Chapter 2
Matrix Models as Building Blocks

for Population Dynamics

In this chapter, we develop a “building block™ approach to defining population
dynamics models, in which each building block corresponds to one biological
process, and is represented by one matrix (Lebreton 1973; Lebreton and Isenmann
1976; Buckland et al. 2004, 2007). Matrix models are usually defined within a
deterministic framework, but we will need stochastic models. Thus we will think
of the matrix as a mathematical tool for telling us how many animals of each type
we expect to have in our population once the process (e.g. survival, birth, movement)
has occurred, given the numbers present beforehand. We separately specify the
probability distribution associated with the process, which will determine the actual
numbers of each type. We refer to the types of animal as states.

We will introduce each process using a simple example to aid understanding,
then define it in more general terms. We will assume that the natural time unit is
one year, although a shorter unit will often be appropriate. We will also assume
that births are restricted to a short breeding season. The year is taken to run from
one breeding season to the next. If the breeding season is not short, then the birth
process operates alongside a death process, which would be better represented by
continuous-time models. We can approximate such models in our framework by
modelling births and deaths on say a daily basis through the breeding season.

Within a year, multiple biological processes typically occur, e.g. survival,
birth and movement. At times these individual processes will be labelled sub-
processes: the annual changes in numbers of animals are a reflection of an annual
process, which in turn is the consequence of multiple sub-processes. Further, in the
constructions that follow, sub-processes are treated as if they occur sequentially in
discrete, non-overlapping time intervals; e.g. mortality takes place, then births occur,
then movement, and so on. Temporal overlapping of sub-processes can in fact occur
so long as the overlapping sub-processes are affecting different categories or sub-
populations; otherwise, the following formulations are approximations.
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2.1 Using Matrices to Represent Processes
Within a Single Population

Caswell (2001) gives a comprehensive account of matrix population models, and
of properties of matrices relevant to modelling population dynamics. In this book,
we need to know remarkably little about matrices. The basic property of matrix
multiplication is needed to understand the expected effect on states of processes.
Suppose A is a 2 x 2 matrix comprising four values a1, ai», a; and ax, and bis a
column vector of length two (i.e. it is a 2 x 1 matrix) with elements b; and b,. Then
the product Ab is given by

[an 6112:| [b1:| _ [allbl +6112b2:|
ai an | | b» anby +anb; |

] -16)

Note that in any product of two matrices, the number of columns of the first matrix
must equal the number of rows of the second matrix. The number of rows of the
product is equal to the number of rows of the first matrix, and the number of
columns of the product is equal to the number of columns of the second matrix.
More generally, if A is a k x m matrix and B is an m x n matrix, then the k x n
matrix AB is given by:

For example

ai ... Ain b11 bln

agl - .. Akm bml cee bmn

allbll + - almbml cee allbln + -+ almbmn

axibiy + -+ 4 Akmbm1 .. agibiy + - 4 Akmbyn

Throughout this book, we use matrices, called process matrices, to define the sub-
processes operating on our population of interest, and vectors, called state vectors,
to represent the various categories or states of animal in our population. The start
of the annual cycle will be defined for convenience, often immediately before or
after the breeding season. The numbers of animals in each state at the end of
year ¢ — 1 will be represented by a vector m,—;, comprising elements 7 ;,—, for
j = 1,...,m, where m is the number of distinct states of interest. After each
sub-process, these numbers (or some of them) will change. We use the following
notation to indicate numbers of animals in each of the m states after sub-process k
has occurred in year ¢:
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Fig. 2.1 Starting with n; ,—; young animals and n,,_; adults at the end of year t — 1, we expect
E(uis),1:) = ni,—1¢1 young and E(u;(5)2,) = nz,—1¢ adults to survive through year ¢. The
arrows are dashed to indicate that the processes are stochastic, so that in general E(u;() /) #
ui(s),j for j = 1,2. The rates associated with the processes are shown above the arrows

Uk (x),1,t
W) =

Uk (x)m,t

where x is a letter indicating the type of sub-process: s is used to indicate survival,
b for birth, a for age incrementation, r for growth, ¢ for sex assignment, g for
genotype allocation, and v for movement.

We use the same letters, but capitalized, to label our models. For example a BAS
model is one with three sub-processes in a year, starting with survival, then age
incrementation, and finally birth. The reason for reversing the chronological order
of the sub-processes in these labels will become apparent.

2.1.1 Survival

Suppose we wish to model a single population of animals, divided into two states
representing age classes, with 7;,_; newly born animals and n,,_; adults at the
end of year ¢ — 1. Then the expected number of survivors through year ¢ can be

expressed as

I:E("‘l(s).l,t)i| — [¢l 0 i| |:nl.r—l i| ’ .1

E(ui(5)2.1) 0 ¢ | N1

where uy) ;, signifies the number of animals in state j after the first sub-process
(survival) of year t has occurred, E(u(s),j,) denotes the corresponding expectation
conditional on ny,—; and ny,—1, and ¢; is the survival probability of animals in
state j. The structure of Eq. (2.1) is shown diagrammatically in Fig.2.1. We write
Eq.(2.1) equivalently as E(uj()|/n,—1) = Sm,_;, where S = [d())l (;) :| is the

2
survival matrix.
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We will also need to specify a probability distribution associated with the
process. For survival, an obvious choice is the binomial, so that

(ul(s).l,t ~ binomial(nl,t—l’¢l)) (2 2)

Ui(s)2: ~ binomial(nz,—1, ¢2)

We will develop this example in subsequent sections, where it will be referred to as

Example 1.
More generally, suppose we have m states (types of animal), with survival rates
1, ..., dm- Then the expected numbers of survivors may be expressed
E(ui(),1,) ¢1 0...0 n—1
E(u1(52.¢) | 0¢2... 0 N1
E(“l(s).m.t) 00 ...¢m N t—1
with uy(5) j, ~ binomial(n;,,¢;) for j =1,...,m.

Available data may not support m distinct survival parameters. A simple solution
is to explore models in which some of the survival parameters are set equal; for
example, a common adult survival rate is often assumed. We explore more flexible
solutions, in which survival is modelled as a function of covariates or as a random
effect, in Sect. 2.2.

In our matrix formulations, wherever we see E(+) on the left-hand side, indicating
expectation of a random variable, we will need to specify a probability distribution
for the corresponding stochastic process. If there is no expectation, then the
corresponding process is deterministic. We now consider the deterministic process
of age incrementation.

2.1.2 Age Incrementation

In Example 1, there are just two age classes. Assuming young animals become
adults by the end of their first year, we can represent this as a deterministic matrix
model: all survivors are deemed to be adults by the time of the next breeding season.
The number of animals after age incrementation at the end of year #, given the
number of survivors, is known without error:

[w2@)2.] = [11] [”'(”’“’} : 2.3)

UL(s). 2.t

Note that this can equivalently be written

RS
U3(a) 2,1 L1 [ui)o.
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Age incrementation

Ul(s),1,0 1

U (5),2,1 1= Uy (a),2,1
Fig. 2.2 Before age incrementation, we have u;(),1, young animals and u;( ., adults in year ¢.
After age incrementation, we have usq) 2 = Ui(s),1;, + Ui(s)2; adults. The arrows are solid to

indicate that the processes are deterministic, with E(u(4)2:) = u2()2,,- The rates associated with
the processes are both unity because all animals follow the routes indicated by the arrows, and no
new animals are generated

We adopt the convention that the dimension of the state vector is reduced when one
or more states necessarily have no animals; the vector is then expanded again when
a subsequent sub-process potentially generates animals that belong to these deleted
states.

