
Chapter 2
Processing Coastal Lidar Time Series

In this chapter, we analyze time series of lidar data point clouds to assess the point
density, gaps in coverage, spatial extent and accuracy. Based on this analysis and
a given application, we select an appropriate resolution and interpolation method
for computating raster-based digital elevation models (DEM). We explain a per
raster-cell average approach and two splines-based approaches for computating
DEMs. Finally, we discuss how to assess systematic error using geodetic bench-
marks or other ground truth point data and how to correct any shifted DEMs to
create a consistent DEM time series.

2.1 General Workflow

Time series of lidar point clouds include data from multiple surveys often acquired
for different purpose by various types of lidar technology. To understand the
properties of point clouds in the time series, we first analyze the data at a sequence
of resolutions and then apply interpolation to compute a DEM at the selected
resolution. The methodology, which can be applied to both first return or bare
ground data can be summarized as follows:

• Integrate the point-cloud data acquired from various sources within a single
coordinate system.

• Perform per-cell statistical analysis of point data at a hierarchical set of
resolutions, and use the results to select a common DEM resolution.

• Derive the spatial extent of each survey and a mask for the study area from
preliminary low-resolution DEMs computed using the mean elevation value for
each cell.

© The Author(s) 2014
E. Hardin et al., GIS-based Analysis of Coastal Lidar Time-Series, SpringerBriefs
in Computer Science, DOI 10.1007/978-1-4939-1835-5__2

7

8 2 Processing Coastal Lidar Time Series

Table 2.1 Characteristics of the lidar surveys based on the available metadata

Published

Accuracy

Published vertical/

point horizontal

Agency,* Dates Lidar equipment density (m))

NOAA/NASA/USGS
October 19, 1996
September 1 and 26, 1997
September 7, 1998; post-Bonnie�

September 9, 1999; post-Dennis�
September 18, 1999; post-Floyd�

October 6, 1999

Airborne topographic
Mapper II

1pt/3m 0.15/2.00

NCDENR/FEMA/NCFMP
February 2001

Leica Geosystems aeroscan 1pt/3m 0.20/2.00

NASA/USGS
September 18, 2003 pre-Isabel�
September 21, 2003 post-Isabel�

EAARL 1pt/3m 0.15/2.00

JALBTCX
August 28, 2004
September 28, 2005, post-Ophelia�

Compact hydrographic
Airborne rapid total
Survey (charts)

1pt/1m 0.3/1.4

NOAA
March 27, 2008

IOCM 1pt/1m 0.3/1.4

NASA, USGS
December 1, 2009, post-Nor’Ida�

EAARL 1pt/1m 0.2/0.75

NOAA
August 8, 2011, post-Irene�

1pt/1m 0.3/1.4

*NASA = National Aeronautics and Space Administration, NOAA = National Oceanic and
Atmospheric Administration, USGS = U.S. Geological Survey, NCDENR = North Carolina
Department of Environment and Natural Resources, FEMA = Federal Emergency Management
Agency, NCFMP = North Carolina Floodplain Mapping Program, JALBTCX = Joint Airborne
Lidar Bathymetry Center of Expertise, EAARL = Experimental Advanced Airborne Research
Lidar, IOCM = Integrated Ocean and Coastal Mapping
� Hurricane names

• Compute more detailed, smoothed DEMs for the masked study area using spatial
interpolation.

• Compare the DEMs with high accuracy ground-based data to remove potential
systematic errors and verify the accuracy of each DEM.

The result of this procedure is a consistent series of DEMs which have a common
resolution and are clipped to a common spatial extent. To illustrate the workflow
we use the provided series of lidar point clouds acquired along the coast of NC
since 1996 (Table 2.1). The published horizontal accuracy of this data is 2 m, while
the vertical accuracy is 0.12–0.20 m.

