
Chapter 2
Marginal Space Learning

2.1 Introduction

Automatic detection of an anatomical structure (object) in medical images is a
prerequisite for subsequent tasks such as recognition, segmentation, measurement,
or motion tracking, and therefore has numerous applications. The goal of the
detection is to estimate the position, orientation, and size of the target anatomical
structure. The pose parameters can be represented as an oriented bounding box (to
distinguish from an axis-aligned bounding box).

Recently, discriminative learning based approaches have been proved to be
efficient and robust to detect 2D objects [14,31]. In these methods, object detection
is formulated as a classification problem: whether an image window contains the
target object or not [31]. During object detection, the pose parameter space is
quantized into a large set of discrete hypotheses and each hypothesis is tested by
a trained classifier to get a detection score. The hypotheses with the highest score
are taken as the detection results. Exhaustive search for the best hypothesis makes
the system robust under local optima. This search strategy is quite different from
other parameter estimation approaches, such as deformable models, where an initial
estimate is adjusted using the gradient descent techniques to optimize a predefined
objective function.

There are two challenges to extend learning based object detection approaches
to 3D. First, the number of hypotheses increases exponentially with respect to the
dimensionality of the parameter space. Although the dimensionality of the image
space only increases by one from 2D to 3D, the dimensionality of the pose parameter
space increases from 5 to 9. For 2D object detection, there are five unknown
parameters to be estimated or searched for from an input image, namely, translation
in two directions, one rotation angle, and two scales. For 3D object detection, there
are nine degrees of freedom for the anisotropic similarity transformation, namely
three translation parameters, three rotation angles, and three scales. Note that the
ordinary similarity transformation defines only isotropic scaling, corresponding to
one scale parameter. However, to better cope with nonrigid deformations of the
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target object, we use anisotropic scales. The number of hypotheses is an exponential
function of the dimensionality of the pose parameter space. If each dimension is
quantized to n discrete values, the number of hypotheses is n9. For a very coarse
estimation with n = 10, n9 =1,000,000,000 for 3D instead of n5 =100,000 for 2D.
As a result, the computational demands for the 3D case present a challenge to the
current desktop computers, to provide the testing results in a reasonable time. Even
a five dimensional pose parameter space for a 2D object is already too large to
achieve real-time performance. Note that for the 2D face detection example in [31],
they only searched a three dimensional pose parameter space, two dimensions for
position and one dimension for isotropic scaling, by constraining the face in an
up-straight front view with a fixed aspect ratio.

The second challenge of extending the learning based object detection to 3D
is that we need efficient features to search the orientation space. To perform a
classification to an orientation hypothesis, the image features should be a function of
the orientation hypothesis. Since we want to explicitly estimate the orientation of an
object, rotation invariant features cannot be applied. There are two ways to embed
the orientation information into image features, rotating either the feature template
or the volume. Haar wavelet features can be efficiently computed under translation
and scaling using the integral images [24, 31], but no efficient ways are available to
rotate the Haar wavelet features. For 2D object detection, there is only one degree
of freedom in rotation. It is possible to discretize orientation into a small number of
categories, e.g., 10◦ of incremental rotation in [0, 360◦), resulting in 36 orientations.
The input image is rotated accordingly for each orientation category to generate a
set of rotated images. A detector is trained under one fixed orientation and is applied
to all the rotated images to detect an object with different orientations [8]. However,
a 3D volume contains much more data; therefore, it is very time consuming to rotate
the volume. The computation time to rotate a volume with 512×512×512 voxels is
equivalent to rotate 512 images each with 512×512 pixels. Furthermore, there are
three degrees of freedom in 3D rotations. To cover the full orientation space with
a sampling resolution of 9.72◦, we need 7416 discrete orientation hypotheses [18].
Since volume rotation is time consuming, it is impractical to perform thousands of
volume rotations for orientation estimation.

This chapter presents solutions to the two challenges discussed above. First, it
introduces an efficient 3D learning-based object detection method, called Marginal
Space Learning (MSL). The idea of MSL is to avoid learning in the full similarity
transformation space by incrementally learning classifiers in marginal spaces of
lower dimensions. The estimation of an object’s pose is split into three problems:
position estimation, position-orientation estimation, and position-orientation-scale
estimation. This incremental learning approach contributes to a highly efficient
object detection paradigm. Second, we introduce the steerable features, as a
mechanism to search the orientation space, thus avoiding expensive volume/image
rotations. The idea is to sample points (voxels) from a given volume under a
sampling pattern that embeds the position, orientation, and scale information of a
pose hypothesis. Each sample point is associated with a set of local features such
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as local intensity and gradient. The efficiency of steerable features comes from
the fact that much fewer points (defined by the sampling pattern) are needed for
manipulation, in comparison to the whole volume.

The remainder of this chapter is organized as follows. In Sect. 2.2, we present
the whole MSL workflow, including the derivation of the pose parameter ground
truth from a training set with annotated meshes, training of each individual
pose parameter estimator, and aggregation of multiple pose candidates to achieve
a consolidated estimate of the object. We then discuss implementation details,
introducing 3D image features in Sect. 2.3 and the Probabilistic Boosting-Tree
(PBT) classifier in Sect. 2.4. In Sect. 2.5, we use automatic 3D heart chamber
detection in CT volumes as an example to demonstrate the efficiency and robustness
of MSL. In Sect. 2.6, we extend the MSL principle to directly estimate nonrigid
deformation parameters to further improve the shape initialization accuracy for
nonrigid object segmentation. In Sect. 2.7, we provide theoretical justifications of
MSL and link it to the shortest path computation in graph search. The MSL is shown
to be an efficient breadth-first beam search in the posterior probability of the pose
parameter space. This chapter concludes with Sect. 2.8.

2.2 3D Object Detection Using Marginal Space Learning

For an in-depth understanding of this section, we refer the reader to earlier learning
based object detection publications [14, 29, 31].

2.2.1 Derivation of Object Pose Ground Truth From Mesh

To train object detection classifiers, we need a set of 3D volumes, called the training
set. The volumes in the training set are typically converted to a low isotropic
resolution (e.g., 3 mm). For each volume, we need a nine dimensional vector of
the ground truth about the position, orientation, and size of the target object in
the volume. These nine pose parameters can be visually represented as a bounding
box of the object. In some applications, the pose parameters are readily available
from the annotation of the image data. This is especially common for 2D object
detection since it is easy to draw a bounding box of the target object. However,
drawing a 3D bounding box aligned with the orientation of the 3D object is not
trivial. It is more convenient to annotate a few landmarks of the object and derive
a box from the landmarks. Alternatively, since in many applications, the accurate
object segmentation is the ultimate goal, a 3D surface mesh is annotated by experts
for each volume in the training set, either manually or semi-automatically. In the
following, we present an ad-hoc method to derive the 3D pose parameters/bounding
box of a surface mesh. This is an intuitive solution, but by no means optimal.
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In Chap. 6, we present a more theoretically founded solution to derive optimal nine
pose parameters from a set of 3D meshes to minimize the mesh initialization error
after pose estimation.

The object orientation cannot be easily derived from a 3D mesh. Different
methods are often demanded to define the orientation of different target objects.
Many anatomies have an intrinsic, well-accepted orientation definition. For exam-
ple, the orientation of the heart chambers, defined by the long axis and short axis,
is documented in detail by the echocardiography community [17]. In the heart
chamber segmentation application [33, 34], we use the long axis of a chamber as
the z axis. The perpendicular direction from a predefined anchor point to the long
axis defines axis x. For different chambers, we have freedom to select the anchor
point, as long as it is consistent. For example, for the left ventricle, we can use the
aortic valve center as the anchor point. The third axis y is the cross-product of axes
z and x. A 3×3 rotation matrix R is determined using the x, y, and z axis as the first,
second, and last column of R, respectively. An orientation hypothesis is represented
as three Euler angles, ψ t , φ t , and θ t , which can be derived from the rotation matrix
R using the following relationship

R =

⎡
⎣

cosψ cosφ − cosθ sinφ sinψ cosψ sinφ + cosθ cosφ sinψ sinψ sinθ
−sinψ cosφ − cosθ sinφ cosψ −sinψ sinφ + cosθ cosφ cosψ cosψ sinθ

sinθ sinφ −sinθ cosφ cosθ

⎤
⎦ . (2.1)

We then calculate a bounding box aligned with the object-oriented local coordinate
system for the mesh points. The bounding box center gives us the position ground
truth Xt , Y t , and Zt , and the box size along each side defines the ground truth of
scaling St

x, St
y, and St

z, respectively.
For object segmentation, we also need to calculate the mean shape from the

training set so that after object pose estimation we can align the mean shape
to get an initial estimate of the true shape. For a target object, using the above
bounding box based method, we calculate its position (T = [X ,Y,Z]′), orientation
(represented as a rotation matrix R), and anisotropic scaling (S = [Sx,Sy,Sz]

′).
We then transform each point from the world coordinate system, Mworld , to the
object-oriented coordinate system, mob ject , and calculate the average over the whole
training set to get a mean shape. Here, we assume that the training shapes have
intrinsic mesh point correspondence, namely, each mesh has the same number
of points and the same point index in different meshes corresponds to the same
anatomy. The transformation between Mworld and mob ject is

Mworld = R

⎡
⎣

Sx 0 0
0 Sy 0
0 0 Sz

⎤
⎦mob ject +T. (2.2)

Reversing the transformation, we can calculate the position in the object-oriented
coordinate system as
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mob ject =

⎡
⎢⎣

1
Sx

0 0

0 1
Sy

0

0 0 1
Sz

⎤
⎥⎦R−1 (Mworld −T) . (2.3)

The mean shape is the average over the whole training set

m =
1
N

N

∑
i=1

mi
ob ject , (2.4)

where N is the number of training samples.

