A Polynomial Algorithm for a Class of 0-1
Fractional Programming Problems Involving
Composite Functions, with an Application

to Additive Clustering

Pierre Hansen and Christophe Meyer

Abstract We derive conditions on the functions ¢, p, v and w such that the 0-1

fractional programming problem n{lax} % can be solved in polynomial time by
x€{0;1}1 3

enumerating the breakpoints of the piecewise linear function ®(1) = max v(x)—
x€{0;1}"

Aw(x) on [0; +00). In particular we show that when ¢ is convex and increasing, p
is concave, increasing and strictly positive, v and —w are supermodular and either v
or w has a monotonicity property, then the 0—1 fractional programming problem can
be solved in polynomial time in essentially the same time complexity than to solve
the fractional programming problem él{lgl)li} %, and this even if ¢ and p are non-
X HE S
rational functions provided that it is possible to compare efficiently the value of the
objective function at two given points of {0; 1}"". We apply this result to show that a
0-1 fractional programming problem arising in additive clustering can be solved in

polynomial time.

Keywords 0-1 fractional programming ¢ Submodular function ¢ Polynomial
algorithm ¢ Composite functions * Additive clustering

1 Introduction
We consider the following 0—1 composite fractional programming problem

(CFP) max 2200
x€B;, pow(x)

P. Hansen (<) » C. Meyer

GERAD, HEC Montréal, 3000, chemin de la Cote-Sainte-Catherine,
Montréal, Québec, Canada H3T 2A7

e-mail: pierre.hansen@gerad.ca; christophe.meyer@gerad.ca

F. Aleskerov et al. (eds.), Clusters, Orders, and Trees: Methods and Applications: 13
In Honor of Boris Mirkin’s 70th Birthday, Springer Optimization and Its Applications 92,
DOI 10.1007/978-1-4939-0742-7_2, © Springer Science+Business Media New York 2014

mailto:pierre.hansen@gerad.ca
mailto:christophe.meyer@gerad.ca

14 P. Hansen and C. Meyer

where B, = {0;1}", ¢ and p are functions from R to R and v and w are functions
from B, to R.

In order for the problem (CFP) to be well-defined, we must assume that p o
w(x) # 0 for all x € B,. Actually we will make a stronger assumption and assume
that p is of constant sign on the convex hull conv (w (B,)) of the image of B, by w
(we will see later that there is little hope to obtain a polynomial algorithm to solve
the problem (CFP) when p o w(x) can assume both positive and negative values on
B,,). More precisely we assume that:

(C1) pis strictly positive on conv (w (B,)).

Since the aim of this paper is to identify polynomial instances of problem (CFP),
a natural assumption is:

(C2) evaluation and comparison of the value of the objective function % can be
done in polynomial time for any two points x and x’ of B,,.

We also need to assume that v and w are rational functions. By redefining ¢ and p if
necessary, we assume that

(C3) v and w take integral values on B,,.

We explore a solution approach for problem (CFP) that consists in two steps: first
we reduce problem (CFP) to the problem of computing a set of points X T C B,
that define the slopes of the piecewise linear function ®(A) = max v(x) —Aw(x) on

XEB,

[0; 4+00); then we consider the problem of computing in an efficient way the set X .
We show that the reduction step is valid if one of the following sets of assumptions
is satisfied:

(C4) there exists x € B, such that (¢ o v)(x) > 0;
(C5) ¢ and p are increasing;
(C6) ¢ and —p are convex;

or:

(C4) (pov)(x) <Oforall x € By;
(C5’) ¢ and —p are increasing;
(C6’) ¢ and p are convex.

Actually we will derive a weaker condition than (C6) and (C6’), but this weaker
condition is difficult to exploit as it is expressed in terms of the elements of the set
X . This weaker condition is implied by (C6) and (C6°).

In order for our algorithm to run in polynomial time, we must be able to
enumerate in polynomial time the breakpoints of the function ®. The only nontrivial
class of functions that we know for which this can be done in polynomial time
is related to the concept of supermodularity. Let us introduce this last set of
assumptions:

(C7) vand —w are supermodular on B),;
(C8) one of the following conditions is satisfied:

A Polynomial Algorithm for a Class of 0-1 Fractional Programming Problems. . . 15

(C8a) v or w takes a polynomial number of distinct values on B,;

(C8b) v and w are both linear;

(C8c) v or w is monotone and the application x +— (v(x),w(x)) is weakly
bijective on B,,.

The definitions of supermodularity, monotonicity and weak bijection can be found in
Sect.2.1.1. Note that since the opposite of a submodular function is a supermodular
function, we could have expressed some of the above assumptions in different equiv-
alent ways. For example, the assumption (“¢ is increasing and v is supermodular’)
is equivalent to the assumption (“¢ is decreasing and v is submodular”).

Let T(n) be the time to compute the set X ™ and U(n) be the time to evaluate
and compare the value of the objective function at two given points x and x’ of B,,.
The main results of this paper are:

Theorem 1. If the conditions (C1)—(C8) are satisfied, then problem (CFP) can be
solved in polynomial time O (T(n) + |X+|U(n)).

Theorem 2. If the conditions (C1)—(C3), (C4’)—(C6’), (C7) and (C8) are satisfied,
then problem (CFP) can be solved in polynomial time O (T (n) + |X+|U(n))

By polynomial time, we mean a running time that is polynomial in n and in

the size of the number M = max { max |v(x)|, max |w(x)|, max |(¢ o v)(x)|, max
XEB, XEB, X€EB, XEB,

|(pow)(x)|}.

The remaining of this paper is organized as follows. In Sect. 2 we collect several
definitions, facts and results from the literature that are pertinent for our work:
the concept of supermodularity is reviewed in Sect. 2.1; Sect. 2.2 is devoted to the
minimum cut problem (with non-negative capacities) and to problems reducible to
it. In Sect. 2.3 we review in more detail the fractional programming problem with
particular emphasis on the so-called Dinkelbach’s algorithm.

Section 3 is the main part of this paper. We start by defining more precisely
the new algorithm in Sect. 3.1. In Sect. 3.2 we present an algorithm to compute the
set X T and identify sufficient conditions on the functions v and w that guarantee
that this algorithm runs in polynomial time. In Sect. 3.3 we determine conditions on
the functions ¢ and p that guarantee that the set X computed by the breakpoint
enumeration algorithm of Sect. 3.2 actually contains at least one optimal solution of
problem (CFP). Putting together the results of the two previous subsections, we then
prove Theorems 1 and 2 in Sect. 3.4, where we also discuss the complexity time of
the resulting algorithms.

In Sect. 4 we show how our method can be used to derive a polynomial algorithm
for a problem arising in additive clustering.

Extensions of our results to minimization problems, maximization of product of
composite functions and constrained problems are discussed in Sect. 5, before we
conclude in Sect. 6.

16 P. Hansen and C. Meyer

2 Definitions and Related Works

2.1 Supermodularity

2.1.1 Definitions

A function f is supermodular over B, if

JaAY) + fxvy) =z f)+ f(y) VYx.yeB, (1)

where x A y is the binary vector whose ith component is the minimum between
x; and y;, and x V y is the binary vector whose ith component is the maximum
between x; and y;.

A function f is submodular if — f is supermodular. A function that is both
submodular and supermodular is modular. Alternate equivalent definitions exist for
super- and submodularity, see, e.g., Nemhauser and Wolsey [41].

For any two vectors x and y of R" we write x < y if and only if x; < y; for
i =1,...,n,and x < yifandonlyif x;, < y; fori = 1,...,n and x # y.
We define similarly the notations x > y and x > y. If neither x < y nor x > y
holds we say that x and y are not comparable. Following Topkis [54], a function
f(x) from a partially ordered set X to R is increasing (resp. decreasing) if x <
y in X implies f(x) < f(y) (resp. f(x) > f(y)). A function f is monotone
if it is either increasing or decreasing. A function f(x) from a partially ordered
set X to R is strictly increasing (resp. strictly decreasing) if x < y in X implies
f(x) < f(y) (resp. f(x) > f(»)). In this paper the set X will be either B, =
{0; 1}" (a partially ordered set that is not totally ordered) or R (a partially ordered
set that is totally ordered). It is common in lattice theory literature (Topkis [54]) to
use the terms isotone and antitone rather than “increasing” and “decreasing” for a
partially ordered set that is not a totally ordered set, but the latter are used herein
in order to have a more uniform terminology between the partially ordered set B,
and the totally ordered set R. Although we use only functions with value in a totally
ordered set (R or N), in order to be consistent with Topkis [54] we avoid in this
paper the use of the terms “nonincreasing” and “nondecreasing”; in particular the
terms “increasing,” “decreasing,” ““strictly increasing” and “strictly decreasing” used
in this paper correspond to what may be called “nondecreasing,” “nonincreasing,”
“increasing” and “decreasing” elsewhere.

Finally we say that the application x — (v(x), w(x)) is weakly bijective if for all
x,x' €B,,

((x),w(x)) = (v(x"),w(x)) = x =x"orxandx" are not comparable.

A Polynomial Algorithm for a Class of 0-1 Fractional Programming Problems. . . 17

2.1.2 Mathematical Results

The following result, which states some conditions on two functions such that their
composition is supermodular or submodular, is due to Topkis [53].

Proposition 1. Let g be a function defined on B,, and f be a function defined on

conv (g (By,)), where conv (g (B,)) denotes the convex hull of the image of set B,

by g.

a) If f is convex and increasing on conv (g (B,)) and g is supermodular and
monotone on B,, then f o g is supermodular on B,,.

b) If f is convex and decreasing on conv (g (B,)) and g is submodular and
monotone on B,, then f o g is supermodular on B,,.

c) If f is concave and decreasing on conv (g (By)) and g is supermodular and
monotone on B,, then f o g is submodular on B,,.

d) If f is concave and increasing on conv (g (B,)) and g is submodular and
monotone on By, then f o g is submodular on B,,.

Proof. We only prove a) since the proof for the other assertions is similar. Let x, y
be two elements of B,. By definition of the operators A and Vv, we have x Ay <
y < x V y. Since g is increasing or decreasing, we thus have

gxAny)=gly)=gkxvy)
or

glxvy) =g(y) =glx Ay).
In both cases there exists ¢ € [0; 1] such that
g(y) =tg(x Ay) + (1 =1)g(x Vv y). 2
On the other hand, since g is supermodular and by (2)

gx)<glxAy)+gxvy) —gy) =tgx vy + (1 —-1)gxAy).

Since f is increasing it follows that

IA

7 (20) = 1 (1g0e v) + (1 = gx A 1)

IA

tf (v)+ (1 =0f (gx np)

7 (v) + 1 (st n) = (of (s 2 0)
+d=-0f (g(x v y)))
=/ (g(x v y)) +f (g(x A y)) -f (g(y))

where we used (2) and twice the convexity of f. Hence f o g is supermodular
on B,,. |

18 P. Hansen and C. Meyer

2.1.3 Supermodular Maximization
Consider the following problem:

Supermodular Function Maximization (SFM) : max fx)
X€By

where f is a supermodular function defined on B,. Note that SFM could also
stand for “Submodular Function Minimization” as for example in [39]. Since
a function f is submodular if and only if —f is supermodular and since the
problem of maximizing f is equivalent to the problem of minimizing — f', the two
interpretations are however largely equivalent regarding complexity.

