Chapter 2
Omic Data, Information Derivable
and Computational Needs

Cancer is probably the most complex class of human diseases. Its complexity lies
in: (1) its rapidly evolving population of cells that drift away from their normal
functional states at the molecular, epigenomic and genomic levels, (2) its growth
and expansion to encroach and replace normal tissue cells; and (3) its abilities to
resist both endogenous and exogenous measures for stopping or slowing down its
growth. According to Hanahan and Weinberg, cancer cells, regardless of the type,
tend to have eight hallmark characteristics (Hanahan and Weinberg 2011). As intro-
duced in Chap. 1, these hallmarks are: (1) reprogrammed energy metabolism, (2)
sustained cell-growth signaling, (3) evading growth suppressors, (4) resisting cell
death, (5) enabling replicative immortality, (6) inducing angiogenesis, (7) avoiding
immune destruction, and (8) activating cell invasion and metastasis. Other authors
have suggested some additional hallmarks of cancer such as tumor-promoting
inflammation (Colotta et al. 2009) and deregulated extracellular matrix dynamics
(Lu et al. 2012). These recognized hallmarks have provided an effective framework
for addressing cancer-related questions, having led to a deeper understanding of
this disease. However, the reality is that our overall ability in curing cancer has not
yet made substantive improvements, particularly in adult cancers that account for
99 % of all cancers since the start of the “War on Cancer” in 1971 (The-National-
Cancer-Act 1971).

Major challenging issues that clinical oncologists have to deal with include not
only considerable heterogeneity and different genetic backgrounds even within the
same type of cancer, but also that effective medicines tend to lose their efficacious-
ness within a year, or often within a few months. A natural question to pose is:
What are the reasons for this loss of effectiveness? Intuitively this is due to a can-
cer’s ability to evolve rapidly, particularly in terms of generating drug-resistant
sub-populations, which is facilitated by its abilities to proliferate and to accumu-
late genomic mutations rapidly. However, such an answer, plausible as it may be,
has possibly missed the real root issue: Why do these cells divide so rapidly in the
first place?
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The Red Queen Hypothesis, proposed by Leigh Van Valen in 1973, may provide
a good framework for studying this and other cancer-related fundamental issues
from an evolutionary perspective. The hypothesis states: an adaptation in a popula-
tion of one species may change the selection pressure on a population of another
species. giving rise to an antagonistic coevolution (Valen 1973). When in this frame
of thinking, one may be inspired to ask: What specific selection pressures must the
evolving neoplastic cells overcome, pressures that may drive their rapid prolifera-
tion? Currently we do not have an answer to this question yet. Among the many
reasons that our knowledge is so sparse has been the lack of molecular-level data,
full analyses and mining of which can potentially reveal the full complexity of an
evolving cancer. While large quantities of omic data such as genomic, epigenomic,
transcriptomic, metabolomic and proteomic data have been generated for a variety
of cancer types, only a few cancer studies have been designed to take full advantage
of all the information derivable from the available omic data (Cancer-Genome-
Atlas-Research 2008, 2011, 2012a, b, ¢, 2013a, b; Kandoth et al. 2013). Integrative
analyses of multiple data types may prove to be essential to gain a full and
systems-level understanding about a cancer’s evolution dynamics, including the
elucidation of its true drivers as well as key facilitators at different developmental
stages of a cancer. We anticipate that only when all of the key information hidden in
omic data can be fully derived and utilized can we expect a meaningful breakthrough
in our understanding of cancer.

2.1 Genomic Sequence Data

The Human Genome Project was initiated in 1986 by the US Department of Energy
and the National Institutes of Health, which ultimately led to the generation of the
first digital copies of two complete human genomes in 2001 (Lander et al. 2001;
Venter et al. 2001), one by government agencies and one by a private organization.
For the first time in history, the three billion base pairs (bps) of nucleotides compris-
ing a complete human genome are represented in a digital form, directly readable by
humans and computers, allowing researchers and clinicians to view and analyze the
detailed genetic makeup of two healthy humans. This singular achievement has pro-
foundly changed biological and medical sciences, clearly representing the most sig-
nificant discovery since the finding of the double-strand helical structure of DNA in
1950s. Complementing and extending the invaluable genome sequence data, the
major change that the Human Genome Project has brought about is that genetic sci-
ence is now equipped with two powerful tools: rapid genome-sequence generation
and computation-based information discovery from the genomic sequences. These
tools along with the advances they have helped to make in the biological sciences,
have fundamentally transformed the science of genetics, which is now data-rich and
quantitative. This transition has attracted and continues to attract many mathemati-
cal and computational scientists to study problems related to genomes and other bio-
molecules represented in digital forms. The progress made has further transformed
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the general biological sciences and has substantially advanced our overall ability to
study more complex biological problems than could be done before the omic era.

With the public availability of digitally represented human genomes in hand,
scientists have computationally identified the vast majority of the ~20,000 protein-
encoding genes in our genome, along with large numbers of single-nucleotide poly-
morphisms (SNPs) and other types of genetic variations across individuals and
different ethnic groups as well as various disease groups. Targeted sequencing of
specific genomic regions deemed to be relevant to certain diseases has led to the
identification of numerous genetic markers for multiple diseases. For example,
Down syndrome is now understood to be caused by an extra copy of chromosome 21.
A few additional examples include: (1) adrenoleukodystrophy, a progressive degen-
erative myelin disorder caused by mutations in the ABCDI (ATP-binding cascade
subfamily D) gene, which was made popular because of the movie “Lorenzo’s Oil”
in the early 1990s; (2) a class of hereditary breast cancers caused by mutations in
the BRCA (breast cancer) genes; (3) familial hyperlipidemia attributable to mutations
in the APC (adenomatous polyposis coli) gene; and (4) frontotemporal dementia, a
form of inherited dementia, caused by mutations related to the splicing of exon 10
of the Tau gene (D’Souza et al. 1999). All these were detected through genome-
scale or targeted gene sequencing and associated sequence analyses.