2.2.2 Principle of Marginal Space Learning

Figure 2.1 shows the basic idea of machine learning based 3D object detection.
First, we train a classifier, which assigns a score in the range [0, 1] to each input
hypothesis about the object pose. We then quantize the full pose parameter space
into a large number of hypotheses. Depending on the quantization resolution, the
number of hypotheses can easily reach an order over 1 billion. Each hypothesis
is tested with the classifier to get a score. Based on the classification scores, we
select the best one or several hypotheses. We may need to aggregate multiple best
hypotheses into a final single detection result. Unlike the gradient based search in
deformable models or Active Appearance Models (AAM) [4], the classifier in this
framework acts as a black box without an explicit closed-form objective function.

As we discussed, one drawback of the learning based approach is that the number
of hypotheses increases exponentially with respect to the dimensionality of the
parameter space. Nevertheless, in many applications, the posterior distribution is
clustered in a small region in the high dimensional parameter space. Therefore, the
uniform and exhaustive search is not necessary and wastes the computational power.

The MSL is an efficient method to partition such parameter space, by gradually
increasing the dimensionality of the search space. Let Ω be the space where the
solution to the given problem exists and let PΩ be the true probability distribution
that needs to be learned. The learning and computation are performed in a sequence
of marginal spaces

Ω1 ⊂ Ω2 ⊂ . . .⊂ Ωn = Ω (2.5)

such that Ω1 is a low dimensional space (e.g., three-dimensional translation
instead of nine-dimensional similarity transformation), and for each k, dim(Ωk)−
dim(Ωk−1) is small. A search in the marginal space Ω1 using the learned probability
model finds a subspace Π1 ⊂ Ω1 containing the most probable values and discards
the rest of the space. The restricted marginal space Π1 is then extended to Π e

1 =
Π1 ×X1 ⊂ Ω2. Another stage of learning and testing is performed on Π e

1 obtaining
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Fig. 2.1 The basic idea of a machine learning based 3D object detection. (a) A trained classifier
assigns a score to a pose hypothesis. (b) The pose parameter space is quantized into a large number
of discrete hypotheses and the classifier is used to select the best hypotheses through exhaustive
search. (c) A few pose hypotheses of the left ventricle (represented as boxes) embedded in a CT
volume. c©2008 IEEE. Reprinted, with permission, from Zheng, Y., Barbu, A., Georgescu, B.,
Scheuering, M., Comaniciu, D.: Four-chamber heart modeling and automatic segmentation for 3D
cardiac CT volumes using marginal space learning and steerable features. IEEE Trans. Medical
Imaging 27(11), 1668–1681 (2008)
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Fig. 2.2 Marginal space learning to search the peaks of the joint distribution p(x,y). A classifier
trained on a marginal distribution p(y) can quickly eliminate a large portion (regions 1 and 3)
of the search space. Another classifier is then trained on a restricted space (region 2) for the
joint distribution p(x,y). c©2008 IEEE. Reprinted, with permission, from Zheng, Y., Barbu, A.,
Georgescu, B., Scheuering, M., Comaniciu, D.: Four-chamber heart modeling and automatic
segmentation for 3D cardiac CT volumes using marginal space learning and steerable features.
IEEE Trans. Medical Imaging 27(11), 1668–1681 (2008)

a restricted marginal space Π2 ⊂ Ω2 and the procedure is repeated until the full
space Ω is reached. At each step, the restricted space Πk is one or two orders of
magnitude smaller than Πk−1 ×Xk. This results in a very efficient algorithm with
minimal loss in performance.

Figure 2.2 illustrates a simple example for 2D space search. A classifier trained
on p(y) can quickly eliminate a large portion of the search space. We can then train
a classifier in a much smaller region (region 2 in Fig. 2.2) for the joint distribution
p(x,y). Note that MSL is significantly different from a classifier cascade [31]. In a
cascade the learning and search are performed in the same space while for MSL the
learning and search space is gradually increased.

Detection
Result

Input
Image

Object detection using marginal space learning

Position
Estimation

Position-
Orientation
Estimation

Position-
Orientation-Scale

Estimation

Aggregate
Multiple

Candidates

Fig. 2.3 Diagram for 3D object detection using marginal space learning

Let us describe now the general idea of the MSL for 3D object detection. As
shown in Fig. 2.3, we split 3D object detection into three steps: position estima-
tion, position-orientation estimation, and position-orientation-scale estimation. The
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searching order of the subspaces is based on the following considerations. The
position of the object in a volume is the most important information, so it should be
determined first. The orientation specifies a local object-oriented coordinate system
and the scale of the object is defined along the axes of the coordinate system. Since
the scale is defined based on a specified orientation, it is estimated after orientation.
After each step we keep a limited number of candidates to reduce the search space.

Besides significantly reducing the search space, another advantage of the MSL
is that we can use different features or learning methods to estimate the pose
parameters in each step. For example, in position estimation, since we treat rotation
as an intra-class variation, we can use the efficient 3D Haar wavelet features. In
the following steps of position-orientation estimation and position-orientation-scale
estimation, we use steerable features, which are efficient to calculate under rotations.
Although in our experiments, the same classifier, i.e., the Probabilistic Boosting-
Tree (PBT) classifier [28], is used for all estimation steps, it is possible to use
different classifiers for different steps.

2.2.3 Training of Position Estimator

To train a classifier, we need to split hypotheses into two groups, positive and
negative, based on their distance to the ground truth. The error in object position and
scale estimation is not comparable with that of orientation estimation. Therefore, a
search-step-normalized distance measure is defined by normalizing the error in each
dimension to the corresponding search step size,

E = max
i=1,...,D

|Pe
i −Pt

i |/SearchStepi, (2.6)

where Pe
i is the estimated value for parameter i; Pt

i is the corresponding ground truth;
and D is the dimension of the parameter space. For 3D similarity transformation
estimation, the pose parameter space is nine dimensional, D = 9. A sample is
regarded as a positive one if E ≤ 1.0 or a negative one if E > 2.0. The distance
from a hypothesis to the ground truth takes a continuous value. It is difficult to
draw a clear line to separate positive and negative samples. We intentionally discard
samples with a normalized distance between 1.0 and 2.0 to avoid confusing the
classifiers.

During the position estimation step, learning is constrained in a marginal space
with three dimensions. Given a hypothesis (X , Y, Z), the classification problem
is formulated as whether there is an object centered at (X , Y, Z). Haar wavelet
features are fast to compute and have been shown to be effective for many
applications [24, 31]. Therefore, we extended the Haar wavelet features to 3D to
be used for learning in this step. Please refer to Sect. 2.3.1 for more information
about Haar wavelet features. Note that we tried a position estimator using steerable
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features and its performance was slightly worse than the Haar wavelet features on
some applications, an expected result.

The search step for position estimation is one voxel. According to Eq. (2.6), a
positive sample (X ,Y,Z) should satisfy

max{|X −Xt |, |Y −Yt |, |Z −Zt |} ≤ 1 voxel, (2.7)

where (Xt ,Yt ,Zt) is the ground truth of the object center. Normally, there are 23 =
8 position candidates for each training volume satisfying Eq. (2.7) if the position
ground truth Xt , Yt , and Zt are not on the imaging grid (e.g., Xt = 45.2 voxels). If
the ground truth is lying on the imaging grid (e.g., Xt = 45 voxels), we may have up
to 33 = 27 positive position hypotheses for each training volume.

A negative sample is one with

max{|X −Xt |, |Y −Yt |, |Z −Zt |}> 2 voxels. (2.8)

Normally, we have far more negative samples than positive ones. The classifier
should have the capability to handle such a significantly skewed distribution of
positive and negative samples; otherwise, we have to randomly sample roughly the
same number of negative samples to match the positive samples.

The Probabilistic Boosting-Tree (PBT) [28] classifier used in most of our
experiments has no difficulty to handle uneven distributions of positive and negative
samples; therefore, it does not impose constraints on the cardinality of the sample
sets.

However, in some applications we still have to subsample the negative samples
because of the memory constraints of a desktop computer. On a 32-bit Windows
operating system, the maximum amount of memory a program can use is bounded
to 2 GB and can be increased to 3 GB with a special setting of Windows, which still
limits the number of negative samples that can be loaded into memory. Normally, we
train the classifiers on a 64-bit Windows systems with sufficient amount of memory
(we tried up to 72 GB of memory). In addition, the memory constraint can be further
alleviated by using a computer cluster or a connection to a cloud system.

We often set an upper limit for negative samples (e.g., 10 million) since we need
a reasonable speed for the training process. Our training software first gets a rough
estimate of the total number of negative samples. If the result is smaller than the
upper limit, no sub-sampling is applied; otherwise, we randomly subsample the
negative samples to match that limit. We found through experiments that increasing
the number of positive samples by adding more training datasets improves substan-
tially the generalization capability of the trained classifiers. Increasing the number of
negative samples also helps, however, after a certain level, no further improvement is
observed; therefore, random sub-sampling of the negative samples with our current
setting (10 million) does not deteriorate the performance of the classifiers.

Given a set of positive and negative training samples, we extract 3D Haar wavelet
features and train a classifier (e.g., the PBT). After that, we test each voxel in a
volume one by one as a hypothesis of the object position using the trained classifier.
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As shown in Fig. 2.1a, the classifier assigns each hypothesis a score, and we preserve
a small number of candidates (100 in our experiments) with the highest detection
score for each volume.

There are various ways to select candidates for the following steps. The first
approach is based on the detection score: we keep those candidates with a detection
score larger than a threshold. One problem with this approach is that the number
of candidates retained varies from volume to volume with a fixed threshold. For a
volume with bad image quality, we may find no candidates with a detection score
larger than a preset threshold. In many applications, we know there is one and only
one target anatomy in a volume. Thus, we select a fixed number of candidates that
have the highest detection probability. This approach is more robust and the overall
detection speed is consistent from volume to volume.