Grotschel, Lovdsz, and Schrijver [26] were the first to provide a (weakly)
polynomial time algorithm for SFM which uses the ellipsoid algorithm for linear
programming. It was later shown by the same authors [27] that the ellipsoid
algorithm can be used to construct a strongly polynomial algorithm for SFM that
runs in O (nSEO + n7) time. Here the notation O (f(n)) hides the logarithmic
factors, i.e., stands for O (f(n) - (logn)*) for some fixed k and EO stands for the
time needed for one evaluation of the objective function. However, this result was
not considered very satisfactory since the ellipsoid algorithm is not very practical
and does not give much combinatorial insight [39]. Then nearly simultaneously
two quite different combinatorial strongly polynomial algorithms (combinatorial
in the sense of not using the ellipsoid algorithm) were proposed by Schrijver
[49] and Iwata et al. [36], both building on previous works by Cunningham [14].
A few years later Orlin [42] proposed a fully combinatorial strongly polynomial
algorithm, i.e., an algorithm that does not use multiplication or division. Let M be
an upper bound on max | f(x)|. According to McCormick [39] the best theoretical

complexity bounds are O ((n*EO + n°) log M) for weakly polynomial algorithms
(Iwata [35]), O (n°EO + n®) for strongly polynomial algorithms (Orlin [42]) and
o (nSEO log? n) for fully combinatorial algorithms (Iwata [35]). See McCormick
[39] for a survey of these and other algorithms.

In contrast, maximizing a submodular function is an NP-hard problem as it
contains, for example, the maximum cut problem in a graph. Therefore, the focus
of present works on this problem is to develop good approximation algorithms. This
paper does not consider the submodular maximization problem; we refer the reader
to [18] for a recent reference.

2.1.4 Parametric Supermodular Maximization: The Notion of Monotone
Optimal Solutions
Consider the following parametric supermodular function maximization problem:

SFM(A) maxh(x,A)
X€EB,

A Polynomial Algorithm for a Class of 0-1 Fractional Programming Problems. . . 19

where A is either a scalar or a vector of parameters, with value in A and h(x,)
is supermodular in x for every A € A. Let S} be the set of optimal solutions of
problem SEM(A).

We say that problem SFM(A) has the Weak Increasing Optimal Solution Property
(respectively, the Weak Decreasing Optimal Solution Property) if forany A’ < 1" €
A and any optimal solution x” of SFM(1’) and any optimal solution x” of SEFM(1")
it holds that x” A x” (resp. x’ Vv x”’) is an optimal solution of SFM(A’) and x’ v x”
(resp. x” A x”') is an optimal solution of SEM(1").

The Weak Increasing (resp. Decreasing) Optimal Solution Property implies the
existence of an optimal solution x” of SFM(1’) and the existence of an optimal
solution x” of SEM(A”) such that x < x” (resp. x’ > x”). This ordering relation
may, however, not be true for any optimal solutions of SFM(A") and SFM(A"”). This
leads to the definition of the Strong Increasing Optimal Solution Property and its
decreasing counterpart.

We say that problem SFM(A) has the Strong Increasing Optimal Solution
Property (respectively, Strong Decreasing Optimal Solution Property) if for any
A < A" € A, for any optimal solution x” of SFM(X’) and for any optimal solution
x" of SEM(A”) it holds that x" < x” (resp. x’ > x").

Finally we say that problem SFM(A) has the Weak (respectively, Strong) Optimal
Solution Monotonicity Property if SEM(A) has either the Weak (resp. Strong)
Increasing Optimal Solution Property or the Weak (resp. Strong) Decreasing
Optimal Solution Property.

The Weak and Strong Optimal Solution Monotonicity Property turn out to be
a very useful property to prove that some algorithms run in polynomial time, see
Proposition 3 together with Propositions 2 and 7.

Sufficient conditions on / have been derived by Topkis [53] (see also [54]) for
the problem SFM(A) to have the Weak Increasing Optimal Solution Property or the
Strong Increasing Optimal Solution Property. A straightforward adaptation of his
results yields also sufficient conditions for the Weak and Strong Decreasing Optimal
Solution Property.

Rather than using these general results, which would require to introduce
additional notions, we directly state and prove a sufficient condition for the Weak
and Strong Optimal Solution Monotonicity Properties in the particular case where
A={AeR:1>0}and

h(x,) = f(x) —Ag(x). 3

A slight improvement can be obtained in this case by replacing the strict
monotonicity assumption as a sufficient condition for the Strong Optimal Solution
Monotonicity Property by the monotonicity assumption plus the weak bijection
property. To see that this is indeed an improvement, consider the pair of functions
over Bs: f(x) = x; and g(x) = x2 + x3. Both functions are monotone
but none of them is strictly monotone. On the other hand, the application
x = (f(x), g(x)) is weakly bijective since the only nontrivial solution of equation

(f(0). g(x) = (f(¥).g(y))isx = (u, v, 1=v),y = (u, 1 =v,v) withu,v € {0; 1}

20 P. Hansen and C. Meyer

and clearly x and y are not comparable. It is not difficult to show that strict
monotonicity implies the weak bijection property.

Proposition 2. Assume that h has the form (3), where f and —g are supermodular
functions on By, and that A = {A € R: A > 0}.

If f or g is monotone, then SFM (L) has the Weak Optimal Solution Monotonic-
ity Property.

If f or g is monotone and the application x — (f(x), g(x)) is weakly bijective,
then SFM (L) has the Strong Optimal Solution Monotonicity Property.

Proof. Let 0 < A’ < A" and let x’ (respectively, x”) be a maximizer of A (x, ")
(resp., h(x, A")). We prove the result first in the case where g is increasing, then in
the case where f is increasing, and finish by saying a few words on how to modify
the proof for the two other cases.

Assume that g is increasing. By optimality of x’ and x”,

J&)=Vegl) = fx"vx") = Ag(x" v x") 4)
f(x//) —)V’g(x”) > f(x/ /\X”) —)V’g(x’ /\X”). 5)

Summing the two inequalities yields
FE&) 4+ f7) = f(VX" = f(TAXT)
= =) (26 - A1)

Y (g(x’) () — gV x") — g’ A x”)) . ®

The left-hand side of (6) is nonpositive by supermodularity of f while the right-
hand side is nonnegative since A” > A’ > 0 and since g is submodular and
increasing (note that x” > x’ A x”). Hence all inequalities must be satisfied at
equality, i.e.,

F&N)=Ng(x) = f(x"vx") = Ng(x' vx")
FG") =2"g(x") = f(X" AX") =1 g(x" AX")
FE)+ fG") = f VX)) = [T AX") =0
gx")—g(x’ Ax")=0.

The first two equalities show that y’ = x’ v x” is a maximizer of A(x,A’) and y” =
x" A x” is a maximizer of h(x, "), hence that SFM(A) has the Weak Decreasing
Optimal Solution Property. From the remaining equalities it follows that g(x”) =
g(»”) and f(x") = f(»"). Since x” and y” are comparable, the weak bijection
property implies x” = y”. Since y” < x’, we conclude that SFM(A) has the Strong
Decreasing Optimal Solution Property.

A Polynomial Algorithm for a Class of 0-1 Fractional Programming Problems. . . 21

Assume now that f is increasing. By multiplying (4) by % and (5) by ﬁ and
summing, we obtain

(v &) + g (' A x") — g() — g
1 1 / V4 1
z—(;—v) (f(x AX) = f(x))
+o; (f(x’ VA4 FO AR = F) = f(x”)) o

The left-hand side of (7) is nonpositive by submodularity of g while the right-hand
side is nonnegative since % > % > 0 and since f is supermodular and increasing.
Therefore all inequalities must hold at equality, in particular inequalities (4)—(5). We
conclude again that x’ v x” is a maximizer of & (x, A’) and x’ A x” is a maximizer of
h(x,A"), hence that SFM (L) has the Weak Decreasing Optimal Solution Property.
The Strong Property follows from the monotonicity of f or g and the weak bijection
property in the same way than for the case where g is increasing.

If f or g is decreasing we replace inequalities (4)—(5) by

SO =Ag(x")y = f(X'AX")=Ng(x" AX")
f(x//) N)L"g(x") > f(x/ v x//) _)L"g(x/ v x//).

The rest of the proof is similar. In both cases we conclude that SFM(1) has the
Weak or Strong Increasing Optimal Solution Property, depending on whether the
weak bijection property holds or not. |

2.2 The Minimum Cut Problem

2.2.1 Definition

Let G = (V, A) be a directed graph with vertex set V' and arc set A. With each arc
(vi,vj) € A we associate a nonnegative number c;;, called the capacity of the arc
(vi,v;). Given two subsets S and T of V' we denote by (S, T') the set of arcs with
origin in S and destination in 7', that is

(S,T)z{(vi,vj):vi ESaHde GT}. (8)

Assume that two distinct vertices s and ¢ are given, s being called the source and ¢
the sink. An (s, t)-cut, or more simply a cut, is a set (S, S) (as defined in (8)) with
s€T,t €S whereS =V \ S denotes the complement of S. Note that a cut is
a set of arcs induced by a set S of nodes. The quantity c(S, S) = Z(qul_)e(&g) Cij
is called the capacity of the cut. The minimum cut problem consists in determining

22 P. Hansen and C. Meyer

the subset S of V' that minimizes the capacity (S, S). The minimum cut problem
can be solved in polynomial time thanks to the max flow—min cut theorem that
establishes a strong relation with a linear problem, the maximum flow problem, see
e.g., Ahujaet al. [1].

2.2.2 The Selection Problem

Hammer and Rudeanu [29] have shown that every function defined on B, can be
written in a unique way as

fx) = Zas Hxi - Zci-xi)

Sed4 ieS i=1
where A is a family of subsets of {1,2,...,n} of size at least 2 and ag (S € A)
and ¢; (j = 1,...,n) are real numbers. An important special case is obtained by

adding the restriction

as >0, S e A. 10)
When the restriction (10) holds, the problem of maximizing f given by (9) is called
a selection problem (Rhys [46], Balinski [3]). It was shown by Rhys and Balinski
that the selection problem can be formulated as a minimum cut problem in a network
defined as follows. With each product of variables [], ¢ x; we associate a vertex vg
and with each variable x; we associate a vertex v; (i = 1,...,n). There are two
more vertices: a source s and a sink 7. There is an arc from the source to each vertex
vs with capacity as. For each S and for each i € S, there is an arc with infinite
capacity from vertex vg to vertex v;. Finally for eachi = 1,...,n there is an arc
from vertex v; to the sink vertex ¢ with capacity —c¢; if ¢; < 0 or an arc from the
source vertex s to the vertex v; with capacity ¢; if ¢; > 0 (no such arc is needed
for vertices v; such that ¢; = 0). The network has n’ = |A| + n + 2 nodes and
m' = Al + Y g4 |S| + n arcs.

A network of smaller size exists when the degree of f is < 2 (the degree of f
is defined as the largest cardinality of a subset in A). This network has n + 2 nodes
and n + | A| arcs, see Hammer [34].

It is not difficult to show that the set of functions of degree < 2 that can be
written as (9) with the restriction (10) coincides with the set of functions of degree
< 2 that are supermodular. This is not true anymore for functions of larger degree
as supermodular functions of degree 3 can have negative ag, see Billionnet and
Minoux [5].