2.2 Analysis of Lidar Point Clouds 9

2.2 Analysis of Lidar Point Clouds

Data from lidar surveys acquired over the span of several years and for a wide range
of applications have varied point densities, spatial extents, and accuracy. We use
point per-cell statistics to map the distribution of point densities (as the number of
points found in each raster cell) and the range of values in a raster cell. We use this
to create a low resolution DEM by computing mean point elevation per cell. This
information is helpful when selecting a common resolution for the entire series of
DEMs.

To compute the per cell statistics we first set the resolution using g.region
and then import the lidar points from a lidar text files. In the code below, we use the
r.in.xyz GRASS command to compute the point count for each raster cell at a
resolution 5 m. Then we use the r.univar module to calculate mean point count
per raster cell.

Purpose: Get mean cell statistics.
Refer to Ch. 1 Sec. 1.2 for information on where to
download the data.
Start grass with location northcarolina_coast_spm
and mapset NagsHead_series.
grass70

Set region to Jockey’s Ridge area and display
provided DEM in 2D and 3D
g.region rast=NagsHead_series_1m -p
d.rast NH_2008_1m

Compute number of lidar points per grid cell at 5m
resolution for the 1999 survey
g.region res=5
r.in.xyz input=JR_19990909.txt output=JR_stats_n \

method=n fs=’,’
r.null map=JR_stats_n setnull=0
Get the mean per cell count
r.univar -ge map=JR_stats_n

To perform this kind of analysis for a set of resolutions and series of lidar
point clouds, we use Python code. In the code below, we compute the point count,
elevation range, and mean elevation for each raster cell at the resolutions of 0.5, 2,
5, and 10 m. Then we calculate global statistics on the range raster maps for each
resolution.

Purpose: Get mean cell statistics.
import grass.script as grass
files = [’JR_19971002.txt’, ’JR_19990909.txt’,

’JR_2001.txt’, ’JR_20051126.txt’, ’JR_20080327.txt’
]

10 2 Processing Coastal Lidar Time Series

resolutions=[0.5, 2, 5, 10]
grass.run_command(’g.region’,

region=’NagsHead_series_1m’)
report = ’date\tres\tn\trange\n’
for f in files:

report += f + ’\n’
for res in resolutions:

report += ’\t’ + str(res) + ’\t’
Set the resolution.
grass.run_command(’g.region’, res=res)
Get the per cell count.
grass.run_command(’r.in.xyz’, input=f,

output=’JR_stats_n’, method=’n’, fs=’,’,
overwrite=True)

grass.run_command(’r.null’, map=’JR_stats_n’,
setnull=0)

Get the mean per cell count.
stats = grass.parse_command(’r.univar’,

flags=’ge’, map=’JR_stats_n’)
report += str(stats[’mean’]) + ’\t’
Get the per cell range.
grass.run_command(’r.in.xyz’, input=f,

output=’JR_stats_range’, method=’range’,
fs=’,’, overwrite=True)

grass.run_command(’r.mapcalc’,
expression=’JR_stats_range_c=if(isnull(JR_
stats_n),

null(), JR_stats_range)’, overwrite=True)
Get the mean per cell range.
stats = grass.parse_command(’r.univar’,

flags=’ge’, map=’JR_stats_range_c’)
report += str(stats[’mean’]) + ’\n’

grass.run_command(’g.region’,
region=’NagsHead_series_1m’)

print(report)

The results of this lidar point cloud analysis at a hierarchy of resolutions for selected
surveys are summarized in Table 2.2 and illustrated by Fig. 2.1. At a resolution
of 10 m, the mean range of elevations within the raster cells exceeds 1 m for all
surveys and 2 m for the last three surveys, indicating that important features may be
lost at this resolution. At a resolution of 2 m, the mean range is between 0.08 and
0.65 m and the number of points per raster cell is less than one for older surveys,
indicating the need for interpolation. At 0.5 m resolution, the within-cell mean range

2.3 Computing DEMs 11

Table 2.2 Mean per cell
point count and elevation
range at 0.5, 2 and 10 m
resolution for selected lidar
surveys of Nags Head

