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2.1            Introduction 

 Plant benefi cial microorganisms are increasingly being used in sustainable agriculture. 
Benefi cial microorganisms are used with the aim of improving crop yields by aug-
menting nutrient availability, enhancing plant growth and providing protection to 
plants from diseases and pests. The bacteria residing in the rhizosphere of plants and 
which bring about enhancement in growth and yield of crop plants are widely 
referred to as plant growth promoting rhizobacteria (PGPR). 

 PGPR can mediate plant growth by different direct and indirect mechanisms 
(Glick  1995 ). Some of the mechanisms commonly observed are (1) increased avail-
ability of nutrients due to solubilization/mobilization; (2) biological nitrogen fi xa-
tion; (3) providing protection to plants from diseases and pests by producing 
antibiotics, siderophores, hydrogen cyanide, etc. (Medeiros et al.  2005 ; Keel and 
Maurhofer  2009 ); (4) production of plant hormones like IAA, cytokinins, gibberel-
lic acid, etc.; (5) improving the tolerance to stresses like salinity, drought, etc.; 
(6) lowering of ethylene levels in plants by production of the enzyme 
1-aminocyclopropane- 1-caroxylate (ACC) deaminase (Glick et al.  1999 ). 

 Over the years workers have added newer defi nitions of PGPR. According to 
Vessey ( 2003 ), numerous species of soil bacteria which fl ourish in the rhizosphere 
of plants, but which may grow in, on, or around plant tissues, and stimulate plant 
growth by a plethora of mechanisms are collectively known as PGPR. Gray and 
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Smith ( 2005 ) went a step further and separated PGPR into extracellular (ePGPR) 
organisms, existing in the rhizosphere, on the rhizoplane, or in the spaces between 
cells of the root cortex, and intracellular (iPGPR), which exist inside root cells. 

 Several PGPR inoculants have been commercialized. These inoculants result in 
improvement of crop growth and yield or provide protection to the crop from pests 
and diseases. Several microbial inoculants are used as biofertilizers, which improve 
the uptake of nutrients like nitrogen, phosphorus, potassium, sulphur, iron, etc. 
The genera commonly used as biofertilizers are  Rhizobium ,  Bacillus ,  Pseudomonas , 
etc. The genera commonly used as biocontrol agents are  Pseudomonas ,  Bacillus , 
 Burkholderia ,  Agrobacterium ,  Streptomyces , etc. These organisms suppress plant 
disease by production of antibiotics, siderophores, or by induction of systemic resis-
tance or any other mechanism (Tenuta  2003 ). Biofertilizers have been an alternative 
to mineral fertilizers to increase the yield and plant growth in sustainable agriculture 
(Canbolat et al.  2006 ). The current trend is the development of a consortium of 
benefi cial microorganisms which will offer multiple benefi cial effects including 
growth promotion, yield enhancement and protection from diseases and pests. 
Understanding the interaction between consortium of microbial inoculants and 
plant systems will pave way to harness more benefi ts from microbial inoculants for 
improving plant growth and yield (Raja et al.  2006 ).  

2.2     PGPR as Biocontrol Agents of Plant Diseases 

 There are several mechanisms by which PGPR bring about control of plant diseases. 
The most commonly used methods are competition and production of metabolites. 
The metabolites include antibiotics, siderophores, HCN, cell wall-degrading 
enzymes, etc. (Enebak et al.  1998 ; Kloepper  1993 ). Many mechanisms may simul-
taneously act in a single strain towards providing biocontrol of diseases. Kloepper 
et al. ( 1992 ) mentioned about two types of resistances in plants. Induced systemic 
resistance (ISR) or systemic acquired resistance (SAR) is defi ned as the activation 
of chemical and physical defenses of the plant host by an inducer which could be a 
chemical or a microorganism, leading to the control of several pathogens. 

 There are several reports of antagonism of pathogenic fungi by PGPR (Table  2.1 ). 
 Pseudomonas  strains MRS23 and CRP55b inhibited the growth of pathogenic 
fungi, i.e.  Aspergillus  sp.,  Fusarium oxysporum  f. sp.  ciceri  and  Rhizoctonia solani  
under culture condition (Goel et al.  2002 ).

   There are several reports of reduction of disease incidences by application of 
PGPR.  Bacillus  spp. isolated from healthy cabbage, kale, and radish reduced black 
rot incidence in kale and cabbage caused by  Xanthomonas campestris  pv.  campestris  
( Xcc ), in greenhouse and fi eld experiments (Assis et al.  1996 ). Later, Monteiro et al. 
( 2005 ) reported that four of these  Bacillus  strains produced lipopeptides active 
against  Xcc  during its late growth phase. Lipopeptides can also stimulate ISR in 
plants, probably by interacting with plant cell membranes and inducing temporary 

R. Dey et al.



33

   Ta
bl

e 
2.

1  
  PG

PR
 h

av
in

g 
po

te
nt

ia
l b

io
co

nt
ro

l p
ro

pe
rt

ie
s   

 PG
PR

 
 Ta

rg
et

 p
at

ho
ge

n 
 D

is
ea

se
 

 C
ro

p 

  P
se

ud
om

on
as

 fl 
uo

re
sc

en
s  

F1
13

, P
f-

5,
 

Q
2-

87
, C

H
A

0,
 e

tc
. 

  P
yt

hi
um

 u
lt

im
um

 ,  P
yt

hi
um

 a
ph

an
id

er
m

at
um

,  
an

d 
 P

yt
hi

um
  s

p.
 