A Polynomial Algorithm for a Class of 0-1 Fractional Programming Problems. . . 23

2.2.3 The Parametric Minimum Cut Problem

In several applications the capacities of the arcs in a minimum cut problem depend
on one or more parameters, and we would like to find a minimum cut for all possible
values of the parameters. Gallo et al. [22] have developed an algorithm that solves
a special class of parametric minimum cut problem with a single parameter in the
same complexity time than what would be necessary to solve the minimum cut
problem for a fixed value of the parameter (solving a parametric problem means
here to find an optimal solution for all possible values of the parameter). In this
special class of parametric minimum cut problem, the capacities of the arcs leaving
the source are nondecreasing functions of the (unique) parameter, those of arcs
entering the sink are nonincreasing functions of the parameter, and those of all other
arcs are constant. The complexity of the Gallo, Grigoriadis and Tarjan algorithm is

0 (m’n’ log(n'2/m’)) where n’ denotes the number of nodes and m’ the number of

arcs in the network.

Other classes of the parametric minimum cut problem for which this “all-in-one”
property holds have since been identified: see the recent paper by Granot et al. [25]
and the references therein.

2.3 Single-Ratio Fractional Programming

Problem (CFP) is a 0—1 (single-ratio) fractional programming problem. In general
the (single-ratio) fractional programming problem is defined as

F(x)
P mx ZH

Y

where F' and G are real valued functions on a subset S of R” and G(x) > 0 for all
xeS.

The single-ratio fractional programming problem has received considerable
attention from the continuous optimization community since the 1960s [10, 16].
According to Frenk and Schaible [19], many of the results on this topic were already
presented in the first monograph on fractional programming published in 1978 by
Schaible [47]. The focus has since shifted to problems involving multiple ratios,
where one, for example, seeks to maximize the sum of several ratios, or maximize
the minimum value of several ratios. Other monographs on fractional programming
are Craven [13] and Stancu-Minasian [51], see also [20,48,52].

The discrete version of the problem also received considerable interests. When
S = {0;1}", the research focused on the case where F' and G are polynomials:
see, for example, Hansen et al. [31] for the linear case, Hochbaum [33] and the
references therein for the quadratic case, Picard and Queyranne [43], Gallo et al.
[22] and Chang [9] for polynomials of larger degree.

24 P. Hansen and C. Meyer

When constraints are allowed, the functions appearing in the ratio are generally
assumed to be linear. Problems that have been considered include the minimum
ratio spanning-tree problem, the maximum profit-to-time ratio cycle problem, the
minimum mean cycle problem, the maximum mean cut problem and the fractional
0-1 knapsack problem: see [45] for references to these problems. See also Correa
et al. [12], Ursulenko [55].

2.3.1 The Parametric Approach

Almost every solution method developed for fractional programming since the
seminal work of Dinkelbach [16] introduces the following auxiliary problem:

FPaux (1) max hy(x) = F(x) — AG(x).

A can be viewed as a “guess” for the optimal value G(‘*) of problem (FP): if A
FG*)

is smaller than & o the optimal value of the auxiliary problem FPaux (1) will be
positive and its optlmal solution will provide a feamble solution with objective value
larger than A; if, on the other hand, A i) , the optimal value of the
auxiliary problem will be negative.

We present below Dinkelbach’s algorithm for fractional programming. For
variants of it, see, e.g., Radzik [45]. Note in particular the proximity of this method
with the Newton method for finding roots of polynomial.

DINKELBACH’S ALGORITHM

Step 0. Select some x° € S. Compute Ao = 22;0; Setk = 0.
k+1

Step 1. Solve the auxiliary problem FPaux (). Let x

be an optimal solution.
Step 2. If hy, (x¥*1) = 0, stop: x* = x*. Otherwise let Ay = %, replace k
by k 4+ 1 and go to Step 1.

The complexity of Dinkelbach’s algorithm is determined by the number of
iterations and by the complexity of solving the auxiliary problem FPaux(A) for
a given A. A property that is very useful to derive polynomial algorithms for the
fractional programming problem is the supermodularity (see Sect. 2.1).

Consider the 0—1 unconstrained case, i.e., the case where S = B, and assume
that we know that the optimal value of problem (FP) is positive, i.e., that there exists
at least one X € S such that F(X) > 0. Then we can restrict our attention to A > 0.
If the function /1, (x) is supermodular in x for any A > 0 then the auxiliary problem
FPaux(A) can generally be solved in polynomial time by one of the algorithms
mentioned in Sect.2.1.3 for SEM. Moreover if FPaux(A) has the Strong Optimal
Solution Monotonicity Property (see Sect.2.1.4), then the number of iterations in
Dinkelbach’s algorithm is bounded by n. More precisely we have:

A Polynomial Algorithm for a Class of 0-1 Fractional Programming Problems. . . 25

Proposition 3. Assume that S = B,, that F and G are rational functions that can
be evaluated at a given point in polynomial time, that F and —G are supermodular
on By, that the optimal value of problem (FP) is positive, that either F or G is
monotone and that the application x + (F(x), G(x)) is weakly bijective. Then
problem (FP) can be solved in polynomial time.

3 A New Algorithm

This section is the main part of our paper. We start by defining precisely our
algorithm in Sect. 3.1. In Sect. 3.2 we characterize the breakpoint vertex set, present
an algorithm to compute it and derive conditions on v and w such that this algorithm
is polynomial. In Sect. 3.3 we derive conditions on functions ¢ and p that guarantees
that our algorithm correctly finds an optimal solution of problem (CFP). Theorems 1
and 2 are proved in Sect. 3.4.

3.1 Description

Let us introduce the function
L(x) =v(x) — Aw(x)
and the parametric problem

PARAM(1) (1) = max Ly (x).
X€B,

We will denote by X (1) an optimal solution of problem PARAM(A).
Note that the function L, (x) coincides with the function %z (x, A) that would be

considered when solving the problem max :((’?) by Dinkelbach’s algorithm.
X€By g

It is well-known that ®(1) = max L, (x) is a convex piecewise linear function on
X€B,

R (see, e.g., Nemhauser and Wolsey [41, Corollary 6.4]). Let py > pa > -+ >y
denote the breakpoints of ®(1) andlet X = {x°, ..., x9} be a subset of B, such that

v(x7) — Aw(x9), A € (—o0, tg]
D) = 2 v(x) —Aw(x*), X € [rpr k] fork=1,...,q—1 (12)
v(x%) = Aw(x?), A € [y, +00)

26 P. Hansen and C. Meyer
with
k—1 k —
w(x") < w(x") k=1,....q. (13)
By continuity of ® we have easily

() v _
Mk—m, k—l,,q (14)

We will consider subsets of X. Given an interval I of R, we define the set
X; € X as the set of points x* needed to define ®(A) on the interval I via
the formula (12). In particular, X = X o t+o00). The set X; will be called
the breakpoint vertex set for the function ®(A) on interval /. We will be more
particularly interested in the set X[o +oo), that we will denote more concisely by X .

We propose the following algorithm for problem (CFP):

ALGORITHM HM_CFP
Step 1. Construct the set X .

Step 2. Compute x* = arg max ponx) .
rext (pow)(x)

In Sect.3.2 we study the properties of the set X; and present an algorithm
for its computation. We then determine sufficient conditions on v and w for this
algorithm to run in polynomial time in the particular case where I = [0; 400).
One of the properties identified in Sect. 3.2 is used in Sect. 3.3 to derive conditions
on the functions ¢ and p that guarantee the correctness of the algorithm HM_CFP.
The results of the previous subsections are used in Sect. 3.4 to identify classes of
problems (CFP) that can be solved in polynomial time.

3.2 Computing the Breakpoint Vertex Set

In Sect. 3.2.1 we derive a certain number of properties of the breakpoints and of the
breakpoint vertex set, that will be used both to show the correctness of the Eisner
and Severance algorithm presented in the next subsection and to derive a sufficient
condition on the functions ¢ and p for the set X+ to contain at least one optimal
solution of problem (CFP) in Sect.3.3. In Sect.3.2.2 we present the Eisner and
Severance algorithm to compute the breakpoint vertex set X; on a given interval /
with at most 2N (/) evaluations of the function ®(A), where N(/) is the number
of breakpoints of ® on the interval /. Finally in Sect. 3.2.3 we derive conditions on
functions v and w that guarantee that the Eisner and Severance algorithm runs in
polynomial time when I = [0; 4+00).

A Polynomial Algorithm for a Class of 0-1 Fractional Programming Problems. . . 27

3.2.1 Properties

In this section we give some properties of the breakpoint vertex set X introduced
in Sect. 3.1. It must be noted that the results in this subsection and in the next one
are completely general: no assumption is made on the functions v and w other than
being defined on B,,.

We first observe that the set X (and therefore the set X; for a given interval
I) may not be unique if there exists x’,x” € B, with x’ # x” such that
(), w(x")) = ((x"),w(x”)). However both for the purpose of defining the
function ®(1) and for the algorithm HM_CFP, the two points x’ and x” are
completely equivalent. By a slight abuse of language we will continue to write “the
set X (or “the set X;”) in the sequel of this paper.

We now state without proof three easy lemmas.

Lemma 1. If) < A" then —w(Z(1")) < —w(Z(1")).
Moreover equality holds if and only if Ly (x(X")) = ®(X) and L»(x(1)) =
®(A") and in that case we have also v(X(1')) = v(x(A")).

Lemma 2. Let A’ < A" and assume that X is an optimal solution of both problems
PARAM(L) and PARAM(A"). Then ®(A) is linear on [/, 1”].

Lemma 3. w(x°) = min w(x). Moreover if there exists more than one optimal
X€EB,

solution, x°

w(x?) = max w(x). Moreover if there exists more than one optimal solution, x?
X€

n

is one of them that maximizes v(x).

is one of them that maximizes v(x).

The next result will be used to establish sufficient conditions on the functions ¢
and p for the set Xt to contain an optimal solution of problem (CFP).

Proposition 4. If holds:

v(x) —v(x*71) - v(x*) —v(x)

. k—1 k
W) — W) S Wb —w P S =),

Proof. By definition of the breakpoints and of the x* we have
V() = pew(x*) = v(x) — uw(x) Vx € By
In particular for all x € B, such that w(x*~1) < w(x) < w(x*):

V(x) — ew(x) < v(xF) — pew(x")
v(x®) —vx*Th - v(x*) —v(x)
w(xk) —w(xk=1) Hie = w(xk) —w(x)
(v(xk) - v(x)) + (v(x) — v(xk_l)) B (v(xk) — v(x))
(w(xk) - w(x)) + (w(x) - w(xk_1)> B (w(xk) - w(x))

=

28 P. Hansen and C. Meyer

where we used (14). Since each term delimited by a pair of parentheses in
the denominators is strictly positive, a simple manipulation gives the announced
inequality. |

We terminate by pointing out that another characterization of the breakpoints
can be found in Gallo and Simeone [21], as well as a different approach to compute
the breakpoint vertex set that requires to solve a constrained version of problem
PARAM(A).

3.2.2 The Eisner and Severance Algorithm

In this section we present an algorithm to compute the breakpoint vertex set X; of
®(1) on a (finite) interval I = [A, A], that works for any functions v and w and that
requires at most 2N solutions of the problem PARAM(A), where N is the number
of breakpoints of ®(A) in the interval /. This algorithm was originally proposed by
Eisner and Severance [17], see also Gusfield [28].

