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    Abstract     It is known that current Learning Object Repositories adopt strategies for 
quality assessment of their resources that rely on the impressions of quality given by 
the members of the repository community. Although this strategy can be considered 
effective at some extent, the number of resources inside repositories tends to 
increase more rapidly than the number of evaluations given by this community, 
thus leaving several resources of the repository without any quality assessment. The 
present work describes the results of two experiments to automatically generate 
quality information about learning resources based on their intrinsic features as well 
as on evaluative metadata (ratings) available about them in MERLOT repository. 
Preliminary results point out the feasibility of achieving such goal which suggests 
that this method can be used as a starting point for the pursuit of automatically gen-
eration of internal quality information about resources inside repositories.  
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        Introduction 

 Current Learning Object Repositories (LORs) normally adopt strategies for the 
establishment of quality of their resources that rely on the impressions of usage 
and evaluations given by the members of the repository community (ratings, tags, 
comments, likes, lenses). All this information together constitute a collective 
body of knowledge that further serves as an external memory that can help other 
individuals to find resources according to their needs. Inside LORs, this kind 
of evaluative metadata [ 1 ] is also used by search and retrieval mechanisms for 
properly ranking and recommending resources to the community of users of the 
repository. 

 Although such strategies can be considered effective at some extent, the amount 
of resources inside repositories is rapidly growing every day [ 2 ] and it becomes 
impractical to rely only on human effort for such a task. For instance, on a quick 
look at the summary of MERLOT’s recent activities, it is possible to observe that in a 
short period of 1 month (from May 21 to June 21, 2011), the amount of new resources 
catalogued in the repository was nine times more than the amount of new ratings given 
by experts (peer-reviewers), six times more than the amount of new comments (and 
users ratings) and three times more than the amount of new bookmarks  (personal 
collections). This situation of leaving many resources of the current repositories 
without any measure of quality at all (and consequently unable or at least on a very 
disadvantaged position to compete for a good position during the process of search 
and retrieval) has raised the concern for the development of new automated tech-
niques and tools that could be used to complement existing manual approaches. 
On that direction, Ochoa and Duval [ 3 ] developed a set of metrics for ranking reposi-
tory search results according to three dimensions of relevance (topical, personal and 
situational) and by using information obtained from the learning objects metadata, 
from the user queries, and from other external sources such as the records of histori-
cal usage of the resources. This authors contrasted the performance of their approach 
against the text-based ranking traditional methods and have found signifi cant 
improvements in the fi nal ranking results. Moreover, Sanz-Rodriguez et al. [ 4 ] pro-
posed to integrate several distinct quality indicators of learning objects of MERLOT 
along with their usage information into one overall quality indicator that can be 
used to facilitate the ranking of learning objects. 

 These mentioned approaches for automatically measuring quality (or calculating 
relevance) according to specifi c dimensions depend either on the existence and 
availability of metadata attached to the resources (or inside the repositories), or on 
measures of popularity about the resources that are obtained only when the resource 
is publicly available after a certain period of time. As metadata may be incomplete/
inaccurate [ 5 ] and these measures of popularity will be available just for “old” 
resources, we propose to apply an alternative approach for this problem. The main 
idea is to identify intrinsic measures of the resources (i.e., features that can be 
calculated directly from the resources) that are associated to quality and that can 
be used in the process of creating models for automated quality assessment. 
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 In fact, this approach was recently tested by Cechinel et al. [ 6 ] who developed 
highly-rated profi les of learning objects available in MERLOT, and have generated 
Linear Discriminant Analysis (LDA) models based on 13 learning objects intrinsic 
features. The generated models were able to classify resources between good and not-
good with 72.16 % of precision, and between good and poor with 91.49 % of preci-
sion. Among other things, these authors concluded that highly-rated learning objects 
profi les should be developed taking into consideration the many possible intersections 
among the different disciplines and types of materials available in MERLOT, as well 
as the group of evaluators who rated the resources (whether they are formed by experts 
or by the community of users). For instance, the mentioned models were created for 
materials of  Simulation  type belonging to the discipline of  Science & Technology , and 
considering the perspective of the peer-reviewers ratings. 

 The present chapter reviews two experiments conducted towards the creation of 
models for automated quality assessment of learning resources inside MERLOT 
and that expand the previous work developed by Cechinel et al. [ 6 ]. The fi rst experi-
ment explores the creation of statistical profi les of highly-rated learning objects by 
contrasting information from  good  and  not-good  resources of three subsets of 
MERLOT repository and by using these profi les to generate models for quality 
assessment. The second experiment tests a slightly different and more algorithmic 
approach, i.e., the models are generated exclusively through the use of data mining 
algorithms. In this second experiment we also worked with a larger collection of 
resources and a considerably higher number of MERLOT subsets. 

 The rest of this chapter is structured as follows. “ Background ” presents existing 
research focused on identifying intrinsic quality features of resources. “ Data 
Collection ” describes the data collected for the experiments. “ First Experiment: 
Statistical profi les of highly-rated resources ” and “ Second experiment: Algorithmic 
Approach ” present the experiments and some discussion about the results on the 
generation and evaluation of automated models for quality assessment. Finally, 
conclusions and outlook are provided in “ Conclusions and Outlook ”.  

      Background 

 Apart from the recent works by Cechinel et al. [ 6 ,  7 ], there is still no empirical evi-
dence of intrinsic metrics that could serve as indicators of quality for LOs. However, 
there are some works in adjacent fi elds which can serve us as a source of inspiration. 
For instance, empirical evidence of relations from intrinsic information and other 
characteristics of LOs have been found in [ 8 ], where the authors developed a model 
for classifying the didactic functions of a learning object based on measures about 
the length of the text, the presence of interactivity and information contained in the 
HTML code (lists, forms, input elements). Mendes et al. [ 9 ] have identifi ed evi-
dence in some measures to evaluate sustainability and reusability of educational 
hypermedia applications, such as, the type of link and the structure and size of the 
application. Blumenstock [ 10 ] has found the length of an article (measured in 
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words) as a predictor of quality in Wikipedia. Moreover, Stvilia et al. [ 11 ] have been 
able to automatically discriminate high quality articles voted by the community of 
users from the rest of the articles of the collection. In order to do that, the authors 
developed profi les by contrasting metrics of articles featured as best articles by 
Wikipedia editors against a random set. The metrics were based on measures of the 
article edit history (total number of edits, number of anonymous user edits, for 
instance) and on the article attributes and surface features (number of internal bro-
ken links, number of internal links, number of images, for instance). At last, in the 
fi eld of usability, Ivory and Hearst [ 12 ] have found that good websites contain (for 
instance) more words and links than the regular and bad ones. 