Sometimes, there may be multiple hypotheses ranking around the cutoff line. For
example, if we want to keep 100 hypotheses, we may get five hypotheses with the
same score ranking at the 100th. Randomly selecting one from these five hypotheses
may introduce randomness in the final detection results, while selecting with a fixed
heuristic rule (e.g., selecting the one with the smallest z position) may introduce
bias. In our work, we keep all hypotheses ranking around the cutoff line; therefore,
the actual number of retained candidates may be slightly larger.

2.2.4 Training of Position-Orientation Estimator

In this step, the task is to jointly estimate the position and orientation. The
classification problem is formulated as whether there is an object centered at
(X ,Y,Z) with orientation (ψ,φ ,θ ). After object position estimation, we preserve
the top 100 candidates, (Xi,Yi,Zi), i = 1, . . . ,100. Since we want to estimate both
the position and orientation, we need to augment the dimension of candidates. For
each position candidate, we quantize the orientation space uniformly to generate
hypotheses. In the experiments on heart chamber detection (see Sect. 2.5), the
orientation is represented as three Euler angles in the ZXZ convention, ψ , φ ,
and θ . The distribution range of an Euler angle is estimated from the training data.
Each Euler angle is quantized within the range using a step size of 0.2 radians
(11 degrees). For each position candidate (Xi,Yi,Zi), we augment it with N (about
1,000) hypotheses of orientation, (Xi,Yi,Zi,ψ j,φ j,θ j), j = 1, . . . ,N. Some position-
orientation hypotheses are close to the ground truth (positive) and others are far
away (negative).

The learning goal is to distinguish the positive and negative samples using a
trained classifier. Using the normalized distance measure of Eq. (2.6), a hypothesis
(X ,Y,Z,ψ,φ ,θ) is regarded as a positive sample if it satisfies both Eqs. (2.7) and

max{|ψ −ψ t |, |φ −φ t |, |θ −θ t |} ≤ 0.2, (2.9)
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where (ψ t ,φ t ,θ t) represent the orientation ground truth. A negative sample has
either a large position error, satisfying Eq. (2.8), or a large orientation error,

max{|ψ −ψ t |, |φ −φ t |, |θ −θ t |}> 0.4. (2.10)

To capture the orientation information, we have to rotate either the volume or
feature templates. We use the steerable features (refer to Sect. 2.3.2), which are
efficient to extract under rotation. Similarly, the PBT is used for training and the
trained classifier is used to prune the hypotheses to preserve only a few candidates
(50 in our experiments).

In the above procedure, the positive/negative training samples of the position-
orientation classifier are generated from the augmented position candidates. On
some datasets, a couple of good position hypotheses that satisfy Eq. (2.7) may be
missed after position estimation. We could add them back to generate more position-
orientation hypotheses. However, through comparison experiments, we did not find
noticeable improvement in the generalization capability of the trained position-
orientation estimator. Therefore, the missed good position candidates are not added
back during training. Generally, how the classifier is trained should match how
the classifier is used. It is preferable to have the same pose hypothesis generation
scheme for both the training and testing procedures since during the testing on an
unseen volume, we cannot add missed good position candidates back to generate
position-orientation hypotheses.

2.2.5 Training of Position-Orientation-Scale Estimator

The training of the position-orientation-scale estimator is analogous to that of the
position-orientation estimator except learning is performed in the full nine dimen-
sional similarity transformation space. The dimension of each retained position-
orientation candidate is augmented by searching the scale subspace uniformly
and exhaustively. The scale search step is set to two voxels. That means a
hypothesis (X ,Y,Z,ψ,φ ,θ ,Sx,Sy,Sz) is regarded as a positive sample if, in addition
to Eqs. (2.7) and (2.9), it satisfies

max{|Sx −St
x|, |Sy −St

y|, |Sz −St
z|} ≤ 2 voxels, (2.11)

where (St
x,S

t
y,S

t
z) represent the scale ground truth. A negative sample has a large

error in position (Eq. (2.8)), orientation (Eq. (2.10)), or scale

max{|Sx −St
x|, |Sy −St

y|, |Sz −St
z|}> 4 voxels. (2.12)
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2.2.6 Aggregation of Pose Candidates

The goal of object detection is to obtain a single aggregated estimate of the
pose parameters of the object. Multiple detections usually occur around the true
object pose since the MSL detectors are insensitive to small changes in the pose
parameters. Occasionally, false positives may appear. Some false positives are
scattered sparsely, while others may be concentrated around a region that appears
similar to the target object.

Intuitively, cluster analysis might help to remove sparsely distributed false
positives. However, it is very difficult to perform cluster analysis on a small set of
top candidates (e.g., 100) in a nine dimensional pose parameter space. Furthermore,
the orientation is represented in a completely different space to the position and
scale. To perform clustering we need a distance measurement combining the
distances in different marginal spaces. The orientation distance measure needs to be
weighted properly to be combined with the position and scale distances. Through
experiments, we found that clustering did not improve the accuracy, compared to a
simple averaging of the top K (K = 100) candidates.

Since each pose candidate has a classification score given by the PBT classifier,
we tried a weighted average scheme by assigning a larger weight to a pose candidate
with a higher classification score. However, we did not find significant difference to
a simple unweighted average.

The robustness of the aggregation with simple averaging is partially explained by
the fact that there are far more good pose hypotheses in 3D than 2D. An exponential
increase of pose hypotheses for 3D objection detection also comes with a lot of
good hypotheses. For example, there are at least 29 = 512 hypotheses within one
search step size from the ground truth. If we include hypotheses within an error of
two search step sizes, the total number of good hypotheses increases dramatically
to 49 =262,144. By exploiting the rich image information in a 3D volume and the
state-of-the-art learning algorithms, our MSL detectors perform quite well. Most of
the preserved top 100 pose candidates are good and the small portion of outliers
does not affect too much the detection accuracy after averaging.

Note that the average based aggregation only works if we know a priori that
there is only a single instance of the object in the volume. If there might be multiple
instances of the same object type (e.g., intervertebral disks of the spine), cluster
analysis should be used to select multiple final detection results [19, 20]. To avoid
the sparse-sample issue in a high dimensional space, clustering is often performed
only for the position component of the pose candidates.

2.2.7 Object Detection in Unseen Volume

This section provides a summary of the testing procedure on an unseen volume.
The input volume is first converted to a low isotropic resolution (e.g., 3 mm)
matching the volumes in the training set. All voxels are tested using the trained
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position estimator and the top 100 candidates, (Xi,Yi,Zi), i = 1, . . . ,100, are kept.
Each candidate is augmented with N (about 1,000) hypotheses of orientation,
(Xi,Yi,Zi,ψ j,φ j,θ j), j = 1, . . . ,N. Next, the trained position-orientation classifier
is used to prune these 100×N hypotheses and the top 50 candidates are retained,
(X̂i,Ŷi, Ẑi, ψ̂i, φ̂i, θ̂i), i = 1, . . . ,50. Similarly, we augment each candidate with M
(also about 1,000) hypotheses of scaling and use the trained position-orientation-
scale classifier to rank these 50×M hypotheses. The average of the top K (K = 100)
candidates is taken as the final aggregated estimate.

In the following, we analyze the computational complexity of heart chamber
detection from a cardiac CT volume [34]. For position estimation, all voxels
(about 260,000 voxels for a small volume with 64× 64× 64 voxels at the 3 mm
resolution) are tested for possible object position. There are about 1,000 hypotheses
for orientation and scale each. If the parameter space is searched uniformly
and exhaustively, there are about 2.6 × 1011 hypotheses to be tested! However,
using MSL, we only test about 260,000+ 100× 1,000+ 50× 1,000 = 4.1× 105

hypotheses and reduce the testing by almost six orders of magnitude.
In practice, an irrelevant volume might be fed into the automatic detection and

segmentation system due to mis-labeling. For example, the input data to a heart
chamber segmentation system may be an abdominal scan without the heart in the
volume at all. There are different strategies to handle such situation.

One is the “garbage-in garbage-out” principle, in which the algorithm just tries its
best to produce the best segmentation it can achieve. All segmentation results will
eventually be double checked by a physician and a non-meaningful segmentation
result on a wrong input data can be easily identified and discarded. In the second
strategy, the automatic segmentation algorithm is expected to intelligently tell if a
target anatomy is present in the data or not. Depending on the presence or absence of
the target anatomy, different processing workflows may be invoked later on. In such
scenario, a threshold can be set to reject a wrong input. For example, we check the
maximum detection score of the preserved position candidates. If it is less than a pre-
set threshold, the data is rejected. Normally, we set the threshold very low to avoid
rejecting a good input data. Wrong results can later be rejected in the subsequent
detection pipelines, e.g., position-orientation estimation and position-orientation-
scale estimation.

2.3 3D Image Features

The MSL is an open and flexible object detection framework. Any image features
can be integrated into the framework as long as they can provide some information
to discriminate between positive and negative hypotheses. In this section, we present
two kinds of 3D image features used in a specific implementation of MSL for
heart chamber detection in cardiac CT volumes (as presented in Sect. 2.5). The
Haar wavelet features are used for object position estimation and the steerable
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features, capable of encoding the orientation hypothesis, are used for position-
orientation estimation and position-orientation-scale estimation. In fact, these two
kinds of features work well on multiple object detection problems in major imaging
modalities, including ultrasound data.