The effect of two ones in one row of a matrix is to combine two states; in this
case, young and old animals. Equation (2.3) may be expressed diagrammatically as
shown in Fig.2.2. The model can equivalently be written u,), = Au,(,,,, where
A is the age incrementation matrix. In fact, for this simple model and adopting the
formulation of Eq. (2.3), A is a row vector, and u,(,), is a scalar.

If we have m states corresponding to ages O, 1, 2, ..., then state m comprises
all animals aged m — 1 or older. The following (deterministic) model ensures that
each age class except the oldest moves up one year, and the two oldest age classes
merge, at the year end. (The first entry of the state vector becomes uy(4)2; because
conceptually there are no animals in their first year until births occur.)

U2(a).2.1 10...000 H1(s).10

Ul(s),2.t

U2(q).3.¢ 01...000 e
uZ(a),m—]J 0 0 e 1 0 0 Zl(&),m—Z.t
U2(a),m.t 00...011 ;(15();”"[’

Ss).m,

2.1.3 Growth

Suppose in Example 1, the two states are size classes rather than age classes, and
suppose that at the year end, animals in the smaller size class move to the larger
class with probability 7. Animals in the larger class remain there. (The same model
applies if the two classes correspond to immature and mature animals.) The expected
numbers of animals in each state, conditional on the numbers before reallocation of
animals according to their size, are then
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Growth
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Fig. 2.3 Before growth, we have u;(), small animals and (., large animals in year 7.
After growth, we expect to have E(uy1,) = (1 — m)uy(,1, small animals and E(uz¢2,) =
Uy (s),1+ + Ui(s)2, large animals. The solid arrow with an associated rate of unity indicates that
large animals remain large, while the dashed arrows indicate that the growth process for small

animals is stochastic
[E(Mz(;-).l,z)} _ |:1 -7 0] |:M1(x),1,z] , 2.4)
E(uz(r),2.1) w1 ] Lui)o.
. 1-70
which may also be expressed as £ () |0i(5),) = Ruy),, where R = |
14

is the growth matrix. This process is shown diagrammatically in Fig. 2.3.
As with survival, the binomial distribution is an appropriate model for stochas-
ticity in the growth process:

(MZ(r).l,t ~ binomial(”l(x).l,la 1- ”) ) (2.5)
U2 = Uigs) 20 + (Ui, 10 — Ua(r),10)

If there are m size classes, and we allow animals in state j to remain the same
with probability 1 — 7; or move up one size class with probability 7; for states
1,2,...,m —1, then

[ E(uz(r)!l.,) ] _] — T 0 e 0 0 0 Ul(s),1,t
E(uz(ry2.1) 7 1—m... 0 0 0 Ui(s).2.t
E(u2(r)3.1) _ 0 7 ... 0 0 0 Ui(s)3,

E(ua(ry,m—1,) 0 0 ..mmal=mu O || tigsym—1,

L E(u2(r),m,t) i L 0 0 ... 0 TTm—1 1_ L Ui(s)m.t

Note that, if we allow the possibility that an animal in the smallest size class remains
there (7r; < 1), then we do not lose state 1 at this stage, in contrast with the aging
model.

2.1.4 Birth

For Example 1, suppose births take place after age incrementation. Thus last year’s
young have been combined with adults, and births create the new cohort of young
animals. If the birth rate is denoted by p, then
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Fig. 2.4 Before births but after age incrementation, we have no young animals and u;(,) >, adults
in year t. After births, we expect to have E(u3p),1/) = pus(),1, young animals, shown by the
dashed arrow with associated rate p. The number of adults remains at u3p) 2, = Us(q),2,, indicated
by a solid arrow with an associated rate of unity. The rates emanating from uy(4) 2, sumto 1 +p >
1, indicating that new animals have been created

E t
|: (u3p)1, )] = |:'(1):| [uz(a).z,t ]’

Usp),2,t

or equivalently, E(u3p)|Uz),) = Buyy), where B = |:/1)j| is the birth matrix.

(In this simple example, it is a column vector.) We illustrate this process in Fig. 2.4.
If each animal gives birth to at most one young per year, we might again invoke
the binomial distribution:

(u3(;,),1., ~ binomial(uz(a).z,,, p)) (2 6)

Usp)2,t = Uz(a)2.t

Thus the newly-born animals are placed in the recreated state for young animals,
and the number of adults remains unchanged after the birth sub-process.
With m states, we have

E(u3p).1.0) P2 03 - Pm .
U3(b),2,1 1 0...0 . (a).2.1
U3(b).3.t =[(01...0 2(a).3.
U3(by,m.t 00...1 Uz(a),m,t

where p; is set to zero for states i that correspond to immatures or males.

To generalize the birth model, we need distributions that allow multiple births
to a single mother. Possible distributions include the Poisson and negative binomial,
but a more flexible choice is the multinomial distribution, where the number of trials
is equal to the number of breeding females, and the probability that a female gives
birth to 7 young is p; fori =0,1,...,with) ; p, = land p = >, ip;.

If the birth process completes the modelling of the annual cycle, then we have
uzpyj =njforj=1,...,m.
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Sex assignment
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Fig. 2.5 Before sex assignment but after births, there are u3),1, young animals in year . We
expect E(us(e),11) = ausp),1, of these to be female, and the remainder male. For adult females,
we have uy)3; = uzp),, while for adult males, u4) 4, = u3p) 3,

2.1.5 Sex Assignment

Commonly, only the female component of a population is modelled. Suppose we
wish to add males to Example 1, and handle them as additional states. Thus we now
have four states, corresponding to adult and young of each sex. We specify our sex
assignment model conditional on number of births w3y 1. If u3() 2, is number of
adult females, u3(;) 3, is number of adult males, and the probability that a young
animal is female is «, then

E(I/M(C),],[) o 00 e
E(use)2.1) _ 1—a00 u3(b).2,l .
Ud(c) 3.t 0 10 (b)2,t

Mage) 0 01 U3(b),3,0
where uac) 1, Ua(e)2,0, Uae)3:r and us) 4, are numbers of newborn females,
newborn males, adult females and adult males respectively. If this is the last process
of the year, then uy() ;, = n;, for j =1,2,3,4.

Equation (2.7) may be expressed as E (U4, |u3@p),) = Cusp),, where C is the
sex assignment matrix, and is represented by Fig. 2.5.

The binomial is the natural model for sex assignment:

u4(€),1,t ~ binomial(u3(b),1,,, Ol)
U4(c)2,t = U3(b),1,t — Ud(c), 1.t

Ug(c)3.0 = U3(b).2.t

U4(c) 4t = U3(b)3t

If there are m age classes for each sex, then this generalizes straightforwardly:
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_E(u4(c),1,t)_ [« 00...