 Our approach is initially related exclusively to those aspects of learning objects 
that are displayed to the users and that are normally associated to the dimensions of 
presentation design and interaction usability included in LORI [ 13 ] and the dimen-
sion of information quality (normally mentioned in the context of educational digital 
libraries). Precisely, the references for quality assurance used in here are the ratings 
given by the peer-reviewers (experts) of the repository.  

     Data Collection 

 Two databases were collected from MERLOT (2009 and 2010) through the use of a 
crawler that systematically traversed the pages and collected information related to 
34 metrics of the resources. The decision of choosing MERLOT lays mainly on the 
fact that MERLOT has one of the largest amount of registered resources and users, 
and it implements a system for quality assurance that works with evaluations given 
by experts and users of the repository. Such system can serve as baseline for the 
creation of the learning object classes of quality. As MERLOT repository is mainly 
formed by learning resources in the form of websites, we evaluated intrinsic metrics 
that are supposed to appear in such technical type of material (i.e., link measures, 
text measures, graphic measures and site architecture measures). The metrics col-
lected for this study (see Table  1 ) are the same as used by Cechinel et al. [ 6 ] and 
some of them have also been mentioned in other works which tackled the problem 
of assessing quality of resources (previously presented in “ Background ”).

   Given that the resources in MERLOT vary considerably in size, a limit of two 
levels of depth was established for the crawler, i.e., metrics were computed for the 
root node (level 0—the home-page of the resource), as well as for the pages linked 
by the root node (level 1), and for the pages linked by the pages of the level 1 
(level 2 1 ). As it is shown in Table  1 , some of the metrics refer to the total sum of the 
occurrences of a given attribute considering the whole resource, and other metrics 
refer to the average of this sum considering the number of the pages computed. 

1   Although this limitation may affect the results, the process of collecting the information is 
extremely slow and such limitation was needed. In order to acquire the samples used in this study, 
the crawler kept running uninterruptedly for 2 (in 2009) and 4 (in 2010) full months. 
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For instance, an object composed by 3 pages and containing a total of 30 images will 
have a total number of images equals to 30, and an average number of images equals 
to 10 (= 30/3). 

    Classes of Quality 

 As the peer-reviewers ratings tend to concentrate above the intermediary rating 3, 
classes of quality were created using the terciles of the ratings for each subset (ratings in 
MERLOT vary from 1 to 5). Resources with ratings below the fi rst tercile are classi-
fi ed as  poor , resources with ratings equal or higher the fi rst tercile and lower than the 
second tercile are classifi ed as  average , and resources with ratings equal or higher the 
second tercile are classifi ed as  good . The classes of quality  average  and  poor  were 
then joined in another class called  not-good  and were used as the output reference for 
generating and testing models for automated quality assessment of the resources   

     First Experiment: Statistical Profi les of Highly-Rated 
Resources 

 The collected sample contained 6,470 learning resources classifi ed into 7 different 
disciplines and 9 distinct types of material, thus totalizing 63 different classes of 
possible learning object profi les. From the total, 1,257 (19.43 %) had at least one 
peer review rating and formed the fi nal data sample. We have selected resources 
from the three subsets with the highest number of occurrences to generate and eval-
uate models for automated quality assessment in the context of peer-reviews thresh-
olds. The selected subsets are (amounts in parenthesis):  Simulation  ∩  Science and 
Technology  (97),  Simulation  ∩  Mathematics and Statistics  (83), and  Tutorial  ∩ 
 Science and Technology  (83). 

    Table 1    Metrics collected for the study   

 Class of measure  Metric 

 Link measures  Number of links, number of unique a  links, number of 
internal links b , number of unique internal links, number 
of external links, number of unique external links 

 Text measures  Number of words, number of words that are links c  
 Graphic, interactive 

and multimedia measures 
 Number of images, total size of the images (in bytes), 

number of scripts, number of applets, number of audio 
fi les, number of video fi les, number of multimedia fi les 

 Site architecture measures  Size of the page (in bytes), number of fi les for 
downloading, total number of pages 

   a The term unique stands for “non-repeated” 
  b The term internal refers to those links which are located at some directory below the root site 
  c For these metrics the average was not computed or does not exist  
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 The methodology used for the present study was the development of highly-rated 
learning object profi les of MERLOT. The study described in this chapter is based on 
the methodology applied by Ivory and Hearst [ 12 ], as well as on the methodology 
described on García-Barriocanal and Sicilia [ 14 ] and Cechinel et al. [ 6 ]. The created 
profi les were then further used to generate models for automated quality assessment 
of learning objects. Figure  1  gives a general idea of the methodology applied here.

   The analysis was conducted by contrasting intrinsic metrics from the groups 
between  good  and  not-good  2  resources, and by observing if they presented signifi -
cant differences between them. As the samples did not follow a normal distribution, 
a Mann-Whitney (Wilcoxon) test was performed to evaluate whether the classes 
presented differences between their medians, and a Kolmogorov-Smirnov test was 
applied to evaluate if the classes presented distinct distributions. When both distri-
butions and medians presented signifi cant differences, the metric was considered as 
a potential indicator of quality. The tendency of each metric (whether they infl uence 
negatively or positively the quality of the resource) was observed by comparing the 
median values of the samples. Table  2  presents the metrics that are associated to 
highly rated learning objects and their tendencies for each analyzed subset.

