by lipid-mediated damage. Persistent 
albuminuria stimulates excess lipoprotein synthesis by the liver, thereby maintain-
ing the lipid injury cycle. It also proposed that many of the features of progressive 
glomerular and tubulo-interstitial diseases share biological mechanisms with those 
of atherosclerosis, including dyslipidemia, oxidative stress, infl ammatory stress, 
and genetic factors. The term glomerular atherosclerosis was proposed. Lipid- 
loaded cells derived from macrophages and mesangial cells (MCs), which share 
many properties of vascular smooth muscle cells (VSMCs) and take up both unal-
tered and altered LDL cholesterol, should be considered in the context of lipid-
mediated vascular and renal injury. Against this background, it is not surprising that 
cardiovascular disease (CVD) is the most important cause of morbidity and mortal-
ity at all stages of progressive kidney disease and that chronic kidney disease (CKD) 
is now considered as a risk factor for CVD. 

 Since then, many laboratory and clinical studies [ 1 ,  2 ] have supported the hypoth-
esis that hyperlipidemia resulting from compensatory hepatic synthesis of lipopro-
teins in response to urinary loss of albumin contributed to the progression of both 
atherosclerosis and glomerulosclerosis. However, kidney injury does not always 
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occur in the presence of hyperlipidemia alone; for example, the higher risk of 
 cardiovascular death in dialysis individuals is associated with low plasma choles-
terol (reverse epidemiology), suggesting that multiple factors accompanying with 
CKD may interfere lipid-mediated kidney injury. In this chapter, we will discuss the 
promises and exceptions to the original hypothesis, updating the lipid nephrotoxicity 
hypothesis by analyzing dyslipidemia of CKD, the renal pathophysiological changes 
induced by dyslipidemia, recent developments of and some apparent exceptions to 
the hypothesis, and how infl ammatory stress alters lipid homeostasis.  

    Original Lipid Nephrotoxicity Hypothesis: 
Promises and Exceptions 

 Intensive laboratory studies have demonstrated that dyslipidemia in CKD can be 
both consequence [ 3 ] and cause [ 1 ] of the progression of CKD and CVD, a disease 
spectrum offering a substantial study platform for the original hypothesis. Although 
many studies support the hypothesis that lipid abnormalities contribute to renal 
injury, the latter does not occur in the presence of hyperlipidemia alone [ 4 ]. For 
example, the Watanabe heritable hyperlipidemic (WHHL) rabbit model, which is 
characterized by a defi ciency of low-density lipoprotein (LDL) receptors and hyper-
cholesterolemia, develops atherosclerosis but not renal lesions [ 5 ]. There is also no 
evidence of kidney disease in the hypercholesterolemic Nagase analbuminemic rat 
model [ 6 ]. In humans familial hypercholesterolemia is not usually associated with 
renal failure, and kidney disease rarely occurs in patients with primary hyperlipid-
emias [ 7 ]. In contrast normolipidemic patients with kidney disease often develop 
both glomerulosclerosis and atherosclerosis [ 8 ,  9 ]. Interestingly, while atheroscle-
rosis regresses with reduction of serum cholesterol, human kidney disease does not. 
In other words, the plasma level of cholesterol per se does not correlate with 
glomerulosclerosis. 

 Since renal injury does not always occur in the presence of hyperlipidemia alone 
[ 4 ], and glomerulosclerosis can occur without lipid deposition, a precursor condi-
tion such as intra-renal hypertension, increased glomerular capillary shear stress, 
hyperfi ltration, decreased nephron mass, or infl ammatory stress appears to be 
required for the induction and progression of lipid-induced renal dysfunction.  