0 U3(p), 1.1
E(U4(c),2,t) 1—-a00...0 U3(p),2,t
U4 (c),3.t 0 10...0 U3(b),3,t
Ug(c) 4.t - 0 01...0 Uz(b) 4.1

| Uaeyame | | 0 00...1 )| usp)om—1.s |

2.2 Models Within Models

In the previous section, models were presented for which all animals in a given state
were subject to the same processes with the same parameter values, and those values
were treated as fixed over time. We require flexible models with more parameters,
yet we are unlikely to have adequate data to fit large numbers of parameters. We
consider two solutions to this dilemma, each of which appreciably enhances the
capabilities and realism of our models.

2.2.1 Modelling Processes Through Covariates

The first process model we considered was survival. We specified that animals in
state j all had the same survival rate ¢;. However, even for animals in the same
state, the survival rate may vary according to many different factors. Suppose we
wish to model first-year survival ¢; as a function of winter rainfall r, and total
abundance N;—; = Z?=1 nj;—1 at the end of year r — 1. We would like our model
to respect the constraint that ¢; must lie between zero and one. A logistic model is
a natural choice:

1

P = T plBo + Burs + BN}

2.8)

where ¢;;—; is the probability that animals recruited into the population at the end
of year t — 1 survive to the end of year 7. This incorporates an environmental
effect, with f; > 0 if high winter rainfall increases first-year mortality, and
density dependence, with 8, > 0 if high abundance increases mortality. The above
formulation corresponds to using a logit link function. Other link functions for
binary data could also be used: the probit and the complementary log—log links
(McCullagh and Nelder 1989:31).

This model allows ¢; to be time-varying. We could also include covariates that
vary by space (e.g. habitat) or by individual animal (e.g. weight). Thus individual-
based models are feasible, without the necessity of more parameters than the data
can support.
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The rate parameters associated with other processes could be modelled similarly.
For example the growth model parameter = of Sect.2.1.3 might be modelled as a
function of time spent in that size class and of resources available, or the birth rate p
of Sect. 2.1.4 might be modelled as a function of the mother’s weight, or a measure
of her position in the social hierarchy, or of the habitat she occupies—or all three.

We note that some classic nonlinear, density-dependent population dynamic
models such as the Beverton-Holt and Ricker models, which typically simultane-
ously incorporate survival and reproduction, can be extended to include covariates
(Maunder and Deriso, 2011).

2.2.2 Processes as Random Effects

Often, we expect rates to vary but we do not have relevant covariates to model
that variation. In this case, an option is to specify the rate as a random effect. For
example, instead of specifying that the survival rate ¢; is the same for all animals
in state j, we can assign a random distribution to ¢;, allowing it to vary in time,
or by location, or by individual animal. A good candidate distribution is the beta
distribution, which is constrained to lie between zero and one. Thus if we wish ¢;
to vary by individual animal, instead of having to fit a different parameter for each
animal (impossible in practice), we simply have to fit the two parameters of the beta
distribution. For example, in the case of time-varying survival, for animals in state
J attime ¢, the survival rate is ¢p; , ~ beta(e;, B;). More commonly, random effects
are assumed to be normal on some scale; in the case of modelling survival, the
natural scale would be logit, ensuring that survival is constrained between zero and
one. Such models as these where the parameters themselves are random variables
are sometimes called hierarchical or multi-level models; random observations are
at the lowest level and random parameters at higher levels. The parameters of the
distributions at the higher levels are called hyperparameters.

Random effects and covariates can be combined in various ways to yield even
more flexible models. For example, first-year survival in year ¢ could be a function
of a covariate, such as rainfall, and a random effect. Instead of Eq. (2.8), we might
have

1
1 + exp(Bo, + Birs)

Q-1 =
where

Bo.s ~ normal (/Lo, 02) .

This is an example of a nonlinear mixed effects model, where the effect of rainfall
is a fixed effect and the intercept Sy, is a random effect.
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Alternatively, the hyperparameters of a hierarchical model can be modelled as
functions of covariates. Again referring to the example of first-year survival, one of
the hyperparameters of the beta distribution could be a function of rainfall:

$14 ~ beta (a(r;), B1)
where

a(r;) = exp (Yo + yi71) -

2.3 Leslie Matrices and Lefkovitch Matrices

We now return to Example 1 with just two states, corresponding to the two age
classes. We start the year just after the breeding season, so that the first process is
survival, followed by age incrementation, and then births. Taking these in order, we

have:
|:E(M1(s).1,z)] _ |:¢1 0 ] |:n1,t—1i|
E(ui(5)2,0) 0 ¢ ] [n2i1

(2@ 2] = [11] [“us).u }

Ui(s),2.t

|:E(nl.t):| _ |:E(”3(b),l.t)j| _ |:Pj| [0, ]

ny; U3(h),2.¢ 1 @) 2.4

We may combine these into a single model simply by expressing the process
matrices as a product in reverse chronological order:

E(mi) | _1e ¢1 0 nye—1
[E(nlt)i| = [1}[1 1] [ o ¢2} [nz,z_l] 2.9)

or alternatively, E(n;|n,—;) = BASn,_;. Evaluating the product, we obtain

|:E(n1,t)i| _ [P¢1 P¢2] I:nl,z—l] ‘ 2.10)
E(na,) ¢ 2 [ [ N2
Provided that none of ¢;, ¢, and p depend on numbers of animals present in

year ¢, the expectations in the above expression are exact. For example Eq. (2.10)
implies that E(n1,) = p ($171,—1 + ¢2n2,—1). As the expectations are conditional
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Fig. 2.6 In the BAS model, the sub-processes of Figs. 2.1, 2.2 and 2.4 are combined to create a
model for which the annual processes, in chronological order, are survival (S), age incrementation
(A) and births (B). Note that n;; = u3,), j, for j = 1,2

on ny,—; and ny,_;, then they hold if ¢;, ¢, and p are either independent of
numbers of animals in each state or dependent only on the states at time ¢ — 1
(or earlier). However, density-dependent effects in the birth rate might be more
plausibly modelled by expressing p as a function of n,,, as this is the number of
breeding adults present at the end of year ¢+ when births occur. In this case, the
above expectation no longer holds.

The above matrix representations are useful for defining and understanding
models. As will be seen in Chap. 4, we can fit these models without having to assume
that expectations of the type shown in Eq. (2.10) hold. When such methods are used,
the approximation is of no consequence.

The significance of Eq.(2.10) is that the product of the process matrices is an
example of a Leslie matrix (Leslie 1945, 1948; Caswell 2001:8—11). (Note that
the standard Leslie matrix would have p where we have p¢;; in our formulation,
animals must survive to the year end to breed.) We call the above model a BAS
model, because the Leslie matrix is obtained by taking the product of the matrices
corresponding to the processes birth (B), age incrementation (A) and survival (S),
in that order. The model is shown diagrammatically in Fig. 2.6.