2.3.1 3D Haar Wavelet Features

Haar wavelet features were first proposed for object detection by Oren et al. [24].
Figure 2.4a shows a few Haar feature templates, where the value of the feature
is calculated by subtracting the sum of pixel intensity inside the dark boxes from
the sum of pixel intensity of the bright boxes. Different to the Haar wavelet basis

Fig. 2.4 Haar wavelet features are calculated by subtracting the sum of pixel intensity inside the
dark boxes from the sum of pixel intensity of the bright boxes. (a) A few 2D Haar feature templates.
(b) A few 3D Haar feature templates

functions, Haar features are an open feature family and basically any configuration
of the dark and bright boxes can be used, e.g., two-box, three-box, and four-box
feature templates as shown in Fig. 2.4a. By translating and scaling the feature
templates over the image, we can generate a huge number of image features.
Therefore, Haar features are often over-complete and not restricted to the complete
linearly-independent Haar wavelet basis functions. Haar features were made popular
by [31] with introduction of the integral image, which contributed to a fast
computation of Haar features. Using the integral image, the computation of the sum
of pixel intensity inside a rectangle at any position and size only involves addition
or subtraction of four elements of the integral image (as shown in Fig. 2.5). The
computation time is constant no matter how large the rectangle is.



2.3 3D Image Features 39

Fig. 2.5 2D integral image for efficient calculation of the sum of intensity of pixels inside a box.
(a) Each element II(x,y) of an integral image indicates the sum of intensity of pixels inside the box
formed by the origin (the top-left corner) and position (x,y). (b) Calculating the sum of intensity
of any axis-aligned box only involves addition/subtraction of four elements

We reported the first extension of Haar features to 3D in [29]. Figure 2.4b shows
a few 3D Haar feature templates. Suppose I(x,y,z) is the intensity of voxel (x,y,z).
The 3D integral image II(x,y,z) is defined as

II(x,y,z) =
x

∑
u=0

y

∑
v=0

z

∑
w=0

I(u,v,w). (2.13)

The sum of voxel intensity inside a box of x ∈ [x1,x2], y ∈ [y1,y2], and z ∈ [z1,z2] is

Sx2,y2,z2
x1,y1,z1

= II(x2,y2,z2)− II(x1,y2,z2)− II(x2,y1,z2)− II(x2,y2,z1)+

II(x2,y1,z1)+ II(x1,y2,z1)+ II(x1,y1,z2)− II(x1,y1,z1), (2.14)

which involves the addition/subtraction of eight elements of the integral image.
The integral image can be calculated by passing original image once using the

algorithm described in [31], as shown in Fig. 2.6. This algorithm can be directly
extended to 3D; however, the resulting computation is sub-optimal since it does
not benefit from the existence of multiple Central Processing Units (CPU). For
example, sequential integral image calculations take about 0.6 s for a brain MRI
volume of 1.35 mm resolution with 192×192×149 voxels. Since the overall MSL-
based detection is approaching a sub-second speed, the integral image calculation
becomes a computational bottleneck.

Note that almost all up-to-date personal computers have multiple CPUs and
therefore it is advantageous to use parallel computing to make full use of all CPUs.
Here, we present a 2D integral image calculation method, which is suited for
parallel computation (as shown in Fig. 2.7). We pass the image twice to calculate the
cumulative sum along rows and columns, respectively. Since each row is processed
independently when we calculate the row sums, the computation can be parallelized.
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Fig. 2.6 A non-parallelized integral image calculation algorithm [31]

Fig. 2.7 An integral image calculation algorithm suitable for parallel computation

The same applies to the calculation of the cumulative sums along columns. Our
parallel algorithm does not consume extra memory. Compared to the sequential
algorithm we need to pass the image twice; however, the number of mathematical
operations (additions) is the same. When the parallel algorithm is implemented on a
single CPU, it is as efficient as the sequential algorithm [31]. However, when casted
into multi-threading computation, it can make full use of the multiple CPU cores
with little overhead in synchronizing multiple threads.

The parallel algorithm can be extended to 3D in a straightforward way. We first
calculate the integral image for each slice independently using parallel computation.
We then calculate the cumulative sums along the slices (the z axis), which can also
be computed independently for each (x,y). The computation threads only need to
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synchronize once to wait for the 2D integral images of all slices to be generated
before calculating the cumulative sums along the z direction. On a computer with
quad-core CPUs, after using multi-threading, the integral image calculation time is
reduced to one third, from 601 to 194 ms, for a brain MRI volume with 192×192×
149 voxels.

2.3.2 Steerable Features

Global features, such as 3D Haar wavelet features, are effective to capture the global
information (e.g., scale) of an object. To capture the orientation information of a
hypothesis, we should rotate either the volume or the feature templates. However, it
is time consuming to rotate a 3D volume and there is no efficient way to rotate the
Haar wavelet feature templates. Local features are fast to evaluate but they lose the
global information of the whole object.

a b
V V V

U(X,Y)

U
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(X,Y) (X,Y)
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Fig. 2.8 Using a regular sampling pattern to incorporate a hypothesis (X ,Y,ψ,Sx,Sy) about a
2D object pose. The sampling points are indicated as ‘+’. (a) Move the pattern center to (X ,Y ).
(b) Align the pattern to the orientation ψ . (c) The final aligned sampling pattern after scaling
along each axis, proportionally to (Sx,Sy). c©2008 IEEE. Reprinted, with permission, from Zheng,
Y., Barbu, A., Georgescu, B., Scheuering, M., Comaniciu, D.: Four-chamber heart modeling and
automatic segmentation for 3D cardiac CT volumes using marginal space learning and steerable
features. IEEE Trans. Medical Imaging 27(11), 1668–1681 (2008)

As a solution, we introduced the steerable features, which can capture the global
position, orientation, and scale of the object and at the same time can be efficiently
computed. To define steerable features, we sample a few points from the volume
under a sampling pattern. We then extract a few local features at each sampling
point (e.g., voxel intensity and gradient). The novelty is that we embed the global
position, orientation, and scale information into the distribution of sampling points,
while each individual feature is locally defined. Instead of aligning the volume to
the hypothesized orientation, we steer the sampling pattern. This is where the name
“steerable features” comes from. In this way, we combine the advantages of both
global and local features.
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Figure 2.8 shows how to embed a pose hypothesis in steerable features using a
regular sampling pattern (illustrated for a 2D case for clearance in visualization).
Suppose we want to test if hypothesis (X ,Y,Z,ψ,φ ,θ ,Sx,Sy,Sz) is a good estimate
of the similarity transformation of the object. A local coordinate system is defined
to be centered at position (X ,Y,Z) (Fig. 2.8a) and the axes are aligned with the
hypothesized orientation (ψ,φ ,θ) (Fig. 2.8b). A few points (represented as ‘+’ in
Fig. 2.8) are uniformly sampled along each coordinate axis inside a rectangular
region. The size of the rectangular region along an axis is proportional to the scale
of the shape in that direction (Sx, Sy, or Sz) to incorporate the scale information
(Fig. 2.8c).

Note that the steerable features are also used for position-orientation estimation
and at that stage there are no hypotheses about the scales yet. We use the mean
scale values calculated from the training set to resize the sampling pattern. The
steerable features constitute a general framework, in which different sampling
patterns can be defined. Please refer to Fig. 2.16b for another sampling pattern which
can incorporate the nonrigid deformation parameters.

Let us discuss now the local features. At each sampling point, we extract a few
local features based on the intensity and gradient from the original volume. A major
reason to select these features is that they can be extracted efficiently. Suppose a
sampling point (x,y,z) has intensity I and gradient g = (gx,gy,gz). The three axes
of object-oriented local coordinate system are nx, ny, and nz. The angle between the
gradient g and the z axis is α = arccos(nz.g), where nz.g means the inner product
between two vectors nz and g. The following 24 features are extracted: I,

√
I, 3
√

I,
I2, I3, log I, ‖g‖,

√‖g‖, 3
√‖g‖, ‖g‖2, ‖g‖3, log‖g‖, α ,

√
α , 3

√
α , α2, α3, logα , gx,

gy, gz, nx.g, ny.g, nz.g. In total, we have 24 local features at each sampling point.
The first six features are based on intensity and the remaining 18 features are

transformations of gradients. Gradients roughly tell us if the sampling point lies
on a boundary and they can also be calculated very fast. Feature transformation,
a technique often used in pattern classification, is a process through which a new
set of features is created [21]. We use it to enhance the feature set by adding a
few transformations of an individual feature. Suppose there are P sampling points,
we get a feature pool containing 24×P features. In our case, a 5× 5× 5 regular
sampling pattern is used for object detection, resulting in P = 125 sampling points.

Steerable features can be computed at different levels of an image pyramid and
then put together to get a bigger feature pool. For example, a total of n× 24×P
features can be extracted on a pyramid with n levels. Computing steerable features
in a low resolution volume makes the local features more stable. At a low resolution,
the image intensity of a voxel actually corresponds to the average intensity in a small
block at a high resolution. In this case, for example, an image intensity feature is
less affected by the pepper-and-salt noise and the spectral noise in ultrasound. The
gradient can also be calculated more reliably in a smoothed low resolution volume.
However, the image pyramid has also limitations. For example, a small object (e.g.,
a coronary artery) may be smoothed out in a low resolution volume. Furthermore, it
may be time consuming to build a pyramid for a large volume. Therefore, it really
depends on the application what type of image pyramid is employed, if any. For the
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experiments on heart chamber detection (see Sect. 2.5), the steerable features are
calculated on a pyramid with three levels (3, 6, and 12 mm, respectively).

By extracting steerable features on a pyramid with three levels, we create a
feature pool with a total of 3 × 24 × 125 = 9,000 features. These features are
used to train histogram-based weak classifiers [26] and we apply the PBT [28] to
combine the selected weak classifiers to achieve a strong classifier. Here are some
statistics concerning the selected features by the boosting algorithm, as part of the
experiments on heart chamber detection in cardiac CT volumes, as presented in
Sect. 2.5. Overall, there are 3,696 features selected by all object detection classifiers.
We found that each feature type was selected at least once. The intensity features,
I,
√

I, 3
√

I, I2, I3, and log I, counted about 26 % of the selected features, while, the
following four gradient-based features, gx, gy, gz, and ‖g‖, counted about 34 %.