    Atherogenic Dyslipidemia in CKD: Enhanced Disease 
Progression 

 The lipid profi le of CKD patients is typifi ed by high circulating levels of very low- 
density lipoprotein (VLDL) triglycerides, intermediate-density lipoprotein (IDL) 
and chylomicron remnants (CM), and low plasma high-density lipoprotein (HDL) 
cholesterol. Reduced clearance and increased plasma levels of small dense LDL 
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particles aid easier entrance into arterial walls where faster oxidation causes renal 
and vascular damage [ 10 ]. The LDL cholesterol level is not usually increased and 
may even be reduced. A higher risk of death from CVD is associated with low 
plasma cholesterol (reverse epidemiology) [ 8 ,  11 ]. In addition to causing quantita-
tive reductions in HDL cholesterol and apoA-1 concentrations, CKD results in defi -
ciency of HDL-associated enzymes (paraoxonase, glutathione peroxidase, and 
lecithin:cholesterol acyltransferase (LCAT)) and conversion of HDL from an 
 antioxidant/anti-infl ammatory agent to a prooxidant and pro-infl ammatory agent 
[ 12 ,  13 ]. These abnormalities can compound the effects of HDL defi ciency in 
 promoting an atherogenic diathesis in this population. Lp(a), and apolipoprotein 
(apo)A-IV are also increased. This lipid profi le is similar to the atherogenic dyslip-
idemia of diabetics, and may sometimes be observed in early stages of primary 
kidney disease when measured glomerular fi ltration rate (GFR) is normal [ 14 ]. 

    Renal Injury 

 It has long been established that cholesterol supplementation of the diets of several 
animal species leads to focal and segmental glomerulosclerosis (FSGS). French 
et al. showed that feeding guinea pigs a diet containing 1 % cholesterol caused 
severe glomerular disease [ 15 ,  16 ]. Peric-Golia et al. have demonstrated that feeding 
normal male Sprague–Dawley rats with a 3–4 % cholesterol diet resulted in hyper-
cholesterolemia accompanied by aortic damage and renal glomerular abnormalities 
including lipid droplets, hyalinosis, glomerulosclerosis, and interstitial fi brosis 
[ 17 ,  18 ]. The severity of glomerular injury is greatly increased if dietary- induced 
hyperlipidemia is combined with either a loss of functioning nephrons, partial 
nephrectomy, or hypertension [ 18 ,  20 ]. Rats that had a unilateral nephrectomy at 1 
month that were fed a diet consisting of 4 % cholesterol developed signifi cantly 
higher glomerular scarring than cholesterol-fed rats with two kidneys. Chronic renal 
failure induced by 5/6 nephrectomy results in accumulation of lipids in the remnant 
kidney, which is associated with upregulation of receptors involved in the infl ux of 
oxidized lipids and lipoproteins, activation of fatty acid biosynthesis, and inhibition 
of pathways involved in fatty acid oxidation [ 19 ]. Studies using the puromycin 
amino nucleoside (PAN) nephrotic rat model have also shown that cholesterol feed-
ing increases the severity of proteinuria and FSGS [ 18 ,  20 ]. Apo B and apo E were 
encountered in increased amounts in the mesangium and co-localized with Oil Red 
O-positive lipid deposits [ 21 ]. Animals with endogenous hyperlipidemia [ 22 ] also 
develop progressive glomerular damage. Such models include the hyperlipidemic 
Sprague–Dawley rat developed by Imai et al. [ 23 ], the spontaneously hypertensive 
rat described by Koletsky [ 24 ], and the obese Zucker rat [ 22 ]. Glomerular injury is 
also greater when systemic hypertension is combined with hyperlipidemia [ 25 ]. 

 Several clinical studies have documented an association between dyslipidemia 
and the progression of CKD. Atherosclerosis risk in communities (ARIC) [ 26 ] with 
low HDL cholesterol and increased non-HDL cholesterol was associated with 
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increased risk of developing a reduced GFR (≤55 mL/min/1.73 m 2 ). In the ARIC 
study, higher HDL cholesterol levels were associated with a decreased risk of pro-
gression of CKD, although one study showed an association between high LDL 
cholesterol levels and progression of kidney disease [ 27 ]. The weight of evidence, 
therefore, suggests that hypertriglyceridemia, accumulation of LDL cholesterol and 
low HDL cholesterol are associated with increased risk of progression of CKD. 
Survival statistics in renal transplant patients have also demonstrated that survival 
with declining renal function is far superior in patients with normalized lipid pro-
fi les [ 28 ,  29 ]. 