In addition to the Human Genome Project, a number of closely related genome
sequencing projects have been established to provide a more comprehensive dataset
for the human genome(s): (1) the Human Genome Diversity Project to document
genomic differences across different ethnic groups (Cavalli-Sforza 2005); (2) the
Human Variome Project to establish relationships between human genomic varia-
tions and diseases (Cotton et al. 2008); (3) the International HapMap Project to
develop a haplotype map of the human genome (International-HapMap 2003); (4)
the 1000 Genome Project to establish a detailed catalog of all human genetic varia-
tions (Service 2006); and (5) the Personal Genome Project to sequence the complete
genomes and establish the matching medical records of 100,000 individuals (Church
2005). All these sequencing projects, along with other related ones, such as the
Neanderthal Genome Project (Green et al. 2010) and the Chimpanzee Genome
Project (Cheng et al. 2005; Green et al. 2010), could provide a comprehensive view
of the genomes of healthy humans with normal polymorphisms as well as mutations
associated with various diseases.

The Cancer Genome Atlas (TCGA) represents probably the most ambitious
cancer-genome sequencing project, which aims to sequence up to 10,000 cancer
genomes covering 25 major cancer types by 2014 and make the data publicly avail-
able (Cancer-Genome-Atlas-Research et al. 2013). Such data will provide a sub-
stantial amount of information about cancer-related genomic mutations. By
comparing the genome sequences of a cancer and the matching normal tissue, one
can identify all the genomic changes in the cancer genome, which generally fall into
two categories: simple and complex mutations. Specifically, simple mutations refer
to single base-pair mutations and DNA single or double-strand breaks; and complex
mutations refer to duplications and deletions (together referred to as copy-number
changes), translocations and inversions of genomic segments. Simple mutations can
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result from exogenous factors such as radiation, air-borne and food-related
carcinogens in the environment, as well as from endogenous factors in the microen-
vironments inside our bodies, including ROS (reactive oxygen species) and other
reactive metabolites plus random mutations. For example, ionizing radiation,
including X-rays and gamma rays, can directly cause point mutations and DNA
breaks. In addition, a variety of non-radioactive carcinogens have been identified
that can damage DNA, including microbes, chemical compounds in the environ-
ment and reactive species inside our cells, as detailed in Chap. 5. Free radicals rep-
resent a large class of internal, potentially carcinogenic agents that are highly
reactive molecules and can participate in undesired reactions, causing damages to
cells and specifically to DNA. Infidelity of transcription and/or repair can also lead
to simple mutations. While these carcinogens can produce simple DNA damages, it
is the faulty or imprecise DNA replication and repair machineries that lead to the
complex mutations, namely undesired duplications, deletions, inversions and trans-
locations of large DNA segments.

There are multiple situations that can result in such complex genomic mutations.
For example, under persistent hypoxic conditions, cells tend to use emergency
mechanisms to repair simple mutations, but the inaccuracy of such mechanisms can
lead to complex mutations as defined above (Scanlon and Glazer 2013). Here we
outline one such mechanism, named microhomology-mediated end joining (MMEJ)
for repairing double-strand DNA breaks, through which undesired DNA copy-
number changes, inversions and translocations can result (Truong et al. 2013). Like
the regular repair mechanism for double-strand breaks, MMEIJ uses the sister chro-
mosome as the template to replace the region with a break. The difference is that it
uses a much shorter homologous region in the sister chromosome, typically 5-25 bps
rather than the usual 200 bps required by the normal DNA repair mechanism, hence
the designation microhomology-mediated. While the advantage is that this mecha-
nism is substantially faster than the regular DNA repair machinery, which is needed
under certain emergency conditions, it is error prone due to the less stringent
requirement for finding the equivalent region in the sister chromosome, thus leading
to various complex mutations (Bentley et al. 2004). This mechanism is used only
under highly stressful conditions when the regular DNA repair mechanisms are
functionally repressed (Bindra et al. 2007), and hence is often used in cancer-
associated environments.

Knowing how different genomic mutations occur, one could possibly develop
computational models to infer the evolutionary history of the mutations observed in
a cancer genome from the matching reference genome. The idea is that one can first
identify all the genomic differences between a cancer genome and the matching
reference genome. For each identified complex mutation, one can apply a mechanis-
tic model like the one outlined above (or from the literature) to predict how it occurs
from the previous generation of the genome, while simple mutations can be assumed
to take place randomly according to some stochastic models. It is worth noting that
some of the evolutionary intermediates (mutations) may or may not be present in the
cancer genome, due to the possibilities that some portions of the genome might have
been deleted during evolution. In addition, it should be emphasized that such an


http://dx.doi.org/10.1007/978-1-4939-1381-7_5

2.2 Epigenomic Data 45

approach (even when taking into consideration the other emergency DNA repair
mechanisms) may not necessarily yield a unique evolutionary path from the refer-
ence to the cancer genome. One possible way to constrain this phylogenetic recon-
struction problem to a solution space as small as possible is to find such a path under
the parsimony assumption (Steel and Penny 2000), as often used in phylogenetic
reconstruction algorithms. Specifically one can require that the predicted evolution-
ary path have either the smallest number of generations or the highest consistency
with the occurrence probabilities of different types of mutations as documented in
the literature. As of now, no such algorithms have been published for making evolu-
tionary path predictions, but the need for such tools is clearly there in order to
understand the evolution of a cancer genome.

Various other types of information may also be derivable from cancer genomes,
such as: (1) oncogenes and tumor suppressor genes (see Chap. 1 for definition) that
may be specific to a particular cancer type. Examples include gene fusions as in the
case of the Philadelphia chromosome for chronic myelogenous leukemia (CML)
(Nowell and Hungerford 1960); (2) potential integration of microbial genes into the
cancer genomes as in the case of hepatitis B virus genes integrated into the host
genome; (3) biological pathways that are enriched with genetic mutations in a par-
ticular cancer, leading to the loss of function at the pathway level; and (4) changes
in mutation patterns as a cancer advances.