Grid size (m) Points per cell Range (m)

1997 0.5 1.102 0.020
2 2.559 0.249

10 45.522 1.753

1999 0.5 1.113 0.023
2 3.295 0.315

10 60.012 1.822

2001 0.5 1.000 0.000
2 1.006 0.011

10 7.394 1.358

2005 0.5 1.267 0.034
2 6.025 0.560

10 145.361 2.669

2008 0.5 1.030 0.012
2 3.589 0.444

10 85.303 2.143

was less than the published data accuracy and interpolation is necessary for all
surveys. To preserve the shape of the buildings, we select 0.5 m resolution and the
time series of DEMs will be created by interpolation.

2.3 Computing DEMs

To compute a consistent series of DEMs we first derive masks of mapped areas for
each survey, then we apply interpolation using the method most appropriate for our
application.

2.3.1 Masking Surveyed Areas

Interpolating lidar point data to high resolution DEMs is only meaningful in regions
with adequate point coverage, We can mask out low density point regions so that
only high density regions are interpolated. Masking is also important because it can
substantially reduce the processing time during data analysis. We identify regions
to mask by first importing the lidar points at a resolution much greater than the lidar
point space (The high resolution value is selected based on the point density analysis
in Sec. 2.2). Then we set each cell in the resultant raster to 1 if the cell contains any
lidar data points or a ‘no-data’ value if it does not (Fig. 2.2). The following GRASS
code sets the resolution to 5 m and uses the r.in.xyz and r.mapcalc functions
to perform these two steps and create a mask based on point density:

12 2 Processing Coastal Lidar Time Series

Fig. 2.1 Point density (lidar point count) and elevation range at different resolutions

2.3 Computing DEMs 13

Fig. 2.2 Point cloud and a derived mask based on 1999 lidar

Purpose: Create a masked survey area.
g.region NagsHead_series_1m res=5
r.in.xyz input=JR_1999.txt output=JR_1999_n_5m \

method=n fs=’,’ --o
r.mapcalc expression=’JR_1999_mask=if(JR_1999_n_5m \

== 0, null(), 1)’ --o

Raster operations (including interpolation) can then be limited to the mask by
running the following commands:

Purpose: Limit raster operations with a mask.
g.region res=0.5
r.mask input=JR_1999_mask

Raster operations will continue to be limited to the mask area until the mask is
removed by running r.mask with the -r flag:

Purpose: Remove raster mask.
r.mask -r input=JR_1999_mask

With the mask set up we can now interpolate the DEMs using a method suitable
for the given application.

2.3.2 Binning

When a lidar point cloud is available in an ASCII text format (such as x,y,z tuples)
and has at least one point in each raster cell at a fixed resolution, a DEM surface
can be generated directly from the lidar points using the r.in.xyz module. The

14 2 Processing Coastal Lidar Time Series

module computes a raster map where the value in each raster cell is a univariate
statistic of the lidar data points contained in that cell. For this reason, the method
is referred to as binning. The method parameter specifies the statistical measure,
such as the maximum, minimum, or mean elevation value. We use the analysis of
lidar point density outlined in the Sec. 2.2 to select the adequate resolution. For
binning, a resolution of 2 m was chosen to ensure that most grid cells contained at
least one lidar point.

DEMs are usually computed by setting method to mean (Fig. 2.3a).

Purpose: Create DEM using raster statistics.
g.region region=NagsHead_series_1m res=2
r.in.xyz input=JR_20080327.txt \

output=JR_20080327_binmean1m method=mean fs=’,’

2.3.3 Spline Interpolation

Continuous DEMs at resolutions higher than the average point spacing can be
computed using spatial interpolation. GRASS7 provides two spline-based modules
for bivariate interpolation: v.surf.rst and v.surf.bspline.