 Foam cells and lipid deposits are found in FSGS in human renal biopsies [ 30 ]. 
Patients with hereditary LCAT enzyme defi ciency are unable to esterify choles-
terol normally, and their abnormally large lipid-laden HDL has a defective matura-
tion pattern. In these individuals, lipid deposition in the glomerulus is associated 
with progressive renal insuffi ciency. Some patients with hepatorenal syndrome 
who have lipoproteins with abnormal compositions have been reported to have 
progressive glomerular damage. A unique form of the nephrotic syndrome was 
reported in Japanese patients, where mesangial proliferation, mesangial expan-
sion, glomerular deposition of lipoproteins, and FSGS were associated with high 
levels of circulating apoE [ 31 ]. Lee et al. found that 8.4 % of 631 CKD patients had 
ultrastructurally detectable extracellular lipid in non-sclerotic glomeruli, which 
suggests that there may be an early pre-sclerotic stage of lipoprotein-mediated 
damage [ 30 ]. Takemura also demonstrated that predominant deposition of apo B 
and apo E in the mesangial area in mesangial proliferative types of glomerulone-
phritis and that the distribution and staining intensity of these apolipoproteins 
 correlated with the grade of mesangial proliferation and proteinuria, but were inde-
pendent of plasma lipid levels [ 32 ].  

    Vascular Injury 

 The term glomerular atherosclerosis was proposed, because atherosclerosis shares 
similar pathogenesis with glomerular sclerosis. CVD risk is increased in chronic 
infl ammatory states, up to 33-fold in patients with renal failure and allografts com-
pared to non-uremic subjects. Patients with an “infl ammation profi le” including 
CKD, SLE, rheumatoid arthritis, psoriasis, and diabetes are especially prone to this 
problem. On the face of it, these data could suggest that a relatively normal choles-
terol level in infl ammatory conditions argues against a causative connection with 
cardiovascular mortality, which may explain why the phenomenon is often ignored 
by the atherosclerosis research community. The explanation for this may lie in the 
fact that the clinical setting responsible for previously “hidden” mechanisms of 
lipid-mediated vascular damage and cytotoxicity is more complex in CKD than in 
the general population; the question one should ask is why cholesterol levels are 
relatively normal or low under infl ammatory stress?   
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    Renal Pathophysiological Changes Driven by Atherogenic 
Dyslipidemia 

 Lipid-loaded foam cells in the kidney and atherosclerotic plaques support patho- 
physiological roles for lipids in the progression of both CKD and CVD. 

    Oxidative Stress 

 Though initial events involved in lipid-mediated renal damage are unclear, oxidative 
stress is thought to be especially important. Hyperlipidemia causes signifi cantly 
higher rates of monocyte reactive oxygen species (ROS) generation, which is 
strongly associated with impairment of endothelium-dependent relaxation and ele-
vated plasma levels of Ox-LDL. Arteries from hypercholesterolemic animals pro-
duced signifi cantly higher rates of oxygen radical than control arteries. 

 The mechanisms by which hyperlipidemia contributes to systemic oxidative stress 
in CKD remain unclear. Plasma HDL-cholesterol with its important antioxidant func-
tion is reduced in CKD [ 33 ]. Infl ammatory mediators, including TNFα and IL-1β, are 
ROS-activating factors in the kidney and may induce oxygen radical production by 
MCs. Immune-mediated mesangial injury causes increased oxygen radical and 
 eicosanoid production [ 34 ]. An important source of ROS is NAD(P)H-oxidase (NOX). 
The NOX family comprises seven members, Nox1–Nox7. Nox1 and Nox2 (gp91phox-
containing NADPH oxidase), together with Nox4 and Nox5, have been identifi ed in 
the cardiovascular–renal systems and have been implicated in oxidative stress [ 35 ] in 
kidney disease. In addition, the leukocyte-derived enzymes myeloperoxidase (MPO) 
and xanthine oxidoreductase (XOR) may contribute to oxidative stress pathways in 
end-stage renal disease (ESRD) with a role in cardiovascular dysfunction [ 36 ,  37 ]. 