By systematically identifying mutations in the genomes of multiple patients of
the same cancer type, one can identify biological pathways enriched with such
mutations, using analysis tools like DAVID (Huang et al. 2009) against pathway
databases such as KEGG (Kanehisa et al. 2010, 2012, 2014), BIOCARTA
(Nishimura 2001) or cancer-related gene sets (Forbes et al. 2011; Chen et al. 2013;
Zhao et al. 2013). For example, a study, published in 2007 on genomic mutations
observed across 210 cancer types, discovered that the pathway having the highest
enrichment with non-synonymous mutations is the FGF (fibroblast growth factor)
signaling pathway, revealing one commonality among changes needed by cancer
evolution across different cancer types (Greenman et al. 2007). With such informa-
tion, one can further infer which cellular processes need to be terminated or become
hyperactive in any specific order as a cancer evolves, hence possibly developing
new insights about the evolutionary paths unique to particular cancer types or com-
mon among all cancer types.

2.2 Epigenomic Data

Epigenomic data provide information about all the chemical modifications on the
genomic DNA and associated histone proteins in a cell, namely DNA methylation
and histone modification, among a few other less studied epigenomic activity types.
While epigenetic analyses are not new, it is the high-throughput array and sequenc-
ing techniques that have made such analyses at a genome scale possible and have
clearly advanced our overall capabilities to study cancer.
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DNA methylation is a process by which a methyl group is added to the carbon 5
position of cytosine residues (C) in CpG dinucleotides. This is accomplished
through a group of enzymes known as DNA methyl-transferases, the reactions of
which can be reversed by another group of enzymes termed DNA demethylases.
When a CpG region is highly methylated, they attract a group of enzymes called
histone deacetylases that will initiate chromatin remodeling to change the local
structure of the DNA, hence changing its accessibility to large molecular structures
such as the transcription machinery, RNA polymerase. Since long CpG regions
(denoted as CpG islands) tend to be associated with the promoters of genes, meth-
ylation of such regions represses the expression of the genes.

Histones are proteins that bind with DNA to form the basic folding units, denoted
as nucleosomes, of chromatin, as introduced in Chap. 1. The packing density of
chromatin is closely related to the transcriptional state of a gene, i.e., lower packing
density implying higher transcriptional activity. Cells change their chromatin struc-
tures through post-translational modifications on the relevant histones, including
acetylation, deamination, methylation, phosphorylation, SUMOylation and ubiqui-
tination. The understanding is that interactions between histones and DNA are
formed by electrostatic attraction between the positive charges on the histone sur-
face and the negative charges on DNA. Consequently, modifications on histones
may change the charges of the surface residues, possibly changing the conformation
and the transcriptional accessibility of a folded DNA and ultimately enhancing or
repressing expression of the relevant genes (Strahl and Allis 2000; Kamakaka and
Biggins 2005). Another mechanism is through recruiting and applying chromatin
remodeling AT Pases, where histone modifications can lead to disruptions of ATPase
attraction to the chromatin, hence altering the DNA’s physical accessibility to the
RNA polymerase (Vignali et al. 2000).

Various techniques have been developed to reliably capture DNA methylations
and histone modifications at a genome scale. Among the assays that have been used
for detecting methylations is the bisulfite sequencing technique (Yang et al. 2004).
By converting each methylated C to a T and removing the methylation, the bisulfite
method utilizes the current sequencing techniques to produce the modified sequence
and then recovers the methylation locations through comparisons between the
sequenced Ts and Cs at the same locations in the original DNA and the modified
DNA done as above.

Histone modification sites can be detected using the ChIP-chip array technique
(Huebert et al. 2006), which has previously been used to identify the binding sites
of transcriptional factors. The difference here is to detect the DNA binding sites
with histones relevant to the packing of DNA. Comparisons between the identified
DNA binding sites under different conditions can lead to the identification of modi-
fied chromatin structures. The advancement of sequencing techniques in the past
few years has led to the development of the second generation ChIP technique,
namely ChIP-seq, which can provide more quantitative and reliable data about his-
tone modification sites.

From either of the two types of epigenomic data, one can infer genes that are
primed to be repressed or enhanced transcriptionally at the epigenomic level.
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These data, in conjunction with other omic data such as transcriptomic and genomic
information, can be used to derive association relationships between epigenomic
activities and the cellular as well as micro-environmental states. This can lead to
identification of possible triggers and regulatory pathways of different epigenomic
activities. Information of this type is clearly needed since, although numerous
epigenomic effectors such the enzymes for DNA methylation and histone modifi-
cations have been identified, very little is known about the regulation of these
effectors and under what conditions a specific set of genes will be methylated. As
discussed in Chap. 9, epigenomic level changes can be considered as an intermedi-
ate step between (reversible) functional state changes of effector molecules and
(permanent) genomic mutations. A detailed discussion regarding the possible rela-
tionships among these three types of changes needed by evolving cancer cells is
given in Chap. 9.

A number of large-scale epigenomic sequencing projects have been initiated
with similar ambitious goals to those of the genome sequencing projects outlined in
Sect. 2.1. These projects include: (a) the NIH Roadmap Epigenomics Program,
which started in 2008 with the aim of producing histone modification data for over
30 types of modifications in a variety of human cell types; (b) a component of the
ENCODE (Encyclopedia of DNA Elements) project launched by the US National
Human Genome Research Institute aiming as part of its goal the characterization of
the epigenomic profiles of 50 different tissue types; (c) the International Human
Epigenome Consortium having its goal to build on and expand the NIH Epigenomics
Program to include nonhuman cells and tissues, and to make it a functional interna-
tional program; and (d) some regional epigenomics projects such as the “Epigenetics,
Environment and Health” project in Canada and the Australian Alliance for
Epigenetics. A number of human epigenomic databases have been developed as the
result of these and related projects (see Chap. 13 for details).