Detailed, smoothed sets of DEMs and topographic parameters (slope, aspect
and curvatures) can be computed using the regularized spline with tension (RST)
method (Mitasova et al. 2005). RST belongs to interpolation functions that minimize
the deviations from the measured points and a smoothness seminorm (Mitas and
Mitasova 1999). The RST smoothness seminorm includes derivatives of all orders
with their weights decreasing with the increasing derivative order leading to the
following function:

z.r/ D a1 C
NX

j D1

�j R.%j / (2.1)

R.%j / D �ŒE1.%j / C ln.%j / C CE� (2.2)

where z.r/ is elevation at a point r D .x; y/, a1 is a trend, �j are coefficients, N is
the number of given points, R.%j / is a radial basis function, %j D .'rj =2/2, ' is a
generalized tension parameter, rj D jr � rj j is a distance, CE D 0:577215 is the
Euler constant, and E1.%j / is the exponential integral function (Abramowitz and
Stegun 1965; Mitášová and Mitáš 1993). The coefficients a1 and f�j g are obtained
by solving the system of linear equations:

NX

j D1

�j D 0: (2.3)

2.3 Computing DEMs 15

a1 C
NX

j D1

�j

�
R.%j / C ı

w0

wj

�
D z.ri /; i D 1; : : : ; N (2.4)

where w0=wj are positive weighting factors representing a smoothing parameter at
each given point rj D .xj ; yj /.

The method has both geostatistical and physical interpretation (Mitas and
Mitasova 1999). It is formally equivalent to universal kriging with the choice of the
covariance function determined by the smoothness seminorm. The intuitive physical
interpretation of this method is a thin surface that can be tuned from a rigid plate to
a rubber sheet by changing its tension (Fig. 2.3). The tension parameter ' controls
the distance over which the given points influence the resulting surface while
smoothing controls the vertical deviation of the surface from data points. By using
an appropriate combination of tension and smoothing, it is possible to apply the
function to various types of surfaces from smoothly changing topography to rough
terrain, and select a level of detail represented by a DEM without changing the
resolution. The optimal values of parameters can often be found by minimizing the
cross validation error (Hofierka et al. 2002; Mitas and Mitasova 1999). The tension
and smoothing parameters for each DEM computation can be optimized to reduce
the noise and ensure a comparable level of detail in each DEM (see Mitasova et al.
(2005), or Neteler and Mitasova (2008) for more details on RST implementation
and optimization of its parameters for lidar data).

The RST interpolation for the entire DEM series along with computation of
topographic parameters (slope, aspect, profile and tangential curvatures) can be
carried out in GRASS by importing the lidar data points using the v.in.ascii
function and then interpolating the points using the v.surf.rst function, as in
the following Python script:

Purpose: Import point clouds and interpolate using
the RST method.
Refer to Ch. 1 Sec. 1.2 for information on where to
download the data.
import grass.script as grass

Find and set region from point cloud.
grass.run_command(’v.in.ascii’,

input=’R_19961016_lidar.txt’,
output=’temp’, format=’point’, separator=’,’,
skip=0, x=1, y=2, z=3)

grass.run_command(’g.region’, flags=’pa’,
vect=’temp’, res=0.5)

Import and interpolate point clouds.
dates = [19961016, 19971002, 19980907, 19990909,

19990918, 19991104, 2001, 20030916, 20030921,

16 2 Processing Coastal Lidar Time Series

20040925, 20051126, 20080327]
ten = [1200, 1200, 500, 1000, 1000, 1000, 1500, 1000,

1000, 1500, 2000, 2000]
for i in range(len(dates)):

fin = ’R_’+str(dates[i])+’_lidar.txt’
vect = ’R_’+str(dates[i])
Import lidar points that fall within the current
region.
grass.run_command(’v.in.ascii’, flags=’tbr’,

input=fin, output=vect, format=’point’,
fs=’,’, skip=0, x=1, y=2, z=3)

rast = ’R_’+str(dates[i])+’_05mrst’
Interpolate using RST with scale dependent
tension.
grass.run_command(’v.surf.rst’, flags=’tz’,

input=vect, elev=rast, slope=rast+’_slp’,
pcurv=rast+’_pcurv’, tcurv=rast+’_tcurv’,
tension=ten[i], smooth=0.5, overwrite=True)

The value of the tension parameter is modified for each data set to account
for the differences in point densities and level of detail. The script runs the
RST interpolation with the -t flag, so that tension is not influenced by the data
segmentation and normalization.