2.4 Classifiers

The MSL is not bounded to a particular classifier and any state-of-the-art learning
algorithms can be used to train its classifiers. We employ the Probabilistic Boosting-
Tree (PBT) [28] as a default classifier in MSL due to its classification efficiency and
capability to deal with unbalanced training samples. The efficiency of the PBT is
further improved by adaptively combining it with the classifier cascade [31].
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Fig. 2.9 The probabilistic boosting-tree. The dark nodes are the leaf nodes. Each tree node is a
strong classifier. Each level of the tree corresponds to an augmented variable li. Image courtesy
of Zhuowen Tu. c©2005 IEEE. Reprinted, with permission, from Tu, Z.: Probabilistic boosting-
tree: Learning discriminative methods for classification, recognition, and clustering. In: Proc. Int’l
Conf. Computer Vision, pp. 1589–1596 (2005)
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2.4.1 Probabilistic Boosting-Tree

Since a large weak feature pool (in the order of 100,000+ features) can be computed
from image data, a process of feature reduction or feature selection is needed for
training a classifier. This process is required as a preprocessing step for classifiers
such as the Support Vector Machine (SVM) [30], or it is intrinsic to boosting based
classifiers [11,26] and random forests [2]. Classifiers with intrinsic feature selection
can train directly on a large feature pool with weak features and this explains the
popularity of boosting and random forests. Increased classifier efficiency can be
obtained through cascading of classifiers (e.g., AdaBoost [31]) to efficiently detect
rare events, e.g., much fewer positive samples than the negatives.

An AdaBoost classifier is an implementation of the boosting technique for a
binary classification problem. The final classification decision is based on weighted
average of the classification results of the selected weak classifiers

H(x) =
K

∑
i=1

wihi(x), (2.15)

where hi(x) is the classification result (+1 for positive output and −1 for negative
output) of a weak classifier; wi is the weight of each weak classifier, which is
determined by the boosting technique. The final output of the class label C(x) is
positive if H(x)> 0; otherwise, it is negative. An additional threshold θ can be used
to tune the performance of an AdaBoost classifier,

C(x) =

{
1 if H(x)> θ
−1 otherwise

. (2.16)

For the detection of rare events, we tune θ to achieve a high sensitivity (which
can pass almost all positive samples to the next stage) with a reasonable specificity
(e.g., rejecting half of the negative samples); therefore, easy negative samples can
be quickly rejected in the early stages of the cascade. A cascade can be viewed as a
degenerated decision tree [3, 25].

The Probabilistic Boosting-Tree (PBT) [28] is a tree-structured classifier, that
combines the decision tree and AdaBoost classifiers. Besides high accuracy and
efficiency, the PBT also outputs an estimate of the posterior distribution, which
is helpful to rank the hypotheses. We use the PBT extensively in the MSL based
object detection framework. To make this chapter self-contained, we provide a brief
introduction of the PBT. An interested reader is referred to [28] for a more detailed
description of the algorithm.

As shown in Fig. 2.9, the PBT shares the same tree structure as the decision tree.
However, different to the decision tree, each node in the PBT is an AdaBoost strong
classifier, instead of a simple weak classifier. Another difference is that the PBT can
output an estimate of the posterior distribution p(y|x), instead of just a classification
label. Here, x is an observed sample and y is its class label (+1 or −1). In MSL, we
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need to rank the hypotheses to preserve a small number of top hypotheses after each
MSL classification stage. Therefore, the capability to compute the discriminative
probability is very important.

A number of learning algorithms can generate a classification score in addition
to the class label. Empirically, the classification score can be normalized to the
range [0, 1] to mimic the posterior distribution p(y|x). However, such an ad hoc
approach lacks theoretical foundation. In practice, many classifiers are only sensitive
to the region around the boundary between positive and negative samples. In other
words, the performance is tuned at a specific point (with a normalized classification
score of 0.5) on the Receiver-Operating-Characteristic (ROC) curve. Therefore,
their performance on other regions is not optimal. From this view, the PBT has
an advantage over other learning algorithms such as the decision trees.

Friedman et al. [12] have shown that AdaBoost is approximating logistic
regression. The probability computed from an AdaBoost classifier

q(+1|x) = e2H(x)

1+ e2H(x)
, (2.17)

is a good estimate of the posterior probability. Here, H(x) is the weighted sum of
the weak classifier responses in AdaBoost, Eq. (2.15). In many real applications,
the posterior probability may be very complicated, therefore difficult to estimate
accurately. Many weak classifiers (often a few hundred) need to be integrated to
approximate the posterior probability well.

The PBT approaches the target posterior probability by data augmentation (tree
expansion) through a divide-and-conquer strategy. Figure 2.9 is an illustration of
the PBT, where the tree level li is an augmented variable. At the top of the tree
node, it gathers the information from its descendants and reports an overall posterior
probability,

p̃(y|x) = ∑
l1

p̃(y|l1,x)q(l1|x)

= p̃(y|l1 = 1,x)q(l1 = 1|x)+ p̃(y|l1 =−1,x)q(l1 =−1|x). (2.18)

Here, q(l1|x) as defined in Eq. (2.17) is the posterior probability estimated by the
root AdaBoost classifier. We can expand the posterior probability estimate of a PBT
with a depth of n+1 levels as

p̃(y|x) = ∑
l1

p̃(y|l1,x)q(l1|x)

= ∑
l1,l2

p̃(y|l2, l1,x)q(l2|l1,x)q(l1|x)
. . .

= ∑
l1,...,ln

p̃(y|ln, . . . , l1,x) . . .q(l2|l1,x)q(l1|x). (2.19)



46 2 Marginal Space Learning

At a tree leaf node, p̃(y|ln, . . . , l1,x) is the posterior probability estimated at that
node for class y

p̃(y|ln, . . . , l1,x) = ∑
ln+1

δ (y = ln+1)q(ln+1|ln, . . . , l1,x), (2.20)

where δ (.) is the Dirac delta function.
Different weak classifiers can be used to train the AdaBoost strong classifiers

in the PBT. To increase the efficiency, a weak classifier is normally trained on
one feature. The decision stump is a very popular weak classifier, which makes a
prediction by comparing the value of a single input feature with a threshold [26].
Depending on the polarity, the decision stump may output a positive or negative
class label if the feature value is larger than the threshold. Therefore, a decision
stump has only two free parameters to train, the polarity (a boolean variable) and
the threshold (a real variable). This weak classifier works well to separate unimodal
distributions, however, in most typical applications we encounter distributions with
multiple modes.

Fig. 2.10 Histogram based
weak classifier

To deal with this challenge, the MSL uses by default a histogram based
classifier [26], more flexible than a decision stump. Given a weak feature, we
calculate its minimum and maximum values from a training set. The distribution
range is then uniformly split into a number of bins (64 bins as used throughout
our experiments), as shown in Fig. 2.10. In each bin, we count the total weight
of positive and negative samples, respectively, that fall inside the bin. Note that
the weight of a sample is adjusted by the AdaBoost algorithm at each iteration to
assign a higher weight to the previously mis-classified samples. If the total weight
of positive samples is larger than that of the negatives in a bin, the bin polarity is set
to be positive; otherwise, it is a negative bin. During classification, a sample falling
in a positive bin will get a positive class label. Similarly, a sample in a negative bin
is classified as negative. The histogram based weak classifier has more parameters
(minimum and maximum feature values, polarity of each bin) that can be adapted to
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the training set; therefore, it is more powerful than a decision stump. It has capability
to separate distributions with multiple modes.

In Sect. 2.3.2, we use feature transformation to enhance the steerable features.
For example, for the intensity feature I extracted at a sampling point, we add a
few more transformations, including

√
I, 3

√
I, I2, I3, and log I. Such a monotonic

feature transformation does not change the classification result of a decision stump.
However, it may provide additional classification power to a histogram based weak
classifier since a feature after a nonlinear transformation has a different histogram.

As mentioned in Sect. 2.2.3, the distribution of positive and negative samples
is skewed. There are far more negative samples (may be up to 10 million in our
default setting) than positive samples (often in the order of tens of thousand or
less). A classifier should have the capability to handle such a significantly skewed
distribution. In the PBT, to train a classification node, we randomly select a small
set of positive/negative samples (e.g., 5,000). After training the AdaBoost classifier
for a classification node, all available samples at that node are classified. The
threshold of the AdaBoost classifier is tuned on all available samples (not the
selected subsamples) to achieve the minimum classification error. All samples that
are classified as positive (including both true positives and false positives) are passed
to the left child of this node and other samples are passed to the right child node.
In addition, samples with ambiguity (with a classification score in [0.4, 0.6]) are
passed to both the left and right children nodes to enrich the training samples of the
children nodes.

2.4.2 Combining Classifier Cascade and Tree

Table 2.1 Comparison between probabilistic boosting-tree [28] and classifier cascade [31]

Probabilistic Boosting-Tree Cascade

Pros (1) More powerful for hard
classification problems

(1) Efficient for detection of rare events
(2) Faster to train
(3) Less likely to over-fit

Cons (1) More likely to over-fit (1) Less powerful for hard problems
(2) More time-consuming for detection
(3) More time-consuming for training

The classifier cascade [31] is a widely used structure to combine multiple
classifiers to efficiently detect rare events (Fig. 2.11a). In a cascade, a threshold is
picked at each classification stage to achieve a perfect or near perfect detection rate
for positive samples. Most negative samples can be screened out in the first several
stages. However, achieving a near perfect detection rate for positives may cause
a high false positive rate, specially when the positives and negatives are hard to
separate.
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The PBT is more powerful to classify hard samples using a divide-and-conquer
strategy of the decision tree [3, 25]. Starting from the tree root, the training samples
are split along the tree, level by level. If the tree is very deep, at a leaf node, the
number of positive and negative samples is small; therefore, it is almost always
possible to separate positive and negative samples using a big weak feature pool.
That means, a PBT has potential to over-fit the training data if the tree is fully
expanded. In practice, the over-fitting issue is mitigated by limiting the tree depth
(e.g., to 5 or 6 levels). Furthermore, a tree node is not trained and further expanded
if the number of positive/negative samples falling on this node is small (e.g., less
than 100 samples).