2.3 Transcriptomic Data

The advent of microarray technology in the mid-1990s has made it possible to mea-
sure in real time the expression levels of all the genes encoded in the human genome
under defined cellular conditions. This methodology also applies to other genomes
as long as their protein-encoding genes are known. This is one of the high-throughput
techniques that has clearly fueled the revolution in biological sciences that we have
been witnessing since the start of the Human Genome Project.

Comparative analyses of gene-expression data of cells collected under different
controlled conditions or on disease versus control tissues can provide a large amount
of information useful for studying human diseases at the molecular and the cellular
levels. For example, by comparing gene-expression levels in a lung cancer tissue
with those in the adjacent healthy tissue of the same patient, one can identify dif-
ferentially expressed genes in the lung cancer versus the healthy lung. While not
necessarily all the differentially expressed genes are directly relevant to cancer, this
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information provides a basis for further inference of genes that may be directly
relevant to cancer. For example, one can compare such sets of differentially
expressed genes across multiple patients of the same cancer type to eliminate those
genes whose differential expressions are specific to a few individuals or cancers at
a specific developmental stage. That is, one can identify genes that may be most
essential to the development of a cancer type through the identification of genes that
are commonly differentially expressed across all or the majority of the patients of
the cancer type examined.

When applied in conjunction with pathway-enrichment analysis, particularly
against the eight cancer-hallmark related pathways mentioned earlier, one can iden-
tify hallmark pathways enriched with up-regulated (or down-regulated) genes in a
specific type of cancer. If the cancer data also have the stage information, one can
further derive information about how each of the cancer hallmarks is executed at the
molecular and cellular levels for this cancer type and in what order. By comparing
such information across multiple cancer types, one can possibly detect which
relative orders among the observed hallmark events are essential and which are
coincidental. And by comparing such data between two subgroups of patients of the
same cancer type, for example one with smoking histories and the other without,
one can possibly derive how smoking may have contributed to the development of
individual hallmark events. Similar analyses can be used to discover possible con-
tributions by other lifestyle habits.

Actually, much more information can be derived through analyses of cancer tran-
scriptomic data. For example, tiling array is a variation of the gene-expression tech-
nique used to detect DNA-binding sites of specific proteins through ChIP-chip
experiments, hence making it possible to identify transcription regulators of specific
genes under particular conditions (Ren et al. 2000; Iyer et al. 2001). RNA-seq is the
new generation of techniques for transcriptomic data collection (Wang et al. 2009).
It refers to the use of high-throughput technologies to sequence cDNAs that are
reversely transcribed from the expressed RNA molecules. By doing deep sequenc-
ing, the dynamic range of RNA-seq can span five orders of magnitude, substantially
larger than those of microarray-based techniques. This allows more accurate identi-
fication of differentially expressed genes, particularly those that tend to express at a
relatively low or high level and where changes tend to be relatively small but statis-
tically significant, such as those often observed with transcription factors. In addi-
tion, RNA-seq techniques are digital in nature, in comparison with the analog
signals provided by microarrays. One advantage of digital signals is that the result-
ing measurements are more repeatable compared to analog signals and less prone to
be affected by the experimental environments. The biggest advantage of RNA-seq
data over microarray data is that it contains all the information about alternatively
spliced variants since they do not rely on short sequence probes as in microarrays,
instead producing the entire sequence for each transcript. Such information allows
one to derive all splicing variants in specific cancers and cancer stages, thus enabling
more detailed functional mechanism studies.

A few computer programs have been developed and made publicly available for
inference of splicing variants based on RNA-seq data, such as Cufflinks, which
requires a reliable reference genome for its inference of splicing isoforms (Trapnell



2.3 Transcriptomic Data 49

et al. 2010). Another popular transcript-assembly program, Trinity, is a de novo
method, i.e., no reference genome is required (Grabherr et al. 2011), but at the
expense of less reliable assembly results compared to Cufflinks. The limitation of
Cufflinks and similar programs is that they may not necessarily work well on cancer
RNA-seq data when the underlying cancer genome is not available, which could be
substantially different from the matching genome of healthy cells since cancer
genomes tend to have large numbers of genomic reorganizations such as transloca-
tions, copy-number changes and inversions, as well as breaks as discussed in
Sect. 2.2. Thus, more effective computational techniques are clearly needed for
inference of splicing isoforms from cancer RNA-seq data.

Presently, a number of databases for microarray and RNA-seq gene-expression
data have been developed and are publicly available. For example, GEO is a general-
purpose gene-expression database consisting of both cancer and other tissue types
(Edgar et al. 2002). A cancer-centric genome database that also contains epigenomic
and transcriptomic data for numerous cancer types is TCGA (Cancer-Genome-
Atlas-Research et al. 2013). Gene Expression for Pediatric Cancer Genome Project
is a gene-expression database developed specifically for pediatric cancers (Downing
etal. 2012). Overall these databases have genome-scale transcriptomic data for over
200 different types of cancer tissues and a substantially larger number of cancer cell
lines. A tremendous amount of information could potentially be derived through
comparative analyses of these data across different cancer types and cancers at vary-
ing stages or of distinct malignancy grades (see Chap. 3). For example, by simply
plotting the average number of differentially expressed genes across cancer samples
versus the 5-year survival rate for each of the following nine cancer types: mela-
noma, pancreatic, lung, stomach, colon, kidney, breast, prostate cancers and basal
cell carcinoma, one can see that there is a close relationship between these two
numbers (see Fig. 2.1).
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Fig. 2.1 The 5-year (y-axis) survival rate for each cancer type versus the average number of dif-
ferentially expressed genes per cancer sample (x-axis) (adapted from (Xu et al. 2012))
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By examining the average up- or down-regulation levels of genes in selected
pathways of different cancer types, it is possible to derive information about acti-
vated energy metabolism in different cancer types, which vary from glucose- to
lipid- to amino acid-based. As an example, Fig. 2.2 shows the activity levels of
multiple energy producing metabolic pathways, covering glycolysis, the TCA cycle,
oxidative phosphorylation and fatty acid metabolism in nine cancer types. One can
see from the figure that pancreatic cancer has the highest up-regulation in glucose
metabolism, followed by kidney and lung with breast cancer having the least
changes in glucose metabolism when compared with their matching control tissues.
One can also see that, while most of the seven cancer types on the left show down-
regulation or no changes in oxidative phosphorylation, both skin cancer types,
namely melanoma and basal cell carcinoma, show up-regulation in this pathway.
[N.B. Throughout this book, all the analyses of transcriptomic data across different
patients samples are properly normalized, hence comparisons among fold-changes
of genes across different samples are meaningful. |