Another approach to generating smoothed sets of DEMs is bilinear or bicubic
spline interpolation with Tykhonov regularization. In this approach each observation
(or lidar data point) is interpreted as a linear combination of spline functions
(Brovelli et al. 2004)

h0.tm/ D
X

lk

alks�g .tm � �lk/ C vm (2.5)

where h0.tm/ is the elevation of the mth lidar data point, tm is the planimetric
location of the lidar data point, alk is an unknown fitting parameter, s�g is an
interpolation function with compact support (the range of which is described by
�) and order g (e.g., g D 1 describes a bilinear function), �lk is the planimetric
location of the spline interpolating function (which centers on raster cell lk), and
vm is an unobserved disturbance.

Equation (2.5) can be written in matrix form as

Y 0 D Aa C v (2.6)

where

Y 0 D Œ: : : h0.tm/ : : : �T (2.7)

a D Œ: : : alk : : : �T (2.8)

2.3 Computing DEMs 17

Fig. 2.3 DEM computed by (a) binning (b) v.surf.rst with low tension (c) v.surf.rst
with high tension (d) v.surf.bspline with large Tykhonov regularization (e)
v.surf.bspline with small Tykhonov regularization

18 2 Processing Coastal Lidar Time Series

and

A D
2

4
: : : : : : : : :

: : :
P

lk alks�g .tm � �lk/ : : :

: : : : : : : : :

3

5 (2.9)

The estimated set of parameters, Oa is obtained by minimizing the equation

min �.a/ D minfjY 0 � Oyj2 C �K.a/g D �. Oa/ (2.10)

where jY 0 � Oyj2 is the least squares minimizing functional and �K.a/ is a
regularizing factor that avoids singularities in areas with no data. Regularization
is done by minimizing the slope or curvature of the interpolating function. If � is
chosen to be small, the normal matrix is poorly conditioned in areas with little or no
data. If � is chosen to be large, a smoother surface is obtained.

Spline interpolation with Tykhonov regularization is achieved in GRASS using
v.surf.bspline. The compact support of the weighting function (i.e., �) is
controlled by the spline step (sie and sin in the EW and NS directions). Adequate
values for sie and sin are likely to be close to twice the mean point spacing,
which can be found by running v.surf.bspline with the -e flag. The degree
of smoothing is controlled by the Tykhonov smoothing parameter lambda_i.
Larger values of lamda_i result in a smoother map, and the optimal value can
be determined with a leave-one-out cross validation procedure with the -c flag.

Purpose: Import point clouds and interpolate using
the bspline method.
Refer to Ch. 1 Sec. 1.2 for information on where to
download the data.
g.region NagsHead_series_1m
v.in.ascii -ztbr input=JR_20080327.txt \

output=JR_20080327 fs=’,’ x=1 y=2 z=3
v.surf.bspline -ze input=JR_20080327 raster=temp
[..]
Estimated point density: 0.8537
Estimated mean distance between points: 1.082
[..]
Choose sin and sie to be twice mean distance
between points.
v.surf.bspline -z input=JR_20080327 \

raster=NH_2008_1mbspl_lam1 sin=2 sie=2
r.colors map=NH_2008_1mbspl_lam1 \

rules=color_elev_coast.txt
Find an optimal lambda_i.
Reduce region for computational efficiency

2.4 Eliminating Water Surface Features 19

g.region n=s+40 e=w+40
v.surf.bspline -c input=JR_20080327 \

raster_output=temp sin=2 sie=2
g.region n=250670 s=249730 w=913366 e=914342 res=1
v.surf.bspline - input=JR_20080327 \

raster_output=JR_2008_1mbspl_lam001 sin=2 sie=2 \
lambda_i=0.01 --o

r.colors map=JR_2008_1mbspl_lam001 \
rast=NH_2008_1mbspl_lam1

To interpolate the entire series, use the Python code above for the RST method but
replace v.surf.rst with the command v.surf.bspline. DEMs resulting
from large and small values of lamda_i are shown in Figs. 2.3 d and e.