   As it can be seen in Table  2 , the metrics present different associations and ten-
dencies depending on the given subsets. For instance, for the subset  Simulation ∩ 
Science and Technology , seven metrics are positively associated to quality and six 
metrics negatively associated. On the other hand, for the subset of  Simulation ∩ 
Mathematics and Statistics  all metrics associated to quality present positive tenden-
cies and for the subset of  Tutorial ∩ Science and Technology  all metrics associated 
to quality present negative tendencies.  

2   The so-called not-good group was formed by the union of the  average  group and the  poor  group. 

Data Collection

Intrinsic
Metrics

Evaluative
metadata

Statistical Analysis
to find associations Highly-rated

learning
objects profiles

Models for
automated

quality
assessment

Data Mining/
Statistical Methods

Extract
data

Learning Object
Repository

  Fig. 1    Methodology for generating models for automated quality assessment       
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    The Models 

 We created models for automated quality assessment of the resources through Data 
Mining Classifi cation Algorithms (DMCA). Classifi cation algorithms aim to con-
struct models capable of associating each record of a given dataset to a labeled cat-
egory. We have used WEKA [ 15 ] to generate and test models for the classifi cation of 
resources between  good  and  not-good , and among  good ,  average  and  poor  resources 
through the following classifi cation algorithms: J48, SimpleCart, PART, Multilayer 
Perceptron Neural Network and Bayesian Network. Tables  3 ,  4  and  5  present the 
results of these tests. For all tests we have used the same metrics previously identifi ed 
as potential indicators of quality for each subset (Table  2 ).

     Table 2    Signifi cant discriminators and tendencies of the metrics for the good category of the 
selected subsets   

 Metric 

 Simulation ∩ 
science and 
technology 

 Simulation ∩ 
mathematics 
and statistics 

 Tutorial ∩ 
science and 
technology 

 Number of links  –  Y↑  Y↓ 
 Number of unique links  –  Y↑  (Y)↓ 
 Number of internal links  –  (Y)↑  Y↓ 
 Number of unique internal links  –  (Y)↑  (Y)↓ 
 Number of external links  Y↓  –  (Y)↓ 
 Number of unique external links  Y↓  –  – 
 Size of the page (in bytes)  Y↑  (Y)↓ 
 Number of images  (Y)↑  Y↑  – 
 Total size of the images (in bytes)  Y↑  Y↑  – 
 Number of scripts  Y↑  Y↑  – 
 Number of words  –  –  (Y)↓ 
 Number of words that are links  –  –  Y↓ 
 Number of applets  Y↓  –  – 
 Average number of unique internal links  –  –  (Y)↓ 
 Average number of internal links  –  –  Y↓ 
 Average number of unique external links  Y↓  –  – 
 Average number of external links  Y↓  –  (Y)↓ 
 Average number of unique links  –  (Y)↑  Y↓ 
 Average number of links  –  –  Y↓ 
 Average number of applets  Y↓  –  – 
 Average number of images  Y↑  –  – 
 Average size of the pages  Y↑  –  – 
 Average size of the images  Y↑  Y↑  – 
 Average number of scripts  Y↑  (Y)↑  – 
 Total  13  11  13 

   Note : Y stands for both differences (medians and distributions) at the same time. The overall 
 analysis was conducted for a 95 % confi dence level; information in parenthesis means the results 
are signifi cant at the 90 % level. Moreover (↑) stands for a positive contribution and (↓) stands for 
negative contribution  
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     There are several possible criteria for evaluation the good prediction of classifi cation 
models [ 16 ]. Here we selected a few of them to present the results of our analysis. 
In the tables, the column “metrics used by the model” presents the number of metrics 
that were included in the model generated by the given algorithm. The mean absolute 
error (MAE) measures the average deviation between the predicted classes and the true 
classes of the resources. The closer to 0 the MAE, the lower is the error of the predic-
tion and the better the model. The K stands for “Kappa statistic” which is a coeffi cient 
that measures the overall agreement between the data observed and the data 
expected. This coeffi cient varies from −1 to 1, where 1 means total agreement, 0 means 
no agreement, and −1 means total disagreement. At last, the tables also present the 
overall precision of the model and the specifi c precisions for each one of the classes in 
the dataset. We adopted the MAE measure as the main reference of quality for the 
models, i.e., when we mention in this section that a given model is the best for a given 
subset, we mean that this model has presented the minimum MAE among all. In this 
fi rst exploratory study the models were evaluated using the training dataset, i.e., the 
entire dataset was used for training and for evaluating. 

 As it can be seen in the tables, apparently there is no best classifi cation algorithm 
that fi ts for all subsets for the generation of good models. The results vary signifi -
cantly depending on the algorithm used, the subset from which the models were 
generated and the classes of quality included in the datasets. 

    Simulation ∩ Science and Technology 

 Among the three subsets, the models presented (in general) the best results for the 
 Simulation  ∩  Science and Technology  subset. For this subset, the best model was a 
decision tree generated by a J48 algorithm (model number 2 of Table  3 ) which was 
able to correctly classify resources among  good ,  average  and  poor  with an overall 
precision of 89.69 %, and presented a Kappa coeffi cient of 0.83, and a MAE of just 
0.1. The percentages of precision of this model for classifying resources in the spe-
cifi c categories of quality are considerably similar.  Good  resources are classifi ed with 
96.96 % of precision, while  average  and  poor  resources are classifi ed with precisions 
of 84 and 92.85 % respectively. The second and third best models for this subset were 
also focused on classify resources among  good ,  average  and  poor . The second best 
model was a decision tree generated by a Simple Cart algorithm with an overall preci-
sion of 85.57 % (model number 4 of Table  3 ) and the third best model was a set of 
if-then-rules generated by the PART algorithm with an overall precision of 83.51 % 
(model number 6 of Table  3 ). The main difference between these two models 
(in terms of precisions) is that the former presented the worst precision percentages 
for classifying  poor  resources (71.40 %), where the latter presented the worst preci-
sion percentages for classifying  average  resources (72 %). At last, the best results for 
classifying resources between  good  and  not-good  were achieved by the PART algo-
rithm and by a Multilayer Perceptron Neural Network. The PART model achieved 
an overall precision of 76.29 a MAE of 0.28 and Kappa Statistic of 0.38. Moreover, 
it classifi ed  not-good  resources with a precision of 98.43 %, and  good  resources with 
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a precision of only  33.33 %.  The Multilayer Perceptron presented an overall precision 
of 82.47 %, a MAE of 0.29 and a Kappa coeffi cient of 0.58. The drawback of these 
two models is the very low precision for classifying  good  resources.  