We first give an informal description of the algorithm. Basically the algorithm
partitions the given interval / into subintervals [A;,A; 4] for j € J. With each
A; we associate a point X(A;) of B, that is an optimal solution of problem
PARAM(A). The algorithm stops when it can be shown that ®(A) is linear on every
interval of the partition. Note that by Lemma 2 a sufficient condition for ®(1) to be
linear on the interval [A;, A ;1] is that X(A ;) is also an optimal solution of problem
PARAM(A41) or X(A;41) is also an optimal solution of problem PARAM(A ;). If
it is not possible to show that @ is linear on all intervals of the current partition, we
select an interval on which & is not known to be linear and subdivide it.

We now explain the subdivision process. Let [A’,A”] be an interval to be
subdivided, and let X’ = X(1’) and X” = X(1”) be the optimal solutions associated
with the bounds of the interval. We assume that X’ is not an optimal solution of
problem PARAM(A”) and x” is not an optimal solution of problem PARAM(A')
since otherwise ® would be linear on the interval, which therefore would not have
been selected for subdivision. In particular w(x") > w(x”) by Lemma 1. Define

v(x) —v(x")

e ETED) "

We argue that A € (1, 1”). Indeed

i_kuzoﬁo—xw@q)—@@@—xw@ﬂ)

W) — W) >0

A Polynomial Algorithm for a Class of 0-1 Fractional Programming Problems. . . 29

Step 1 (initialization) : Assume that I = [\, A]. Solve PARAM ()), obtaining an optimal solution
#()) and an optimal value ®()). Solve PARAM ()), obtaining an optimal solution #(\) and an
optimal value ®(X). Set £ =NL = X; =0 and New = {[),X]}.

Step 2 (linearity test) : For each interval I’ = [\, \”] in New, do the following:

If Ly (@(N)) = @A), add (N') to X and add I’ to L.
If Ly (#(N")) = B(N'), add #(X") to X; and add I’ to L.
If none of the above two cases occur, add I’ to N'L.

Set New to (.
Step 3 (optimality test) : If NL =0, stop and return Xj. ~
Step 4 (subdivision) : Select an interval I’ = [X,X’] in NL, compute A by the formula

(15), solve P~AR:4M(5\), obtaining an optimal solution #()) and an optimal value ®()). Set
New = {[N,A],[\,)]} and NL = NL\ {I'}. Return to Step 2.

Fig. 1 The Eisner and Severance algorithm for computing X,

since the numerator is strictly positive by optimality of X" and non-optimality of X"
to problem PARAM(1/). We show in a similar way that A —A” < 0. The subdivision
process consists in replacing the interval [A’, "] by the two intervals [A’, A] and
[A, A7].

The algorithm will maintain three sets: £ is the subset of intervals of the current
partition on which ® was shown to be linear; N'L is the subset of intervals of
the current partition on which ® is not known to be linear and New is the set of
new intervals generated during the last iteration. At Step 3, in every iteration, the
intervals in £ U 'L form a partition of the given interval /. A formal description
of the algorithm is given in Fig. 1.

Proposition 5. Let N be the number of breakpoints of ®(A) in interval I, including
the lower and upper bounds of 1. The above algorithm is correct and terminates
after solving at most 2N — 1 problems PARAM(A).

Proof. Consider a point X(¢) generated by the algorithm, where ¢ is a bound of an
interval. There are two possibilities for X (¢):

» ¢ coincides with a breakpoint. Obviously this case can happen at most N times.

* ¢ lies in the interior of an interval defined by two consecutive breakpoints. To
fix the idea assume that t € (u, k—1) for some k. Then x(¢) defines the linear
piece on [k, tr—1], i.e, P(A) = v(X(¢)) — Aw(X(¢)) for all A € [y, pi—1]. We
claim that at most one such point will be generated by the algorithm for each
piece of the piecewise linear function ®(4). To show this we will prove that if
there is another point X (¢') generated by the algorithm that defines the same linear
function, then ¢’ must be a breakpoint. Assume that the values of A considered by
the algorithm are A; < A, < --- < A,. Since we have w(X(4;)) > w(X(A;41))
for j = 1,...,r —1 by Lemma 1 we can assume that t = A; and ¢’ = 4,4,
for some j, or the converse. Assume furthermore that A; was generated by the
algorithm before A ; 1 (if this is not the case, we simply invert the roles of A ; and
Aj+1). Then A4 corresponds to the 2 of formula (15) for an interval [A;,A"],
ie.,

30 P. Hansen and C. Meyer

= VEQA") —vERS)) _ vEQRT) —vEQR+1)
T W@EO) —w@ER) wEAN) —wEA)
where we used the fact that v(X¥(A;)) = v(X(4;41)) and w(X(A;)) =

w(X(Aj41)) as the two points X(A;)) and X(A;4,) define the same piece of
linear function. We then have

VAR j41) = Aj+w(X (A1) = v(EQ) — A pw(x (A7)

which shows that X(A”) is an optimal solution of problem PARAM(A j 11). Hence
® is linear on [A;4,A”] by Lemma 2, more precisely ®(A) = v(x(1")) —
Aw(x(A")) for A € [A; 41, A”]. Since the interval [A;, A”] was subdivided, X(1")
is not an optimal solution of problem PARAM(A), hence we have w(X(4;)) >
w(x(1”)) by Lemma 1. This shows that the two pieces of linear functions are
different on the two intervals [A;, A ;4] and [A; 41, A”]. We therefore conclude
that A ;4 is a breakpoint. By the monotonicity of the slopes, there can be no A,
for £ > j +1 that defines the same linear part than A ;. We can therefore conclude
that the number of generated A; that lies strictly between two consecutive
breakpoints is bounded by N — 1.

Therefore the algorithm generates at most 2N — 1 points, in particular it is finite.
Since the algorithm can only stop when £ contains a partition of the given interval
I, we conclude that the algorithm is correct. |

3.2.3 Complexity

Two conditions must be met for the Eisner and Severance algorithm to compute the
set X; in polynomial time: the number of breakpoints N of ®(1) on interval I (or
equivalently the size of X;) must be polynomial in n, and the problem PARAM(Q)
must be solvable in polynomial time for fixed A in /.

In this section we assume that / = [0; 400). Note that the upper bound of
this interval is not finite as assumed in Sect.3.2.2, which raises two additional
difficulties: we have to find a finite upper bound A such that running the Eisner
and Severance algorithm on [0; 1] gives a description of ®(1) on the larger interval
[0; +00), and we have to show that the size of A remains polynomial in the size of
the data. By (12) and (14), A should be chosen such that

S) =)
T TG W)

Let us show that

A=1+ (%x v(x)) — (%)

A Polynomial Algorithm for a Class of 0-1 Fractional Programming Problems. . . 31

where ¥ is an optimal solution of problem min w(x), is a valid choice. Since x° is an
X€EB,

optimal solution of problem irenlg: w(x) that maximizes v(x) by Lemma 3, we have
v(x%) > v(X). Since w(x') > w(x?) and w takes integral values on B, we have then
wr < v(xH)—v(x%) < max v(x) | =v(%), hence A > p;. It follows from Sect. 2.1.3
that Xnéajl;: v(x) and X (and tlnlerefore 1) can be computed in polynomial time if v is

supermodular and w is submodular. Moreover the size of Ais polynomial in the size

of max |v(x)|.
XEB,

We now consider the condition that problem PARAM(A) must be solvable in
polynomial time for fixed A > 0. We know of only one sufficiently large class
of functions that can be maximized over B, in polynomial time: it is the class of
supermodular functions, see Sect. 2.1. The function L, (x) is supermodular in x for
all A > 0if and only if v is supermodular and w is submodular on B,,.

Proposition 6. If the functions v and —w are supermodular, then the problem
PARAM(A) can be solved in polynomial time for any fixed positive A.

Proof. Use one of the SFM algorithms mentioned in Sect. 2.1.3. |

The other necessary condition for the Eisner and Severance algorithm to run in
polynomial time is that the set X+ is of polynomial size. This condition is satisfied
in the following cases:

* When the function v or w takes a polynomial number of distinct values on X.
Indeed by (13) the sequence {w(x¥)} is strictly increasing; and since we restrict
ourselves to A > 0 and by (14), this is also true for the sequence {v(x*)}. Thus
the number of breakpoints (and hence the size of X 1) is bounded by the number
of distinct values taken by v (or w). Examples of such functions are functions that
depend on at most O(logn) variables;) x; for some subset J of {1,2,...,n};

jeJ
or combination of a fixed number of th]e above functions.

e When v and w are both linear functions. Indeed it was shown by Hansen et al.
[31] that the number of breakpoints is bounded by n + 1.

¢ When PARAM(A) has the Strong Optimal Solution Monotonicity Property:

Proposition 7. Assume that the problem PARAM(A) has the Strong Optimal
Solution Monotonicity Property for A > 0. Then | X 7| <n + 1.

Proof. Let0 < A; < Ay--- < A, be the breakpoints generated by the algorithm,
sorted in increasing order (i.e., we do not consider here the A generated by the
algorithm that are strictly between two breakpoints). Define o; = % for
i = 1,...,r — 1, so that each «; is in the interior of an interval defined by
two consecutive breakpoints. If PARAM(A) has the Strong Optimal Solution

Monotonicity Property for A > 0, then either X(o;) < X(at2) <--- < X(ay—1) OF

32 P. Hansen and C. Meyer

X(a1) = X(ap) > -+ > X(oy—1). Since the X(e;) are all distinct as they define
the slopes of the different pieces of the piecewise linear function, we conclude
that r <n. |

We finally get the following sufficient condition for the algorithm described in
Sect. 3.2.2 to run in polynomial time.

Proposition 8. [fthe functionsv and —w are supermodular and one of the following
properties is satisfied:

e v orw takes a polynomial number of distinct values on B,;
e vandw are both linear;
e v orw is monotone and the application x — (v(x), w(x)) is weakly bijective;

then the Eisner and Severance algorithm computes the set X+ in polynomial time.

Proof. Follows from Propositions 2, 6 and 7. |

3.3 Correctness of the New Algorithm

Let X = {x% x!,...,x9} and Xt be the sets of points of B, defined in Sect.3.1.
Let S* be the set of optimal solutions of problem (CFP). Since migl w(x) =
X€EB,

w(x?) <wx!) <. <w(x?) = max w(x) by Lemma 3 and (12), for any x* € S*
X€B,

there must exist k € {1,2,...,q} such that w(x*~!) < w(x*) < w(x¥).

The next result considers the case where w(x*) coincides with the bound of an
interval [w(x*~'), w(x*)], while Proposition 10 considers the case where w(x*) lies
strictly in such an interval. We will assume in this section that ¢ and p are increasing.

Proposition 9. Assume that ¢ is increasing and p is strictly positive, and let x* be
an optimal solution of problem (CFP). Foranyk = 0, ..., q we have the implication

w(x*) = w(xk) = xFisan optimal solution of problem (CFP).

Proof. Assume that w(x*) = w(x*) for some k. Observe first that v(x¥) > v(x*).
Indeed, when k = 0, this follows from Lemma 3; when k > 1, ®(uy) = v(xk) —
wiw(x¥) by (12), hence v(x¥) — w(x*) > v(x*) — wrw(x*). Since w(x*) =
w(x*), we conclude that v(x¥) > v(x*).