In a decision tree, a sample goes from the tree root to a leaf node. The
path is determined by the classification result at each node, and the number of
classifications is the level of the tree. However, in a PBT, an unknown sample
should be classified by all nodes in the tree, and the probabilities given by all
nodes are combined to get the final estimate of the posterior probability of a class
label, Eq. (2.20). The number of nodes of a PBT is an exponential function of the
tree depth. Suppose, a tree has n levels. The number of nodes of a full tree is
20 + 21 + · · ·+ 2n−1 = 2n − 1 (Fig. 2.11b). For comparison, the number of nodes
of a cascade with n levels is n. With more nodes, a PBT may consume more training
and detection time than a cascade. In the original PBT [28], a heuristic rule is used
to reduce the number of probability evaluations. Only samples with an ambiguous
classification score (in the range of [0.4, 0.6]) are sent to both left and right children
nodes for further evaluation. If the classification score is larger than 0.6, the sample
is sent only to the left child note by assuming the estimated probability from the
right child note is q(+1|x) = 0. The same approximation is applied to a sample with
sufficient confidence to be negative (classification score less than 0.4). Such an ad
hoc solution makes the probability estimate less reliable. Table 2.1 highlights the
pros and cons of a PBT and a cascade classifier.

Fig. 2.11 Different structures to combine multiple classifiers. (a) Cascade. (b) Tree. (c) A mixed
structure of the cascade and tree
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It is possible to combine the advantages of both a cascade and tree. For example,
we can put a few levels of cascade before a PBT [29]. The cascade helps to
efficiently screen out a large percentage of easy negative samples (e.g., 90 % of
negative samples may be filtered by the first two cascades). Since the remaining
samples are harder to separate, we can then switch to a tree structure to train more
powerful classifiers. However, there are still several issues of this approach. First,
we need to manually tune a critical parameter, the number of cascade nodes. If the
problem is easy, we should use more cascade nodes to claim the advantage of fast
detection speed of the cascade. In addition, for some applications in which a high
detection rate is achieved with a high false positive rate, a cascade cannot effectively
screen out negatives.

A better approach to combine the advantages of both trees and cascades is to
use cascades inside the PBT structure. At each node, we train a strong AdaBoost
classifier. After that, we evaluate the trained classifier on all available training
samples to this node. If we can achieve a high detection rate (e.g., higher than 97 %)
and a low false positive rate (e.g., lower than 50 %), we use the cascade structure.
That means we push almost all positive samples to the left child node. The right child
node is composed almost purely of negative samples, and it is not necessary to train
further. In this way, the structure of the tree is adaptively tuned based on the current
training performance. Compared to the naive cascade-before-tree integration, we do
not need to manually tune the number of cascade nodes to be appended before a
PBT. We only need to set the target detection rate and false positive rate to switch a
tree structure to a cascade structure. Figure 2.11c shows a mixed classifier structure
with a cascade and tree. During training, after evaluating the classifier node 1, we
find its performance can meet the required detection rate and false positive rate. A
cascade structure is selected and the right child node of node 1 is not trained. At
node 2, we find the classification problem difficult and the trained classifier cannot
meet the required accuracy; therefore, a tree structure is used by adding two children
nodes to 2. Inside the tree structure, if we find the classification problem becoming
easy again, a cascade structure can still be adaptively invoked, e.g., for node 3 in
Fig. 2.11c.

2.5 Experiments on Heart Chamber Detection in CT
Volumes

In this section, we evaluate MSL on heart chamber detection in cardiac CT volumes.
The heart is a complex organ, composed of four chambers, the Left Ventricle (LV),
the Right Ventricle (RV), the Left Atrium (LA), and the Right Atrium (RA). We
develop a comprehensive four-chamber heart model (refer to Chap. 7), as shown
in Fig. 2.12, to provide accurate representation of the anatomies. Our heart model
includes the endocardium of all four chambers. In addition, since the epicardium of
the left ventricle is clearly visible in a cardiac CT volume, it is also integrated into
the heart model.
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Under the guidance of cardiologists, we manually annotated all four chambers
in 323 cardiac CT volumes (with various cardiac phases) from 137 patients with
cardiovascular diseases. Since the LV is clinically more important than other
chambers, to improve the system performance on LV detection and segmentation,
we annotated extra 134 volumes. In total, we have 457 volumes from 186 patients
for the LV. The imaging protocols are heterogeneous with different capture ranges
and resolutions. A volume may contain 80–350 slices, while the size of each slice
is the same with 512 × 512 pixels. The resolution inside a slice is isotropic and
varies from 0.28 to 0.74 mm for different volumes. The slice thickness (distance
between neighboring slices) is larger than the in-slice resolution and varies from 0.4
to 2.0 mm for different volumes.

We use fourfold cross-validation to evaluate the detection algorithm. The whole
dataset is randomly split into four roughly equal sets. Three sets are used to train the

Fig. 2.12 A four-chamber heart model with (a) transaxial view, (b) coronal view, (c) sagittal view,
and (d) 3D visualization of the mesh model
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system and the remaining set is reserved for testing. The configuration is rotated,
until each set has been tested once. Data from the same patient may have similar
shapes and image characteristics since they are often captured on the same CT
scanner with the same scanning parameters. If such data appear in both the training
and test sets during cross-validation, the result is biased toward a lower detection
error. To remove such bias, we enforce the constraint during cross-validation that
the volumes from the same patient can only appear in either the training or test set,
but not in both.

The search-step-normalized error as defined in Eq. (2.6) is used to evaluate the
heart chamber detection accuracy since we can easily distinguish optimal and non-
optimal estimates using this error measurement, but not for other error measures
such as the weighted Euclidean distance. The optimal estimate is upper-bounded
by 0.5 search steps under any search grid. However, a non-optimal estimate has an
error larger than 0.5.

The efficiency of MSL comes from the fact that we prune the search space after
each step. One concern is that since the space is not fully explored, the MSL might
miss the optimal solution at an early stage. In the following, we show that pruning
deteriorates only slightly the accuracy in MSL. Figure 2.13 shows the error of the
best candidate after each step with respect to the number of candidates preserved.
The curves are calculated on all volumes based on cross-validation. The dotted
lines at the bottom show the error of the optimal solution under the search grid.
As shown in Fig. 2.13a for position estimation, if we keep only one candidate, the
average error may be as large as 3.5 voxels. However, by retaining more candidates,
the minimum errors have a fast decrease. We have a high probability to keep the
optimal solution when 100 candidates are preserved. We observed the same trend
in different marginal spaces, such as the position-orientation space as shown in
Fig. 2.13b. Based on the trade-off between accuracy and speed, we preserve 50
candidates after position-orientation estimation. After full similarity transformation
estimation, the best candidates we get have an error ranging from 1.0 to 1.4 search
steps as shown in Fig. 2.13c.

As discussed before, the unweighted averaging of the top candidates into a
final estimate achieves the best results. As shown in Fig. 2.14a, the errors decrease
quickly with more candidates for averaging until 100 and after that they saturate.
Using the average of the top 100 candidates as the final single estimate, we achieve
an error of about 1.5–2.0 search steps for different chambers. Figure 2.14b shows
the cumulative distribution of errors on all volumes. The LV and LA have smaller
errors than the RV and RA since the contrast of the blood pool in the left side of a
heart is consistently higher than the right side due to the using of contrast agent (as
shown in Figs. 2.12 and 2.15). Compared to the LA, the LV detection error is even
smaller because the LV is larger in size and we have more LV training data to cover
various cardiovascular diseases. Our approach is robust and we did not observe any
major failures. For comparison, the heart detection modules in both [10] and [13]
fail on about 10 % volumes. The conclusion of these experiments is that only a
small number of candidates are necessary to be preserved after each step, without
deteriorating the accuracy of the final estimate.
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Fig. 2.13 The
searching-step-normalized
error, defined in Eq. (2.6), of
the best candidate with
respect to the number of
candidates preserved after
each step. (a) Position
estimation. (b)
Position-orientation
estimation. (c)
Position-orientation-scale
estimation. The dotted lines at
bottom show the lower bound
of the detection error. c©2008
IEEE. Reprinted, with
permission, from Zheng, Y.,
Barbu, A., Georgescu, B.,
Scheuering, M., Comaniciu,
D.: Four-chamber heart
modeling and automatic
segmentation for 3D cardiac
CT volumes using marginal
space learning and steerable
features. IEEE Trans.
Medical Imaging 27(11),
1668–1681 (2008)

We also evaluated the mesh initialization errors after aligning the mean shape
with respect to the automatically estimated pose. As a widely used criterion [10,
13, 22], the symmetric point-to-mesh distance, Ep2m, is exploited to measure the
accuracy in surface boundary delineation. For each point on a mesh, we search
for the closest point (not necessarily a mesh triangle vertex) on the other mesh to
calculate the minimum Euclidean distance. We calculate the point-to-mesh distance
from the detected mesh to the ground truth and vice versa to make the measurement
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Fig. 2.14 Final similarity transformation estimation error after aggregating multiple candidates
using un-weighted average. (a) Error vs. the number of candidates for averaging. (b) Cumulative
distribution of errors on all test datasets using 100 candidates for aggregation

Fig. 2.15 Segmentation of the left ventricle in a cardiac CT volume with a black contour for the
endocardium and a white contour for the epicardium. (a) Aligned mean shape with respect to the
automatically estimated pose. (b) Final segmentation

symmetric. In our experiments, we estimate the pose of each chamber separately.
The mean Ep2m error after heart detection is 3.17 mm for the LV endocardium,
2.51 mm for the LV epicardium, 2.78 mm for the LA, 2.93 mm for the RV, and
3.09 mm for the RA.