    Simulation ∩ Mathematics and Statistics 

 For the  Simulation ∩ Mathematics and Statistics  subset the best model was gener-
ated by the PART algorithm (model 5 of Table  4 ) for classifying resources between 
 good  and  not-good . This model contains a set of 5 if-then-rules that uses 5 from the 
11 metrics identifi ed as possible indicators of quality. It achieved an overall preci-
sion of 80.72 %, a MAE of 0.30 and a Kappa coeffi cient equals to 0.55. Even though 
the overall results can be considered good, the model presents a serious limitation 
for the classifi cation of  good  resources, with only 54.8 % of precision. The second 
best model for this subset is a decision tree generated by the J48 algorithm to clas-
sify resources between  good  and  not-good  (model 1 of the Table  4 ). Here the model 
achieved an overall precision of 74.70, a MAE of 0.36, and a Kappa coeffi cient of 
0.44. The main problem with this model is the fact that it uses just 2 of the 11 pos-
sible indicators of quality. For this subset, all models for classifying resources 
among  good ,  average  and  poor  have completely failed on the classifi cation of the 
 poor  category (presenting 0 % of precision). It is also possible to see that the preci-
sions for classifying  good  and  average  resources in these models are very similar to 
the precisions for classifying  good  and  not-good  resources on the other models.  

    Tutorial ∩ Science and Technology 

 The best model for the subset  Tutorial ∩ Science and Technology  was generated by 
the PART algorithm to classify resources between  good  and  not - good  (model 5 of 
Table  5 ). The model presents an overall precision of 85.54 %, a MAE of 0.24 and a 
Kappa coeffi cient of 0.66. From the 13 metrics identifi ed as quality indicators, the 
model has included only four in the six if-then-rules generated. Moreover, the model 
has a high precision for classifying  not-good  resources (94.5 %), but a low precision 
for classifying  good  resources (67.9 %). The second best model for this subset is a 
decision tree generated by a Simple Cart algorithm that classifi es resources among 
 good ,  average  and  poor  (model 4 of Table  5 ). Here the model uses 5 from the 13 
metrics identifi ed as quality indicators; it has an overall precision of 77.11 %, a 
MAE of 0.24, and a Kappa coeffi cient of 0.64. The model is able to classify  good  
resources with 82.1 % of precision,  average  resources with 83.3 % of precision, and 
 poor  resources with 57.9 % of precision. The third best model is a decision tree 
generated by a J48 algorithm (model 1 of Table  5 ). This model classifi es resources 
between  good  and  not-good  with an overall precision of 84.34 %, a MAE of 0.25, 
and a Kappa coeffi cient of 0.62. The model uses only 3 from the 13 metrics identi-
fi ed as quality indicators. Moreover, similarly to the best model for this subset, this 
model also has a high precision for classifying  not-good  resources (96.4 %) and a 
low precision for classifying  good  resources (60.7 %).   
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    General Considerations at the light of the Results 

 The models normally exclude several of the metrics previously identifi ed as indicators 
of quality. For instance, from the top ten best models for the classifi cation of 
resources between Good and Not-Good, only one has used all metrics included in 
the dataset (a Multilayer Perceptron for the  Simulation  ∩  Science and Technology  
subset) (see Fig.  2 ). The rest of the models have used from just one to fi ve metrics. 
It is also interesting to highlight that it was possible to generate models for all three 
subsets. Moreover, practically all models presented a higher precision for the clas-
sifi cation of  not-good  resources than for  good  resources. Figure  2  presents this last 
observation more clearly. As it can be seen in the fi gure, from the ten best models, 
nine presented better precisions for classifying  not-good  resources and just one—a 
Bayesian Network for the  Simulation  ∩  Science and Technology  subset—presented 
a higher precision for classifying  good  resources than  not-good  ones.

   The best models generated for classifying resources among  good ,  average  and  poor  
achieved lower MAEs and higher Kappa coeffi cients than the models for classifying 
resources between  good  and  not-good . Moreover, as it can be seen in Fig.  3 , the mod-
els here also tend to use more indicators of quality. The main problem found for this 
set of models is the fact that it was not possible to create good models for the subset of 
 Simulation  ∩  Mathematics and Statistics  (all models presented 0.0 % of precision for 

Simple Cart-
Simulation     Mathematics

and Statistics

Bayesian Network-
Simulation     Science

and Technology 

metrics

Good

Not-good

OverallJ48 -
Tutorial     Science and

Technology

J48 -
Simulation     Science and

Technology

J48 -
Simulation     Mathematics

and Statistics

Multilayer Percept -
Simulation     Science and

Technology

100,00

90,00

80,00

70,00

60,00

50,00

40,00

30,00

20,00

10,00

0,00

Simple Cart-
Simulation     Science and

Technology

PART-
Simulation     Mathematics

and Statistics

PART-
Simulation     Science and

Technology

⊃

PART-
Tutorial     Science and

Technology

⊃

⊃
⊃

⊃

⊃

⊃

⊃
⊃

⊃

  Fig. 2    Results of DMCA for  Tutorial  ∩  Science and Technology  in the context of peer-reviews 
ratings thresholds       

 

Towards Automated Evaluation of Learning Resources Inside Repositories



38

classifying  poor  resources). Another important thing to highlight is that the best three 
models presented more balanced precisions for the classifi cation among the different 
classes. However, it is still possible to observe all kinds of models, i.e., those which 
classify more precisely  good  resources, those which classify more precisely  average  
resources, and those which classify more precisely  poor  resources (see Fig.  3 ).