Now since ¢ is increasing and since p(w(x)) is strictly positive for all x € B,
we have easily

p((x) _ e(v(x"))
pw(xk)) ~ p(w(x*))

which shows that x* is an optimal solution of problem (CFP). |

A Polynomial Algorithm for a Class of 0-1 Fractional Programming Problems. . . 33

Proposition 10. Assume that ¢ and p are increasing, that p is strictly positive and
that max (¢ ov)(x) = 0 and let x* be an optimal solution of problem (CFP). For
X€B,

anyk = 1,...,q we have the implication

v < v(x*) < v(xk)
w1 < wx*) <wix¥) = or

x*~lis an optimal solution of problem (CFP).

Proof. Assume that w(x*~1) < w(x*) < w(x¥) holds. Since p is increasing, we
have

pw(x*™h) < p(w(x™))
or, using the fact that p is strictly positive,

1 1
PV = p(wx®)’

(16)

We now show that v(x*) < v(x*~!) implies that x*~! is an optimal solution of
problem (CFP). Assume that v(x*) < v(x¥~'). The fact that ¢ is increasing and the
assumption on the sign of the optimal value imply that 0 < @(v(x*)) < @(v(x*~1)).
0GFTY) o e((x®))
p(w(xk—1y) = p(w(x*))’
optimal solution of problem (CFP). We have thus concluded that either v(x*) >
v(x*=1) or x*~! is an optimal solution of problem (CFP).

In the following we assume that the former is true. Since ®(uy) = v(x*~!) —

pew(x1) by (12),

Combining with (16) yields which shows that x¥~! is an

(T = (T =) — puow ()

= ke (wEx*) —w(x* 1) = v(x*) —v(x*) > 0.
Since w(x*) > w(x*~!) we conclude that ; > 0. Now since we have also
D(px) = v(x*) — pew(x*),
V() = puow () = v(x*) — pw(x™)
= v(x*) —v(x) < i (wx*) —w(xb)) <o.
Hence v(x*~1) < v(x*) < v(x¥). |

Propositions 9 and 10 leave open the possibility that x* = x* for some k such
that 1 < 0. The next result shows that if that happens, then at least one x* with £
such that ;¢ > 0 is also an optimal solution of problem (CFP).

34 P. Hansen and C. Meyer

Proposition 11. Assume that ¢ and p are increasing, that p is strictly positive and
thatman (@ov)(x)>0.IfS*NX £ Q@ then S*NXT £@.
xX€B,

Proof. Recall that by definition 1 > py > -+ > puy. If u;, > 0 we are done, so
assume that p1, < 0. Define r to be such that p, 1 > 0 > u,. Then we have u; <0
forallk =r,...,q. Since w(x*) > w(x*~1) for all k and by (14), it follows that

v(x¥) < v(x*h, k=r...,q. a7

Now assume that x’ is an optimal solution of problem (CFP) with r <t < gq. We
will show that x’ is also an optimal solution of problem (CFP). Since the sequence
{w(x*)} is strictly increasing and by (17)

v(x") < v(x")
w(x") > w(x").
Since ¢ and p are increasing and p is strictly positive we get
(pon)(x') = (pov)(x")

0< ! < ! .
(pow)(x") = (pow)(x")

Hence, since (¢ o v)(x") > 0,

(pon)x) _ (pov)(x")
(pow)(x) ™ (pow)(x")

Therefore x” is also an optimal solution of problem (CFP), and x” belongs to X *
as it defines ®(¢) over the interval [0; w,—1]. |

The next result establishes a sufficient condition on ¢ and p for the existence of
an optimal solution of problem (CFP) in the set X T.

Proposition 12. Assume that ¢ and p are increasing and that max e(v(x)) >0. A
XEB,

sufficient condition for S* N X+ #£ @ is

(t—v(x"h) (p(u) - p(W(xk_l))) (@(V(xk)) - @(Z))
o(t) — p(v(xk1) u—w(xk1) v(xk) —1

(w(x*) —u)
X|————] >1
p(w(xk)) — p(u)
Ve v(x¥ N <t <v(x%), Vu:w@FT < u < wxb) (18)

Proof. We will assume that S* N XT = @ and exhibit a couple (¢,u) that
violates (18).

A Polynomial Algorithm for a Class of 0-1 Fractional Programming Problems. . . 35

Let x* € S*. By Propositions 9 and 11, w(x*) # w(x*) forall k = 0,1,...,q.
Therefore since w(x?) = miél w(x) and w(x?) = max w(x) by Lemma 3, there
XEBy, X€B,

must exist some k such that w(x*) € (w(x*~1), w(x)).
To simplify the notations, let v* = v(x*), w* = w(x*), v, = v(x*) and w, =
w(x*) for £ € {k — 1,k}. Since x*~! ¢ S* and by Propositions 10 and 11 we have
Vie1 <V <. (19)

By optimality of x* and since x*~!, x* & §*,

00" _ pu-)

20
p(w*) p(wr—1) 0

(V) o)
. 21
o) plwe) @b

Now by (21)
o) — 00 < 28 (o) — pw™)). 22)
p(w*)

Since v > v* and ¢ is increasing, we cannot have ¢(v*) = 0 hence it follows from
the assumptions that ¢(v*) > 0. Therefore the fact that ¢ is increasing implies that
p(wr) — p(w*) > 0. Inequality (22) can then be written:

p(v®) - (i) — (V™)

. 23
) plwe) — plr™) @9
Similarly (20) yields
p(vV*) — p(vi—1) > (p(v*) (pW™) = p(wi—-1)) . (24)
p(w*)

Since w* > wy_y, p is increasing and ¢ (v*) > 0, it follows that ¢ (v*)—@(vk—1) > 0.
Hence (24) can be written

PO pW) = pOwi—1)
e(*) () —e(k—1)

(25)

By Proposition 4

* *
V' — Vi— Vi —V
k—1 < k

w* —wr—1 ~ Wi —Ww

V¢ — v wi —w*
:lz(w*—w)(_*). (26)
k—1 Vi —V

*

36 P. Hansen and C. Meyer

Since each factor in inequalities (23), (25) and (26) is nonnegative, we can multiply
these two inequalities memberwise, hence

(Vv — v) (p(W*) _P(Wk—l)) (w(wc) —w(V*)) (wi —w*) -1
(v*) — @(vi—1) w* — Wwi— v — v p(wi) — p(w*) '
We have shown that the assumption S* N X = @ implies that (18) is violated for
t = v* and u = w*. Hence (18) implies that S* N X T # 0. [|

In order to derive a simpler condition on ¢ and p that implies the sufficient
condition of Proposition 12, we need the following Lemma.

Lemma 4. Let h be a convex function over an interval [a, b]. Then

h(t) — h(a) - h(b) — h(t)
t—a - b—t

Vt:a<t<bh. 27

Proposition 13. Assume that ¢ and p are increasing. If in addition ¢ is convex and
p is concave, then the sufficient condition (18) for S* N X+ # @ is satisfied.

Proof. Let (t,u) such that v(x*~1) < ¢ < v(x*) and w(x*71) < u < w(x*).If ¢ is
convex and p is concave, we have by Lemma 4

o(1) —p((x*) _ p((x*)) — (1)

t—v(xkhy T (k) —¢ 28)
p(u) — p(W()ﬁk“)) ~ PO (x*)) — p(u). 29)
u—w(xk=1) w(xk) —u

Since ¢ and p are increasing, each ratio in these two inequalities is strictly positive.
We then easily derive (18). |

To conclude this section we give an example that shows that the assumption of
convexity is not necessary for (27) to be satisfied in Lemma 4. This in particular
implies that the sufficient condition of Proposition 12 can be satisfied even when ¢
is not convex and p is not concave.

Example 1. Consider the following piecewise linear function defined on the interval
[a,b] = [0:5].

t ift € [0;2]
h(t) =4 6t —10ift € [2;3]
2t +2 ift € [3;5].

The graph of this function is represented in Fig. 2. Clearly /(¢) is not convex. It can
be verified that for any position of the point 7" on the curve, the slope of the segment
AT is smaller than the slope of the segment 7'B. This is exactly what is expressed
by (27).

A Polynomial Algorithm for a Class of 0-1 Fractional Programming Problems. . . 37

h(t)

12 — #B
11— o
10 —
9 —
8 -
7 - L
5 — T
4— T/

3 -
2
1 -

\ i i \ i
1 2 3 4 5

Fig. 2 Geometrical interpretation of the inequality of Lemma 4

3.4 Polynomial Solvable Instances

In this section we prove Theorems 1 and 2.

Proof of Theorem 1 ~ Follows from Propositions 8, 12 and 13. [

Proof of Theorem 2 Assume that the condition (C4°) is satisfied, i.e., (pov)(x) <
0 for all x € B,,. We observe that

@OV o) | (pow®)
3, (pom)(x) ek (pom)(x) reh —(p o V()

(¢’ 0v)(x)
@ W ow)()

with ¢’(¢) = p(—t), p'(t) = —p(—t) fort € RandV'(x) = —w(x) and w'(x) =
—v(x) for all x € B,. The result then follows from Theorem 1 applied to the

4 /
problem max ((ﬁ/ ;’:,))((?) and by converting the conditions on ¢, p’,v' and w' to
xX€B, :
conditions on ¢, p, v and w. [

The equivalent of Proposition 12 for the instances satisfying condition (C4’) is:

Proposition 14. Assume that ¢ is increasing, that p is decreasing and that
max @(v(x)) < 0. A sufficient condition for S* N X+ # @ is
X€By

38 P. Hansen and C. Meyer

(t—v(xh) (P(M) —p(W(xk*I))) ((p(V(xk)) —w(l)) (w(x*) —u) > 1
o(t) = p(v(x*=1)) u—w(xk) v(xk) —1 pw(x*)) — p(u) J =

Vi v <t <v(xb), Yu:w(x* T < u < wxb). (30)

In particular, the inequality (30) coincides with (18).
We terminate with some remarks:

* In view of Proposition 5, it is natural to assume that the time 7'(n) to compute
the set X is of the order of | X *|V(n) where V(n) is the time needed to solve
the problem PARAM(A) for some given A. Actually this can often be done in the
order of V(n) by using a different algorithm, see, for example, Sect.2.2.3.

* The complexity of our algorithm is essentially determined by the computation
of the set X*, which depends only upon the functions v and w. The lowest
complexities will be obtained when v and w can be represented by low degree
multilinear polynomials. For example, if v and w are both linear, it is possible
to compute the set X in O(n logn) by representing implicitly the elements of
XT.If v and —w are quadratic supermodular functions and some monotonicity
property holds, the algorithm of Gallo, Grigoriadis and Tarjan can compute the
set X in O(n®), see Sects.2.2.2 and 2.2.3.

» Conversely, since the functions ¢ and p are used only to identify the best point
in X *, they can have less attractive properties, for example—they could be non-
rational as illustrated by the additive clustering problem, see Sect. 4.3.

e If an instance (¢, p, v, w) satisfies the assumptions of Theorem 1, one must in
particular have that ¢ is increasing (condition (C5)) and convex (condition (C6))
and v is supermodular (condition (C7)). By part a) of Proposition 1, only the
absence of the monotonicity property for v prevents us from concluding that g ov
is supermodular (and monotone) on B,. Similarly, by part d) of Proposition 1,
only the absence of the monotonicity property for w prevents us from concluding
that p o w is submodular (and monotone) on B,,. If both v and w were monotone,
the assumptions of Theorem 1 are thus close to allow a polynomial algorithm for
(CFP) via the direct use of Dinkelbach’s algorithm: we would need in addition
that ¢ and p are rational functions, and a kind of strict monotonicity for either
@ ovor pow but these additional assumptions are relatively minor with respect
to those of Theorem 1. One can even notice that monotonicity of v and w is
present in the assumption of Theorem 1 (condition (C8c)). This suggests that our
new class of polynomially solvable instances extends only marginally the known
class of polynomially solvable instances of the fractional programming problem.