Figure 2.15a shows the aligned mean shape of the left ventricle (including both
the endocardium and epicardium) with the estimated pose. As we can see, the
initial shape is already quite close to the true boundary. After nonrigid deformation
estimation of the mesh points, the final segmentation error ranges from 0.84 to
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1.57 mm for different chambers. Figure 2.15b shows the final segmentation of the
left ventricle. Please refer to Chap. 7 for more details on the nonrigid deformation
estimation method.

After code optimization and using the multi-threading techniques, we achieve an
average speed of 0.5 s for the automatic detection of a chamber on a computer with
a dual-core 3.2 GHz processor and 3 GB memory. Boundary delineation takes about
0.5 s more. If all four chambers are to be segmented, the total computation time is
about 4 s.

2.6 Direct Estimation of Nonrigid Deformation Parameters

The standard MSL only estimates the rigid transformation for object localization. In
many cases, we want to delineate the boundary of a nonrigid organ. For this purpose,
the mean shape is aligned with the estimated object pose as an initial rough estimate
of the shape. The Active Shape Model (ASM) [5] is then exploited to deform the
initial shape to achieve final boundary delineation. Since the ASM only converges
to a local optimum, the initial shape needs to be close to the true object boundary;
otherwise, the deformation is likely to get stuck in a suboptimal solution.

This problem is typical for liver segmentation since the liver is the largest organ in
human body and is surrounded by several other anatomies: heart, kidney, stomach,
and diaphragm. As a soft organ, the liver deforms significantly under the pressure
from the neighboring organs. As noted in [16], for a highly deformable shape, the
pose estimation can be improved by further initialization. In this section, we present
the Nonrigid MSL to directly estimate the nonrigid deformation of an object for
better shape initialization.

2.6.1 Nonrigid Marginal Space Learning

There are multiple ways to represent nonrigid deformation. We use the statistical
shape model or the so-called Point Distribution Model (PDM) [5] since it can
capture the major deformation modes with a few parameters. To build a statistical
shape model, we need N shapes, each being represented by M points with anatom-
ical correspondence. By stacking the 3D coordinates of these M points, we get a
3M-dimensional vector x to represent a shape. To remove the relative translation,
rotation, and scaling, we first jointly align all shapes using generalized Procrustes
analysis (as presented in Sect. 6.3), obtaining the aligned shapes xi, i = 1,2, . . . ,N.
The mean shape x is calculated as the simple average of the aligned shapes, x =
1
N ∑N

i=1 xi. The shape space spanned by these N aligned shapes can be represented
as a linear space with K = min{3M−1,N −1} eigen vectors, V1, . . . ,VK , based on
Principal Component Analysis (PCA) [5]. A new shape y in the aligned shape space
can be represented as
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Fig. 2.16 Sampling patterns in steerable features for rigid and nonrigid deformation estimation.
(a) Regular sampling pattern for estimating translation, rotation, and scaling. (b) Sampling pattern
based on a synthesized shape for estimating nonrigid deformation parameters

y = x+
K

∑
j=1

c jV j + e, (2.21)

where ci the so-called PCA coefficient and e is a 3M-dimensional vector for the
residual error. Using the statistical shape model, a nonrigid shape can be represented
parametrically as (T,R,S,c1, . . . ,cK ,x,e), where T,R,S represent the translation,
rotation, and scaling to transfer a nonrigid shape in the aligned shape space back to
the world coordinate system.

With this representation, we convert a segmentation (or boundary delineation)
problem to a parameter estimation problem. Among all these parameters, x is fixed
and e is sufficiently small if K is large enough (e.g., with enough training shapes).
The standard MSL only estimates the rigid part (T,R,S) of the transformation.
Here, we extend MSL to directly estimate the parameters for nonrigid deformation
(c1, . . . ,cK).

Given a hypothesis (T,R,S,c1, . . . ,cK), we train a classifier based on a set of
image features F to distinguish a positive hypothesis from a negative one. The image
features should be a function of the hypothesis, F = F(T,R,S,c1, . . . ,cK) and incor-
porate sufficient information for classification. The steerable features presented in
Sect. 2.3.2 of Chap. 2 help to efficiently embed the object pose information into the
feature set by steering (translate, rotate, and scale) a sampling pattern with respect
to the testing hypothesis. In the original MSL estimation of the rigid transformation,
we extract at each sampling point 24 local image features, using a regular sampling
pattern to embed the object pose parameters (T,R,S). For the Nonrigid MSL, we
need to also embed the nonrigid shape parameters c j, j = 1, . . . ,K, and achieve this
through a new sampling pattern based on the synthesized nonrigid shape (as shown
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in Fig. 2.16b). Each hypothesis (T,R,S,c1, . . . ,cK) corresponds to a nonrigid shape
using the statistical shape model (see Eq. (2.21)). We use this synthesized shape
as the sampling pattern and extract the local image features on its M points. The
dots in Fig. 2.16b are the synthesized shape. If a hypothesis is close to the ground
truth, the sampling points should be close to the true object boundary. The image
features based on image intensity and local gradient are extracted on these sampling
points and help distinguishing the object’s boundary. To capture more information
for classification, we also sample a layer of points inside the shape (represented as
‘x’ in Fig. 2.16b) and a layer of points outside the shape (‘+’ in Fig. 2.16b). In total,
we get 3M sampling points, resulting in a feature pool with 24× 3×M features.
Similarly to the standard MSL, we use the boosting technique to learn the classifier.

Due to the exponential increase of testing hypotheses, we cannot train a mono-
lithic classifier to estimate all deformation parameters simultaneously. Using the
MSL principle, we split the deformation parameters into groups and estimate them
sequentially. To be specific, after position-orientation-scale estimation, we train a
classifier in the marginal space of (T,R,S,c1,c2,c3), where (c1,c2,c3) correspond
to the top three deformation modes. Given a small set of candidates after position-
orientation-scale estimation, we augment them with all possible combinations of
(c1,c2,c3) and use the trained nonrigid MSL classifier to select the best hypotheses.
In theory, we can apply the MSL principle to estimate more and more nonrigid
deformation parameters sequentially. In practice, we find that with the increase of
the dimensionality of the marginal spaces, the classifier is more likely to over-fit the
data due to the limited number of training samples. No significant improvement has
been observed by estimating more than three nonrigid deformation parameters.

2.6.2 Experiments on Liver Detection in 3D CT Volumes

Table 2.2 Comparison of the standard, rigid MSL and Nonrigid
MSL on liver detection in 226 CT volumes. Average point-to-
mesh error Ep2m (in millimeters) of the initialized shape is used for
evaluation

Mean Std Dev Median

MSL 7.44 2.26 6.99
Nonrigid MSL 6.65 1.96 6.25

In this experiment, we compare Nonrigid MSL against the standard, rigid MSL
on liver detection in 226 3D CT volumes. The dataset is very challenging, including
both contrasted and non-contrasted scans, with volumes coming from different
clinical sites, generated by different protocols. After object localization, we align
the mean shape (a surface mesh) to the estimated transformation. The accuracy of
the initial shape estimate is measured with the symmetric point-to-mesh distance
Ep2m. The initial mesh is then deformed through a subsequent nonrigid estimation
step, to fit the image boundary and further reduce the error.
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Fig. 2.17 Liver segmentation result on a CT volume. (a) Initialization with the mean shape aligned
to the translation, orientation, and scale estimated by standard, rigid MSL. (b) Initialization by
estimating additional three principal components of nonrigid deformation using nonrigid MSL. (c)
Final segmentation result. From left to right: transaxial, sagittal, and coronal views

Since the focus of this section is to compare the errors corresponding to
rigid and nonrigid MSL estimation for object localization, in the following we
only measure the error after the MSL estimation. A threefold cross-validation
is performed to evaluate the algorithm. As shown in Table 2.2, the rigid MSL
achieves a mean initialization error of 7.44 mm and a median error of 6.99 mm
after pose estimation. By estimating three more nonrigid deformation parameters
(top three PCA coefficients), as shown in the last row of Table 2.2, we can further
reduce the average Ep2m to 6.65 mm, about 11 % improvement compared to the
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original error of 7.44 mm.1 Figure 2.17a and b show the shape initialization
of liver segmentation with baseline MSL and Nonrigid MSL, highlighting that
Nonrigid MSL can generate more accurate initial shape. Figure 2.17c shows the final
segmentation results obtained by adding the ASM and a learning based boundary
detector.

2.7 Theoretical Foundations of Marginal Space Learning

In this section, we provide theoretical justifications of Marginal Space Learning
(MSL) and make a connection to the shortest path computation problem in graph
search and to particle filtering. The analysis is focused on the standard MSL for
estimating the anisotropic similarity transformation parameters of a target object in
a 3D volume, although it can be extended to cover Nonrigid MSL.

2.7.1 Relation to Shortest Path Computation

Given an image I, the process of object detection assumes searching for optimal
pose parameters, T̂ (translation), R̂ (rotation), Ŝ (scaling), to maximize the posterior
probability P(T,R,S|I),

T̂, R̂, Ŝ = arg max
T,R,S

P(T,R,S|I). (2.22)

In machine learning based object detection approaches, the posterior probability
P(T,R,S|I) is estimated using a classifier. As shown in [12], if an AdaBoost
classifier is trained to distinguish positive and negative pose hypotheses (T,R,S),
the probability computed from the AdaBoost classifier (refer to Eq. (2.17)) is a good
estimate of the posterior probability.