   The results found here point out the possibility of generating models for auto-
mated quality assessment of learning resources inside repositories based on their 
intrinsic metrics. However, as the models are very heterogeneous (different MAEs, 
Kappa coeffi cients, number of metrics used, classifi cation precisions), the decision 
of which one is the best will depend on the combination of several facts such as: the 
specifi c scenario to which the model is going to be applied, the specifi c subset 
(category of discipline versus material type) to which they are being generated for, 
and the classes of quality included in the dataset. Next section will describe another 
experiment towards automated evaluation and that was performed with a slightly 
different methodology and using a broader set of resources and subsets.   

     Second Experiment: Algorithmic Approach 

 For this second experiment we collected (in 2010) a total of 20,582 learning 
resources from MERLOT. From this amount, only 2,076 were peer-reviewed, and 5 
of them did not have metadata regarding the category of discipline or the type of 
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material and were disregarded. Considering that many subsets are formed by very 
small amounts of resources, we restrained our experiment to just a few of them. 
Precisely, we worked with 21 subsets formed by the following types of material: 
 Collection ,  Reference Material ,  Simulation  and  Tutorial , and that had 40 resources 
or more. 3  In total, we worked with information of 1,429 learning resources which 
represent 69 % of the total collected data. Table  6  presents the frequency of the 
materials for each subset used in this study.

   As mentioned before, the methodology we followed for this experiment was 
slightly different from the one described in the previous section. Here we did not 
created statistical profi les of the learning resources, but used all collected metrics as 
input information for the generation and evaluation of models through the use of 
Artifi cial Neural Networks (ANNs). 

 This experiment was conducted with the Neural Network toolbox of Matlab. 
For each subset we randomly selected 70 % of the data for training, 15 % for testing 
and 15 % for validation, as suggested by Xu et al. [ 17 ]. We tested the Marquardt–
Levenberg algorithm [ 18 ] using from 1 to 30 neurons in all tests. In order to obtain 
more statistically signifi cant results (due to the small size of the data samples), each 
test was repeated 10 times and the average results were computed. Differently from 
the previous experiment, the models here were generated to classify resources 
between  good  and  not-good  (we did not tested models to classify resources among 
 good ,  average  and  poor ). 

 The choice of using ANNs rests on the fact that they are adaptive, distributed, 
and highly parallel systems which have been used in many knowledge areas and 
have proven to solve problems that require pattern recognition [ 19 ]. Moreover, 
ANNs are among the types of models that have also shown good precisions for 
some subsets in the previous experiment. At last, this experiment was initially 

3   The diffi culties for training, validating and testing predictive models for subsets with less than 40 
resources would be more severe. 

   Table 6    Frequency of materials for the subsets used in this study (intersection of category of 
discipline and material type)   

 Material 
type/discipline  Arts  Business  Education  Humanities 

 Collection  52  56  43 
 Reference material  83  40  51 
 Simulation  57  63  40  78 
 Tutorial  76  73  93 

 Material type/
discipline 

 Mathematics 
and statistics 

 Science & 
technology  Social sciences 

 Collection  50  80 
 Reference Material  68  102 
 Simulation  40  150 
 Tutorial  48  86 
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focused on populating the repository with hidden internal quality information that 
can be further used by ranking mechanisms [ 20 ], and for such a purpose we could 
use black-box models such as ANNs. 

    Results and Discussion 

 The models presented different results depending on the subset used for training. 
Most of the models tend to classify  not-good  resources better than  good  ones which 
can probably be a result of the uneven amount of resources of each class inside the 
datasets (normally formed by 2/3 of  not-good  and 1/3 of  good ). These tendencies 
can be observed in Fig.  4 . 4 

   The number of neurons used in the construction of the models has different infl u-
ences depending on the subsets. A Spearman’s rank correlation (r s ) analysis was 
carried out to evaluate whether there are associations between the number of neu-
rons and the precisions achieved by the models. This test serves to the purpose of 
observing the pattern expressed by the models on predicting quality for the given 
subsets. For instance, assuming  x  as a predictive model for a given subset  A , and  y  
as a predictive model for a given subset  B ; if  x  has less neurons than  y  and both have 
the same precisions, the patterns expressed in  A  are simpler than the ones expressed 
in  B . This means to say that it is easier to understand what is  good  (or  not-good ) in 
the subset  A . Table  7  shows the results of such analysis.

4   Just some models were presented in the fi gure. 
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   In Table  7  (–) stands for no association between the number of neurons and the 
precision of the model for classifying a given class, (↑) stands for a positive associa-
tion, and (↓) stands for a negative association. The analyses considered a 95 % level 
of signifi cance. As it can be seen in the table, the number of neurons infl uences on 
the precisions for some classes of quality of some subsets. For instance, the number 
of neurons presents a positive association with the precisions for classifying  good  
resources in the 6 (six) following subsets:  Business  ∩  Simulation ,  Business  ∩ 
 Tutorial ,  Education  ∩  Collection ,  Education  ∩  Tutorial ,  Humanities  ∩  Tutorial , and 
 Science & Technology  ∩  Simulation . Moreover, the number of neurons presents a 
negative association with the precisions for classifying  not-good  resources in the 8 
(eight) following subsets:  Arts  ∩  Simulation ,  Business  ∩  Tutorial ,  Education  ∩ 
 Collection ,  Education  ∩  Simulation ,  Education  ∩  Tutorial ,  Education  ∩  Humanities , 
 Science & Technology  ∩  Simulation , and  Science & Technology  ∩  Tutorial . Finally, 
there are no positive associations between the number of neurons and the precisions 
for classifying  not-good  resources; neither there are negative associations between 
the number of neurons and the precisions for classifying  good  resources. 