 D
am

pi
ng

 o
ff

 
 C

ot
to

n 
 D

am
pi

ng
 o

ff
 

 To
m

at
o 

  R
hi

zo
ct

on
ia

 s
ol

an
i  

 D
am

pi
ng

 o
ff

 
 To

m
at

o 
  F

us
ar

iu
m

 o
xy

sp
or

um
  

 R
oo

t r
ot

 
 C

ot
to

n 
  P

se
ud

om
on

as
 fl 

uo
re

sc
en

s  
st

ra
in

 P
fA

50
6 

  E
rw

in
ia

 a
m

yl
ov

or
a  

st
ra

in
 1

53
na

l s
up

er
(R

) 
 Fi

re
 b

lig
ht

 
 A

pp
le

 
  A

gr
ob

ac
te

ri
um

 r
ad

io
ba

ct
er

  
  A

gr
ob

ac
te

ri
um

 tu
m

ef
ac

ie
ns

  
 C

ro
w

n 
ga

ll 
 D

ic
ot

 p
la

nt
s 

  B
ac

il
lu

s 
su

bt
il

is
  A

U
19

5 
  A

sp
er

gi
ll

us
 fl 

av
us

  
 A

fl a
to

xi
n 

co
nt

am
in

at
io

n 
 G

ro
un

dn
ut

 
  B

ac
il

lu
s 

am
yl

ol
iq

ue
fa

ci
en

s  
FZ

B
42

 
  F

us
ar

iu
m

 o
xy

sp
or

um
  

 W
ilt

 
 To

m
at

o 
  B

ac
il

lu
s 

su
bt

il
is

  1
68

 
  A

sp
er

gi
ll

us
 n

ig
er

  
 co

lla
r 

ro
t 

 G
ro

un
dn

ut
 

  B
ac

il
lu

s 
su

bt
il

is
  Q

ST
71

3 
  B

ot
ry

ti
s 

ci
ne

re
a ,

  R
hi

zo
ct

on
ia

 s
ol

an
i  

 D
am

pi
ng

 o
ff

 
 G

ra
pe

, c
ot

to
n 

  B
ac

il
lu

s 
su

bt
il

is
  B

B
G

10
0 

  P
yt

hi
um

 a
ph

an
id

er
m

at
um

  
 D

am
pi

ng
 o

ff
 

 Pa
pa

ya
 

  P.
 fl 

uo
re

sc
en

s  
H

V
37

aR
2 

  P
yt

hi
um

 u
lt

im
um

  
 D

am
pi

ng
 o

ff
 

 C
ot

to
n 

  P.
 fl 

uo
re

sc
en

s  
H

V
37

aR
2 

  P
yt

hi
um

 u
lt

im
um

  
 D

am
pi

ng
 o

ff
 

 C
ot

to
n 

  P
se

ud
om

on
as

 fl 
uo

re
sc

en
s  

2-
79

, 3
0-

84
 

  G
ae

um
an

no
m

yc
es

 g
ra

m
in

is
  v

ar
.  t

ri
ti

ci
  

 Ta
ke

-a
ll 

 W
he

at
 

  P
se

ud
om

on
as

 fl 
uo

re
sc

en
s  

Pf
-5

 
  P

yt
hi

um
 u

lt
im

um
 ,  R

hi
zo

ct
on

ia
 s

ol
an

i  
 D

am
pi

ng
 o

ff
 

 C
ot

to
n 

  P.
 c

ep
ac

ia
  

  R
. s

ol
an

i  a
nd

  P
yr

ic
ul

ar
ia

 o
ry

za
e  

 D
am

pi
ng

 o
ff

 a
nd

 r
ic

e 
bl

as
t 

 C
ot

to
n,

 r
ic

e 
  B

ac
il

lu
s 

ce
re

us
  U

W
85

 
  P

hy
to

ph
th

or
a 

m
ed

ic
ag

in
is

, P
yt

hi
um

 
ap

ha
ni

de
rm

at
um

  
 D

am
pi

ng
 o

ff
 

 A
lf

al
fa

 

  P
se

ud
om

on
as

 fl 
uo

re
sc

en
s  

st
ra

in
 9

7 
  P

se
ud

om
on

as
 s

yr
in

ga
e   

pv
.  p

ha
se

ol
ic

ol
a  

 H
al

o 
bl

ig
ht

 
 B

ea
ns

 
  P

se
ud

om
on

as
 c

ep
ac

ea
  

  Sc
le

ro
ti

um
 r

ol
fs

ii
  

 St
em

 r
ot

 
 B

ea
ns

 
  B

ac
il

lu
s 

su
bt

il
is

  
  B

lu
m

er
ia

 g
ra

m
in

is
  f

. s
p.

  h
or

de
i  

 Po
w

de
ry

 m
ild

ew
 

 B
ar

le
y 

  P
se

ud
om

on
as

  s
p.

 (
W

C
S 

41
7r

) 
  B

ur
kh

ol
de

ri
a 

ca
ry

op
hy

ll
i  

 Fu
sa

ri
um

 w
ilt

 
 C

ar
na

tio
n 

  P
se

ud
om

on
as

 fl 
uo

re
sc

en
s  

  P
yt

hi
um

 u
lt

im
um

  
 D

am
pi

ng
 o

ff
 

 C
ot

to
n 

  B
ac

il
lu

s 
su

bt
il

is
  

  M
el

oi
do

gy
ne

 in
co

gi
ta

  
 R

oo
t k

no
t 

 C
ot

to
n 

  P
se

ud
om

on
as

 c
ep

ac
ea

  
  R

hi
zo

ct
on

ia
 s

ol
an

i  
 D

am
pi

ng
 o

ff
 

 C
ot

to
n 

(c
on

tin
ue

d)

2 Plant Growth Promoting Rhizobacteria in Crop Protection and Challenges



34

Ta
bl

e 
2.

1 
(c

on
tin

ue
d)

 PG
PR

 
 Ta

rg
et

 p
at

ho
ge

n 
 D

is
ea

se
 

 C
ro

p 

  P
se

ud
om

on
as

 p
ut

id
a  

(8
9B

-2
7)

 
  C

ol
le

to
tr

ic
hu

m
 la

ge
na

ri
um

  
 A

nt
hr

ac
no

se
 

 C
uc

um
be

r 
  P

se
ud

om
on

as
 c

ep
ac

ea
  

  P
yt

hi
um

 u
lt

im
um

  
 D

am
pi

ng
 o

ff
 

 C
uc

um
be

r 
  P

se
ud

om
on

as
  s

p.
 

  A
sp

er
gi

ll
us

  s
p.

,  C
ur

vu
la

ri
a  

sp
., 

 F
us

ar
iu

m
 

ox
ys

po
ru

m
, R

hi
zo

ct
on

ia
 s

ol
an

i  
 W

ilt
 

 G
re

en
 g

ra
m

 

  P
se

ud
om

on
as

 a
er

ug
in

os
a,

 
B

ac
il

lu
s 

su
bt

il
is

  
  M

el
oi

do
gy

ne
 ja

va
ni

ca
  

 R
oo

t k
no

t 
 M

un
g 

be
an

 

  P
se

ud
om

on
as

 fl 
uo

re
sc

en
s,

 B
ur

kh
ol

de
ri

a 
sp

.  
  R

hi
zo

ct
on

ia
 s

ol
an

i  
 R

ic
e 

sh
ea

th
 b

lig
ht

 
 R

ic
e 

  P
se

ud
om

on
as

 fl 
uo

re
sc

en
s  

st
ra

in
 P

f1
 a

nd
 F

p7
 

  R
hi

zo
ct

on
ia

 s
ol

an
i  

 R
ic

e 
sh

ea
th

 b
lig

ht
 

 R
ic

e 
  S.

 m
ar

ce
sc

en
s  

90
-1

,  B
ac

il
lu

s 
pu

m
il

us
  S

E
34

 
  Pe

ro
no

sp
or

a 
ta

ba
ci

na
  

 B
lu

e 
m

ol
d 

 R
ic

e 
  A

er
om

on
as

 c
av

ia
e  

  R
hi

zo
ct

on
ia

 s
ol

an
i  a

nd
  F

us
ar

iu
m

 
ox

ys
po

ru
m

  f
. s

p.
  v

as
in

fe
ct

um
  

 C
ot

to
n 

  R
hi

zo
ct

on
ia

 s
ol

an
i  

 B
ea

n 
  E

nt
er

ob
ac

te
r 

ag
gl

om
er

an
s,

 B
ac

il
lu

s 
ce

re
us

  
  R

hi
zo

ct
on

ia
 s

ol
an

i  
 C

ot
to

n 
  Pa

en
ib

ac
il

lu
s 

il
li

no
is

en
si

s  
  R

hi
zo

ct
on

ia
 s

ol
an

i  
 C

uc
um

be
r 

  Se
rr

at
ia

 m
ar

ce
sc

en
s  

  Sc
le

ro
ti

um
 m

in
or

  
 L

et
tu

ce
 

  B
ac

il
lu

s  
sp

p.
 

  Sc
le

ro
ti

um
 s

cl
er

ot
io

ru
m

  

   So
ur

ce
 : D

at
a 

fr
om

: P
al

 a
nd

 G
ar

de
ne

r 
( 2

00
6 )

 a
nd

 B
ou

iz
ga

rn
e 

( 2
01

3 )
  

R. Dey et al.



35

alterations in the plasma membrane which could raise plant defenses (Ongena et al. 
 2009 ). Phenaminomethylacetic acid produced by  Bacillus methylotrophicus  BC79 
was reported to be a new kind of substance never found in  Bacillus methylotrophicus  
(Shan et al.  2013 ). Culture fi ltrate of BC79 showed biocontrol effi ciency against 
rice blast. 

 Vegetatively propagated crops like plantation and horticultural crops are often 
susceptible to soil-borne diseases which are diffi cult to control. The Fusarium wilt 
of banana caused by  Fusarium oxysporum  f. sp.  cubense  is a very destructive dis-
ease worldwide (Figueiredo et al.  2010 ). Application of endophytic and epiphytic 
bacteria, single culture or in mixtures, as root or substrate treatments, signifi cantly 
improved the growth of micropropagated banana plantlets and controlled fusarium 
wilt (Mariano et al.  2004 ).  Bacillus amyloliquefaciens  Ba33 was used as a soil 
disinfector and an antiviral agent against tobacco mosaic virus (TMV) (Shen et al. 
 2012 ). Application of mixture of PGPR, more than one genera or species, is more 
desirable and effective means for controlling plant diseases, as compared to single 
cultures. The different members in a mixture will have additive or synergistic effects 
and therefore will result in better control of diseases. 