 Inappropriate ROS generation may contribute to tissue dysfunction in three 
ways: (1) dysregulation of redox-sensitive signalling pathways; (2) oxidative dam-
age to biological structures including DNA, proteins, and lipids; and (3) activation 
of macrophages [ 38 ]. Lipid peroxidation is the fi rst step in the generation of 
Ox-LDL, which can accumulate in renal mesangial cells [ 39 ]. The process of lipid 
peroxidation itself generates free radicals and ROS. 

 The cytotoxic effects of Ox-LDL, produced in vitro by incubating LDL with 
CuSO 4  include induction of podocyte [ 40 ] and endothelial cells apoptosis, which may 
infl uence cellular turnover in vascular and renal injuries. All major cell types in the 
artery wall and kidney, including endothelial cells, SMCs, monocyte–macrophages, 
and MCs, have been shown to cause oxidative modifi cation of LDL in vitro [ 41 ,  42 ]. 
Oxidative stress decreases renal NO production and availability [ 43 ] and stimulates 
angiotensin II synthesis, suggesting that activation of the renin- angiotensin system 
(RAS) may contribute to lipid-induced renal injury. It has been demonstrated that 
angiotensin II increases TGF-β and plasminogen activator inhibitor-1 (PAI-1) 
expression, thereby propagating glomerular fi brosis [ 44 ]. Oxidized LDL has also 
been identifi ed in the lesions of FSGS in vivo [ 45 ].  
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    Endoplasmic Reticulum Stress 

 Metabolic stress within the endoplasmic reticulum (ER) induces a coordinated 
unfolded protein response (UPR), which helps the ER to cope with the accumula-
tion of misfolded proteins. UPR is initiated by three ER transmembrane proteins 
(namely, PKR-like ER-regulated kinase (PERK), inositol-requiring enzyme-1 
(IRE- 1), and activating transcription factor-6 (ATF-6)) [ 46 ]. Recent studies 
report that intracellular accumulation of saturated fatty acids and cholesterol 
results in ER stress, resulting in apoptosis in macrophages; macrophage scaven-
ger receptor type A is essential in regulating ER stress-induced apoptosis [ 47 ]. 
Palmitate also induces ER stress by increasing IRE1 protein levels and activating 
the c-Jun NH 2 -terminal kinase (JNK) pathway [ 48 ]. In both cultured cells and 
whole animals, ER stress leads to activation of the JNK and IKK/NFkB path-
ways, promoting an infl ammatory response. ER stress, in turn, leads to dysregu-
lation of the endogenous sterol response mechanism and concordantly activates 
oxidative stress pathways [ 49 ].  

    Infl ammatory Stress 

 The presence of oxidative and ER stress activates the NF-κB pathway, which has 
been associated with infl ammatory events in glomerulonephritis, as well the 
 progression of CKD [ 50 ]. In addition, lipids may act as pro-infl ammatory media-
tors. At certain concentrations LDL, VLDL, and IDL enhanced the secretion of 
infl ammatory cytokines by MCs, including IL-6, PDGF, and TGFβ. Since HDL 
down- regulates VCAM-1 and E-selectin on endothelial surfaces and reduces NFκB, 
low HDL cholesterol levels may augment infl ammatory responses [ 51 ]. In apoE KO 
mice [ 52 ], blocking the IL-6 receptor prevented progression of proteinuria and renal 
lipid deposition, as well as the mesangial cell proliferation associated with severe 
hyperlipoproteinemia. These results strongly support the role of pro- infl ammatory 
cytokines in the pathogenesis of hyperlipidemia-induced glomerular injury. 
Infl ammation also enhances both medial and intimal calcifi cation, which contribute 
to vascular, and perhaps also renal injury [ 53 ,  54 ]. 