 In order to evaluate how to select the best models for quality assessment, it is 
necessary to understand the behavior of the models for classifying both classes of 
quality included in the datasets. Considering that, a Spearman’s rank correlation (r s ) 
analysis was also carried out to evaluate whether there are associations between the 
precisions of the models for classifying  good  and  not-good  resources. Such analysis 
serves to evaluate the trade-offs of selecting or not a given model for the present 
purpose. Most of the models have presented strong negative correlations between 
the precisions for classifying  good  and  not-good  resources. The results of both anal-
yses suggest that the decision of selecting a model for predicting quality must take 
into account that, as the precision for classifying resources from one class increases, 
the precision for classifying resources of the other class decreases. Considering that, 
the question lies on establishing which would be the cutting point for acceptable 
precisions so that the models could be used for our purpose. In other words, it is 
necessary to establish the minimum precisions (cutting point) that the models must 
present for classifying both classes ( good  and  not-good ) so that they can be used for 
generating hidden quality information for the repository. 

 For the present study, we are considering that the models must present precisions 
higher than 50 % for the correct classifi cation of  good  and  not-good  resources (simul-
taneously) in order to be considered as useful. It is known that the decision of select-
ing the minimum precisions for considering a model as effi cient or not will depend on 

    Table 7    Tendencies of the precisions according to the number of neurons used for training 
( good | not-good )   

 Subset  Arts  Business  Education  Humanities  Math & statistics  Science & tech 

 Collection  – | –  ↑ | ↓  – | –  – | –  – | – 
 Reference material  – | –  – | –  – | ↓  – | –  – | – 
 Simulation  – | ↓  ↑ | –  – | ↓  – | –  – | –  ↑ | ↓ 
 Tutorial  ↑ | ↓  ↑ | ↓  ↑ | –  – | –  – | ↓ 
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the specifi c scenario/problem for which the models are being developed for. Here we 
are considering that precisions higher than 50 % are better than the merely random. 

 Table  8  presents the top-2 models for each subset considering their overall 
precisions, and their precisions for classifying  good  and  not-good  resources (ordered 
by the precision for classifying  good  resources).

   In Table  8 , N stands for the number of neurons in the model, OP stands for the 
overall precision, G for the precision for classifying good resources and NG for the 
precision for classifying not-good resources. As it can be seen in the table, and con-
sidering the established minimum cutting-point, it was possible to generate models 
for almost all subsets. From the 42 models presented in the table, only 10 did not 
reach the minimum precisions (white in the table). Moreover, 22 of them presented 
precisions between 50 and 59.90 % (gray hashed in the table), and nine presented 
both precisions higher than 60 % (black hashed in the table). We have also found 1 
(one) model with precisions higher than 70 % (for  Humanities ∩ Simulation ). The 
only three subsets where the models did not reach the minimum precisions were: 
 Business ∩ Tutorial ,  Education ∩ Collection  and  Education ∩ Tutorial . On the other 
hand, the best results were found for:  Humanities ∩ Simulation, Mathematics ∩ 
Tutorial, Humanities ∩ Collection, Business ∩ Simulation ,  Arts ∩ Simulation  and 
 Business ∩ Collection.  One of the possible reasons why it was not feasible to generate 
good models for all subsets may rest on the fact that the real features associated to 
quality on those given subsets might not have been collected by the crawler. 

    Table 8       Two best models for each subset (ordered by the precisions for classifying  good  resources)      

  Subset    N    OP    G    NG    Subset    N    OP    G    NG  

  Arts ∩ Simulation   16  0.65  0.61  0.70   Business ∩ 
Collection  

 11  0.56  0.61  0.60 
 25  0.55  0.56  0.54  25  0.57  0.60  0.59 

  Business ∩ Reference   8  0.58  0.54  0.59   Business ∩ 
Simulation  

 24  0.64  0.67  0.60 
 5  0.59  0.53  0.68  30  0.57  0.62  0.55 

  Business ∩ Tutorial   23  0.61  0.40  0.72   Education ∩ 
Collection  

 26  0.51  0.6  0.49 
 29  0.59  0.38  0.71  29  0.51  0.6  0.44 

  Education ∩ Reference   16  0.60  0.63  0.70   Education ∩ 
Simulation  

 20  0.52  0.62  0.5 
 20  0.58  0.54  0.71  12  0.53  0.59  0.56 

  Education ∩ Tutorial   27  0.47  0.49  0.47   Humanities ∩ 
Collection  

 14  0.6  0.75  0.51 
 29  0.53  0.43  0.61  19  0.63  0.69  0.68 

  Humanities ∩ 
Reference Mat.  

 29  0.47  0.59  0.49   Humanities ∩ 
Simulation  

 4  0.69  0.76  0.69 
 10  0.58  0.5  0.65  9  0.79  0.75  0.79 

  Humanities ∩ Tutorial   25  0.56  0.60  0.58   Math.& Statistics ∩ 
Collection  

 28  0.5  0.61  0.54 
 21  0.51  0.59  0.54  27  0.49  0.57  0.46 

  Math. ∩ Reference Mat.   22  0.63  0.54  0.72   Math.& Statistics ∩ 
Simulation  

 14  0.81  0.63  0.93 
 18  0.53  0.48  0.60  3  0.88  0.57  1 

  Mathematics ∩ Tutorial   26  0.69  0.79  0.64   Science & Tech. ∩ 
Collection  

 17  0.58  0.60  0.54 
 25  0.70  0.77  0.61  3  0.56  0.54  0.60 

  Science & Tech. ∩ 
Reference Mat.  

 19  0.59  0.63  0.56   Science & Tech. ∩ 
Simulation  

 29  0.57  0.58  0.61 
 16  0.55  0.58  0.58  19  0.58  0.52  0.62 

  Science & Tech. ∩ 
Tutorial  

 28  0.64  0.50  0.72 
 14  0.56  0.45  0.61 
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 In order to select the most suitable model one should take into consideration that 
the model’s output is going to be used as information during the ranking process, 
and to evaluate the advantages and drawbacks of a lower precision for classifying 
 good  resources in contraposition to a lower precision for classifying  not-good  
resources. The less damaging situation seems to occur when the model classifi es as 
 not-good  a  good  material. In this case,  good  materials would just remain hidden in 
the repository, i.e., in bad ranked positions (a similar situation to the one of not 
using the models). On the other hand, if the model classifi es as  good  a resource that 
is  not-good , it is most likely that this resource will be put at a higher rank position, 
thus increasing its chances of being accessed by the users. This would mislead the 
user towards the selection of a “not-so-good” quality resource, and it could put in 
discredit the ranking mechanism.   