2.4 Eliminating Water Surface Features

For many applications, such as volume calculations or shoreline extraction, ele-
vation data representing water surface features should be set to ‘no-data’ values.
After the DEMs are generated this can be achieved by setting elevations that
are lower than the mean high water (MHW) elevation to ‘no-data’ values. Any
remaining data regions that have a smaller area than the largest one are presumed to
represent wave crests and other spurious data, so these are also set to the ‘no-data’
value (Fig. 2.4).

Fig. 2.4 Elimination of water surface features

Purpose: Eliminate water surface features.
r.mapcalc \
expression=’JR_20080327_05mbspl_ext_gt036=if
(JR_20080327_05mbspl_ext>0.36,\

20 2 Processing Coastal Lidar Time Series

1, null())’ --o
r.to.vect input=JR_20080327_05mbspl_ext_gt036 \

output=JR_20080327_05mbspl_ext_gt036 type=area --o

Find the unique, database-generated category of the
largest area.
In this case, the category is 1.
v.report -s map=JR_20080327_05mbspl_ext_gt036 \

option=area

v.extract input=JR_20080327_05mbspl_ext_gt036 \
output=JR_20080327_05mbspl_ext_mask cats=1 --o

v.to.rast input=JR_20080327_05mbspl_ext_mask \
output=JR_20080327_05mbspl_ext_mask use=val \
value=1 --o

r.mapcalc\
expression=’JR_20080327_05mbspl_ext_masked=
JR_20080327_05mbspl_ext\

* float(JR_20080327_05mbspl_ext_mask)’ --o

g.remove rast="JR_20080327_05mbspl_ext_gt036,
JR_20080327_05mbspl_ext_mask"

g.remove vect="JR_20080327_05mbspl_ext_gt036,
JR_20080327_05mbspl_ext_mask"

2.5 Correcting Systematic Errors

Due to the registration errors, lidar data can be shifted and this shift needs to be
identified and corrected if the data are used for assessment of topographic change.

Systematic errors can be identified by comparing the interpolated DEMs along
stable features and geodetic benchmarks in open areas (Fig 2.5). Our sample data
set was corrected using the centerline of highway NC-12 because this road was
not modified during the study time period and thus had a time-invariant elevation
(unlike the erodible terrain surface). If no high-accuracy altimetric data along the
centerline is available and if the metrics that are to be derived from the DEM time-
series are not datum dependent (e.g., change measurements or rates of change),
then the DEMs can simply be referenced to each other using the stable features,
such as roads. Alternatively, if high-accuracy altimetric data is available, then for
each lidar dataset, elevation differences between the high-accuracy data and lidar
can be computed. The median difference quantifies the systematic error. Although
mean and median errors are often comparable, the median is chosen for its lower
sensitivity to outliers. In the relatively flat coastal terrain, systematic error can be
assumed to be spatially constant and can be corrected by shifting the lidar-based
DEMs so that the median difference becomes zero. Although the median error is

2.5 Correcting Systematic Errors 21

Fig. 2.5 (a) RTKGPS versus lidar profile along the road centerline. Elevation along the centerline
of highway NC 12 from (b) uncorrected lidar and (c) lidar with corrected systematic error
(Mitasova et al. 2009)

22 2 Processing Coastal Lidar Time Series

used because of its resistance to outliers, care should still be given to ensure that
spurious features captured in the lidar (e.g., cars and overwash deposits) are not
used to correct systematic error.