If we replace the deterministic age incrementation model of Eq.(2.3) by the
growth model of Eq.(2.4), and assume that only animals in the larger class
breed, then we obtain the following Lefkovitch matrix (Lefkovitch 1965; Caswell

2001:59):
E(nl,,,) _ 1 1% 1—-70 ¢1 0 nit—1
E(m,,) | |01 7 1] 0 ¢ nai

_ [(1 — 7 + pr)) p¢z} [nu—l } @.11)

TP ¢ | Lnoi—1

Taking the three matrices in the first line of Eq.(2.11) in reverse order, the first
gives us the expected numbers of animals that survive the year, given the numbers
alive at the start of the year; the second gives the expected numbers of survivors
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Fig. 2.7 In the BRS model, the sub-processes of Figs. 2.1, 2.3 and 2.4 are combined to create a
model for which the annual processes, in chronological order, are survival (S), growth (R) and
births (B). Asin Fig.2.6, n;, = u3p),j, for j = 1,2

in the smaller size class that either remain in that size class or grow into the larger
size class; and the third gives the expected number of newly-born animals that join
the smaller size class. This is therefore a BRS model: the annual cycle starts with
survival (S), then growth (R), and finally births (B) (Fig. 2.7). The Lefkovitch matrix
of Eq. (2.11) is obtained as the matrix product BRS.

In general, if we take the product of the process matrices arranged in reverse
chronological order, we obtain the population projection matrix'. Our modular
approach allows for easy definition of more complex models. For example, if we
retain the same processes as for the Leslie matrix of Eq. (2.10), i.e. survival, aging
and births, but expand to include m states, then we obtain

(0203 ... Pm 10...000

E 0..0 _
(21.0) 1o..0|lo1...000]|[® -1
E(ny,) o1 0 0¢r... 0 nys—1
: s o oo 100 C :
E(nm.t) 00 ¢m N t—1

00...1 00...011

[ 0201 302 - .. PDi—1 PP
Nir—1

¢ 0 ... 0 0 .

—| 0o ¢ ... o0 0 2=l
: : T : P

L0 0 ... Gt b =l

This model is shown diagrammatically in Fig. 2.8.
The sex assignment model of Sect.2.1.5, with different survival rates for males
and females as well as for adults and young, yields

"Note that this matrix does not satisfy the definition of a projection matrix from linear algebra—the
term “projection” is used here to indicate projection of the population from one time point to the
next.
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Fig. 2.8 The BAS model with m age classes. Compare this with Fig. 2.6

¢2 \
My == > U0, Uy a2, r—r—r n,,
\ Ps, ]
]
¢3 I 1]
\1\

- ul(.s'),m,t — Z’12(a),m,t_’ n

n,

Uyay s =—> 13,

m.t

E(l’llqt) B o 00 0 ¢)1 000 nir—1
E(ma) | [ 1=« 00 ';’0 10107] 0 ¢ 0 0 || maues
Ens,) | | 0 10 01 [LOTOTL 0 0¢50 |1 n5
E(I’l4’[) 0 01 000 ¢4 N4 r—1
appr 0 apps 0O nyg—1
_ | A=)pd1 0 (I —a)pgs O || mopy | 2.12)
&1 0 &3 0 n3-1
L 0 (03} 0 ¢4 ng -1

The four matrices that combine to form the generalized Leslie matrix of Eq. (2.12)
correspond to the following sub-processes. First chronologically but last of the four
matrices in the first line of Eq. (2.12) is the matrix that handles the survival process
(S) of young and adult males and females. Next comes age incrementation (A),
where young females merge with the adults, and similarly for males, temporarily
resulting in just two states: adult females and adult males. The matrix for the
birth process (B) comes next, generating a single state for newly-born animals.
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Fig. 2.9 The CBAS model: Example 1 with the addition of male animals. The fop row corresponds
to young females, then adult females, followed by young males and finally adult males. The extra
row in the middle in the column for the birth sub-process corresponds to young before assignment
of sex

Finally comes sex assignment (C), where this state is separated out into males and
females. The matrix product CBAS therefore yields the generalized Leslie matrix.
This CBAS model is illustrated in Fig. 2.9.

Even for such a simplistic model for population dynamics, it is starting to
become apparent how much easier it is to formulate the model using this modular
approach rather than direct specification of the population projection matrix.
Caswell (2001:60) provides an example of how easily an error can occur in model
formulation with the latter approach.

2.4 Using Matrices to Represent Processes of Multiple
Populations

Here we consider situations where there are either subpopulations within a given
species which are distinguished by criteria other than age or sex, or multiple
populations of different species. In the former case we give two examples: one
where the subpopulations are different genotypes of the same species and another
where the subpopulations occupy different distinct locations, with some degree
of movement between locations, and thus form a metapopulation. We could have
included two-sex models in this section, but we chose to cover sex assignment
within Sect.2.1 because we consider that the state corresponding to the sex of
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an animal is one of the fundamental states in any population dynamics model,
even if for many purposes, it is sufficient to model the female component of the
population only.

We first consider how offspring may be assigned to genotype, so that the
population is split into genotypes. We then show how to model movement between
the components of a metapopulation. Next we develop multiple-species models,
first to show how inter-species competition might be addressed, then to illustrate
how predator-prey systems may be modelled using our framework.

2.4.1 Modelling Genotypes

Suppose animals are classified as to whether they are first-year or older (adult),
whether they are male or female, and whether they have two dominant genes at a
particular locus (D D), a dominant and recessive gene (Dd ), or two recessive genes
(dd). Suppose further that age incrementation is sub-process k in the annual cycle,
so that just after age incrementation in year f, we have ui(q),1,, adult females of type
DD, ui(a)2, adult males of type DD, uy(4) 3, adult females of type Dd, uk(a)4.
adult males of type Dd, uy() s, adult females of type dd, and uk(4)6, adult males
of type dd. We first consider the expected number of young born to each female
genotype. For simplicity, we assume that all genotypes have the same birth rate.
Denoting number of births to females of type DD by uy41(),1,:» number of births
to females of type Dd by uy41()2,., and number of births to females of type dd by
Ui +1(b),3,t» WE have

E(uk+15).1.1) [p00000] _ _
E(ur+1).2.0) 00p000 | | Uk@.1
E(ukc+16)3.) 0000p0 Uk (a). 2.t
Uk +1(b).4.t — 1100000 Uk(a).3.1
Uk+1(b),5.t 010000 Uk (a).4.t
: SRR Uk(a).5.1
S N I | loror |
Uk+1().9.¢ | 1000001 |

We now need to reallocate the births, not according to the genotype of the mother,
but according to the genotype of the young. Denote the probability that the father of
a young animal has genotype DD, given that the mother is of type DD, by ¥ pp|pp.
the probability that the father has genotype Dd, given that the mother has genotype
DD, by ¥pa|pp,and so on. Then we can express the probability that a young animal
is of a given genotype, given the genotype of the mother, as follows: npppp =
Yopipp + 3Vpaipp: Nopipa = 3¥pp|pd + $VDdDds NDdIDD = 3V DalDD +
Vaa\pps Mpdipd = 3(Wpp|pa +Vpaipd + Vaaipa): Npalaa = 3¥pdlad +¥pplads
Ndd\pd = %Wudu)d + 2Vaaipa: Nadlaa = 3V¥pdlad + Vadlaa- Let ursa(g) .1 be
the number of young of genotype DD, uj1(s) 2, the number of young of genotype
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Dd, up42(g),3, the number of young of genotype dd, uy41(g),4, the number of adult
females of genotype DD, and so on. Then conditional on the numbers of young born
to each female genotype, expected numbers are:

[ E(uk12(9).1.) | Nopipp Mppipa - 0 0000 | Mayey iy 1y ]
E(uk+2(g),2,l) Npd|pD "Dpd|Dd MDd|dd 00...0 Uk+1(b).2.t
E(uk+2(g)31) 0 Naaipa Nadlaa 00 ... 0 | | wyyy)5,

Uk+2(g) 4t — 0 0 0 10...0 Ukt 1(b) 4.1
Uk+2(g) 5.1 0 0 0 01...0 Ukt1(b) 5.4
Uk+2(g).90 L O 0 0 00...1 [ L%k+1)91

Assuming sex is independent of genotype, we can now assign sex to the young by
extending the method of Sect.2.1.5 appropriately.
Conditional on the uy 4 1), j:» we can specify the distributions of the uy15(4), j as:

Uk+2(g),1,t = I'DD.DD + TDD.Dd
Uk+2(g)2t = I'Dd,DD + TDd,Dd + T'Dd.dd
Uk+2(g).34 = I'Dd.dd + Tdd.dd

Uk+2(g). 40 = Uk+1(b).4.t

Uk+2(g).9.4 = Uk+1(b).9.t

with

rpp,pp ~ binomial(ux+1(4).1.¢» MpD|DD)
TDd.pD = Uk+1(b).1.0 — 'DD.DD
(rpp,pd>¥pd.pd>Tdd,pa) ~ multinomial(ug 1142, MpD|Dd> NDd|Dd > Ndd|Dd)
rpd.dd ~ binomial(ux+11).3.1, Npdjaa)
Tdd.dd = Uk+1(b).3.0 — T'Dd.dd

Note that rpg pp for example denotes the number of offspring from genotype DD
females that are of genotype Dd.

Under a random mating model, we have ¥pppp = Vpp|pa = VbpDldd =
Uray 2.1/ (Uk@) 2 + Uk@)4: + Uk@)e:) and similarly for other probabilities.
More strictly, these proportions should relate to when the animals mate. For
example if they mate a year before births occur, then ¥ pp|pp in year ¢ should
be uia)2,1—1/ (Uk(a).2,0—1 + Ui(a)4i—1 + Uk(a).6,1—1)-

This approach is readily extendible to more complex genetics models. However,
it would be advisable to develop computer algorithms for the tedious task of model
formulation! Even this simple model is too complex to illustrate diagrammatically,
due to the large number of arrows that would be required—especially if matings
were represented in the diagram.
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2.4.2 Modelling Metapopulations

Returning to Example 1 with just two age classes (see Sect.2.1.1), suppose our
population occupies two distinct sites. Suppose further that movement occurs after
winter survival, but before the breeding season. Let uj()1, be the number of
surviving young and u;()», number of surviving adults in site 1 in year ¢, and
let uy(5)3,, and uy(s) 4, be the young and adult survivors in site 2. Let w;-, be the
probability that an animal in site 1 moves to site 2, assumed for simplicity to be the
same for young and adults, and similarly p,—, is the probability of movement from
site 2 to site 1. If up ()1, represents number of young in site 1 after movement, with
corresponding definitions for adults in site 1 (42(n)2,), and young (u2(m)3,) and
adults (#2(n)4,) in site 2, then expected numbers after movement, given numbers
before movement, are

E(uam),1,1) 1— 12 0 Ha—>1 0 Ul(s),1,t
EQuam20) | _ 0 I—p1>2 0 Ho—s1 M2 | (013
E(uam)3,0) 12 0 1 — po—s 0 U(s),3.0
E(u20m),4,1) 0 K12 0 1 — po—s Ul(s),d,t

Assuming binomial distributions, we have

Ua(my 10 = Wiy + (Uigs),10 — Wiy)
Uaim) 20 = War + (Uis) 2.0 — Way)
Uamy 30 = Wi + (Ui(s)30 — W3s)
Ua(myds = Wau + (Ui(s).40 — War)

where

wi, ~ binomial(u;), 1, 41—2)
wa; ~ binomial (u1() 2., h1-52)
w3, ~ binomial (u1(s) 3., H2—>1)
Wy, ~ binomial(uy() .4, Ho—1)

Putting all the sub-processes together, namely survival (S), movement (M), age
incrementation (A) and birth (B), we have a BAMS model:

E(ni,) p0 1 — p1—2 0 Hos1 0
E(na) | _ | 10 |:1 10 01| 0 1 — 12 0 251
E(ns;) 0p L0011 H1-2 0 1 — posy 0
E(ns,) 01 0 Hiss2 0 1 — pasy
¢1 O O 0 n1,1_1
0¢0 0 nos—1
X ' 2.14
0 0¢50 || ny )
0 0 0 ¢sd Lna—
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Fig. 2.10 The BAMS model: Example 1 but with two sites, and movement between them. The
top row corresponds to young in site 1, then adults in site 1, followed by young in site 2 and finally
adults in site 2. In this formulation, a different survival rate is assumed for each of the four states,
but the birth rate p is assumed to be the same in each site. Within a site, young and adults have the
same movement rate, but this is allowed to differ between sites. Rates associated with movement
arrows are not plotted for clarity. The top two horizontal arrows have rate 1 — p1—s,, the bottom
two horizontal arrows have rate 1 — 1, the arrows from site 1 (top) to site 2 have rate jt1—,,
and the arrows from site 2 to site 1 have rate (o

Starting with the last of the projection matrices in Eq. (2.14), survival of the adults
and young in each site is the first process of the year. The next matrix handles
movement; diagonal terms correspond to animals that stay in their current site, while
off-diagonal terms correspond to those that move. Age incrementation follows, in
which the young animals at each site are merged with the adults, leaving just two
states. The birth matrix then recreates four states, by generating newly-born animals
in each site. The processes of this BAMS model are illustrated in Fig. 2.10.

Note that the movement sub-process matrix in Eq.(2.13) can be split into
submatrices:

1-— MH1—2 0 H2—1 O
0 1 — -2 0 H2—1 _ [M1—>1 M2—>1}
H1-2 0 1 — pa1 0 M5 My,

0 M1—2 0 1 — p2s1
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1— H1—2

where M, = |: 0 1=
- 12

i| corresponds to animals that stay in site 1,

0 . . .
My, = [,u 20_" i| corresponds to animals that move from site 2 to site 1, and
H2—1

so on. Thus a general movement model is given by

M) My ... My
Mo My sy ... M),

E(uygm), ) = ().

My My sy ... My

where the vector uy ), has elements equal to numbers of animals in each state before
movement, and ), represents numbers of animals by state after movement. For
the case of just two states (age classes) per site, submatrix M, ; is given by

M, = | Himi O
=>J 0 Risj

fori,j =1,...,1, where u;—; = 1— Zj?éi Mi—j is the probability that an animal
in site i remains there. For more states per site, these submatrices expand in the
obvious way.