     Conclusions and Outlook 

 It is known that LORs normally use evaluative information to rank resources during 
the process of search and retrieval. However, the amount of resources inside LORs 
increases more rapidly than the number of contributions given by the community of 
users and experts. Because of that, many LOs that do not have any quality evalua-
tion receive bad rank positions even if they are of high-quality, thus remaining 
unused (or unseen) inside the repository until someone decides to evaluate it. 

 The present chapter presented two experiments that used intrinsic features of 
the resources in order to generate models for their automated quality assessment. 
For that, we collected information from MERLOT and used the ratings associated 
to the resources as baseline for the creation of classes of quality. 

 In the fi rst experiment we tested the generation of automated models through 
the creation of statistical profi les and the further use of data mining classifi cation 
algorithms for three distinct subsets of MERLOT materials. On these studies we 
were able to generate models with good overall precision rates (up to 89 %) but we 
highlighted that the feasibility of the models will depend on the specifi c method used 
to generate them, the specifi cs subsets to which they are being generated for, and the 
classes of quality included in the dataset. Moreover, the models were generated by 
using considerably small datasets (around 90 resources each), and were evaluated 
using the training dataset, i.e., the entire dataset was used for training and for evaluat-
ing. Such kind of evaluation is always too optimistic and is susceptible to over fi tting 
(i.e. the model just memorizes the data and can fail to predict well in the future). 

 In the second experiment we used all collected intrinsic features as input infor-
mation for the generation of models represented by Artifi cial Neural Networks. 
We also changed the method for the evaluation of the models in order to better deal 
with the small amount of resources in the samples and to avoid over fi tting. Among 
other good results, one can mention the model for  Humanities ∩ Simulation  that is 
able to classify  good  resources with 75 % of precision and  not-good  resources with 
79 %; and the model developed for  Mathematics ∩ Tutorial  with 79 % of precision 
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for classifying  good  resources and 64 % for classifying  not-good  ones. As the models 
would be used inside repository and the classifi cations would serve just as input 
information for searching mechanisms, it is not necessarily required that the models 
provide explanations about their reasoning. Models constituted of neural networks 
(as the one tested in the present study) can perfectly be used in such a scenario. 

 The models developed here could be used to provide internal quality information 
for those LOs still not evaluated, thus helping the repository in the stage of offering 
resources. Resources recently added to the repository would be highly benefi ted by 
such models since that they hardly receive any assessment just after their inclusion. 
Once the resource fi nally receives a formal evaluation from the community of the 
repository, the initial implicit quality information provided by the model could be 
disregarded. Moreover, this “real” rating could be used as feedback information so 
that the effi ciency of the models could be analyzed, i.e. to evaluate whether or not 
the users agree with the models decisions. 

 Future work will try to include more metrics still not implemented, such as, for 
instance, the number of colors and different font styles, the existence of adds, the 
number of redundant and broken links, and some readability measures (e.g. Gunning 
Fog index and Flesch-Kincaid grade level). We would also like to repeat the experi-
ments, but now using the same method to train and evaluate the models so that we 
can compare the results of these two approaches. Besides, as pointed out by Cechinel 
and Sánchez-Alonso [ 21 ], both communities of evaluators in MERLOT (users and 
peer-reviewers) are communicating different views regarding the quality of the 
learning objects refereed in the repository. The models tested here are related to the 
perspective of quality given by peer-reviewers. Future work will test models created 
with the ratings given by the community of users and will compare their perfor-
mances with the present study. Moreover, as the present work is context sensitive, it 
is important to evaluate whether this approach can be extended to other repositories. 
As not all repositories adopt the same kind of quality assurance that MERLOT does, 
alternative quality measures for contrasting classes between  good  and  not-good  
resources must be found. Another interesting possible direction is to classify learning 
resources according to their granularity, and use this information as input for the 
generation of the models. At last, we could use the values calculated by the models for 
all the resources and compare the ranking of MERLOT with the ranking performed 
through the use of these “artifi cial” quality information. 

 It is important to mention that the present approaches do not intend to replace 
traditional evaluation methods, but complement them providing a useful and inex-
pensive quality assessment that can be used by the repositories before more time 
and effort consuming evaluation is performed.     

  Acknowledgments   The work presented here has been partially funded by the European 
Commission through the project IGUAL (  www.igualproject.org    )—Innovation for Equality in Latin 
American University (code DCIALA/19.09.01/10/21526/245-315/ALFAIII (2010)123) of the 
ALFA III Programme, by Spanish Ministry of Science and Innovation through project MAVSEL: 
Mining, data analysis and visualization based in social aspects of e- learning (code TIN2010-
21715-C02-01) and by CYTED (Ibero-American Programme for Science, Technology and 
Development) as part of project “RIURE - Ibero-American Network for the Usability of Learning 
Repositories “ (code 513RT0471).  