A variety of computational techniques have been developed for information deri-
vation from gene-expression data, including: (1) identification of differentially
expressed genes using simple statistical tests such as T-test or Fisher’s exact test, (2)
clustering analysis, (3) bi-clustering analysis and (4) pathway enrichment analysis
for differentially expressed genes. The following discussion provides some basic
ideas about these analysis techniques, followed with a list of novel techniques for
more advanced analysis needs.

2.3.1 Data Clustering

Identification of co-expressed genes is a basic technique for gene-expression analy-
sis, which has a wide range of applications in cancer studies. The idea is to identify
all genes whose expression patterns exhibit statistical correlations over a time
course (typically for cell line-based data) or among a collection of samples; such
genes are called co-expressed genes. There are numerous online tools for identifica-
tion of co-expressed genes such as DAVID, CoExpress (Nazarov et al. 2010) and
GeneXPress (Segal et al. 2004). Co-expressed genes may suggest that the genes are
transcriptionally co-regulated even though some co-expressed genes appear coinci-
dentally, particularly when the number of conditions or the number of samples is
small. One way to computationally “validate” such a prediction is through identifi-
cation of conserved cis regulatory motifs within the promoter sequences of the co-
expressed genes (Liu et al. 2009). The rationale is that if these genes are indeed
co-regulated transcriptionally, they should share conserved cis regulatory elements
for binding with their common transcription regulators. From the predicted co-
expressed genes and cis regulatory motifs, one can predict with confidence that
these genes are transcriptionally co-regulated, and even possibly predict their main
transcription regulators using tools such as those by Essaghir et al. (2010) or by
Qian et al. (2003).
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Fig. 2.2 Gene-expression levels associated with the energy metabolism of glucose (both glyco-
Iytic fermentation and oxidative phosphorylation) and fatty acids plus the TCA cycle in nine can-
cer types. The y-axis is a list of genes involved in four metabolic pathways: oxidative
phosphorylation, fatty acid metabolism, TCA cycle and glycolysis; and the x-axis is a list of nine
cancer types, including three stages of basal cell carcinoma (BCC) and melanoma, respectively.
Each entry is the average log-ratio of expression levels between cancer samples and the matching
control samples in different cancer types. The side-bar on the right shows the gray-level code for
the expression level changes, with “gray” indicating down-regulation, “white” for no change and
“black” denoting up-regulation. Adapted from (Xu et al. 2012)
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Fig. 2.3 A heat-map of gene-expression changes of 42 genes, with each row representing one
gene and 80 gastric cancer samples versus the matching control samples, with each column repre-
senting one sample, which are grouped into four stages: I, II, III and IV, with light gray, dark gray
and black representing up-, down-regulation and no changes, respectively. The figure is adapted
from (Cui et al. 2011)

2.3.2 Bi-clustering Analysis

Bi-clustering is a generalized form of clustering analysis, which aims to identify
co-expressed genes among some to-be-identified subgroups of samples, but not
among all samples. Such a technique is particularly useful for discovering sub-
types, stages or grades of a cancer (see Chap. 3 for details). Figure 2.3 shows one
example of signature genes for gastric cancer stages identified through a bi-
clustering analysis. Specifically, 42 genes are found to exhibit distinct patterns
for a group of 80 gastric cancer samples (one sample from each patient) grouped
according to their stages (Cui et al. 2011). Interestingly the samples assigned to
stage III exhibit two distinct expression patterns, with samples on the left clearly
showing different patterns from those on the right, suggesting that these patients
may actually fall into five different stages such as stage I, II, IIa, IIT and IV,
rather than four as proposed by the pathologists who analyzed these samples
(Cui et al. 2011).

A bi-clustering problem is computationally much more difficult to solve than a
clustering problem since it involves two variables, i.e., genes to be identified as co-
expressed and samples to be found to have similar expression patterns, compared to
only one variable, i.e., co-expressed genes in traditional clustering analyses. A few
computer tools have been published for identification of bi-clusters in gene-
expression datasets such as QUBIC (Li et al. 2009) and BicAT (Barkow et al. 2006).
After bi-clusters are identified, similar analyses about regulatory relationships can
also be carried out as above to predict the possible transcription regulators for each
bi-cluster.
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2.3.3 Pathway (or Gene Set) Enrichment Analysis

Pathway enrichment analysis is a way to map up- or down-regulated genes to higher
level functional organizations such as biological pathways, networks or gene sets
that are each known to be relevant to cancer or cancer-related. The basic idea is to
homology-map the identified up-regulated (or down-regulated) genes to known
pathways in pathway databases such as KEGG, REACTOME (Croft et al. 2011) or
BIOCARTA, and then assess if a specific pathway has substantially more genes
mapped to it than by chance, measured using statistical significance values. For
example, DAVID is one popular tool for doing pathway enrichment analysis.
Basically, it homology-maps a set of given genes to pathways in the above data-
bases, then assesses the statistical significance of having K given genes in the given
set mapped to a specific pathway using « statistics, i.e., a chance-corrected measure
of co-occurrence, and predicts that a pathway is enriched by the given gene set if its
statistical significance is above some threshold (Huang et al. 2007). Figure 2.4
shows one enriched pathway by up-regulated genes in gastric cancer.

With the increasing needs for studying more complex analysis problems based
on gene-expression data, there is clearly an urgent necessity for more powerful anal-
ysis techniques. A few are listed here, which could definitely benefit from the
involvement of researchers equipped with advanced statistical analysis techniques.