 Ox-LDL binds preferentially to the glomerulus when injected intra-arterially in 
the rat and to mesangial cells in vitro [ 55 ]. Ox-LDL is a potent proinfl ammatory 
chemoattractant for macrophages and T lymphocytes with a role in the recruitment 
of circulating monocytes either directly or by inducing SMC, MCs, and/or endothe-
lial cells to produce chemotactic and adhesive factors such as MCP-1, monocyte 
colony-stimulating factor (m-CSF), and IL-1β [ 56 ,  57 ]. Modifi ed LDL may also 
inhibit the motility of resident monocytes once they have differentiated into macro-
phages within the site [ 58 ]. Both oxidized LDL and minimally oxidized LDL stimu-
lated TNF-α secretion by MCs by activating the NFκB pathway [ 50 ].  
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    Mesangial Cell Proliferation and Matrix Expansion 

 MCs have been shown to bind LDL and Ox-LDL, leading to more cell proliferation 
via multiple downstream effects. LDL also stimulates the expression of extracellu-
lar matrix proteins including fi bronectin. Furthermore, glomerular macrophages 
obtained from hypercholesterolemic animals displayed higher expressions of TGF-β 
mRNA, which contributes to glomerular matrix expansion [ 59 ].   

    Infl ammatory Stress Modifi es Lipid Homeostasis 

 CKD is associated with a low-grade, long-term, and chronic infl ammatory stress 
characterized by elevated plasma CRP levels [ 60 ]. Infl ammatory stress may modify 
lipid homeostasis, thereby causing tissue lipid accumulation [ 61 ]. 

    Infl ammation Changes Lipid Composition 

 Infl ammation alters HDL structure and removes its anti-infl ammatory functionality. 
HDL levels are decreased in infl amed individuals without renal failure, and SAA 
replaces the apo A-I that normally composes about half of the proteins in HDL [ 36 ]. 
The resulting loss of HDL’s protective ability during infl ammatory stress renders 
LDL prone to oxidation from increased activity of MPO, an abundantly expressed 
enzyme of activated neutrophils that chlorinates a tyrosine residue on apo B100 
[ 62 ]. Infl ammation could be responsible for an increase in triglyceride levels in 
CKD [ 63 ]. Ettinger showed that human recombinant TNF-α, IL-1β, and IL-6 
resulted in dose-related reductions in the concentrations of apoA-I, apoB, and LCAT 
activity in HepG2 cells, which may contribute to the hypocholesterolemia of acute 
infl ammation.  

    Infl ammation Causes Cholesterol Redistribution 

 Recently, kinetic analysis of TG fractional catabolic rates (FCR) and production 
rates (PR) demonstrated that CKD is associated with decreased clearance of TG-rich 
lipoproteins without change in synthesis. However, catabolism of LDL cholesterol 
is increased signifi cantly [ 64 ], suggesting that both cholesterol production and deg-
radation are modifi ed in CKD. LDL is the major carrier of cholesterol in humans 
and plays a more important role than other lipids in forming foam cells. However, 
the plasma LDL cholesterol level is not increased in CKD and hemodialysis patients 
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and the relationship between cardiovascular mortality and plasma cholesterol levels 
is reversed [ 8 ]. In this section, we will focus on recently observed connections 
between infl ammatory stress, cholesterol homeostasis, and renal injury. 