 Some bacteria reside in arbuscular and ectomycorrhizal systems and either assist 
mycorrhiza formation or promote the functioning of their symbiosis (Figueiredo 
et al.  2010 ). These bacteria are known as mycorrhiza helper bacteria (MHB). MHB 
present three signifi cant functions: nutrient mobilization from soil minerals, fi xation 
of atmospheric nitrogen, and plant protection against root pathogens (Frey-Klett 
et al.  2007 ). The MHB mentioned by this group were  Pseudomonas fl uorescens, 
P. monteilii, Bacillus coagulans, B. subtilis, Paenibacillus brasiliensis, Rhizobium 
leguminosarum , and  Bradyrhizobium japonicum . 

 Several workers have successfully tried using biocontrol agents along with syn-
thetic pesticides for disease control and yield enhancement. These treatments may 
reduce the application of chemical pesticides to crop plants. Corn seeds when 
bacterized with  Paenibacillus macerans  along with the seed-treatment with fl udiox-
onil and metalaxyl M reduced incidences of pathogens, promoted germination and 
grain yield (Luz  2003 ). Similarly, Bugg et al. ( 2009 ) used  Bacillus -based treatments 
along with seed-treatment practices. 

 Biocontrol agents need to be formulated if they have to be commercialized. The 
formulation should be cheap and should not pose any threat to human, animal or 
plant life or to the environment. Screening for new agents should consider the 
biology and ecology of the pathosystem, as well as agricultural practices associated 
with the crop (Fravel  2007 ).    Raj et al. ( 2003a ,  b ) studied the comparative perfor-
mance of formulations of PGPR in growth promotion and suppression of downy 
mildew in pearl millet. The formulations contained two different strains of bacilli 
with chitosan as a carrier. Formulations LS256 and LS257 besides being the best 
growth promoters were also the most effi cient resistance inducers. Among the 
application methods tested, soil amendment was found to be the most suitable and 
desirable way of delivering the formulations. The study demonstrates a potential 
role for plant growth promoting rhizobacterial formulations in downy mildew 
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management. A few examples of PGPR and biocontrol products are:  Agrobacterium 
radiobacter  K1026 (Nogall ® ),  Bacillus pumilus  QST 2808 (Sonata ®  TM),  B. pumilus  
GB34 (YieldShield ® ),  B. subtilis  GBO3 (Kodiak ® ),  Pantoea agglomerans  C9-1 
(BlightBan C9-1 ® ),  P. agglomerans  E325 (Bloomtime ® ),  Pseudomonas aureofa-
ciens  Tx-1(Spot-Less ® T),  P. syringae  ESC-10 and ESC-11 (Bio-save ® ),  P. fl uores-
cens  A506 (BlightBan ® ),  P. chlororaphis  MA 342 (Cedomon ® ),  Streptomyces 
griseoviridis  K61 (Mycostop ® ) and  S. lydicus  WYEC 108 (Actinovate ® ) (Figueiredo 
et al.  2010 ).  B. subtilis  has great potential for use in agriculture and has been used 
in the formulation of commercial products for agricultural use in several countries 
(Lazzareti and Bettiol  1997 ). Several substances have been used in experimental 
formulations such as lactose, peptone, gum Arabic, xanthan, cellulose and others 
(Schisler et al.  2004 ). Formulations based on  Bacillus  are widely available because 
of their longer shelf life and tolerance to heat and desiccation.  

2.3     PGPR Induced Systemic Resistance in Crop Plants 
Against Pests and Diseases 

 Plants have developed various strategies to combat aggressors (Van Loon et al. 
 1998 ). One of these strategies is the initiation of a defense reaction at the site of 
infection, which spreads throughout the plant resulting in the development of resis-
tance. Induced resistance is defi ned as an enhancement of the plant’s defensive 
capacity against a broad spectrum of pathogens and pests that is acquired after 
appropriate stimulation. The resulting elevated resistance due to an inducing agent 
upon infection by a pathogen is called ISR or SAR (Hammerschmidt and Kuc 
 1995 ). The induction of systemic resistance by rhizobacteria, which are nonpatho-
genic, is referred as ISR, whereas that by other agents is called SAR (Van Loon 
et al.  1998 ). SAR is commonly triggered by the elicitors of avirulent pathogens, 
such as microbial-associated molecular patterns (MAMPs) (Abramovitch et al. 
 2006 ), but it can also be induced by biological (nonmicrobial) and chemical com-
pounds. Typically the ISR by PGPR do not cause any necrotic symptoms on the 
host plants, whereas SAR is expressed to a maximum level when the inducing 
organism causes necrosis (Cameron et al.  1994 ). The expression of induced resis-
tance can be local or systemic when it is expressed at sites not directly exposed to 
the inducers agent (Stadnik  2000 ). ISR is quite similar to SAR, making the plant 
resistant to subsequent attacks of pathogenic organisms, such as viruses, bacteria 
and fungi (Bakker et al.  2007 ). SAR or ISR do not provide complete resistance to 
any particular pathogen, but provide substantial protection to plants for a long time 
to a broad range of pathogens. Some chemicals, such as SA or analogues [benzo-
thiadiazole (BTH) and its derivatives, e.g. 2,6-dichloronicotinic acid], are known to 
induce SAR (Table  2.2 ) and have been successfully used in the fi eld to control 
diseases (Vallad and Goodman  2004 ).

R. Dey et al.
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2.3.1       Induction of Systemic Resistance by PGPR Against 
Diseases and Pests 

 The use of PGPR for inducing systemic resistance against diseases has been 
demonstrated in fi eld conditions (Vidhyasekaran and Muthamilan  1999 ; 
Viswanathan  1999 ). PGPR have been reported to induce resistance in plants against 
bacterial, fungal and viral diseases (Liu et al.  1995a ,  b ; Maurhofer et al.  1998 ; Raj 
et al.  2003a ,  b ; Halfeld-Vieira et al.  2006 ), and insect (Zehnder et al.  1997 ) and 
nematode pests (Sikora  1988 ). This type of induced resistance shows advantages 
such as: effectiveness against various pathogens; stability due to the action of differ-
ent mechanisms of resistance, systemicity, energy economy; and metabolic utiliza-
tion of genetic potential for resistance in all susceptible plants (Bonaldo et al.  2005 ). 
 Bacillus  and  Pseudomonas  are among the most studied genera of PGPR. Induced 
resistance was fi rst analyzed in 1961 by pre-inoculation of tobacco plants with 
TMV (Ross  1961 ). This procedure protected the plant against other viruses and 
resulted in the conception of “Systemic Acquired Resistance” (SAR). The activation 
of defense mechanisms induced by fungi, bacteria, viruses, and nematodes can be 
achieved by different routes, which may occur alone or concomitantly (Bonaldo 
et al.  2005 ). The induction of resistance to disease is an added advantage to the 
promotion of plant growth and yield by the application of PGPR. The presence of 
the PGPR in the rhizosphere makes the entire plant, including the shoot, more 
resistant to pathogens (Figueiredo et al.  2010 ). 