1. Inference of causal relationships: Analyses discussed above, such as clustering
or bi-clustering, can provide association relationships among activities of genes
or pathways through detection of correlations among their expression patterns.
Clearly cancer researchers could benefit even more if such analyses can be
extended to infer causal relations among genes or pathways with altered expres-
sion patterns.

Causality has been difficult to derive due to the nature of the problem (Pearl
2009). Many may remember the argument made by the tobacco industry when
being presented with statistical data showing that smokers have higher probabili-
ties of developing lung cancer than non-smokers. The industry officials argued
that such data do not necessarily imply that smoking causes cancer, pointing out

the following: there could be an unknown genetic factor that gives rise to a

sub-population who enjoys smoking and has a higher propensity to develop lung
cancer. Logically, this argument holds. Hence, in order to prove that smoking

indeed causes lung cancer, one would need to demonstrate that individuals who
are forced to smoke, regardless if they like it or not, are at higher risk of develop-
ing lung cancer than those who are forced not to smoke. This would then rule out
a possible contribution from genetic factors as suggested by the defense lawyers
of the tobacco industry. In general, inference of causality is fundamentally hard.
Fortunately, there have been some interesting developments in theoretical stud-
ies on causal relationships. One example is the development of causal calculus
by Pearl (2009). Application of this or other causal theories to the information-
rich gene-expression-based causality analyses would help to advance the field in
a profound way.
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Fig. 2.4 An example of a KEGG pathway enriched with differentially expressed genes in gastric
cancer versus matching controls. Each rectangle represents an enzyme-encoding gene and each
oval represents a metabolite. An up-regulated gene is marked as dark gray and down-regulated
gene marked in light gray while a white rectangle represents an enzyme whose gene is not identi-
fied yet. A metabolite with increased concentration is marked in dark gray and a decreased metab-
olite is marked in light gray

2. De-convolution methods for expression data collected on cancer tissues: One
challenge in analyzing gene-expression data collected on cancer tissues is that
the data are not from a homogeneous cell population, but instead a collection of
different cell types with cancer cells as the dominating sub-population. It is well
known that each sample of cancer tissue generally has other cell types such as
macrophages and other immune cells, stromal cells, and blood vessel cells,
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although there may have been attempts to make the cell population as
homogeneous as possible, using techniques such as laser-directed micro-
dissection (Emmert-Buck et al. 1996). The reality is that collecting highly homo-
geneous cell populations from cancer tissues is challenging and very time
consuming.

Gene-expression data collected on a mixture of multiple cell types can easily
lead to false conclusions if done without proper data processing. This issue has
been reflected in a common complaint from gene-expression data analysts that
tissue gene-expression data are not reliable and are difficult to compare across
different samples. One key reason is that tissue samples collected by different
labs may have been processed using different procedures so that the sub-
populations of different cell types may be different from those in situ. Moreover,
different sample-processing procedures may lead to systematic changes in the
sub-populations but in different ways, thus making tissue gene-expression data
not easily comparable.

It is our belief that techniques in statistical analysis, properly applied, can aid
immensely in resolving the issue by de-convoluting the observed gene-expression
data into expression levels contributed by different cell types. The basic idea of
one such de-convolution technique is as follows. Each cell type has its unique
functional characteristics. For example, cancer cells are the only cell type in the
tissue that divides rapidly, while fibroblasts are the only cell type that synthesizes
the components of the extracellular matrix. These unique functional characteris-
tics of different cell types are reflected by their gene-expression data. Specifically,
it is expected that each cell type can be represented (or approximated) by a set of
expressed genes unique to the cell type, along with the cell type-specific correla-
tions among the expression levels of different genes. Such cell type-specific
(condition-invariant) correlations among their genes can possibly be represented
in some generalized form of a covariance matrix, which can be considered as the
signature of individual cell types. To derive such a signature, one needs unam-
biguous gene-expression data of specific cell types collected under multiple and
different conditions, allowing the capture of the invariance among the correla-
tions between expression patterns of individual genes.

With such a reliable de-convolution tool, one can decompose each gene-
expression dataset collected on cancer tissues into gene-expression contributions
from different cell types. Then, one can analyze the gene-expression data pre-
dicted to be solely associated with cancer cells or other cell types such as macro-
phages to understand the interplay between cancer and immune cells. Such
decomposed datasets of cancer samples at different stages have the potential of
enabling one to realistically study a range of important problems in elucidating
the complex relationships among different cell populations in each cancer niche,
which are not feasible with the current experimental techniques.

3. Development of an infrastructure in support of the study of cancer systems
biology: Another area where computational statistical techniques can make a
fundamental contribution is in characterization of cancer microenvironments and
in linking micro-environmental factors to the evolutionary trajectories of specific
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cancer tissues. While experimental studies of the evolving microenvironment of
a cancer in vivo may not be feasible, computational analyses of gene-expression
data could help to solve such a problem. The premise is as follows. When the
microenvironment changes, such as changes in (1) the composition and physical
properties of the pericellular matrix, (2) the level of hypoxia, (3) the ROS level,
(4) the pH level and (5) the sub-population sizes of different cell types in the
stromal compartments (see Chap. 10), some genes will respond by changing
their expression levels. For example, when the cellular level of oxygen changes,
the expression patterns of the HIFI (hypoxia-induced factor) and HIF2 genes
change, as discussed in Chap. 1. By carefully analyzing gene-expression data
collected under specific conditions on relevant cancer cell lines, one should be
able to train predictors for changes in each aspect of the microenvironment based
on their relationships reflected by gene-expression data. Such prediction capa-
bilities will enable cancer researchers to examine how micro-environmental fac-
tors change as a cancer evolves and to link such information to cancer phenotypes,
hence possibly generating new understanding about how microenvironments
affect cancer progression and cancer phenotypes.