Given [ sites, the numbers of animals at site i at time ¢ that remain there or move
to one of the other sites can be modelled by a multinomial

(Ui—1, ..., Ui—;) ~ multinomial (Li—1,..., hisl)

where ZI/ — Mi—j=1. With the constraint on the sum of probabilities, there are [ —1
movement parameters. Thus with / sites there are [ x (I — 1) parameters in total.
Unless large-scale mark and release studies are carried out across all sites, empirical
model-free estimates of ;. ; will generally not be available.

In the absence of individual site-to-site movement data, the use of covariates to
model the movement parameters, as described in Sect.2.2.1, is a pragmatic alter-
native. Site-specific information such as distances to other sites, animal densities at
each site, and measures of site habitat quality are potential covariates. For example,
Thomas et al. (2005) modelled the probability of movement between British grey
seal colonies as a function of distance, animal density and site fidelity. Modelling
must be constrained to ensure that the probabilities are non-negative and sum to
one, but this can be easily handled by using exponential functions and then rescaling
appropriately. Suppose one covariate x; is used. Then, for example,

Pi—j = exp (Bo + Brx1i + Paxi;)
s Pi—j
i— :
/ Zl Pi—1
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Hierarchical or random effects models can be used, in combination with any relevant
covariates. Now (see Sect.2.2.2) the movement parameters p;; are themselves
random variables. A natural distribution for proportions that must sum to one is the
Dirichlet distribution (a multivariate extension of the beta distribution). Similar to
an example given in Buckland et al. (2004), suppose that there are three colonies
in a metapopulation and that colony densities and distances between colonies affect
the probability of movement. Consider movement from colony 2, for example:

(H2—1, H2—2, fh2—>3) ~ Dirichlet (A2 1, A2—2, A2-53)
with

Arsy = exp(Bo)
exp (Bo + BiNa + BoHo + BsNj + BaHji + Bsdaj) . j = 1,3,

A2—>j

where 8; > 0, 8, < 0, B3 < 0, B4 > 0 and S5 < 0; N;, is the abundance at site
i in year t, H;, is a measure of habitat quality with larger values indicating greater
suitability, and d;; is the distance between sites i and j. Given the parameters ;  ;,
movement is then modelled by a multinomial distribution.

2.4.3 Multi-Species Models

We can readily extend our models to multi-species systems by modelling rates for
one species as functions of abundance of other species. For example, a competition
model for a two-species system might make the survival or birth rate of one species
a decreasing function of the abundance of the other. A predator-prey model might
make the survival rate of the prey a decreasing function of the abundance of the
predator, and the survival and birth rates of the predator an increasing function of
the abundance of the prey. A host-parasite model might be similarly formulated.
More complex interactions might be modelled for community models. For example,
a model for marine fish stocks might allow adults of one species to prey on first-year
fish of another, but to be prey for adults of the other species. It might also incorporate
competition effects between species with similar diets, and movement rates might
be modelled as functions of abundance of each species at different locations.

As an example of a multi-species model, we consider a system comprising one
predator and two prey, with competition between the two prey species. Suppose
we model the predator P in two age classes, first-year animals and adults. For
simplicity, we model the two prey species A and B each as a single state. First-
year survival of predators is assumed to depend on abundance of both prey species,
whereas adult survival depends on abundance of species B alone. Species A is
assumed to suffer a competition effect from species B, but not vice versa. All species
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show density dependence in their survival rates, but for the predators, this affects
first-year survival alone. Then a simple model to describe this system is as follows.

Denote number of first-year predators, adult predators, prey species A and prey
species B at the end of year ¢ by no;, n1;, n4, and n g, respectively. Assuming that
mortality (S) first occurs, followed by age incrementation (A), and then births (B),
we have a multi-species BAS model:

E(no,) pp O 0

i I A IR,
E(ma,) 0 IT+ps O 0001
E(ngp,) 0 0 1+ pp
¢doi—1 O 0 0 n0,—1
0 ¢1-1 O 0 nii—1
0 0 ¢ai—1 O nA—1

0 0 0 ¢pi—1 nBi—1

where pp, p4 and pp are the birth rates of predators, prey species A and prey species
B respectively, and the survival parameters ¢ are defined as

1
$oi—1 =
LT exp{oy — Binas—1 — Banpi—1 + B3(nos—1 + ni—1)}
é _ 1
M T explen — Panpa)
1
¢A,z—1 =
1 +expias + Bsn—1 + Benpi—1 + Br(nos—1 +ni,-1)}
1
b1

1+ explog + Bsnp—1 + Bo(noi—1 +ni—1)}

where the o and B are parameters (which may be estimated using the methods of
Chap. 4), with each 8 > 0, and where for example ¢4, is the probability that an
animal of species A that is alive at the end of year ¢ — 1 survives to the end of year ¢.
Note that the birth rates may similarly be modelled, for example to allow lower birth
rates at high densities of a given species.

2.5 Beyond Matrix Models

Matrices are linear operators. Consider the BAS model defined by Eq. (2.9). We may
rewrite this equation

n, = Z4t71(nt71)
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where the process operator L,_(-) is the composition L,_ () = ib.,(ia,,
(LY,,_I(-))), and Ly, (), ia,,(-) and Ly, () are the survival, aging and birth
operators respectively (Buckland et al. 2007). Note that, for consistency with
notation elsewhere in this book, we have adopted a different convention from
Buckland et al. (2007) in that we give the operator i,_l the same suffix as the
state vector n,_; on the right-hand side of the above equation, as the operator acts
on n,_, whereas Buckland et al. (2007) defined n, = Zt (n,_;), giving the operator
the suffix corresponding to the state vector on the left-hand side. Similarly, we give
the survival operator Zs,,_l suffix # — 1, but the aging and birth operators act on
animals that have survived to the end of year ¢, so have suffixes .
If all sub-processes are deterministic, we obtain the classical matrix model

n, = L;n;y,

where L;—; = BAS is typically a generalized Leslie or Lefkovitch matrix. Note that
elements of L,_; can depend on n,_, in which case the model is nonlinear in the
states. Thus for example density dependence can be modelled in this framework.

The special case of most interest here occurs when one or more of the sub-
processes is stochastic, but the expected values of the elements of n, may be
expressed as functions of the elements of n,_;. Then

Emn;_;) =L,_n;_y, (2.15)

where L,_; is a population projection matrix such that E (I:t_l(n,_1)|nt_1) =
L,_in,—;. The BAS model of Eq. (2.9) is an example of this, in which L,_; is the
Leslie matrix of Eq. (2.10).

If we take the model of Sect.2.4.3, but model the predator birth rate pp as a
function of prey and/or predator abundance immediately preceding the births, then
this yields a more general example, for which E(Z,t_l(n,_l)|n,_1) # L,_n,_y,
although if the nonlinearity is not strong, we might expect the result to hold
approximately. The model fitting algorithms of Chap.4 do not need Eq.(2.15) to
hold.

2.6 Observation Matrices

For practical wildlife management, the ability to fit a population matrix model to a
time series of data is important. To use the model fitting algorithms of Chap. 4, we
need to specify distributions for observations that respect their relationship with the
(usually unobserved) states in n;.