This is not exactly true, because our results do not require either v or w to be
monotone: condition (C8) could be satisfied through either (C8a) or (C8b). And
even if condition (C8c) is satisfied, only one of the functions v or w need to be
monotone. In other words ¢ ov and/or —p ow might not have the supermodularity
property when the assumptions of Theorem 1 or 2 are satisfied, in which case
we do not know how to solve efficiently the auxiliary problem that arises in
Dinkelbach’s method.

A Polynomial Algorithm for a Class of 0-1 Fractional Programming Problems. . . 39
4 Application to an Additive Clustering Problem

In this section we show how the results obtained up to now can be used to derive
a polynomial algorithm for a problem arising in additive clustering. We start by
introducing additive clustering in Sect. 4.1. In Sect. 4.2 we reformulate a particular
problem arising in this area as a 0-1 fractional programming problem. An O (n°)
algorithm to solve this later problem is then described in Sect. 4.3.

4.1 Additive Clustering

The additive clustering (ADCLUS) model has been introduced by Shepard and
Arabie [50], Arabie and Carroll [2] in the context of cognitive modeling.1 This
model assumes that the similarity between two objects, measured by a nonnegative
number, is additively caused by the properties (also called features) that these
two objects share. With each property we can associate a cluster, which contains
all objects that have this property. Furthermore with each cluster we associate a
positive weight representing the importance of the corresponding property. The
similarity predicted by the model for a pair of objects is then defined as the sum
of the weights of the clusters to which both objects belong (note that clusters can
overlap). An ADCLUS model is characterized by a set of clusters, together with
their weights. Given a similarity matrix obtained typically by some experiments,
the additive clustering problem consists in constructing a model that explains as
much as possible of the given similarity matrix, under the restriction that the model’s
complexity is limited (if we do not restrict the complexity of the model, we can
reconstruct perfectly the similarity matrix with O(n?) clusters, see Shepard and
Arabie [50, p. 98]). We will assume here that the complexity of the model is
measured by the number of clusters, see, e.g., Lee and Navarro [38] and references
therein for more elaborated measures of the complexity. In other words, limiting
the complexity of the model amounts to setting an upper bound on the number of
clusters used to construct the approximate similarity matrix. Many authors have
developed algorithms to fit this model (or variants or generalizations of it) with this
definition of the complexity, see, e.g., [4,7,11, 15,37,40].

The mathematical formulation of the additive clustering problem with m clusters
is the following:

m 2
ADCLUS(m) min f(x,w) = Z (s,-j — Zwkxfxf)
k=1

i<j

'A similar model was developed independently and at the same time in the former USSR; see
Mirkin [40] and the references therein.

40 P. Hansen and C. Meyer

st. wy >0 k=1,....,m
xFefo,1y k=1,....mi=1,....n

where S = (s;;) is an x n symmetrical nonnegative matrix.

4.2 The Additive Clustering Problem with One Cluster

In an attempt to assess the complexity of problem ADCLUS(m) we studied the
version with one cluster:

ADCLUS(1) min f(x,w) = Z (s —wxixj)2
i<j
s.t. w>0
.X,'G{O,l} l=1,,n

Note that the cluster must have at least two elements in order to define a non-null
reconstructed matrix. This motivates the introduction of the set 7°:

T =

xEB,,:in22§. 31

i=1

We now reformulate problem ADCLUS(1) as a 0-1 fractional programming
problem.

Proposition 15. Problem ADCLUS(1) is equivalent to

In particular if x* is an optimal solution of problem ADCLUS’ (1) then (x*,w*) is
an optimal solution of problem ADCLUS(1) with

ADCLUS'(1) max
X€

k* .k
> SijX] Xj
* i<j
- * ok C
> X Xj
i<j

w

Proof. See Hansen et al. [32]. |

A Polynomial Algorithm for a Class of 0-1 Fractional Programming Problems. . . 41
4.3 A Polynomial Algorithm

We first explain how a straightforward application of the results of this paper lead to
an O(n”) algorithm to solve problem ADCLUS’(1). Then we show that with a little
additional effort an O (n*) algorithm can be obtained.

Problem ADCLUS'(1) is not a (CFP) problem because its feasible set is a
strict subset of B,. However note that problem ADCLUS’(1) can be reduced to
a polynomial number of problems (CFP) of size n — 2, each problem being obtained
from ADCLUS'(1) by fixing two variables to 1. By renumbering the variables if
necessary, the general form of such a problem is

2
n—2
(Z fijxin + Z Siixi + 5)

i<j i=1

(5 e2) (50

where S isa (n —2) x (n — 2) symmetrical matrix with nonnegative entries and ¢ is
a nonnegative constant. Clearly solving problem ADCLUS'(1) in polynomial time
is equivalent to solving problem ADCLUS)(1) in polynomial time.

Unfortunately problem ADCLUS)(1) does not satisfy the assumptions of Theo-
rem 1 or 2, so we consider instead the problem:

ADCLUS)(1) max &(x) =
X&€bp—2

n—2
DoSixix; 4+ Y Siixi+¢
i<j i=1

ADCLUSY(1) max hy(x) =

XEBy,—> n—2 n—2
(in-f-Z)(in-i—l)
i=1 i=1

Since the matrix S is assumed to be nonnegative, the numerator) §;x;x; +
i<j

n—=2
> Siix; + ¢ is nonnegative for all x € B,_,, hence problem ADCLUS)(1) is
i=1
equivalent to problem ADCLUS)(1). Now problem ADCLUS/ (1) is a problem
(CFP) with ¢ = @, p = p, v = v and w = w where

o) =1

p(t) = v+ D +2)

n—2
v(x) = Zfijxixj + Zfﬁxi +c

i<j i=1
n—2

W) =" xi
i=1

and it can be verified that (¢, p, v, w) satisfies the conditions of Theorem 1.

42 P. Hansen and C. Meyer

The corresponding problem PARAM(A) can be reformulated as a parametric
minimum cut problem in a network with n vertices and O(n?) arcs, which can be
solved by the Gallo, Grigoriadis and Gallo algorithm, see Sect.2.2.3. Hence the
time needed to compute the set Xt is T'(n) = O(n?). Step 2 of the HM_CFP
algorithm consists in identifying the best feasible point among the points computed
in Step 1. In order to avoid problems with the square-root function, we evaluate

- 2 -
(hz(x)) instead of 15(x). An evaluation costs O(n?) time, hence the complexity of

Step 2 is in O(n*). Thus the overall complexity for solving ADCLUS)(1) is O(n?).
Since we need to solve O(n?) of such problems to solve problem ADCLUS(1), the
complexity of this latter problem is O(n°). Hence we have shown:

Proposition 16. There exists an O(n°) algorithm to solve problem ADCLUS(1).

Proposition 16 suffices to show that problem ADCLUS(1) can be solved in
polynomial time. The question is now whether we can lower the order of the
complexity. A little attention shows that we can obtain an O(n*) algorithm by
working with problems obtained by fixing one variable to 1 rather than two. The
resulting problems are problems (CFP) with B, replaced by B, \ {(0)}. By looking
at the proofs, we observe that the analysis made for the unconstrained case remains
valid, hence yielding an O(n*) algorithm. We believe that this complexity can still
be improved but let this be for further research. Let us only note that working
directly with problem ADCLUS’(1) by setting p(t) = +/t(¢t — 1) does not work,
as shown by the following example.

Example 2. Letn = 8 and consider the following instance of ADCLUS’(1) where
we maximize the square-root of the original objective function:

18x1x5 + 15x1x6 + 8x2x7 + 16x3x5 + 22x4X6 + 15X6X3

() ()

max

8
s.t. Zx,- >2

i=1

X €{0;1} i=1,....8.

Then
8
®(A) = max 18x1x5 + 15x1x6 + 8x2x7 4+ 16x3x5 + 22x4x6 + 15x6x53 — A (Z x[)§ .
XEBg i=1

Applying the Eisner and Severance algorithm yields

A Polynomial Algorithm for a Class of 0-1 Fractional Programming Problems. . . 43

94—-8L 0<A<4
P(A) ={86—64 4<1i<1433
0 1433 <A

with X+ = {(11111111), (10111101), (00000000)}. The best point among these
three can easily be shown to be (10111101) with a value for the (squared-rooted)
objective function equal approximately to 11.5962. However the optimal solution of
problem ADCLUS'(1) is x* = (10011100) with an (square-rooted) objective value
of approximately 15.8771.

As observed in Sect. 3.4, all instances of problem (CFP) solvable by our method
do not satisfy the property that ¢ o v and —p o w are monotone supermodular
functions, but it turns out that this is true for problem ADCLUS}(1). Thus it seems
that Dinkelbach’s algorithm would be polynomial too. In fact the only assumption

n—2 n—=2
of Proposition 3 that is not satisfied is that x \/(Z X + 2) (Soxi+ 1) is
i=1 i=1
a rational function. We now discuss why the non-rationality of this function is a
serious difficulty if we want to show that Dinkelbach’s algorithm is polynomial.
Recall that Dinkelbach’s algorithm requires the solution of the following auxiliary
problem

n—2 n—2 n—2
FPauxl/z(A) glngzh,x_l/z(x) = ZEU-X,')C]' +Z§,-,-xi +E—AJ (Z)Ci + 2) (in + 1)
T i=1 i= i=

i<j

for some A. This auxiliary problem is solved typically by one of the SFM
algorithms mentioned in Sect.2.1.3. Such an algorithm requires from time to time
the evaluation of the objective function £, 1/, at some points of B,_,. The question
that arises is what is the precision needed for A and for the evaluation of the
objective function value at a point of B,_, in order to guarantee that the solution
returned by the SFM algorithm is indeed optimal (note that from the point of view
of the correctness of Dinkelbach’s algorithm, the optimality of the solution returned
by the SFM algorithm is required only at the last iteration; however, if the SFM
algorithm returns non-optimal solutions at other iterations, the number of iterations
might not anymore be polynomial)? Let us approach this question differently. It
is easy to see that the Ay are of the form b./c where b is a rational and c¢ is an
integer of the form (r + 1)(r + 2) with ¢t € {0,...,n}, hence the value of the
objective function 4, 1/2(x) can be written as a’ + b’'/c’ where ¢’ is a square-
free integer less than n2(n + 1)2, in particular the objective function value can be
outputed exactly by specifying the triple (a’, b, ¢’). Now these values are likely to
be added, subtracted and compared together by the SFM algorithm (if we restrict
ourselves to a fully strongly combinatorial algorithm we do not have to care about
multiplication and division). To represent exactly a sum of such numbers, we can

introduce a basis that spans the set of numbers U {~/c’}. The question is
1<c¢’<n2(n+1)2

44 P. Hansen and C. Meyer

now: what is the complexity of comparing two numbers written in this basis? Up to
now, no polynomial algorithm is known for this comparison problem [6, 44]. It is
not impossible that a finer analysis, taking into account what operations exactly are
done on these numbers by the SFM algorithm as well as the structure of the numbers
forming the basis, would yield a polynomial algorithm by this approach, but this
might not be easy. Even if it is possible, the best complexity we could hope for the
problem ADCLUS(1) by applying Dinkelbach’s algorithm in conjunction with a
generic SFM algorithm is O(n°) if we use Orlin’s strongly polynomial algorithm
(that uses multiplication and division) or O(n'?log®n) if we use Iwata’s fully
strongly combinatorial algorithm, which is much higher than the O(n°) algorithm
described in this section.