2.4 Metabolomic Data

Our own experience has been that transcriptomic data represent probably the most
information-rich data that are relatively straightforward to obtain for cancer studies.
Such data are particularly useful for gaining a big-picture view and for the deriva-
tion of rough models for a specific mechanism, while genomic and epigenomic data
can provide useful complementary information. Transcriptomic data, however, do
not always portray an accurate picture regarding the activity of a pathway. This is
because they measure only the intermediates for making the functional parts, the
proteins, of the pathway; others, such as those constitutively expressed, will of
course not appear as altered gene expressions. Clearly, it is highly desirable to have
protein expression data. However, proteins are notoriously difficult to study, much
more complex than, say, transcripts, as proteins may have different post-translational
modifications and splicing variants, which are not amenable to the current high-
throughput techniques. Consequently, proteomic data have not been as widely used
as transcriptomic data in cancer studies. Metabolomic data can, however, assist in
filling the void due to the lack of protein level information since they provide infor-
mation on the substrates and products of proteins, specifically enzymes.

As of now, over 40,000 metabolites have been identified in human cells accord-
ing to the Human Metabolome Database (HMDB) (Wishart et al. 2007, 2009, 2013).
These metabolites can be intermediates or products of cellular metabolism, which
include the basic metabolites such as amino acids, nucleotides, alcohols, organic
acids and vitamins, and complex metabolites such as cholesterol and steroid hor-
mones. By analyzing the quantitative data of metabolites associated with a specific
metabolic pathway, it is possible to make a generally accurate estimate of the
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activity level of the pathway. For example, glucose-6-phosphate, fructose-6-
phosphate, glyceraldehyde 3-phosphate, phosphoenol-pyruvate, pyruvate and lac-
tate are the main metabolites of the glycolytic fermentation pathway (see Fig. 1.4),
and their relative abundances provide accurate information about the activity level
of the pathway. By carrying out metabolite flux analyses (Varma and Palsson 1994)
based on the pathway information and the measured quantities of these metabolites,
one can infer if some of these intermediates or end products may be directed towards
other metabolic pathways, in addition to being part of the glycolytic pathway.

Metabolic flux analysis generally applies to any well-established biological path-
way, such as those in central metabolism. That is, with all the relevant reactions and
the encoding genes known, metabolic data can be used in conjunction with the
matching transcriptomic data, to infer the flux of a specific molecular species such
as carbon or nitrogen. In essence, this provides flux information of different ele-
ments across an entire network, which preserves balances between the total input
and the output elements for each reaction, hence providing a systems-level repre-
sentation of the flux distribution across all the branch points in the network.
Identification of unbalanced reactions, i.e., the total number of carbons into a reac-
tion is different from that out of the reaction, can help to detect previously unknown
branches involved in the relevant reactions. This type of analysis can be used to
identify possible relationships between two known metabolic pathways, such as
detecting possible metabolic relationships between the glutaminolysis pathway
(McKeehan 1982), which tends to be up-regulated in cancer cells, and other meta-
bolic pathways, or detection of relationships between cholesterol metabolism and
phospholipid metabolism in metastatic cancer (see Chap. 11). For example, an anal-
ysis like this has led us to detect that some metabolites of the glycolysis pathway
become substrates of another metabolic pathway, the hyaluronic acid synthesis
pathway (see Chap. 6). When reaction rate constants are available or can be esti-
mated for all the relevant enzymes, one can identify the rate-limiting steps in a
pathway, thus enabling one to undertake detailed mechanistic studies of a biological
process.

Both high-resolution mass spectrometry (MS) and nuclear magnetic resonance
(NMR) spectroscopy have been used to identify metabolites present in cells and in
tissue samples, each having their own advantages and limitations. MS can provide
quantitative measures for up to 1,000 different metabolite species, but it suffers
from relatively low repeatability (Boshier et al. 2010). In comparison, NMR can
provide highly accurate measurements of metabolites but is limited in the number
of metabolite species in each experiment. With either type of instrument, one can
obtain quantitative measures of numerous metabolite species.

When coupled with transcriptomic data and functional annotations of genes,
metabolomic data can be used to infer the detailed metabolic pathway that may
produce specific metabolites. Specifically, for each experimentally identified metab-
olite in a sample, one can search for enzymes among the expressed enzyme-encoding
genes that may be responsible for its synthesis through comparisons against the
Enzyme Classification (Bairoch 2000) or KEGG database. Both of these databases
contain information about enzymes and substrates that can lead to the production of
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a specific metabolite. If there is more than one candidate, a selection can be inferred
by finding the one that is most consistent with the available transcriptomic and func-
tional annotation data, i.e., the enzyme-encoding gene is expressed and the substrate
is among the identified metabolites. By repeating this process, one can create a
pathway consisting of the identified enzymes along with the identified metabolites.
Although one cannot expect to derive all the relevant enzymes along the pathway, it
is generally possible to develop a crude model based on our own experience. In
addition, it is possible to expand a pathway model through careful applications of
the transcriptomic data and the metabolomic data collected to identify previously
unknown or poorly studied branches of well-studied pathways. For example, by
carefully analyzing the metabolites associated with glycolysis, one can possibly
identify those that serve as intermediates between glycolytic metabolites and
metabolites involved in the synthesis of hyaluronic acids as detailed in Chap. 6.

There are a number of databases for human metabolomic data in the public
domain, including the HMDB, BiGG (metabolic reconstruction of human metabo-
lism) (Schellenberger et al. 2010) and the Tumor Metabolism database (The-Tumor-
Metabolome 2011). Another useful database is Brenda (Scheer et al. 2011), which
provides the reaction parameters of various enzymes. All these databases provide
useful information needed for reconstruction of specific metabolic processes in nor-
mal and cancer cells.

