Preface

Medical imaging is today an integrated part of the healthcare continuum, supporting
early disease detection, diagnosis, therapy, monitoring, and follow-up. Images of
the human body help in estimating the organ anatomy and function, reveal clues
indicating the presence of disease, or help in guiding treatment and interventions.
All these benefits are achieved by extracting and quantifying the medical image
content, answering questions such as: “Which part of the 3D image represents the
heart and what is the ejection fraction?”, “What is the volume of the liver”, “Which
are the axillary lymph nodes with a diameter larger than 10 mm?”, “Is the artificial
heart valve being positioned at the right location, with the right angulation?”

With the continuous increase in the spatial and temporal resolution, the infor-
mational content of images increases, contributing to new clinical benefits. While
most of the content extraction, quantification, and decision making are guided and
validated by the clinicians, computer-based image systems benefit from efficient
algorithms and exponential increase in computational power. Thus, they play an
important role in analyzing the image data, performing tasks such as identifying the
anatomy or measuring a certain body function.

Systems based on machine learning have recently opened new ways to extract
and interpret the informational content of medical images. Such systems learn from
data through a process called training, thus developing the capability to identify,
classify, and label the image content.

Learning systems have been initially applied to nonmedical images for two-
dimensional (2D) object detection problems such as face detection, pedestrian or
vehicle detection in 2D images, and video sequences. In these methods, object
detection or localization is formulated as a classification problem: whether an image
block contains the target object or not. The robustness of the methods comes from
the exhaustive search with the trained classifier during object detection on an input
image. The object pose parameter space is first quantized into a set of discrete
hypotheses covering the entire space. Each hypothesis is tested by a trained classifier
to get a detection score and the hypotheses with the highest score are taken as the
detection output. In a typical setting, only three pose parameters are estimated, the
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position (X and Y) and isotropic scale (S), resulting in a three-dimensional search
space and a search problem of relatively low complexity.

On the other hand, most of the medical imaging data used in clinical practice
are volumetric and three-dimensional (3D). Computed tomography, C-Arm X-Ray,
magnetic resonance, ultrasound, and nuclear imaging create 3D representations of
the human body. To accurately localize a 3D object, one needs to estimate nine
pose parameters: three for position, three for orientation, and three for anisotropic
scaling. However, a straightforward extension of a 2D object detection method to
3D is not practically possible due to the exponential increase in the computation
needs attributed to exhaustive search. How do we solve this problem? What kind of
learning strategy would help to perform efficient search in a nine-dimensional pose
parameter space?

This book presents a generic learning-based method for efficient 3D object
detection called Marginal Space Learning (MSL). Instead of exhaustively searching
the original nine-dimensional pose parameter space, only low-dimensional marginal
spaces are searched in MSL to improve the detection speed.

We split the estimation into three steps: position estimation, position-orientation
estimation, and position-orientation-scale estimation. First, we train a position
estimator that can tell us if a position hypothesis is a good estimate of the target
object position in an input volume. After exhaustively searching for the position
marginal space (three-dimensional), we preserve a small number of position candi-
dates with the largest detection scores. Next, we perform joint position-orientation
estimation with a trained classifier that answers if a position-orientation hypothesis
is a good estimate. The orientation marginal space is exhaustively searched for each
position candidate preserved after position estimation. Similarly, we only preserve
a limited number of position-orientation candidates after this step. Finally, the scale
parameters are searched in the constrained space in a similar way.

Since after each step we only preserve a small number of candidates, a large
portion of search space with low posterior probability is pruned efficiently in the
early steps. Complexity analysis shows that MSL can reduce the number of testing
hypotheses by six orders of magnitude, compared to the exhaustive full space search.
Since the learning and detection are performed in a sequence of marginal spaces, we
call the method Marginal Space Learning (MSL).

As it will be shown in this book, the MSL has been applied to detect multiple
2D/3D anatomical structures in the major medical imaging modalities. Several key
techniques have later been proposed to further improve its detection speed and
accuracy: Constrained MSL to exploit the strong correlation existing among pose
parameters in the same marginal spaces; Iterated MSL to detect multiple instances
of the same object type in a volume; Hierarchical MSL to improve the robustness
by performing learning/detection on a volume pyramid; Joint spatio-temporal MSL
to detect the trajectory of a landmark in a volume sequence.

With these improvements, we can reliably detect a 3D anatomical structure with
a speed of 0.1-0.5 s/volume on an ordinary personal computer (3.2 GHz duo-core
processor and 3 GB memory) without the use of special hardware such as graphics
processing units.
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The MSL can also be applied to generate accurate shape initialization for the seg-
mentation of a nonrigid anatomical structure. To further improve the initialization
accuracy, the MSL has been extended to directly estimate the nonrigid deformation
parameters in combination with a learning-based boundary detector that guides the
boundary evolution.

Several practical anatomy segmentation systems have been built and evaluated
at multiple clinical sites. Examples include four-chamber heart segmentation,
liver segmentation, and aorta segmentation. At the time of publication they all
outperformed the state of the art in both speed and accuracy.

This book is for students, engineers, and researchers with interest in medical
image analysis. It can also be used as a reference or supplementary material for
related graduate courses. Preliminary knowledge of machine learning and medical
imaging is needed to understand the content of the book.

Princeton, NJ, USA Yefeng Zheng
Dorin Comaniciu
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