5 Discussions: Limitations and Extensions

In the previous section we have shown that the problem (CFP) can be solved in
polynomial time if the functions ¢, p, v and w satisfy the conditions of Theorem 1
or 2. In this section we discuss various extensions (or impossibility of them) of
these polynomial solvable classes. Using NP-hardness results, we start by arguing
in Sect. 5.1 that some of the assumptions of Theorem 1 or 2 can hardly be relaxed.
We then discuss the extension of our results to minimization problems (Sect.5.2),
maximization of product of two functions (Sect.5.3) and constrained problems
(Sect.5.4).

5.1 Limitations

In this section we show that unless NP = P we generally cannot hope to solve
problem (CFP) in polynomial time if we modify one assumption while keeping the
other assumptions unchanged.

» It is not possible to replace the assumption “v is supermodular” by “v is sub-
modular”, while keeping all others assumptions unchanged: indeed by choosing
@) = t and p(t) = 1, the problem (CFP) would become equivalent to
maximizing a submodular function, which is known to be NP-hard. A similar
restriction holds for the assumption “w is submodular”.

» By the equivalence of the assumptions “p is increasing and v is supermodular”
and “g is decreasing and v is submodular” (see Sect. 1), it follows that it is not
possible to replace the assumption “p is increasing” by “¢ is decreasing”. A
similar statement could be made for the function p.

¢ It is not possible to remove the assumption that p(z) > 0 for all 7. This follows
from the following result of Hansen et al. [31]:

A Polynomial Algorithm for a Class of 0-1 Fractional Programming Problems. . . 45

Proposition 17. The problem

n
ap + Z a;x;
Jj=1

max
X€EB,

bo + Z bjxj
j=1

is NP-hard unless the denominator is of the same sign for all x € B,,.

(If the denominator is of the same sign for all x € B,, the above problem can be
solved in linear time as shown by Hansen et al. [31]).

* The following observation involves two assumptions: it is not possible to replace
the assumption “@ is convex” by the assumption “¢p is concave”, while at the
same time removing the assumption that ¢ is increasing. To show this, we need
to introduce the following well-known NP-hard problem SUBSET SUM (Garey
and Johnson [23]):

Input: n positive integers sy, s, . . . , Sy; an integer S.
Question: does there exist a subset I of the index set {1,2,...,n} such that
=59
Diersi =81

We define ¢(¢) = —[t], p(t) = L and v(x) =) ,, six; — S. Clearly the answer
to SUBSET-SUM is yes if and only if the maximum of problem (CFP) is 0. The
function ¢ is concave for all ¢ and is increasing for ¢ < 0 and decreasing for
t > 0. A similar observation can be made for function p.

5.2 Minimization Problems
Consider the minimization version of problem (CFP):

: - (pov)(x)

If ¢ o v is strictly positive on B,, we can use the equivalence

RN CZA0IC)) o max POWE
x€B, (pow)(x) x€B, (pov)(x)

(32)
to derive sufficient conditions on (¢, p, v, w) for polynomial solvability of problem
(CFPmin) from Theorem 1. However if ¢ o v can take positive and negative values
on B,, equivalence (32) is not anymore true.

A similar analysis to the one done for the maximization problem results in the
polynomial solvable classes described by Fig. 3. Figure 3 must be read as follows:

46 P. Hansen and C. Meyer

. (pow)(x) >0 for x € By;

. it is possible to evaluate the objective function in polynomial time;
v and w take integral values on By

v and —w are submodular;

one of the following conditions is satisfied:

G N

e v or w takes a polynomial number of distinct values on By;

e v and w are both linear;

e v or w is monotone and the application z — (v(z), w(x)) is weakly bijective;
6. min (pov)(z)<0; 9. (pow)(xz) >0 for all x € Bp;

rEBy . .
. . 10. ¢ and p are increasing;
7. ¢ and —p are increasing;

8. — and —p are convex: 11. —¢ and p are convex.

Fig. 3 Description of the polynomial solvable classes for the minimization problem

. (p1owv1)(x) >0 for & € By;

. it is possible to evaluate the objective function in polynomial time;
v1 and va take integral values on By;

v1 and vy are supermodular;

one of the following conditions is satisfied:

Al

e v or vy takes a polynomial number of distinct values on Bp;

e v and vg are both linear;

e vj or vz is monotone and the application z — (vi(x),v2(z)) is weakly bijective;
6. max (¢2 ov2)(z) > 0; 9. (p20v2)(x) <O for all & € By;

. . 10. and —¢2 are increasing;
7. 1 and @2 are increasing; #1 #2 &

11. and —p2 are convex.
8. 1 and w2 are convex; #1 ¢ 2 vex

Fig. 4 Description of the polynomial solvable classes for the problem of product maximization

if an instance of problem (CFPmin) satisfies the conditions 1-8 or satisfies the
conditions 1-5 and 9-11, then the instance can be solved in polynomial time.

5.3 Maximization of the Product of Two Composed Functions

Consider the function o(t) = ﬁ: if p is increasing and concave, function

o is increasing and convex. Problem (CFP) can then be reformulated as the
maximization of the product of two functions:

max ((p1ov)(@) ((p207)(0)). (33)

Figure 4 expresses the conditions of Theorems 1 and 2 in this new setting. Note that
since (@1, v1) and (@2, v2) play a symmetrical role in (33), the first assumption in
Fig.4 could be replaced by (¢, o v2)(x) > 0 for x € B,. However assumptions 6,
9, 10 and 11 should be modified accordingly.

We mention that the case where ¢, and ¢, are the identity functions and v; and
v, are linear functions was studied by Hammer et al. [30].

A Polynomial Algorithm for a Class of 0-1 Fractional Programming Problems. . . 47
5.4 Constrained Problems

In this last subsection we consider the constrained problem obtained from (CFP) by
replacing the set B, by a strict subset T C B,,. It can be verified that the sufficient
condition of Proposition 12 remains valid. As soon as submodularity is involved,
however, we usually need that 7 is a sublattice of B,,. A sublattice of B, isaset T
such that the following implication holds

x,yeT =xvyeTandx Ay eT.

Most of the algorithms for supermodular maximization can be modified to optimize
over a sublattice 7" without increase in the complexity, see McCormick [39]. When
T is not a sublattice but can be expressed as the union of a polynomial number of
sublattices, then it is possible to solve the constrained problem in polynomial time
by running a supermodular maximization algorithm on each sublattice of the union
and take the best answer. This is, for example, the case when " = B, \ {(0), (1)}.
In that case maximizing over 7" can be done via O (n) calls to a SFM algorithm. See
again McCormick [39] and also Goemans and Ramakrishnan [24].

When T = T, 5, with Ty, ,, = {x € B, : p1 < Y i_, x; <n— py} where p
and p; are fixed integers, it is possible to solve the constrained version of problem
(CFP) in polynomial time by reducing it to (/;11)(/;12) unconstrained submodular
maximization problems with n — p; — p, variables, obtained by considering all
possible ways to fix p; variables to 1 and p, variables to 0. We gave an illustration
of this technique for p; = 2 and p, = 0 in Sect. 4.3. Note that B, is equal to T .

6 Conclusion

We have presented a class of 0—1 fractional programming problems that are solvable
in polynomial time. A nice particularity of the algorithm is that the candidate
solution set is defined by only two of the four functions defining the objective
function, which allow for low complexity if these two (supermodular) functions
have a low degree representation (linear, quadratic, etc.). On the other hand, the two
other functions may be more complicated, possibly non-rational, provided that their
value can be evaluated and compared in polynomial time.

A lot of work remains to be done. On the practical side, it would be of course
interesting to find real application problems where this approach can yield a
polynomial algorithm. The additive clustering problem used to illustrate this method
is a potential candidate but much work is needed to pass from 1 cluster (as illustrated
in this paper) to m clusters. More generally, the question of the complexity of this
problem for fixed m or when m is part of the input remains open.

On the theoretical side, several questions seem to worth of further study.

48

P. Hansen and C. Meyer

The simplest problem (CFP) that is not fully understood occurs when ¢ and p
are the identity functions, v is a quadratic supermodular function and w is a linear
function, strictly positive on B,,. If neither v nor w is monotone, and each function
takes more than a polynomial number of distinct values on B,, there is no
guarantee that the function ® will have a polynomial number of breakpoints. Is it
possible to either prove that the number of breakpoints will always be polynomial
or to construct an example with a super-polynomial number of breakpoints?
Carstensen [8], building on a result from Zadeh [56], proves that for any n there
exists a parametric minimum cut problem on a graph G, with 2n + 2 nodes and
n®> + n + 2 arcs that has an exponential number of breakpoints. Unfortunately
this network has some arcs with negative capacity, and thus does not seem to be
usable to answer the above question.

Except when one of the functions v or w takes a polynomial number of distinct
values, the size of the set X is always O(n). This is mostly related to what
we called the Monotone Optimal Solution Property. Does there exist problems
where the size is larger, for example, O(n logn) or O(n?)?

We have shown in Sect.5.3 that problem (CFP) can be reformulated as the
maximization of the product of two functions of supermodular functions. Can
we identify nontrivial polynomially solvable classes of the maximization of the
product of p functions of supermodular functions, with p > 2?

Can we find a relation between Dinkelbach’s algorithm applied to problem (CFP)
and Dinkelbach’s algorithm applied to problem max v(x)

e ? More precisely, given
_ (pon)(x

(pow)(x0)
Ay such that solving problem PARAM(A;) will yield an optimal solution x' e B,

that is guaranteed to satisfy % > Ao when some termination criteria is not

satisfied? One of the difficulties in attacking this question is that the functions v
and w can be defined up to an additive constant, resulting in an infinite family of
problems PARAM(A).

a guess Ag for the optimal value of problem (CFP), can we deduce a

References

5.

6.

. Ahuja, R.K., Magnanti, T.L., Orlin, J.B.: Network Flows: Theory, Algorithms, and Applica-

tions. Prentice Hall, Englewood Cliffs (1993)

. Arabie, P, Carroll, J.D.: MAPCLUS: a mathematical programming approach to fitting the

ADCLUS model. Psychometrika 45(2), 211-235 (1980)

. Balinski, M.L.: On a selection problem. Manag. Sci. 17, 230-231 (1970)
. Berge, JM.ET,, Kiers, H.A.L.: A comparison of two methods for fitting the INDCLUS model.

J. Classif. 22(2), 273-286 (2005)

Billionnet, A., Minoux, M.: Maximizing a supermodular pseudoboolean function: a polyno-
mial algorithm for supermodular cubic functions. Discrete Appl. Math. 12, 1-11 (1985)
Blomer, J.: Computing sums of radicals in polynomial time. In: 32nd Annual Symposium on
Foundations of Computer Science, San Juan, PR, 1991, pp. 670-677. IEEE Computer Society
Press, Los Alamitos (1991)

A Polynomial Algorithm for a Class of 0-1 Fractional Programming Problems. . . 49

7.