 In a retrospective study of nephrotic patients with progressive kidney disease, 
heavy proteinuria and hypercholesterolemia accompanied kidney disease progres-
sion, but plasma cholesterol gradually fell to normal levels as patients approached 
ESRD [ 65 ]. Recently, Liu et al. evaluated the association between plasma cholesterol 
levels and mortality in 823 dialysis patients from 79 clinics in the United States. 
They divided the patients into infl amed and non-infl amed on the basis of infl amma-
tion markers (CRP and IL-6). The non-infl amed dialysis patients showed a linear 
relationship between cholesterol levels and mortality and behaved like the normal 
population in that higher cholesterol was associated with higher mortality. In contrast 
the higher mortality in infl amed dialysis patients was inversely associated with lower 
cholesterol levels (J-shaped curve) [ 8 ], suggesting that infl ammation may divert 
plasma cholesterol to the tissue compartments, increasing cardiovascular mortality. 

 We have demonstrated that infl ammatory cytokine IL-1β increases intracellular 
cholesterol infl ux into VSMCs, MCs, and macrophages by inducing scavenger 
receptor expression, disrupting LDL receptor feedback regulation and causing unre-
strained LDL receptor-mediated uptake [ 39 ,  66 ,  67 ]. Pro-infl ammatory cytokine 
IL-1β also inhibits ATP-binding cassette A1 (ABCA1)-mediated cholesterol effl ux 
from mesangial cells [ 68 ]. Furthermore, in vitro studies have shown that IL-1β 
increases intracellular cholesterol synthesis in MCs, HepG2 [ 69 ], and VSMCs by 
increasing HMG-CoA reductase transcription and activity, thereby enhancing 
infl ammation-mediated intracellular cholesterol synthesis and inhibiting HMG-CoA 
reductase degradation. In vivo, chronic systemic infl ammation induced by 10 % 
subcutaneous casein in apoE KO mice and characterized by increased serum SAA 
and TNF-α, lowered plasma LDL cholesterol and HDL cholesterol levels, and 
enhanced lipid accumulation in the liver, vessels, and kidneys, promoting nonalco-
holic fatty liver disease (NAFLD), atherosclerosis, and renal injury [ 70 ]. However, 
cholesterol biosynthesis and fatty acid oxidation were reported to be reduced in a 
remnant rat kidney model [ 19 ,  71 ]. The possible reasons for the differences are that 
infl ammatory stress may differ between nephrectomy rat models (unilateral and 
5/6th) and systemic casein-induced infl ammatory stress in a mouse model. The 
nephrectomy rat model is characterized by heavy proteinuria, marked elevation of 
plasma total cholesterol, LDL cholesterol, triglyceride, and free fatty acid concen-
trations. While suitable for the investigation of renal pathophysiological changes, 
this model does not adequately mirror lipid homeostasis in CKD patients whose 
LDL cholesterol level is not increased; nor is the casein-induced systemic infl am-
matory stress model affected by uremia-related factors. These points reinforce 
views that across-species cholesterol homeostasis may be differently regulated 
according to the type and stage of kidney disease as well as variations in infl amma-
tory stress. HMG-CoA reductase   -mediated cholesterol synthesis in kidney may be 
decreased in the CRF nephrectomy rat model but increased in the presence of 
 serious infl ammatory stress or in the early stages of CKD. 
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 Zhao et al., using a unilateral nephrectomy model, showed adipose tissue 
 redistribution to kidney from the peri-renal capsule, omentum, mesentery, and 
abdominal wall, suggesting that lipid redistribution may also take place between 
tissues [ 72 ,  73 ]. Furthermore, we and others have shown that infl ammatory stress 
causes cholesterol accumulation in the normally cholesterol-poor ER, indicating 
that cholesterol redistribution can occur intracellularly between organelles. 
Cholesterol relocation at this level could potentially trigger lipid-induced apoptosis 
or ER stress [ 74 ]. 

 Hence, infl ammatory stress accompanied by CKD modifi es cholesterol homeo-
stasis by diverting cholesterol from blood to tissues, which causes cholesterol to 
accumulate in peripheral tissues such as kidney, vessel wall, and liver, lowering 
circulating cholesterol levels. Tissue cholesterol redistribution and accumulation in 
response to infl ammation may occur at several levels and sites: from circulation to 
tissue, tissue to tissue, and organelle to organelle. Therefore, plasma LDL choles-
terol in patients with CKD may be a poor marker of the risk of lipid-mediated vas-
cular or renal injury and unhelpful or even misleading in the evaluation of the 
clinical effi cacy of lipid-lowering drugs.   