As in Sect. 2.5 for the process operator, we can define a general random operator
for the observation process:

y: = ()t (n;)
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where y, is a vector of observations for year ¢ (Buckland et al. 2007). If the operator
is linear, then we obtain the following observation equation:

Yy =0m; + ¢
for the appropriate matrix O,. Assuming E(¢,|n;) = 0, then
E(y:[n;) = O;n,. (2.16)

In this formulation, we assume that the observations are taken at the end of year
t. If this is not the case, then the state vector n, in the above equation would be
replaced by the appropriate intermediate state vector. For example, if population
size was estimated after winter mortality occurs but before breeding starts, then the
intermediate state vector would correspond to the survivors from the previous year.

As an example of an observation matrix, consider the BAMS model of
Sect.2.4.2. Suppose we have estimates y;; and y,, of total population size in
site 1 and site 2 respectively at the end of year ¢ (just after breeding). Suppose
further that we assume that these estimates are independently normally distributed
with variances o7 and o7 respectively. Then

nig
ylt 1 1 0 O ny;
Tl = ’ 2.17
[yz.t} [001 ) {ns, [T @2.17)
Uy

2
with €, = |:€1’ti| ~ normal ([8],[(8 02:|).
€2 0;

If the estimates of abundance are of adults only, then the observation matrix
0100
becomes O; = [000 1:|.

Usually, the observational study in year ¢ would provide estimates of o and
03. Often those estimates are treated as known values when fitting a state-space
model to data as simultaneously estimating variances for the state process and for
the observation model is often difficult due to identifiability problems (Dennis et al.
2006). An alternative, when using the Bayesian methods of Chap. 4, is to use these
estimates to inform the prior distributions for 67 and o3 (although such double usage
of the data is not strictly Bayesian).

The observations in the above example are single point estimates of the individual
states along with estimates of the variances. Multiple point estimates of the
individual states are easily incorporated by inserting additional components in the
observation vector and duplicating rows in the observation matrix.

A less trivial variation in the observation model is to work with the raw sample
data, the measurements actually made in the field say, rather than summaries of
the sample data. Typically point estimates of state vector components will be
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summaries of the actual measurements taken. For example, mark-recapture studies
might be carried out over a sequence of years and estimates of population abundance
constructed from the data. Rather than treat the point estimates as observations, the
mark recoveries could be the observations. This is an intuitively attractive idea in
that all estimation is done in a single step and complete within-sample variation
is retained. A practical limitation, in some situations, is that the raw data may be
unavailable or difficult to access. A technical limitation is that, to use the raw data
in a matrix model, the observations must be written as linear functions of the states.
The ease with which such a linear mapping can be done will depend upon how
the data were collected, and may in some cases, e.g. distance sampling, be at best
cumbersome and at worst infeasible.

2.7 Defining a Population Dynamics Model

We consider two examples to illustrate the steps involved in formulating a matrix
model for population dynamics. In the first, we develop a model for coho salmon
and in the second a metapopulation of deer, comprising just two populations
with movement between them. We will describe the dynamics in deterministic or
expected value terms and in the next chapter we will develop a fully stochastic
formulation.

2.7.1 Coho Salmon

The following description of a matrix model for coho salmon Oncorhynchus kisutch
(Fig.2.11) is based on a model described in Newman (1998). That model fitted
recoveries (in samples taken from ocean fishery catches) of marked coho salmon
released from a hatchery located on a river on the west coast of the Olympic Penin-
sula in Washington State USA. The population sub-processes included survival,
movement in the ocean, harvest, and migration back to the natal river.

Juvenile coho salmon are bred and reared in a hatchery for approximately 18
months. They are then released from the hatchery in May to enter the river where
they travel downstream to enter the Pacific Ocean. Shortly before release, the fish
are marked (with a batch-specific mark). Upon entry to the ocean they disperse up
and down the coast and experience natural mortality (from predators, disease, etc).
About 14 months after entry (roughly July of the following year), they begin to be
harvested by ocean fisheries in 12 different regions (management areas) along the
coast. The ocean fishery operates for up to 16 weeks and then the surviving, and
now mature adult fish, migrate back to the river where they are harvested in the
river, return to the hatchery, or spawn in the river and die.

The data include the number of marked fish released from the hatchery
(denoted R), the number of marked fish caught in the ocean fisheries, stratified
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Fig. 2.11 Leaping coho salmon. Photo: courtesy of Northwest Indian Fisheries Commission

by management area and week (y,, for area a, @ = 1,...,12 and week ¢,
t =1,...,16), and the number of fish returning to the river as mature adults (y7).
The matrix model is initialized by calculating a vector of abundances in the
management areas prior to the fishing season, i.e. the initial state vector. First the
expected total number of survivors (summed over all regions) from the R released
fish to the beginning of the fishing season is determined, i.e. R¢;, where ¢, is
the survival probability from time of release to beginning of fishing. The expected
numbers per area are allocated using the probabilities for a beta(o;, ;) distribution,
its domain being a line segment beginning at the southern boundary of the most
southern fishing region to the northern boundary of the most northern fishing region,
i.e. the values from the beta distribution are essentially latitudinal coordinates. The
fishing regions are thus defined as a non-overlapping (and exhaustive) partitioning
of the line segment into 12 individual segments. The expected initial abundance in
areaa is then n, o = Ry p,, where p, is the probability of being present in area a.
The heart of the matrix model is the projection of the abundances by fishing
management area on a week by week basis during the fishing season. The vector of
abundances is denoted n, = [ny,,n2,,...,n12,]. At the beginning of each week,
mortality occurs, a combination of natural and harvest mortality, and movement
follows. The survival probability in a given area is ¢, ; = exp(—N — F,;), where
N is the natural mortality rate parameter, assumed constant, and F,; is the fishing
mortality rate parameter (and is a function of the fishing effort in the area that week).
Movement from one area to another is a function of location and time (details in



2.7 Defining a Population Dynamics Model 33

Newman 1998) and the probability of moving from area a to area b during week ¢
is denoted m,—p ;. The expected abundances in week ¢ are written as:

Emyn;_i] = M;S,_in,_, (2.18)
where
10— 0 ... O
0 ¢ri—1... O
S = . ) ) (2.19)
0 0 ... ¢
and
misie Masiyp - M1y
M-z Moo oo M2
M, = . . . . (2.20)
Mi—s12: Ma—>12¢ --- M2—>12¢

The catch data, y,, are linked to the state vector of abundances, n;, by a harvest
matrix, H;. The elements 4, , of the harvest matrix are the fractions of mortality
attributed to fishing:

Fau

= m (1 - eXp(—M - Fa.t)) . (221)

ha,

The expectation of the observations in matrix form is

Ely:|n;] = H;m, (2.22)
where
hl,[ 0 “ee 0
0 h2_t e 0
= . . (2.23)
O 0 e hlz.t

Let P; be a column vector of length 12 with elements representing probabilities of

the initial locations at the beginning of the fishing season. Then the matrix models
for the states and observations are summarized below.