C. Cechinel et al.

http://www.igualproject.org/


45

   References 

    1.   Vuorikari R, Manouselis N, Duval E (2008) Using metadata for storing, sharing and reusing 
evaluations for social recommendations: the case of learning resources. Social information 
retrieval systems: emerging technologies and applications for searching the web effectively. 
Idea Group, Hershey, PA, pp 87–107  

    2.    Ochoa X, Duval E (2009) Quantitative analysis of learning object repositories. IEEE Trans 
Learn Technol 2(3):226–238  

    3.    Ochoa X, Duval E (2008) Relevance ranking metrics for learning objects. IEEE Trans Learn 
Technol 1(1):34–48. doi:  10.1109/TLT.2008.1    ,   http://dx.doi.org/      

    4.    Sanz-Rodriguez J, Dodero J, Sánchez-Alonso S (2010) Ranking learning objects through inte-
gration of different quality indicators. IEEE Trans Learn Technol 3(4):358–363. doi:  10.1109/
TLT.2010.23      

    5.    Cechinel C, Sánchez-Alonso S, Sicilia M-Á (2009) Empirical analysis of errors on human- 
generated learning objects metadata. In: Sartori F, Sicilia MÁ, Manouselis N (eds) Metadata 
and semantic research, vol 46, Communications in computer and information science. 
Springer, Berlin, pp 60–70. doi:  10.1007/978-3-642-04590-5_6      

        6.    Cechinel C, Sánchez-Alonso S, García-Barriocanal E (2011) Statistical profi les of highly- rated 
learning objects. Comput Educ 57(1):1255–1269. doi:  10.1016/j.compedu.2011.01.012      

    7.    Cechinel C, Silva Camargo S, Sánchez-Alonso S, Sicilia M-Á (2012) On the search for intrin-
sic quality metrics of learning objects. In: Dodero J, Palomo-Duarte M, Karampiperis P (eds) 
Metadata and semantics research, Communications in computer and information science. 
Springer, Berlin, pp 49–60. doi:  10.1007/978-3-642-35233-1_5      

    8.   Meyer M, Hannappel A, Rensing C, Steinmetz R (2007) Automatic classifi cation of didactic 
functions of e-learning resources. Paper presented at the Proceedings of the 15th international 
conference on multimedia, Augsburg, Germany  

    9.    Mendes E, Hall W, Harrison R (1998) Applying metrics to the evaluation of educational hyper-
media applications. J Univers Comput Sci 4(4):382–403. doi:  10.3217/jucs-004-04-0382      

    10.   Blumenstock JE (2008) Size matters: word count as a measure of quality on Wikipedia. Paper 
presented at the Proceedings of the 17th international conference on World Wide Web, Beijing, 
China  

    11.   Stvilia B, Twidale MB, Smith LC, Gasser L (2005) Assessing information quality of a 
community- based encyclopedia. In: Proceedings of the international conference on informa-
tion quality – ICIQ 2005, pp 442-454. Doi:citeulike-article-id:1833325  

     12.   Ivory MY, Hearst MA (2002) Statistical profi les of highly-rated web sites. Changing our 
world, changing ourselves. Paper presented at the proceedings of the SIGCHI conference on 
Human factors in computing systems, Minneapolis, MA, 2002  

    13.   Nesbit JC, Belfer K, Leacock T (2003) Learning object review instrument (LORI). E-learning 
research and assessment network.   http://www.elera.net/eLera/Home/Articles/LORI%20manual      

    14.    García-Barriocanal E, Sicilia M-Á (2009) Preliminary explorations on the statistical profi les of 
highly-rated learning objects. In: Sartori F, Sicilia MÁ, Manouselis N (eds) Metadata and 
semantic research, vol 46, Communications in computer and information science. Springer, 
Berlin, pp 108–117. doi:  10.1007/978-3-642-04590-5_10      

    15.    Hall M, Frank E, Holmes G, Pfahringer B, Reutemann P, Witten IH (2009) The WEKA data 
mining software: an update. SIGKDD Explor Newsl 11(1):10–18. doi:  10.1145/1656274.1656278      

    16.    Cichosz P (2011) Assessing the quality of classifi cation models: performance measures and 
evaluation procedures. Cent Eur J Eng 1(2):132–158. doi:  10.2478/s13531-011-0022-9      

    17.   Xu L, Hoos HH, Leyton-Brown K (2007) Hierarchical hardness models for SAT. Paper 
presented at the Proceedings of the 13th international conference on principles and practice of 
constraint programming, Providence, RI  

    18.    Hagan MT, Menhaj MB (1994) Training feedforward networks with the Marquardt algorithm. 
IEEE Trans Neural Netw 5(6):989–993. doi:  10.1109/72.329697      

    19.    Bishop CM (2006) Pattern recognition and machine learning, Information Science and 
Statistics. Springer, New York  

Towards Automated Evaluation of Learning Resources Inside Repositories

http://dx.doi.org/10.1109/TLT.2008.1
http://dx.doi.org/
http://dx.doi.org/10.1109/TLT.2010.23
http://dx.doi.org/10.1109/TLT.2010.23
http://dx.doi.org/10.1007/978-3-642-04590-5_6
http://dx.doi.org/10.1016/j.compedu.2011.01.012
http://dx.doi.org/10.1007/978-3-642-35233-1_5
http://dx.doi.org/10.3217/jucs-004-04-0382
http://www.elera.net/eLera/Home/Articles/LORI%20manual
http://dx.doi.org/10.1007/978-3-642-04590-5_10
http://dx.doi.org/10.1145/1656274.1656278
http://dx.doi.org/10.2478/s13531-011-0022-9
http://dx.doi.org/10.1109/72.329697


46

    20.   Cechinel C, Camargo SdS, Ochoa X, Sánchez-Alonso S, Sicilia M-Á (2012a) Populating 
learning object repositories with hidden internal quality information. In: Manouselis N, 
Drachsler H, Verbert K, Santos OC (eds) Recommender systems in technology enhanced 
learning, CEUR workshop proceedings, Saarbrücken, pp 11–22  

    21.    Cechinel C, Sánchez-Alonso S (2011) Analyzing associations between the different ratings 
dimensions of the MERLOT repository. Interdisciplinary Journal of E-Learning and Learning 
Objects 7:1–9    

C. Cechinel et al.



http://www.springer.com/978-1-4939-0529-4


	Towards Automated Evaluation of Learning Resources Inside Repositories
	Introduction
	 Background
	 Data Collection
	Classes of Quality

	 First Experiment: Statistical Profiles of Highly-Rated Resources
	The Models
	Simulation ∩ Science and Technology
	 Simulation ∩ Mathematics and Statistics
	 Tutorial ∩ Science and Technology

	 General Considerations at the light of the Results

	 Second Experiment: Algorithmic Approach
	Results and Discussion

	 Conclusions and Outlook
	References