   Table 2.2    Effect of some SAR elicitors on disease suppression potential   

 Crop  Pathogen  Disease 
 SAR 
elicitors 

 % Disease 
reduction 

 Monocots 
 Maize   Peronosclerospora sorghi   Downy mildew  BTH  −35 
 Wheat   Blumeria graminis  

f. sp.  tritici  
 Powdery mildew  BTH  −64 

 Dicots 
 Tobacco   Pseudomonas syringae  

pv.  tabaci (tox+)  
 Bacterial wildfi re  BTH  −99 

 Tomato   Pseudomonas syringae  
pv.  tomato  

 Bacterial speck  BTH  −47 

 Pepper   Xanthomonas campestris  
pv.  vesicartoria  

 Bacterial spot  BTH  −64 

 Soybean   Sclerotinia sclerotiarum   White mold  INA  −46 
 Cotton   Xanthomonas campestris  

pv.  malvacearum  
 bacterial blight  BTH  −42 

 Leguminous 
bean 

  Uromyces appendiculatus   rust  INA  −42 

 Peanut   Cercosporidium personatum   late leaf spot  INA  +52 
 Apple   Erwinia amylovora   fi re blight  BTH  −73 

   Source : Data from: Vallad and Goodman ( 2004 ) 
  BTH  benzo (1,2,3) thiadiazole-7-carbothiolic acid S-methylester,  INA  2,6-dichloro isonicotinic acid  

2 Plant Growth Promoting Rhizobacteria in Crop Protection and Challenges
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2.3.1.1     Diseases 

 PGPR have been reported to provide protection to plants from diseases by employ-
ing different mechanisms. These mechanisms include production of antibiotics like 
pyocyanine, pyrrolnitrin, 2,4- diacetylphloroglucinol (Pierson and Thomashow 
 1992 ); production of siderophores (Kloepper et al.  1980 ); competition for nutrients 
and space (Elad and Chet  1987 ); production of lytic enzymes like chitinases and 
β-1,3-glucanases (Potgieter and Alexander  1996 ; Velazhahan et al.  1999 ); HCN 
production (Defago et al.  1990 ), fl uorescent pigments, etc. 

 The role of ISR in controlling diseases in plants has been demonstrated by many 
studies (Ramamoorthy et al.  2001 ). Application of PGPR strains as a seed-treatment 
resulted in a signifi cant reduction in anthracnose disease caused by  Colletotrichum 
orbiculare  in cucumber (Wei et al.  1991 ,  1996 ). They showed that this plant could 
be used as a model for ISR. Induction of systemic resistance by  Pseudomonas 
putida  strain 89B-27 and  Serratia marcescens  strain 90-166 reduced  Fusarium  wilt 
of cucumber incited by  Fusarium oxysporum  f. sp.  cucumerinum  (Liu et al.  1995a ). 
In sugarcane, Viswanathan and Samiyappan ( 1999a ) established PGPR-mediated 
ISR against  Colletotrichum falcatum  causing red rot disease.  Pseudomonas fl uores-
cens  1-94 (Pf1-94) and  Pseudomonas fl uorescens  (Pf4-92) strains isolated from 
rhizosphere soil of chickpea showed ISR against fusarium wilt of chickpea and 
charcoal rot (Srivastava et al.  2001 ). 

 PGPR induce systemic resistance against bacterial diseases as well. Treatment of 
cucumber seed with  Pseudomonas putida  strain 89B-27 and  Serratia marcescens  
strain 90-166 decreased the incidence of bacterial wilt disease (Kloepper et al. 
 1993 ). Seed-treatment of cucumber with  P. putida  strain 89B-27,  Flavomonas ory-
zihabitans  strain INR-5,  S. marcescens  strain 90-166 and  Bacillus pumilus  strain 
INR-7 provided systemic protection against angular leaf spot caused by  Pseudomonas 
syringae  pv . lachrymans  by reducing total lesion diameter compared with non- 
treated plants (Liu et al.  1995b ; Wei et al.  1996 ). 

 There are reports of induction of systemic resistance in plants against viral 
diseases by PGPR. Seed-treatment with  P. fl uorescens  strain 89B-27 and  S. marces-
cens  strain 90-166 reduced the number of cucumber mosaic virus (CMV)-infected 
plants and delayed the development of symptoms in cucumber and tomato (Raupach 
et al.  1996 ). Soil application also proved benefi cial. Soil application of  P. fl uores-
cens  strain CHAO resulted in induced systemic protection against inoculation with 
tobacco necrosis virus (TNV) in tobacco (Maurhofer et al.  1998 ). Thus, there are 
ample reports of PGPR ISRs in plants against bacterial, fungal and viral diseases.  

2.3.1.2     Insect Pests 

 There are few reports on the induction of systemic resistance in crop plants against 
insect pests. Fluorescent pseudomonads have been found to infl uence the growth 
and development of different stages of insects.  Pseudomonas maltophila  affected 
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the growth of larval stage of  Helicoverpa zea , leading to more than 60 % reduction 
in adult emergence while pupae and adults that emerged from bacteria-infected 
larvae were smaller (Bong and Sikorowski  1991 ). Certain PGPR strains activate 
octadecanoid, shikimate and terpenoid pathways. This in turn alters the production 
of volatiles in the host plant leading to the attraction of natural enemies (Bell and 
Muller  1993 ). Qingwen et al. ( 1998 ) reported an increase in polyphenol and terpe-
noid content in cotton plants treated with  Pseudomonas gladioli , which affected the 
relative growth rate, consumption rate and digestibility of feed by  Helicoverpa 
armigera. Serratia marcescens  strain 90-166 was found quite effective in reducing 
the populations of striped cucumber beetle,  Acalyma vittatum  and the spotted 
cucumber beetle,  Diabrotica undecimpunctata howardi  on cucumber and its effi cacy 
was better than application of the insecticide esfenvalerate (Zehnder et al.  1997 ). 
Attempts have been made to transfer the insecticidal crystal protein from  Bacillus 
thuringiensis  to fl uorescent pseudomonads, keeping in view the effi cient root colo-
nization ability and endophytic nature of some fl uorescent pseudomonads. 
Transgenic  P. cepacia  strain 526 with the crystal protein gene has consistently 
shown insecticidal activity against tobacco hornworm (Stock et al.  1990 ). PGPR 
formulations comprising of bacterial strain mixtures having the capability to induce 
chitinase in plant play an important role in hydrolyzing chitin, the structural compo-
nent in gut linings of insects and would lead to better control of insect pest (Broadway 
et al.  1998 ). Identifi cation of entomopathogenic PGPR strains that have the capabil-
ity to colonize phylloplane in a stable manner will be a breakthrough in the manage-
ment of foliar pests (Otsu et al.  2004 ).  Pseudomonas fl uorescens  CHA0 is a 
root-associated PGPR that suppresses soil-borne fungal diseases of crops. 
Remarkably, the pseudomonad is also endowed with systemic and oral activity 
against pest insects which depends on the production of the insecticidal Fit toxin 
(Pechy-Tarr et al.  2013 ). The toxin gene ( fi tD ) is part of a virulence cassette encod-
ing three regulators (FitF, FitG, FitH) and a type I secretion system (FitABC-E). 
 P. fl uorescens  CHA0 hence can actively induce insect toxin production in response 
to the host environment, and FitH and FitG are key regulators in this mechanism. 
Thus, application of PGPR may be useful for management of insect pests as well.  

2.3.1.3     Nematodes 

 Though studies on induction of systemic resistance by PGPR against nematode pests 
in crop plants are few, PGPR strains have been used successfully as biological control 
agents for sugar beet and potato cyst nematode (Sikora  1992 ).  P. fl uorescens  induced 
systemic resistance against  Heterodera schachtii  and inhibited early root penetration 
in sugar beet (Oostendorp and Sikora  1990 ). Application of the bacterium  P. chitino-
lytica  reduced the root-knot nematode infection in tomato crop (Spiegel et al.  1991 ), 
while the level of infestation of root-knot nematode  Meloidogyne incognita  on tomato 
was reduced with fewer galls and egg masses in the soil following root-dipping with 
 P. fl uorescens  strain Pf1 (Santhi and Sivakumar  1995 ).    
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2.4     Application of PGPR Mixtures 

 Application of mixed cultures are often better suited as biological control agents as 
compared to single ones. The mixed cultures closely mimic the natural environment 
and might broaden the spectrum of biocontrol activity and enhance the effi cacy and 
reliability of control (Duffy and Weller  1995 ). The enhancement in biological 
control abilities of mixed cultures may be due to different mechanisms of action and 
synergism between the PGPR cultures. Chitinase-producing  Streptomyces  spp. and 
 Bacillus cereus  isolates used in combination with antibiotic-producing  P. fluo-
rescens  and  Burkholderia  ( Pseudomonas )  cepacia  isolates have shown a synergis-
tic effect on the suppression of rice sheath blight caused by  Rhizoctonia solani  
(Sung and Chung  1997 ). Similarly, combination of  P. fl uorescens  strains Pf1 and 
FP7 gave effective control of rice sheath blight disease when compared to each 
strain applied singly (Nandakumar  1998 ). A combination of two chitinolytic bacte-
rial strains viz.,  Paenibacillus  sp. 300 and  Streptomyces  sp. 385 in the ratio of 1:1 or 
4:1 was more effective than when they were applied individually for the control of 
 Fusarium  wilt of cucumber caused by  F. oxysporum  f. sp.  cucumerinum  (Singh 
et al.  1999 ). Biocontrol mixtures should be formulated very carefully. The individual 
strains in the mixture should be compatible with each other and should not inhibit 
the other strains.  