    The Impact of Statins on CKD 

 Statins have revolutionized the treatment of high plasma cholesterol and atheroscle-
rosis, confi rming their benefi ts in vascular disease [ 75 ]. They are effective in cor-
recting dyslipidemia and are relatively safe [ 76 ]. Statin prescription is now common 
in patients with CKD, an approach endorsed by the recent Kidney Disease Outcomes 
Quality Initiative (K/DOQI) guidelines, although its value in preventing the pro-
gression of CVD and CKD is not yet clear. 

    Effect of Statins on Renal Protection: Evidence from CVD Trial 

 The majority of clinical trials in statins excluded patients with kidney disease as 
judged by serum creatinine (Cr), which leaves large subgroups of patients with nor-
mal Cr but abnormal estimated glomerular fi ltration rates (eGFR) using the modifi -
cation of diet in renal disease (MDRD) calculation. A post hoc subgroup analysis of 
the Cholesterol and Recurrent Events trial (CARE) study [ 77 ] demonstrated that 
pravastatin may slow renal function loss in individuals with moderate to severe 
kidney disease, especially in those with proteinuria. The GREACE study, performed 
to evaluate the effect of atorvastatin on renal function [ 78 ], demonstrated that statin 
treatment prevented decline in renal dysfunction based on eGFR and potentially 
improved renal function, offsetting an additional factor associated with CHD risk. 
A pooled analysis of data demonstrated that among patients who received long-term 
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rosuvastatin treatment (>96 weeks), eGFR was unchanged or tended to increase 
rather than to decrease when compared with baseline [ 79 ]. Furthermore, a post hoc 
subgroup analysis of data from three randomized double-blind controlled trials 
(LIPID, CARE, and WOSCOPS) demonstrated that pravastatin (40 mg/day) 
reduced the adjusted rate of kidney function loss by 34 % in patients with moderate 
CKD [ 80 ]. These data suggest a protective effect of statins on renal function, though 
the value may be limited due to the fact that the patients in these studies had preex-
isting cardiac disease.  

    Effect of Statins on Renal Protection: 
Evidence from CKD Trials 

 The fi rst meta-analysis of 13 controlled prospective studies demonstrated a lower, 
though small, rate of decline in eGFR with treatment compared with controls [ 81 ]. 
In a second meta-analysis of 27 studies comprising 39,704 participants, 21 studies 
included data for eGFR and 20 for proteinuria. Overall, the change in the weighted 
mean differences for eGFR and reduction in proteinuria were signifi cant in statin 
recipients. Both analyses, together with small prospective controlled studies [ 82 ,  83 ], 
support emerging trial evidence that treatment with statins reduces proteinuria and 
possibly the rate of kidney function loss. However, recently the randomized, dou-
ble-blind, controlled SHARP trial involving patients with advanced CKD demon-
strate no benefi t on renal protection [ 84 ]. The controversy may result from various 
complicated conditions in CKD patients, such as the stages of the disease or pres-
ence or absence of other disorders. The types or doses of statin may also affect the 
renal outcome.  