If the posterior probability is complex, as in most real applications, many weak
classifiers, often a few hundred, need to be integrated to approximate well the
posterior probability. The PBT classifier as used in our implementation approaches
the target posterior probability by data augmentation and tree expansion through
a divide-and-conquer strategy. Note that other classifiers, such as the random
forests [2] or support vector machine [30], can also provide an approximation of
the posterior probability.

To search for an optimal pose of the target object, all possible combinations of
the three transformations, T, R, and S, need to be tested by the trained classifier.

1The reduced error of Nonrigid MSL is achieved by combining the technique of Constrained MSL
presented in Chap. 4. Using Constrained MSL, we can reduce the mean Ep2m error from 7.44 to
7.12 mm. By estimating three more PCA coefficients of the nonrigid deformation, the mean error
is further reduced to 6.65 mm.
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Due to the exponential increase of the number of pose hypotheses with respect to
the dimensionality of the pose parameter space, exhaustive search is impractical for
3D object detection. In MSL, we split the search into multiple steps. The posterior
probability P(T,R,S|I) can be factorized as

P(T,R,S|I) = P(T|I)P(R,S|T, I)
= P(T|I)P(R|T, I)P(S|T,R, I). (2.23)

The position classifier of MSL gives an approximation of the posterior probability
P(T|I). However, in the following estimation steps, we do not estimate the
conditional probabilities P(R|T, I) and P(S|T,R, I) directly. Instead, the position-
orientation classifier estimates probability P(T,R|I) and the position-orientation-
scale classifier estimates P(T,R,S|I). Nevertheless, the conditional probabilities
can be derived as

P(R|T, I) = P(T,R|I)
P(T|I) (2.24)

and

P(S|T,R, I) =
P(T,R,S|I)
P(T,R|I) . (2.25)

In MSL, when we evaluate position-orientation hypothesis (T,R) to get an estimate
of P(T,R|I), the probability P(T|I) is already estimated by the position classifier.
So, the conditional probability P(R|T, I) can be derived using Eq. (2.24) without an
additional evaluation of P(T|I). The same is true to the calculation of P(S|T,R, I).

s

ScalingTranslation Rotation

-ln P(T|I)

e

-ln P(R|T,I)
-ln P(S|T,R,I)

0

Fig. 2.18 In marginal space learning, object pose estimation can be formulated as searching for
the shortest path from the start node s to the end node e in a graph
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By factorizing joint probability P(T,R,S|I), the object detection problem as
formulated in Eq. (2.22) is converted to

T̂, R̂, Ŝ = arg max
T,R,S

P(T|I)P(R|T, I)P(S|T,R, I). (2.26)

In the following, we cast it to the classical shortest path computation problem by
defining a path cost function f (T,R,S) as

f (T,R,S) = − lnP(T,R,S|I)
= − lnP(T|I)− lnP(R|T, I)− lnP(S|T,R, I). (2.27)

Then, the object pose estimation problem is converted to

T̂, R̂, Ŝ = arg min
T,R,S

− lnP(T|I)− lnP(R|T, I)− lnP(S|T,R, I). (2.28)

Figure 2.18 shows the graph of the shortest path computation problem for object
pose estimation. The start node s is connected to all position hypotheses T with
a weight − lnP(T|I). Each position hypothesis is connected to all orientation
hypotheses R with a weight − lnP(R|T, I). Similarly, each orientation hypothesis
is connected to all scale hypotheses S with a weight − lnP(S|T,R, I). Finally,
each scale hypothesis is connected to the end node e with zero cost. Under this
formulation, object pose estimation is equivalent to searching for an optimal path
from s to e with a minimum cost.

Exhaustive search guarantees to find a global optimal path by evaluating all
potential paths, but it is too time consuming. The A* algorithm [15] is a more
efficient search algorithm that also guarantees to find an optimal path if all edge
costs are non-negative as ours. Figure 2.19 shows the pseudo code the A* algorithm.
It maintains an open list of nodes under evaluation and a closed list of nodes already
processed. The nodes in the open list is ordered based on a heuristic function f (n)

f (n) = g(n)+h(n), (2.29)

where g(n) is the cost of the current optimal path from s to n and h(n) is an
estimate of the minimum cost from n to e. If h(n) is an under estimate of the
real minimum cost, the A* algorithm is guaranteed to find the shortest path. For a
graph with non-negative edge costs, h(n) = 0 is a trivial heuristic estimate satisfying
the under-estimate condition. The A* algorithm is then equivalent to the Dijkstra
algorithm [7], another well-known shortest path computation algorithm. However,
the more accurate the heuristic estimate h(n) is, the more efficient the search (fewer
nodes visited during the search). One limitation of the A* algorithm is that it
does not scale well to a large graph. The search with an unbounded open list will
eventually fail due to either time or memory constraint.
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Fig. 2.19 Pseudo code of the A* search algorithm [15]

In many real applications, searching for the exact global shortest path is not
absolutely necessary. An efficient algorithm is more desirable if it can find a near-
optimal path much faster than the exact algorithms. Object detection is such an
application. First, there are many good pose hypotheses. For 3D object detection, in
total, there are at least 29 = 512 pose hypotheses within one searching step distance
to the ground truth. Any of them is good enough. Second, the PBT classification
score is just an approximation of the posterior probabilities P(T|I), P(T,R|I), and
P(T,R,S|I). That means the edge cost is a noisy measurement. Although the pose
hypothesis corresponding to the global optimal path is generally a good estimate, it
may not be the one closest to the ground truth.

Many greedy search algorithms have been proposed to reduce the searching
time and memory footprint of exact search algorithms. Beam search is a greedy
search that was first used in the Harpy Speech Recognition System developed at
Carnegie Mellon University in mid-1970s [23]. The basic idea of beam search is
that instead of maintaining all paths currently under evaluation, it only maintains
a limited number of most promising paths [1]. The upper limit of the number of
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maintained paths is called beam width, which is a critical parameter to control the
trade-off between search speed (as well as memory footprint) and optimality of the
generated path. If the beam width is infinity, the algorithm is equivalent to an exact
search that can generate a global optimal path, but at the cost of longer search time
and larger memory footprint. With a small beam width, the algorithm is efficient but
often generates a path with a large cost or fails to generate a solution at all since
an optimal (or feasible) path may be pruned erroneously during the search. To the
extreme, with a beam width of one, the algorithm is equivalent to the hill-climbing
algorithm, which often outputs a locally optimal solution of poor quality [32].

Although the idea is simple, beam search works well on a lot of problems, e.g.,
planning [35], scheduling [6], speech recognition [23], and machine translation [27].
It works especially well on problems with a lot of near-optimal solutions [6] like
our object pose estimation problem. A recent comparison [32] on a variety of
graph search problems shows that beam search offers a better trade-off between
speed and accuracy than other greedy search algorithms. It is well suited for large
search problems when other algorithms fail to generate a solution at all. In addition,
beam search can be integrated into different exact search algorithms, e.g., the A*
algorithm.

Note that a tree can be searched in different orders, e.g., depth-first, breadth-first,
or best-first, where the nodes are ordered using a heuristic cost estimate. From this
point of view, the MSL uses the classical breadth-first beam search. Our graph is
basically a tree if the end node e is removed. (The node e is added to convert the
graph search problem to a shortest path computation problem. The tree leaf nodes
are connected to e with edges of a zero cost.) In the breadth-first search order, a tree
is searched level by level. First, the root node is searched; then, all children of the
root node are searched; and next, all grand-children of the root node are searched.
This search order is propagated level by level until all leaf nodes have been searched.

In MSL, after each step, a limited number of pose hypotheses are preserved and
all other pose hypotheses with a low classification score are discarded. The beam
width (i.e., the number of preserved candidates after each step) is tuned to get a good
trade-off between the estimation accuracy and speed. As shown in Fig. 2.13 for heart
chamber detection, a beam width of one (equivalent to the hill-climbing algorithm)
is too restrictive and good pose candidates are likely to be pruned erroneously. When
the beam width is increased to 100, the best position hypotheses (which are closest
to the ground truth) are almost sure to be preserved for the left ventricle detection, as
shown in Fig. 2.13a. For the following position-orientation and position-orientation-
scale estimation, with a small beam width, we start to lose some of the best pose
candidates. Fortunately, our problem contains a lot of near-optimal solutions, and
the MSL successfully preserves many good pose candidates, as shown in Fig. 2.13b
and c.
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2.7.2 Relation to Particle Filtering

The MSL can also be regarded as a special type of particle filter [9] for which the
particles are propagated in the sequence of subspaces (Eq. (2.5)) of increasingly
larger dimension, namely, the marginal spaces. A typical particle filter propagates
particles in the same space; hence, the MSL contributes to an extended filtering
process, by allowing the space dimensions to vary between estimation steps. For
a given marginal space, the MSL prunes the particles through classifiers trained
in that subspace, while the propagation to the next subspace involves adding more
parameters, thus increasing the particle dimensionality, and adding more particles
to cover the new subspace. The last space in the estimation is the pose parameter
space of the object that needs to be detected.

2.8 Conclusions

In this chapter, we discussed in detail the Marginal Space Learning (MSL)
paradigm, demonstrating its efficiency and robustness. By progressively learning
in subspaces of increasing dimensions called Marginal Spaces, the MSL achieves
early pruning of irrelevant hypotheses. This property makes MSL an ideal tool for
fast pose estimation. The chapter also covered the entire framework of an MSL
application in 3D with a focus on heart chamber detection in CT volumes, analyzing
its 3D image features and a default classifier, the PBT. Finally we presented an
extension to Nonrigid MSL and related the MSL concept to prior search and
estimation strategies.
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