2.5     Broad Spectrum of PGPR Activity 

 Literature shows many instances of PGPR ISR against a broad range of diseases and 
pests. Same PGPR strain may induce resistances against many bacterial and fungal 
diseases and sometimes against insect pests as well in the same crop. Seed-treatment 
with  P. fl uorescens  strain WCS 417 protected radish through induction of systemic 
resistance against the fungal root pathogen  F. oxysporum  f. sp.  raphani , avirulent 
bacterial leaf pathogen  P. syringae  pv.  tomato  and fungal leaf pathogens  Alternaria 
brassicicola  and  F. oxysporum  (Hoffl and et al.  1996 ). Seed-treatment of  S. marces-
cens  strain 90-166 showed ISR in cucumber against anthracnose, CMV, bacterial 
angular leaf spot and cucurbit wilt diseases (Kloepper et al.  1993 ; Liu et al.  1995a ,  b ). 
The same strain was also reported to be effective in controlling the striped cucumber 
beetle,  Acalyma vittatum  and spotted cucumber beetle,  Diabrotica undecimpunctata 
howardi  (Zehnder et al.  1997 ). PGPR can also induce ISR against different patho-
gens in different crops.  P. fl uorescens  strain Pf1 induces resistance against different 
pathogens in different crops, viz.,  Rhizoctonia solani  (Nandakumar  1998 ), 
 Colletotrichum falcatum  in sugarcane (Viswanathan  1999 ) and  Pythium aphanider-
matum  in tomato (Ramamoorthy et al.  1999 ). Thus, it would be prudent to select a 
PGPR having a broad spectrum of activity involving plant growth promotion and 
induction of resistance against multiple diseases and pests.  
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2.6     Induction of ISR by Endophytic PGPR 

 Apart from the colonization of rhizosphere and rhizoplane, some PGPR colonize 
the internal tissues of plants and are reported to be endophytes. Endophytic bacteria 
reside within the living plant tissues without doing substantive harm or gaining 
benefi t other than residency (Kado  1992 ). Endophytic bacteria have the advantage 
of the protected environment inside the living plant tissues and are potential candi-
dates for inducing ISR in plants. Endophytic bacteria brought about signifi cant 
control against  F. solani  in cotton and  Sclerotium rolfsii  in beans (Pleban et al. 
 1995 ). Seed-treatment of tomato with endophytic bacterium  Bacillus pumilus  strain 
SE 34 prevented the entry of vascular wilt fungus  F. oxysporum  f. sp.  radicis- 
lycopersici  into the vascular stele and the mycelial growth was restricted to the 
epidermis and outer root cortex (Benhamou et al.  1998 ). Two endophytic tomato 
root colonizing strains,  Bacillus amyloliquefaciens  CM-2 and T-5 enhanced the 
growth of tomato seedlings along with the biocontrol of tomato bacterial wilt caused 
by  Ralstonia solanacearum  (Tan et al.  2013 ). Biological control of wheat stripe rust 
by an endophytic  Bacillus subtilis  strain E1R-j in greenhouse and fi eld trials was 
reported by Li et al. ( 2013 ). The biocontrol agent inhibited the germination of 
urediniospore and reduced the rate of diseased leaves. The use of endophytic PGPR 
for induction of resistance will be more useful in vegetatively propagated crops like 
sugarcane, banana, etc. Viswanathan and Samiyappan ( 1999a ) revealed the utility of 
endophytic  P. fl uorescens  strain EP1 isolated from stalk tissues of sugarcane in 
inducing systemic resistance against red rot caused by  Colletotrichum falcatum . 
The endophytic bacteria survives in the vegetatively propagated plant parts and 
move from one crop to the succeeding crop through vegetative propagation.  

2.7     Mechanisms of ISR by PGPR 

 The PGPR employ several mechanisms for bringing about ISR in plants. These 
mechanisms may involve strengthening or fortifi cation of the cell wall or elicitation 
of chemicals for defense against the invasion of disease causing agents. 

2.7.1     Structural Modifi cation of Cell Wall in Plants 

 Plant growth promoting rhizobacteria induce structural modifi cation of the cell wall 
in response to pathogenic attack (Benhamou et al.  1996b ; M’Piga et al.  1997 ). 
Treatment of pea seeds with  P. fl uorescens  strain 63-28 resulted in formation of 
structural barriers, viz., cell wall apposition (papillae) and deposition of newly 
formed callose and accumulation of phenolic compounds at the site of penetration 
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of invading hyphae of  Pythium ultimum  and  F. oxysporum  f. sp.  pisi  (Benhamou 
et al.  1996a ). Seed-treatment of tomato using  Bacillus pumilus  strain SE 34 also 
induced strengthening of cell walls in tomato against  F. oxysporum  f. sp.  radicis- 
lycopersici   (Benhamou et al.  1998 ). This type of rapid defense reaction does not 
allow the pathogen to invade and also offers the host plant suffi cient time to employ 
other defense mechanisms to fi ght the pathogens. 

2.7.2     PGPR-Mediated Biochemical Changes in the Host Plants 

 Biochemical and physiological changes have been reported in plants upon application 
of PGPR. ISR may be due to accumulation of pathogenesis-related (PR) proteins 
(M’Piga et al.  1997 ), synthesis of phytoalexin and other secondary metabolites 
(Zdor and Anderson  1992 ). ISR by  P. fl uorescens  strain CHAO against TNV in 
tobacco was associated with accumulation of PR proteins namely β-1,3 glucanases 
and endochitinases (Maurhofer et al.  1994 ). Involvement of these lytic enzymes was 
reported by Benhamou et al. ( 1996b ) in the induction of resistance by  P. fl uorescens  
strain 63-28. These lytic enzymes accumulated at the site of penetration of the 
fungus,  F. oxysporum  f. sp.  pisi  resulting in the degradation of fungal cell wall. 
Pathogenesis-related peroxidase and chitinase proteins have been found to induce 
systemic resistance. In sugarcane, PGPR-mediated ISR against  C. falcatum , 
enhanced levels of chitinase and peroxidase and specifi c induction of two new chi-
tinase isoforms were found when inoculated with  C. falcatum  (Viswanathan and 
Samiyappan  1999a ,  b ). 