8

9.

10.

11.

12.

13.
14.

15.

16.
17.

18.

19.

20.

21.

22.

23.

24.

25.

26.

217.

28.

29.

30.

31.

32.

33.

Carroll, J.D., Arabie, P.: INDCLUS: an individual differences generalization of the ADCLUS
model and the MAPCLUS algorithm. Psychometrika 48, 157-169 (1983)

. Carstensen, P.J.: Complexity of some parametric integer and network programming problems.

Math. Program. 26(1), 64-75 (1983)

Chang, C.-T.: On the polynomial mixed 0-1 fractional programming problems. Eur. J. Oper.
Res. 131(1), 224-227 (2001)

Charnes, A., Cooper, W.W.: Programming with linear fractional functionals. Naval Res. Logist.
Q. 9, 181-186 (1962)

Chaturvedi, A., Carroll, J.D.: An alternating combinatorial optimization approach to fitting the
INDCLUS and generalized INDCLUS models. J. Classif. 11, 155-170 (1994)

Correa, J.R., Fernandes, C.G., Wakabayashi, Y.: Approximating a class of combinatorial
problems with rational objective function. Math. Program. 124(1-2, Ser. B), 255-269 (2010)
Craven, B.D.: Fractional Programming. Helderman Verlag, Berlin (1988)

Cunningham, W.H.: On submodular function minimization. Combinatorica 5(3), 185-192
(1985)

Desarbo, W.S.: GENNCLUS: new models for general nonhierarchical clustering analysis.
Psychometrika 47(4), 449475 (1982)

Dinkelbach, W.: On nonlinear fractional programming. Manag. Sci. 13, 492-498 (1967)
Eisner, M.J., Severance, D.G.: Mathematical techniques for efficient record segmentation in
large shared databases. J. Assoc. Comput. Mach. 23(4), 619-635 (1976)

Feige, U., Mirrokni, V.S., Vondrak, J.: Maximizing non-monotone submodular functions.
SIAM J. Comput. 40(4), 1133-1153 (2011)

Frenk, J.B.G., Schaible, S.: Fractional programming. In: Handbook of Generalized Convex-
ity and Generalized Monotonicity. Nonconvex Optimization and Its Applications, vol. 76,
pp. 335-386. Springer, New York (2005)

Frenk, J.B.G., Schaible, S.: Fractional programming. In: Floudas, C.A., Pardalos, PM. (eds.)
Encyclopedia of Optimization, pp. 1080-1091. Springer, Berlin (2009)

Gallo, G., Simeone, B.: On the supermodular knapsack problem. Math. Program. 45(2, Ser. B),
295-309 (1989)

Gallo, G., Grigoriadis, M.D., Tarjan, R.E.: A fast parametric maximum flow algorithm and
applications. SIAM J. Comput. 18(1), 30-55 (1989)

Garey, M.R., Johnson, D.S.: Computers and Intractability, A Guide to the Theory of NP-
Completeness. W.H. Freeman, San Francisco (1979)

Goemans, M.X., Ramakrishnan, V.S.: Minimizing submodular functions over families of sets.
Combinatorica 15(4), 499-513 (1995)

Granot, F.,, McCormick, S.T., Queyranne, M., Tardella, F.: Structural and algorithmic properties
for parametric minimum cuts. Math. Program. 135(1-2, Ser. A), 337-367 (2012)

Grotschel, M., Lovasz, L., Schrijver, A.: The ellipsoid method and its consequences in
combinatorial optimization. Combinatorica 1(2), 169-197 (1981)

Grotschel, M., Lovasz, L., Schrijver, A.: Geometric Algorithms and Combinatorial Optimiza-
tion. Algorithms and Combinatorics: Study and Research Texts, vol. 2. Springer, Berlin (1988)
Gusfield, D.M.: Sensitivity analysis for combinatorial optimization. Ph.D. thesis, University of
California, Berkeley (1980)

Hammer, P.L., Rudeanu, S.: Boolean Methods in Operations Research and Related Areas.
Springer, Berlin (1968)

Hammer, P.L., Hansen, P., Pardalos, P.M., Rader, D.J.: Maximizing the product of two linear
functions in 0 — 1 variables. Optimization 51(3), 511-537 (2002)

Hansen, P., Poggi de Aragdo, M.V., Ribeiro, C.C.: Hyperbolic 0-1 programming and query
optimization in information retrieval. Math. Program. 52(2, Ser. B), 255-263 (1991)

Hansen, P., Jaumard, B., Meyer, C.: Exact sequential algorithms for additive clustering.
Technical Report G-2000-06, GERAD (March 2000)

Hochbaum, D.S.: Polynomial time algorithms for ratio regions and a variant of normalized cut.
IEEE Trans. Pattern Anal. Mach. Intell. 32(5), 889-898 (2010)

50

34.

35.

36.

37.

38

39.

40.

41.

42.

43.

44,

45.

46.

47.

48.

49.

50.

51.

52.

53.

54.

55.

56.

P. Hansen and C. Meyer

Ivanescu (Hammer), P.L.: Some network flow problems solved with pseudo-Boolean program-
ming. Oper. Res. 13, 388-399 (1965)

Iwata, S.: A faster scaling algorithm for minimizing submodular functions. SIAM J. Comput.
32(4), 833-840 (2003)

Iwata, S., Fleischer, L., Fujishige, S.: A combinatorial strongly polynomial algorithm for
minimizing submodular functions. J. ACM 48(4), 761-777 (2001)

Kiers, H.A.L.: A modification of the SINDCLUS algorithm for fitting the ADCLUS and
INDCLUS. J. Classif. 14(2), 297-310 (1997)

. Lee, M., Navarro, D.: Minimum description length and psychological clustering models. In:

Grunwald, P., Myung, L, Pitt, M. (eds.) Advances in Minimum Description Length Theory and
Applications. Neural Information Processing Series MIT Press, pp. 355-384 (2005). https://
mitpress.mit.edu/books/advances-minimum-description-length

McCormick, S.T.: Chapter 7. Submodular function minimization. In: Aardal, K., Nemhauser,
G.L., Weismantel, R. (eds.) Handbook on Discrete Optimization, pp. 321-391. Elsevier,
Amsterdam (2005). Version 3a (2008). Available at http://people.commerce.ubc.ca/faculty/
mccormick/sfmchap8a.pdf

Mirkin, B.G.: Additive clustering and qualitative factor analysis methods for similarity matrice.
J. Classif. 4, 7-31 (1987). Erratum, J. Classif. 6, 271-272 (1989)

Nemhauser, G.L., Wolsey, L.A.: Integer and Combinatorial Optimization. Wiley, New York
(1988)

Orlin, J.B.: A faster strongly polynomial time algorithm for submodular function minimization.
Math. Program. 118(2, Ser. A), 237-251 (2009)

Picard, J.C., Queyranne, M.: A network flow solution to some nonlinear 0 — 1 programming
problems, with applications to graph theory. Networks 12, 141-159 (1982)

Qian, J., Wang, C.A.: How much precision is needed to compare two sums of square roots of
integers? Inf. Process. Lett. 100(5), 194-198 (2006)

Radzik, T.: Fractional combinatorial optimization. In: Floudas, C.A., Pardalos, P.M. (eds.)
Encyclopedia of Optimization, pp. 1077-1080. Springer, Berlin (2009)

Rhys, J.M.W.: A selection problem of shared fixed costs and network flows. Manag. Sci. 17,
200-207 (1970)

Schaible, S.: Analyse und Anwendungen von Quotientenprogrammen, ein Beitrag zur Planung
mit Hilfe der nichtlinearen Programmierung. Mathematical Systems in Economics, vol. 42.
Verlag Anton Hain, Konigstein/Ts. (1978)

Schaible, S., Shi, J.: Recent developments in fractional programming: single-ratio and max-
min case. In: Nonlinear Analysis and Convex Analysis, pp. 493-506. Yokohama Publishers,
Yokohama (2004)

Schrijver, A.: A combinatorial algorithm minimizing submodular functions in strongly poly-
nomial time. J. Comb. Theory Ser. B 80(2), 346-355 (2000)

Shepard, R.N., Arabie, P.: Additive clustering: representation of similarities as combinations
of discrete overlapping properties. Psychol. Rev. 86(2), 87-123 (1979)

Stancu-Minasian, I.M.: Fractional Programming: Theory, Methods, and Applications. Kluwer,
Dordrecht (1997)

Stancu-Minasian, L.M.: A sixth bibliography of fractional programming. Optimization 55(4),
405-428 (2006)

Topkis, D.M.: Minimizing a submodular function on a lattice. Oper. Res. 26(2), 305-321
(1978)

Topkis, D.M.: Supermodularity and Complementarity. Frontiers of Economic Research.
Princeton University Press, Princeton (1998)

Ursulenko, O.: Exact methods in fractional combinatorial optimization. ProQuest LLC, Ann
Arbor, MI. Ph.D. thesis, Texas A&M University (2009)

Zadeh, N.: A bad network problem for the simplex method and other minimum cost flow
algorithms. Math. Program. 5, 255-266 (1973)

https://mitpress.mit.edu/books/advances-minimum-description-length
https://mitpress.mit.edu/books/advances-minimum-description-length
http://people.commerce.ubc.ca/faculty/mccormick/sfmchap8a.pdf
http://people.commerce.ubc.ca/faculty/mccormick/sfmchap8a.pdf

2 Springer
http://www.springer.com/978-1-4939-0741-0

Clusters, Orders, and Trees: Methods and Applications
In Honor of Boris Mirkin's 70th Birthday

Aleskerov, F.T.; Goldengorin, B.; Pardalos, P, (Eds.)
2014, X, 404 p. 80 illus., 28 illus. in color., Hardcowver
ISBEN: 278-1-4939-0741-0

	Part I Classification and Cluster
	A Polynomial Algorithm for a Class of 0–1 Fractional Programming Problems Involving Composite Functions, with an Application to Additive Clustering
	1 Introduction
	2 Definitions and Related Works
	2.1 Supermodularity
	2.1.1 Definitions
	2.1.2 Mathematical Results
	2.1.3 Supermodular Maximization
	2.1.4 Parametric Supermodular Maximization: The Notion of Monotone Optimal Solutions

	2.2 The Minimum Cut Problem
	2.2.1 Definition
	2.2.2 The Selection Problem
	2.2.3 The Parametric Minimum Cut Problem

	2.3 Single-Ratio Fractional Programming
	2.3.1 The Parametric Approach

	3 A New Algorithm
	3.1 Description
	3.2 Computing the Breakpoint Vertex Set
	3.2.1 Properties
	3.2.2 The Eisner and Severance Algorithm
	3.2.3 Complexity

	3.3 Correctness of the New Algorithm
	3.4 Polynomial Solvable Instances

	4 Application to an Additive Clustering Problem
	4.1 Additive Clustering
	4.2 The Additive Clustering Problem with One Cluster
	4.3 A Polynomial Algorithm

	5 Discussions: Limitations and Extensions
	5.1 Limitations
	5.2 Minimization Problems
	5.3 Maximization of the Product of Two Composed Functions
	5.4 Constrained Problems

	6 Conclusion
	References