    The Pleiotropic Effects of Statins 

 In addition to lowering lipids, statins may provide renal protection via pleiotropic 
effects. Statins act by blocking 3-hydroxy-3-methylglutaryl coenzyme A reductase, 
thereby inhibiting synthesis of mevalonic acid, a precursor of many nonsteroidal 
isoprenoid compounds such as farnesyl pyrophosphate and geranylgeranyl- 
pyrophosphate involved in subcellular localization and intracellular traffi cking of 
several membrane-bound proteins involved in oxidative stress injury (Rho, Ras, 
Rac, Rab, Ral, and Rap). An important source of ROS is NOX. Statins inhibit the 
activation of Rac1, which is involved in the activation of NOX by preventing the 
geranylgeranyl-dependent translocation of Rac1 from the cytosol to the cell mem-
brane thereby reducing ROS generation [ 85 ,  86 ]. By blocking geranylgeranylation 
of Rho GTPase, statins also decrease the levels of the surface protein endothelin-1, 
a potent vasoconstrictor and mitogen, which might play a role in retarding 
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glomerulosclerosis [ 87 ]. Statins also prolong eNOS mRNA half-life and upregulate 
eNOS expression, reducing hypertension-induced glomerular injury by inhibiting 
the expression of Rho [ 88 ]. Statins also reduce LDL oxidation via the above mecha-
nisms. Statins suppress receptor CD36 expression on monocytes, which may inhibit 
the uptake of Ox-LDL and their subsequent conversion to macrophage foam cells 
[ 89 ]. Furthermore, statins have been shown to reduce levels of MCP-1, TNF-α, 
TGF-β, IL-6, PDGF, and NFκB [ 89 – 91 ], and reduce the proliferation of renal tubu-
lar epithelium by impairment of activator protein-1 (Ap-1) [ 92 ] as well as by pre-
venting monocytes from maturing into macrophages, inducing apoptosis of these 
cells [ 93 ].  

    Statin Resistance Under Infl ammatory Stress 

 Some recent experimental evidence showed that statins in therapeutic concentra-
tions failed to prevent cholesterol synthesis in these cells under infl ammatory stress, 
causing statin resistance [ 69 ]. The recent TNT study suggests a dose-related effect 
of atorvastatin on GFR, with 80 mg/day eliciting a greater benefi cial effect than 
10 mg/day [ 94 ]. This raises the possibility that a variable response to statins may be 
due to statin resistance in some patients, which higher statin doses and anti- 
infl ammatory treatments might overcome. A further point requiring investigation is 
the presently unknown ability of statins to reduce apo B concentrations in many 
clinical trials of CKD patients. Peripheral statin resistance might partly explain 
why statins at ordinary doses did not reduce cardiovascular events or contributed to 
the residual risk in large randomized trials (4D and AURORA) in dialysis patients 
[ 95 ,  96 ].  

    How Long a Low LDL Cholesterol Status Should be 
Maintained? 

 It seems that duration for cholesterol lowering is a very important issue. Recently, it 
has been demonstrated that lifelong history of reduced LDL cholesterol in patients 
with PCSK9 mutation was associated with a 28 % reduction in mean LDL choles-
terol and an 88 % reduction in the risk of CHD [ 97 ,  98 ], compared to only 40 % 
reduction normally observed in most of the clinical trials completed in 5 years. 
These data indicate that moderate lifelong reduction in the plasma level of LDL 
cholesterol is associated with a substantial reduction in the incidence of coronary 
events, even in populations with a high prevalence of non-lipid-related cardiovascu-
lar risk factors. It may imply that long-term use of lipid-lowering treatment may be 
important, especially for the patients with chronic infl ammatory stress, such as 
CKD or dialysis.   
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    Conclusion 

 Clinical and experimental evidence suggest that dyslipidemia promotes progression 
of CKD by activating infl ammatory, oxidative, and ER stress. Infl ammation also 
fundamentally modifi es lipid homeostasis by diverting cholesterol from plasma to 
tissue compartments. Thus, the level of circulating cholesterol is not on its own a 
reliable predictor of cardiovascular and renal risks in patients with infl ammatory 
stress. Therefore, we suggest that in kidney disease emphasis should be placed on 
the role of infl ammatory cytokines on cholesterol redistribution together with 
plasma cholesterol levels or hypercholesterolemia. Increased understanding of the 
pathogenesis of lipid-mediated renal and vascular injury will encourage a search for 
reliable methods of risk assessment in at-risk patients in whom higher doses of 
statins for longer periods, carefully monitored for side effects on liver, muscle, and 
myocardium, may be required to prevent lipid-mediated renal and vascular injury.     
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