 PGPR induce systemic resistance in plants through means other than the produc-
tion of PR proteins also (Pieterse et al.  1996 ). The plants produce other enzymes of 
the defense including peroxidases, phenylalanine ammonia-lyase (PAL), and 
polyphenol- oxidase (PPO). While peroxidase and PPO are catalysts in the formation 
of lignin, PAL and other enzymes are involved in the formation of phytoalexins 
(Figueiredo et al.  2010 ). The phytoalexins are secondary metabolites, antibiotics of 
low molecular weight produced by plants in response to physical, chemical, or bio-
logical stress. They are able to prevent or reduce the activity of pathogens, the rate of 
production dependent on the genotypes of host and/or pathogen (Daniel and 
Purkayastha  1995 ).  P. fl uorescens  strains WCS 417r and WCS 358r induced protec-
tion in both wild type  Arabidopsis  and transgened  Arabidopsis  with NahG-gene 
(coding for salicylate hydrolase) without activating PR gene expression (Van Wees 
et al.  1997 ). Accumulation of phytoalexin in response to  Pseudomonas  sp. strain 
WCS 417r treatment in carnation resulted in protection of carnation from wilt dis-
ease (Van Peer et al.  1991 ). Zdor and Anderson ( 1992 ) recorded increased peroxi-
dase activity as well as an increase in the level of mRNAs encoding for phenylalanine 
ammonia-lyase (PAL) and chalcone synthase in the early stages of interaction 
between bean roots and various bacterial endophytes. The enzymes produced by 
antagonistic strains have a crucial role to play in disease resistance. The production 
of enzymes related to pathogenesis (PR proteins) by strains of rhizobacteria is con-
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sidered as one of the most important property of the antagonistic strains (Saikia et al. 
 2004 ). These enzymes are chitinases, lipoxygenases, peroxidases, and glucanases. 
Plants express the activity of peroxidase during pathogen–host interaction (Saikia 
et al.  2006 ). Peroxidase enzyme has been implicated in the oxidation of phenols, 
lignifi cation (Saparrat and Guillen  2005 ), plant protection (Hammerschmidt et al. 
 1982 ), and elongation of plant cells (Goldberg et al.  1986 ). Similarly, another enzyme 
lipoxygenase also contributes to the defense reactions involving the inhibition of 
growth of the pathogen and induction of phytoalexins (Li et al.  1991 ). The extent of 
activity and accumulation of these enzymes depends mainly on the inducing agent, 
besides the genotype of the plant, physiological conditions, and the pathogen (Tuzun 
 2001 ). Certain proteins involved in plant growth and development were up-regulated, 
such as xyloglucan endotransglycosylase (Wang et al.  2013 ). Proteins involved in 
defense were also up-regulated, including peroxidases, glutathione S-transferases 
and kinases. These proteins associated with disease resistance characteristics were 
induced in rice plants after exposure to  Bacillus cereus  NMSL88. There are reports 
of induction of disease resistance by rhizobia also. Hemissi et al. ( 2013 ) reported 
enhanced defense responses of chickpea plants against  Rhizoctonia solani  by pre-
inoculation with Rhizobium strains Pch Azm and Pch S.Nsir2. The reduction in 
infection was accompanied by enhanced level of defense-related enzymes, PAL and 
peroxidase (POX). An increased level of phenol content was also recorded in the 
roots of bacterized plants grown in the presence of pathogen. 

 The defense mechanisms induced by PGPR against insect pests are different. 
Treatment with PGPR brings about some physiological changes in the host plant 
that prevent the insects from feeding. Due to PGPR treatment, there was a shift in 
the metabolic pathway in cucumber plants away from the cucurbitacin synthesis and 
towards that of other plant defense compounds, resulting in fewer beetles being 
attracted (Zehnder et al.  1997 ). In controlling nematodes, PGPR induce resistance 
by altering root exudates or inducing the host to produce repellents that affect nema-
tode attraction or recognition of the host (Oostendorp and Sikora  1990 ) and altering 
the syncytial development or sex ratio in the root tissue (Wyss  1989 ). Seed-treatment 
with PGPR strains resulted in increased chitinase enzyme activity and phenolic con-
tent in rice, which correlated with the reduced nematode infestation (Swarnakumari 
 1996 ). The application of PGPR can thus form an important component of inte-
grated pest management practices in agriculture.  

2.7.3     Pathogen-Associated Molecular Patterns 

 To cause a disease, the invading pathogen must access to the plant interior. But in 
the process plant also can sense the presence of the pathogens by recognizing the 
several bio-molecules of pathogens called pathogens associated molecular patterns 
(PAMPs). Once pathogen penetrates the rigid cell wall of the plant, it comes in 
touch with the host plasma membrane wherein they encounter the plant extracellular 
surface receptors which in turns recognizes the PAMPs. On the onset of this recep-
tion, activation of plant defenses against the invading pathogens starts with a 
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dramatic cellular reprogramming and initiate PAMP triggered immunity (PTI). 
This PTI helps the plant to gain a hold over the pathogen and restricts their further 
proliferation. Thus, to cause disease, the pathogenic microbes must suppress PTI, 
activated in the plant system. To do so, the pathogens start interfering with the rec-
ognition at the plasma membrane or by secreting the effectors proteins into the plant 
cell cytosol that alters the signaling processes leading to manifestation of disease 
symptoms. However, if microbes succeeded in subverting the PTI, plant develops 
more specialized mechanisms to detect and inactivate invading microbes called 
effector-triggered immunity (ETI) (Chisholm et al.  2006 ). In this mechanism, plant 
resistance (R) proteins recognize the bacterial proteins, directly or indirectly, 
involved in subverting the PTI system activated earlier. It has been discovered that 
there is remarkable similarities between the molecular mode of PAMP perception in 
animal and plants. Over the last decades, a number of PAMPs has been identifi ed 
including lipopolysaccharides (LPS), harpin and fl agellin in Gram-negative bacte-
ria; cold shock protein in both Gram-negative and –positive bacteria; transglutamin-
ase, elicitin, β-glucans in Oomycetes; invertase in yeast; chitin and ergosterol in all 
fungi; xylanase in  Trichoderma,  etc. (Numberger et al.  2004 ). The role of plasma 
membrane receptor proteins in recognizing the PAMs and subsequent immunity has 
been studied in details. It has been proposed that PTI is induced on recognition of 
the microbial PAMPs and subsequent induction in the transcription of the pathogen-
responsive genes, transcription of MAP kinase, production of reactive oxygen 
species along with the deposition of callose at the site of infection (Numberger 
et al.  2004 ). 

 The recognition of fl agellin (protein present in fl agella) as PAMP by plant has 
been studied in details. Though the central region of the fl agellin is variable, the 
highly conserved regions at N and C terminals across eubacterial species facilitated 
it to become an excellent PAMP. In  Arabidopsis , a 22 amino acid peptide (fl g22) of 
the highly conserved N terminus region triggered the PTI. The fl agellin receptor 
protein in  Arabidopsis , FLS2, is a receptor like kinase (RLK) and mutant plant 
lacking this receptor is insensitive to fl agellin which demonstrates the importance of 
receptors. Besides, fl agellin, protein elongation factor Tu (EF-Tu) is one of the most 
abundant proteins and acts as PAMP in many plants (Chisholm et al.  2006 ). The 
possible mechanisms of PAMP-mediated disease suppression is shown in Fig.  2.1 .

   Once pathogenic microbes could overcome the PTI of plant, it secretes the 
effector molecules into the cytosol and thereby suppresses the PAMP triggered 
immunity. In bacteria, type III secretion system (TTSS) is present and it can directly 
deliver the effector protein into the plant cell. A number of effector proteins in dif-
ferent microbes have been identifi ed. In  Pseudomonas syringae , 20-30 effector 
proteins, including AvrRpt2 (protease), AvrB, AvrRpm1, HopPtoD2 (protein phos-
phatase) and AvrPtoB (E3 ligase), have been found during development of disease 
symptoms. These effector molecules inhibit the host defense responses initiated by 
PAMP recognition process (Fig.  2.1 ). 

 There are three plant-signaling molecules; salicylate (SA), jasmonate (JA) 
and ethylene; which regulate the plant defense against the invading microbes. The 
SA and JA defense pathways are mutually antagonistic and the bacterial pathogen 
takes advantage of this and overcome the SA-mediated defense responses. 
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  Fig. 2.1    Proposed model for the evolution of bacterial resistance in plants. ( Source : Data from: 
Chisholm et al.  2006 )       

During infection,  Pseudomonas  pathogen produces coronatine which is similar to 
JA and thus overcome the SA pathway (He et al.  2004 ). Multiple effector proteins 
are found to be involved to manipulate the jasmonate pathway in  Pseudomonas 
syringae . Majority of the effectors possess enzymatic activity and thus modify a 
number of host proteins to induce bacterial virulence. Besides, bacterial effectors, 

 

2 Plant Growth Promoting Rhizobacteria in Crop Protection and Challenges



46

effectors molecule have also been found in fungal and viral pathogenesis like in 
Oomycetes pathogen  Phytophthora infestans . 

 The major focus in future would be on identifi cation of novel plant receptors 
which would recognize the pathogen effector proteins and inactivate them as a 
disease control strategies.    