2.5 Patient Data

Knowledge of patient data is essential for the correct interpretation of their respec-
tive omic data. People of different gender, age and race, and with different histories
of smoking, alcohol consumption and health problems, could have different base-
line gene-expression levels. It was noted, from our previous studies, that some genes
are sensitive to one aspect of a person’s attributes, such as age or gender, while other
genes may be more sensitive to other attributes. And some genes are attribute-
independent. For example, based on our analysis on gene-expression data of 80
gastric cancer tissues and their matching tissues from 80 patients (see Appendix of
Chap. 3 for details of the dataset), it was found that the expression levels of some
genes are age-dependent, gender-dependent and smoking history-dependent, while
other genes are, in large part, independent of any of these features (Cui et al. 2011).
When working with these datasets, it was noted that the baseline expression levels
of 143 genes were highly age-dependent, including MUCI (mucin 1), UBFDI
(ubiquitin family domain 1) and MDK (neurite growth-promoting factor 2). In addi-
tion, 59 genes were gender-dependent; these included WNT?2 (wingless-type MMTV
integration site family, member 2), ARSE (arylsulfatase E) and KCNN2 (potassium
intermediate/small conductance calcium-activated channel, subfamily N, member
2) (see (Cui et al. 2011) for details). Similar analyses can be carried out on depen-
dence using various lifestyle habits such as smoking and medications.
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Knowing such information, one then needs to make age or gender corrections on
the observed gene-expression data before interpreting the data for functional infer-
ence. The detailed correction scheme depends on the actual relationship between a
specific attribute and the gene-expression levels. Various normalization techniques
and software tools are publicly available for this purpose.

2.6 A Case Study of Integrative Omic Data Analyses

We present an example here to show how integrative analyses of multiple omic and
computational data types can lead to new insights about cancer mechanisms. The
main question being addressed here is: What makes metastatic cancers grow sub-
stantially faster than their primary cancer counterparts? While a detailed model for
this problem is given in Chap. 11, the current focus is on how this problem can be
approached through transcriptomic data analyses coupled with limited metabolomic
data analyses.

To address this question, all the transcriptomic data of metastatic cancers, along
with their corresponding primary cancers, were collected on the Internet. Sixteen
large sets of genome-scale transcriptomic data covering 11 types of metastatic and
corresponding primary cancers were extracted from the GEO database, including
breast to bone, breast to brain, breast to liver, breast to lung, colon to liver, colon to
lung, kidney-to-lung, pancreas to liver and lung, and prostate to bone and liver. The
detailed information of these datasets is given in Chap. 11.

The first question addressed is: Which genes are consistently up-regulated in
metastatic cancers in comparison with their corresponding primary cancers across
all these datasets? Simple statistical analyses led to the identification of about 100
such genes.

The second question asked is: What do these genes do in terms of cellular
function(s)? Pathway enrichment analyses of these genes using DAVID against
KEGG, REACTOME and BIOCARTA revealed that the most significantly enriched
pathway was “cholesterol uptake and metabolism”. Two questions were then asked:
(a) What does cholesterol do in metastatic cancer cells? And (b) Why do metastatic
cancer cells need more cholesterol, as suggested by the observation that at least one
cholesterol-containing lipoprotein transporter gene, SRBI (scavenger receptor B),
LDLR (low density lipoprotein receptor) or VLDLR (very low density lipoprotein
receptor) was substantially up-regulated compared to the corresponding primary
cancers except for some brain metastases. These metastases synthesize cholesterol
de novo as cholesterol-containing lipoproteins probably could not enter brain tissue
due to the blood-brain barrier (Bjorkhem and Meaney 2004).

Here, only the first question is considered. It was noted that multiple CYP (cyto-
chrome P450) genes are up-regulated in each metastatic cancer type: these genes
encode enzymes for oxidizing cholesterols to various oxysterols or bile acids. Some
of these oxysterols are further metabolized to steroid hormones such as estrogens,
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androgens or steroidogenic derivatives by various enzymes whose genes show
substantially increased expression levels in comparison with their corresponding
primary cancers. A number of these steroid products can bind with and activate dif-
ferent nuclear receptors, such as FXR (farnesoid X receptor) and ER (estrogen
receptor) (see Chap. 11). Various growth-factor receptors such as FGFR (fibroblast
growth factor receptor) and EGFR (epidermal growth factor receptor) are up-
regulated in different metastatic cancers, some of which can be directly activated by
oxysterols and/or steroid hormones, whose abundances tend to be substantially
elevated in metastatic cancers. For the other growth factor receptors, strong correla-
tions between their gene-expressions and the expression patterns of the various
nuclear receptors are observed across different metastases, thus suggesting the pos-
sibility of a functional relationship between the activation of the two sets of recep-
tors. Based on more detailed analyses and validation, a mechanistic model for how
metastatic cancers utilize oxidized cholesterols to accelerate their growth is pre-
sented in Chap. 11. Similar integrative analyses of multiple types of data can be
carried out to derive the mechanistic models for a large variety of poorly understood
cancer-related processes if one can ask the right questions that could be answered
through analyses and mining of the relevant omic data.

2.7 Concluding Remarks

A substantial amount of information concerning the activities of individual bio-
chemical pathways, their dynamics and the complex relationships among them, and
with respect to various micro-environmental factors, is hidden in the very large pool
of publicly available cancer omic data, including transcriptomic, genomic, metabo-
lomic and epigenomic data. Powerful statistical analysis techniques can aid
immensely in uncovering such information if one poses the right questions. Such
focused questions create a framework for hypothesis-guided data analysis and min-
ing to check for the validity of the formulated hypothesis, as well as for guiding the
formulation of further questions, which may ultimately lead to the elucidation of
specific pathways or even possibly causal relationships among the activities of dif-
ferent pathways. More powerful analysis tools for different omic data types are
clearly needed in order to address more complex and deeper questions about the
available data such as de-convolution of gene-expression data collected on tissue
samples consisting of multiple cell types and inference of causal relationships.
Integrative analyses of multiple types of omic and computational data will prove to
be the key to effective data mining and information discovery. A large number of
examples are presented throughout the following chapters regarding how best to
address various cancer biology inquiries, including fundamental questions, through
mining the available omic data.
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