E[ng] = R, Py (2.24)

Enyn,_] = MS;—in,—y, t=1,...,16 (2.25)

Ely/n,] =Hm,, t =1,...,16. (2.26)
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Fig. 2.12 Red deer in Scotland provide an example of where state-space models have been used
to help wildlife managers set cull levels (Trenkel et al. 2000). Photo: Steve Buckland

2.7.2 A Deer Metapopulation

The following example of two deer populations, labeled A and B, is hypothetical
but it identifies some of the sub-processes, and their complexity, that underlie the
dynamics of real metapopulations. It is based loosely on red deer Cervus elaphus
dynamics (Fig. 2.12). As said previously, deterministic formulations are given here,
with stochasticity added in the next chapter.

We arbitrarily take the year to start just after breeding, assumed to be early
summer. Survival rate for calves is assumed to be density-dependent and a function
of day-degrees frost in winter (a measure of winter severity equal to number of
degrees of frost, summed over all days for which the daily low fell below zero),
while adult survival (age one or more) is assumed to differ by sex, but to be constant
otherwise. Movement between populations is assumed to occur just before breeding:
conceptually, it is the population to which animals belong at breeding that we are
primarily concerned with, rather than an accurate model of when animals switch
between populations. Movement rate is assumed to be a function of animal density
in the respective populations just before births occur. Age incrementation occurs
after movement. One-year-old animals are assumed to have a separate, low birth
rate, while older animals all have the same birth rate. Each female is assumed to
give birth to at most one young. New-born animals can of course be male or female.

We now know all the processes which we need to model, but we have not
fully specified the model for each process. To incorporate all the features of the
conceptual model, we need just two age classes for males and three for females
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(to allow one-year-old females to have a lower birth rate), giving five states for each
of two populations, and the state vector, n,, then has ten components. (If we wished
to model survival or birth rates as more complex functions of age, we would need
to retain more age classes.)

Consider first survival. We can express the expected number of survivors to year
t from just after breeding at the end of year t — 1 as E(uy()/|n—1) = S;—in,—1 =

Sir—1 0 . . . .
|: Ap=l B35x5S n;_, where 05x5 is a 5x5 matrix of zeros, and the survival matrices

0sxs Spi—1
for populations A and B are
¢r4¢1 0 0 0 O
0 ¢14:-1 0 0 O
Spgi—1 = 0 0 ¢r 0 0 (2.27)
0 0 0 ¢ O
0 0 0 0 ¢n
and
¢1gi—1 0 0 0 O
0 ¢15i-1 0 0 O
SB,t—l = 0 0 ¢f 0 0 (228)
0 0 0 ¢r O
0 0 0 0 ¢

respectively. We have ordered the state vector so that the first element corresponds
to first-year females in population A, followed by first-year males, second-year
females, older females, and finally males in their second year or older. This is then
repeated for population B.

The probabilities of the survival matrix, S;_;, vary by age class and sex. Survival
for first year animals is assumed to be affected by both the population abundance
(hence density dependent) as well as winter temperatures. We assume a logistic form
for this dependence:

1
L 2.29
Prac1 = q + exp{Bo + Bifar + P2Nas—1} -

where f4, is number of day-degrees frost experienced by population A in year ¢,
and Ny, = Zi n; —1 where summation is over the five states corresponding to
population A, and so represents size of population A just after breeding. A similar
model may be specified for ¢ p,—i. Adult survival differs between sexes, with ¢ ¢
and ¢,, the survival probabilities for females and males, respectively, but they are the
same for both populations and are assumed constant over time. Thus the components
of the survival matrix S,_; that are time-dependent relate to survival of male and
female first-year animals only.
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The next model component required relates to movement, which we wish to be
density-dependent. Denote the probability that an animal moves from population
A to population B in year t by pu4—p,, and the probability that an animal
moves from population B to population A by pp—4,. The expected state vector

after movement has occurred is then given by E (W |0is),) = M, =
|: A.Ap B At :| uy(),:, where My 4, is a 5 x 5 diagonal matrix with diagonal
M, p: Mg B,

elements all equal to 1 — pg—p,, My g, is a5 x 5 diagonal matrix with diagonal
elements all equal to (4—p,, and similarly for Mp g, and Mp 4. The probability
of movement is assumed to be a function of the difference in densities for the two
populations,

1

g = (2.30)
Ha=pe =17 exp{yo + y1(Da, — D)}

where D4, = >, u; 1)1 /A4 is the density of animals in population A just before
movement occurs, expressed as the total number of survivors, Y _; u; 1(5),, Where
summation is over the five states for animals in population A, divided by the size A 4
of the area occupied by population A. We define D g, similarly. A model for ptp_, 4,
may be defined in the same way.

The next process is age incrementation. Thus we have E(W3)/|U2m)) =

A . .
Ay = [0 4 (ixs} Uy (), Where 035 is a 3 X 5 matrix of zeros, and
3x5 AB

10000
Ay=Ap={00110]. (2.31)
01001

Thus, the state vector now has three elements for each population, corresponding to
second-year females, older females, and males in their second year or older.

We now define a model for generating new births. Only females can give
birth, and one-year-old females (just entering their second year) have a lower

birth rate than older females. Thus we have E(Wsp)|Ws@)) = Buzy), =
|: By 043 :| u3(q),; Where O4x3 is a 4 x 3 matrix of zeros, and
043 Bp

p1p20
1 00

B _ B — 2.32

4= 78 010 e
001

Thus p; is the probability that a one-year-old female gives birth, while p; is the
probability that an older female gives birth.

Finally, we need a process model for assigning sex to the new-born animals.
Suppose the probability that a new-born animal is female is «. If we considered



2.7 Defining a Population Dynamics Model 37

that it was reasonable to assume that « = 0.5, we would just fix it at this value.
Otherwise, we can retain it as an unknown parameter to be estimated. In the latter
case, we would like to include some data in the likelihood on observed proportion
of females for a representative set of births. We can now write E(n;|uyp),) =
Cyq 0544

i|u4(;,)., where 05x4 is a 5 x 4 matrix
0sx4 Cp ’

E@usey[uapy ) = Cuapy, = [

of zeros, and

a 000
- 000
Cy=Cp = 0 100{. (2.33)
0 010
0 001

We now have a fully specified (deterministic) population dynamics model, but we
have not yet addressed how the states relate to our data. Suppose we have annual
estimates of number of adults (one-year-old or older) generated from aerial surveys
of each population at the time of breeding. There is no information on age or sex.
Then the expected observation equation for year ¢ is

E[y;In;] = On, (2.34)

where y; is a vector of length two, corresponding to an estimate of adult abundance
in population A and population B, and

2.35
0000000111 (2.35)

_ [001 1 100000}
The complete (deterministic) model for the population dynamics and the observa-
tion process is summarized as follows.

E[nn,— ] = Li—in,—; = CBAM,S,_n,_, (2.36)
Ely;|n;] = On,. (2.37)

The expected abundance at time ¢ was written as a Leslie matrix operation,
conditional on the previous abundance, i.e. L;—jn,—;. A look at each of the five
component matrices indicates the complexity of the resulting matrix L;_;, a matrix
that is relatively easily constructed by thinking in terms of sequential sub-processes,
but near impossible to construct otherwise.
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