2.8     Determinants of PGPR Imparting ISR 

2.8.1     Lipopolysaccharides 

 The LPS present in the outer membrane of bacterial cells are important determinants 
of ISR in many PGPR strains (Table  2.3 ). The LPS of  P. fl uorescens  strains WCS 374 
and WCS 417 induced systemic resistance in radish against  F. oxysporum  f. sp . 

   Table 2.3    Bacterial determinants and types of host resistance induced by biocontrol agents   

 Bacterial strain  Plant species  Bacterial determinant  Type 

  Pseudomonas aeruginosa  strain 
7NSK2 

 Tobacco  Salicylic acid  SAR 
 Bean  Salicylic acid  SAR 
 Tomato  Phenazine and Salicylic acid  SAR 

  Bacillus amyloliquifaciens   Sugar beet  Lipopolysaccharide  ISR 
  Pseudomonas fl uorescens   Tomato  Massetolide A  ISR 
  P. fl uorescens  strain P3  Tobacco  Salicylic acid  ISR 
  Pseudomonas fl uorescens  
 CHAO  Tobacco  Siderophore  SAR 

 Arabidopsis  Antibiotics (DAPG)  ISR 
 WCS374  Radish  Lipopolysaccharide  ISR 

 Siderophore  ISR 
 Iron regulated factor  ISR 

 WCS417  Carnation  Lipopolysaccharide  ISR 
  Arabidopsis   Lipopolysaccharide  ISR 
 Radish  Lipopolysaccharide  ISR 

 Iron regulated factor  ISR 
 Tomato  Lipopolysaccharide  ISR 

  Pseudomonas putida  WCS 358   Arabidopsis   Lipopolysaccharide  ISR 
 Siderophore  ISR 

  Pseudomonas putida  BTP1  Bean  Iron regulated metabolite Cx  ISR 
  Serratia marcescens  90-166  Cucumber  Siderophore  ISR 
  Bacillus mycoides  strain Bac J  Sugar beet  Peroxidase, chitinase and 

β-1,3-glucanase 
 ISR 

  Bacillus pumilus  203-6 and 203-7  Sugar beet  Peroxidase, chitinase and 
β-1,3-glucanase 

 ISR 

  Bacillus subtilis  GB03, IN937a   Arabidopsis   2,3-butanediol  ISR 
  Pseudomonas putida   Bean  Hexenal  ISR 

   Source : Data from: Pal and Gardener ( 2006 )  
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raphani  (Leeman et al.  1995 ). They further explained that the O-antigen side chain of 
the LPS might have triggered the induction of defense mechanism in plants. However, 
the LPS of  P. putida  strain WCS 358 having O-antigen side chain did not induce sys-
temic resistance in radish. Van Wees et al. ( 1997 ) also obtained similar results where 
he reported that LPS of WCS 417r and mutant of WCS 417r lacking O-antigen side 
chain of LPS elicit defense mechanism in  Arabidopsis . These studies indicated that 
LPS was not the only determining factor in ISR but other factors were also involved 
and also elicitation of ISR by LPS was different in different host plants.

2.8.2      Lipopeptides 

 Some lipopeptides that are produced by bacteria, especially by plant growth promot-
ing rhizobacteria, have been found to induce systemic resistance in plants. Desoignies 
et al. ( 2013 ) investigated the putative action of  Bacillus amyloliquifaciens  lipopep-
tides in achieving rhizoctonia biocontrol through the control of the virus vector 
 Polymyxa betae . Lipopeptides were shown to effectively induce systemic resistance 
in both the roots and leaves of sugar beet, resulting in a signifi cant reduction in  P. 
betae  infection. Two classes of bacterial biosurfactant were found to be elicitors of 
ISR: rhamnolipids and cyclic lipopeptides (cLPs). Massetolide A from  Pseudomonas 
fl uorescens  elicited ISR and enabled  Phytophthora infestans  on tomato to be con-
trolled (Tran et al.  2007 ). The ISR activity of surfactin was associated, in treated 
plants, with the accumulation of antifungal compounds (phytoalexins) (Adam  2008 ) 
and with the stimulation of the lipoxygenase pathway, leading to the synthesis of 
fungitoxic oxylipins (Ongena et al.  2007 ). The induction of systemic resistance by 
cLPs is not yet clear, but a study by Henry et al. ( 2011 ) strongly suggests that the 
plant cell recognition of surfactin is mediated through interaction with lipids at the 
plasma membrane level, rather than through specifi c protein receptors  

2.8.3    Siderophores 

 Siderophore production is an important feature in the suppression of plant patho-
gens. Siderophores are low molecular weight compounds produced by PGPR under 
iron-limited conditions. Siderophores act as determinants of ISR under iron starved 
conditions. The LPS of  P. fl uorescens  strains WCS 374 and WCS 417 were the 
major determinants of ISR in radish against  Fusarium  wilt under iron-replete condi-
tions but not under iron-limited conditions (Leeman et al.  1996 ). It was found that 
pyoverdin-type pseudobactin siderophore produced by these bacteria was respon-
sible for ISR. Press et al. ( 2001 ) reported the gene for catechol siderophore biosyn-
thesis in  Serratia marcescens  90-166 and associated it with induced resistance in 
cucumber against anthracnose. Thus, iron availability may determine the type of 
PGPR determinant responsible for ISR.  
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2.8.4    Salicylic Acid 

 Certain PGPR strains are capable of producing salicylic acid and are responsible for 
the induction of ISR in plants (Maurhofer et al.  1994 ). Introduction of  pchA  and 
 pchB  gene which encode for the synthesis of salicylic acid in  P. fl uorescens  strain 
P3, rendered this strain capable of salicylic acid production and signifi cantly 
improved its ability to induce systemic resistance in tobacco against TNV. Under 
conditions of iron limitation,  P. fl uorescens  strain CHAO, naturally produced 
salicylic acid and also induced ISR in tobacco against TNV (Maurhofer et al.  1998 ). 

 Apart from these studies, contradictory observations have been also reported by 
workers. Mutants of  S. marcescens  strain 90-166 lacking in salicylic acid produc-
tion were found to induce the same level of resistance in cucumber as the wild strain 
in cucumber and tobacco. Press et al. ( 1997 ) working with the salicylic acid produc-
ing strain 90-166 of  S. marcescens , reported induction of resistance both in wild 
type tobacco and NahG-tobacco (tobacco plant transgened with NahG-gene encoding 
salicylic acid hydroxylase which converts salicylic acid to catechol). Van Wees et al. 
( 1997 ) suggested that ISR induced by  P. fl uorescens  strains WCS 417r and WCS 
358r was independent of salicylic acid production in  Arabidopsis . 

 These studies further emphasize the fact that different determinants of PGPR are 
involved in the induction of systemic resistance and this resistance varies with 
iron- limiting conditions, PGPR strains, host plants and their cultivars.    

2.9     Formulation of PGPR 

 PGPR need to be formulated for large-scale application in crop fi elds. PGPR formu-
lation helps in enhancing the shelf life, effective application and delivery of the 
bacterial cultures to the targeted site. Formulation also aids the packaging, transport 
and storage of the microbial product. Suslow ( 1980 ) reported the survival of PGPR 
in a dried formulation and the effectiveness of methyl cellulose in a powder formu-
lation for coating sugar beet seed. The organic carriers used for formulation devel-
opment include peat, talc, lignite, kaolinite, pyrophyllite, zeolite, montmorillonite, 
alginate, press mud, sawdust and vermiculite. Talc and Peat have been used as 
traditional carrier materials for effective formulations of PGPR. Vidhyasekaran and 
Muthamilan ( 1995 ) reported that the population of bacteria had been stable up to 
240 days in talc-based and peat-based formulations. PGPR can be effectively for-
mulated for systemic protection of crop plants against diseases. The most com-
monly used formulations of PGPR involve strains of  Pseudomonas fl uorescens, 
P. aeruginosa, P. putida, Bacillus subtilis, B. amyloliquifaciens,  etc.  P. putida  strain 
30 and 180 survived up to 6 months in talc-based formulations. The population load 
at the end of 6th month was 10 8  cfu/g of the product (Bora et al.  2004 ). Shelf life of 
 P. chlororaphis  (PA23) and  B. subtilis  (CBE4) in peat carriers was retained for more 
than 6 months (Nakkeeran et al.  2004 ). 
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 The formulated products can be delivered through different methods of applica-
tion like seed-treatment, seed-priming, soil application, foliar application, root-dip, 
sett-treatment in sugarcane, sucker-treatment in banana. Drum priming of carrot 
and parsnip seeds with  P. fl uorescens  Pf CHAO proliferated well on the seeds and 
could be explored for realistic scale up of PGPR (Wright et al.  2003 ). Root-dipping 
of seedlings has been found effective for the control of soil-borne pathogens in case 
of transplanted plants. Dipping of  Phyllanthus amarus  seedlings in talc-based for-
mulation of  B. subtilis  (BSCBE4) or  P. chlororaphis  (PA23) for 30 min prior to 
transplanting reduced stem blight of  P. amarus  (Mathiyazhagan et al.  2004 ). Foliar 
application of PGPR formulations are used for controlling foliar diseases. However, 
the leaf surface microclimate is subjected to frequent changes and should be consid-
ered while designing spray schedules. Preharvest foliar application of talc-based 
fl uorescent pseudomonads strain FP7 supplemented with chitin at fortnightly inter-
vals (5 g/L; spray volume 20 L/tree) on to mango trees from pre-fl owering to fruit 
maturity stage induced fl owering to the maximum, reduced the latent infection by 
 Colletotrichum gloeosporioides  beside increasing the fruit yield and quality 
(Vivekananthan et al.  2004 ). Application of PGPR formulations with strain mix-
tures perform better than individual strains for the management of pest and diseases 
of crop plants, in addition to plant growth promotion (Nakkeeran et al.  2005 ). 
Combination of iron chelating pseudomonad strains and inducers of systemic resis-
tance suppressed Fusarium wilt of radish better than the application of individual 
strains (de Boer et al.  2003 ). 

 Microencapsulation of rhizobacteria has been tried in recent years as a formula-
tion. Microcapsules of rhizobacteria consist of a cross linked polymer deposited 
around a liquid phase, where bacteria are dispersed (Nakkeeran et al.  2005 ). The 
process of microencapsulation involves mixing of gelatin polyphosphate polymer 
pair (81:19 w/w) at acidic pH with rhizobacteria suspended in oil (Charpentier et al. 
 1999 ). The microencapsulation technique has not picked up in a big way. The cost 
factor could be a reason. This formulation needs to be tested in large-scale fi eld tri-
als in order to be adopted for commercial use. 

2.9.1     Frequency of Application 

 The effectiveness of application of PGPR formulation remains for a certain time 
followed by a decline over time. This determines the number of applications of 
PGPR formulations needed to maintain the resistance levels in crop plants (Dalisay 
and Kuc  1995 ). Different methods of application have different durability. Foliar 
sprays of  P. fl uorescens  formulations should be given at every 15 days intervals for 
managing rice foliar diseases (Vidhyasekaran et al.  1997 ). Experiments conducted 
by Nayar ( 1996 ) indicated that induction of defense mechanisms using  P. fl uores-
cens  persisted up to 60 days by seed-treatment, 30 days by root-dipping and 15 days 
by foliar spray. The duration of the induced resistance varies from crop to crop and 
strain to strain of PGPR. The induction of resistance by PGPR persisted for 90 days 
of crop growth in sugarcane (Viswanathan  1999 ).   
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2.10     Challenges 

 Though PGPR have a potential scope in commercialization, the threat of certain 
PGPR ( P. aeruginosa ,  P. cepacia  and  B. cereus ) to infect human beings as oppor-
tunistic pathogens has to be clarifi ed before large-scale acceptance (Nakkeeran 
et al.  2005 ). Potential biocontrol agents have to pass through several tests in order 
to be commercially viable. After thorough, large-scale fi eld testing at multiple 
locations, differing in soil and climatic conditions, these agents can be recom-
mended for registration with the government agencies. The technology must be 
transferred to some fi rms which can take up the mass production of the product and 
fi nally it must be adopted by the end users i.e. the farming community. The biocon-
trol agent should not pose any threat to human and animal health and should not be 
an environmental hazard. 

 The knowledge of ecology of the introduced PGPR strains is sometimes lacking 
which may be a serious impediment to the establishment and multiplication of the 
PGPR strains. The interaction of the introduced strains with the native fl ora and 
fauna will also be a deciding factor in the success of the biocontrol agent. 

 PGPR formulations are usually produced at small entrepreneurial levels or at the 
fermentation units of research stations, but seldom at very large industrial fi rms. 
Hence, technologies for production of biofertilizers and biopesticides at very large 
levels are not suitably developed. Moreover, IPR issues have not been dealt with suit-
ably in case of these bioproducts. Ambiguities prevail with respect to registration/
licensing/patenting of these products with the law differing in different countries. 

 PGPR have been discovered and researched for last two-three decades, but till 
date widespread use of these products is yet to be seen. Availability of good quality 
biofertilizers and biopesticides to the farmers is still an issue along with lack of 
awareness about the products and their benefi ts. The available products have less 
shelf life and should be used properly because of the biological nature of the prod-
ucts. The issue of quality control should be dealt with stringency to ensure quality 
products to the end users. Very often, locally formulated products are available in 
the market in plenty but quality of those products cannot be ascertained along with 
tangible benefi t by the farmers. 

2.10.1     Constraints to Commercialization 

 The success of any biological agents depends on availability of quality formulation 
with good shelf life, marketing and perceived acceptability and demand of the end 
users. The factors limiting the successful commercialization of biological agents are 
as follows:

•    Reliability and authenticity of the selection of the biocontrol agent.  
•   Concerns about the possible ecological consequences of the intended commer-

cialization of the biocontrol PGPR.  
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•   Lack of awareness about the biological agents and their target pathogens.  
•   Risk associated with the mass multiplication of the biocontrol agents in industrial 

scale fermenters.  
•   Concerns of inconsistent performance of PGPR biocontrol agents in managing 

disease and pests.  
•   Chances of mutation and loss of desirable traits in the biocontrol agents.  
•   Lack of awareness among the farmers about the potential of the biocontrol agents 

in managing diseases and pests.  
•   Competition from the spurious locally developed biocontrol agents.  
•   Procedural delays in registration of the products.  
•   Lack of proper delivery system for biocontrol PGPR.  
•   Concerns about stability and quality of the products.  
•   Stiff challenges from environment protection agencies and inherent diffi culties 

in addressing their concerns.  
•   Perceived potential threats from few opportunistic human pathogens as bio-

control agents.      

2.11     Conclusions 

 PGPR are benefi cial to crop plants in many ways. Inoculation with PGPR results in 
improvement of plant growth, control of diseases and induction of systemic resis-
tance. Tikhonovich and Provorov ( 2011 ) argued that utilization of appropriate prep-
arations of benefi cial microorganisms is the most promising strategy for maintaining 
agricultural productivity whilst reducing the inputs of inorganic fertilizers, herbi-
cides and pesticides and that ‘microbiology is the basis of sustainable agriculture’. 
Several strains of PGPR have broad spectrum activity against multiple diseases and 
also provide protection against insect and nematode pests. Endophytic PGPR have 
been found benefi cial in growth promotion and disease control in vegetatively prop-
agated crops. With the progress of agriculture towards sustainability, microbes will 
fi nd greater use as biocontrol agents. 

 However, we should be realistic with cautions. Though tall claims have been 
made by researchers over the past several decades about the potential applications 
of a plethora of PGPR biocontrol agents in managing a number of disease and pests 
in many crop species, not much success has been achieved yet for commercializa-
tion and their application at fi eld level. Concerted efforts will be required to demon-
strate the benefi ts of the PGPR biocontrol agents to the farmers so that the 
eco-friendly agents can be popularized. Unless end users are convinced by the ben-
efi ts of the biocontrol PGPRs by conducting trials of their own, the success stories 
will remain in the research laboratories only.     
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