High-accuracy altimetric data along the centerline of highway NC-12
are available as high-resolution road lidar point clouds and as geodetic
benchmarks measured by the NCDOT. In the following examples, DARE_
BE94zm3_01m_rstdm.txt contains road lidar, whereas road_centerline.
txt contains data points digitized from a DEM along the centerline of NC-12.
Systematic error can be corrected using the NCDOT benchmarks by importing
them as raster cells, computing the error using r.mapcalc, and finally finding the
median error by running r.univar with the extended statistics flag -e:

Purpose: Correct systematic error using road
centerline using raster approach.
Refer to Ch. 1 Sec. 1.2 for information on where to
download the data.
import grass.script as grass
grass.run_command(’r.in.xyz’,

input=’road_centerline.txt’,
output=’road_centerline’, fs=’,’, x=1, y=2, z=3)

grass.run_command(’r.mapcalc’,
expression=’temp_NH_2008_1m_error=road_centerline -
NH_2008_1m’)

load statistics into a python dictionary with
parse_command
stats = grass.parse_command(’r.univar’, flags=’ge’,

map=’temp_NH_2008_1m_error’)
correction = stats[’median’]
grass.run_command(’r.mapcalc’,

expression=’NH_2008_1m_corrected=NH_2008_1m + ’ +
correction)

If the region is large, a vector approach may be more efficient. The benchmarks can
be imported as vector points, and a data table can be populated with DEM elevations
at benchmark locations using v.what.rast. After updating the database tables,
the individual errors can be calculated and the median error can be found by running
v.db.univar with the extended statistics -e:

Purpose: Correct systematic error using road
centerline using vector approach.
import grass.script as grass
grass.run_command(’v.in.ascii’,

input=’road_centerline.txt’,
output=’road_centerline’, fs=’,’, x=1, y=2,
overwrite=True)

2.5 Correcting Systematic Errors 23

grass.run_command(’v.db.renamecolumn’,
map=’road_centerline’, column=’dbl_1,x’)

grass.run_command(’v.db.renamecolumn’,
map=’road_centerline’, column=’dbl_2,y’)

grass.run_command(’v.db.renamecolumn’,
map=’road_centerline’, column=’dbl_3,z’)

grass.run_command(’v.db.addcolumn’,
map=’road_centerline’, layer=1, columns=’elev
DOUBLE PRECISION, error DOUBLE PRECISION’)

grass.run_command(’v.what.rast’,
map=’road_centerline’, layer=1,
raster=’NH_2008_1m’, column=’elev’)

grass.run_command(’v.db.update’,
map=’road_centerline’, col=’error’, qcol=’z-elev’)

grass.run_command(’v.db.select’,
map=’road_centerline’)

stats = grass.parse_command(’v.db.univar’,
flags=’ge’, table=’road_centerline’, column=’error’
)

correction = stats[’median’]
grass.run_command(’r.mapcalc’,

expression=’NH_2008_1m_corrected=NH_2008_1m + ’ +
correction)

The approach for correcting systematic error using road lidar data is analogous to
using geodetic benchmarks, with the additional step of a centerline extraction. This
can be achieved using a least cost path approach where the cost is a function of
distance to the sides of the road.

import grass.script as grass
Purpose: Correct systematic error using road surface
lidar.
Refer to Ch. 1 Sec. 1.2 for information on where to
download the data.
grass.run_command(’r.in.ascii’,

input=’DARE_BE94zm3_01m_rstdm.txt’,
output=’DARE_BE94zm3_01m_rstdm’)

grass.run_command(’g.region’, flags=’pg’,
rast=’DARE_BE94zm3_01m_rstdm’)

region = grass.region()
res = region[’nsres’]
Generate start raster (side of road).
grass.run_command(’r.mapcalc’,
expression=’DARE_BE94zm3_01m_rstdm_inv=if(isnull
(DARE_BE94zm3_01m_rstdm),

24 2 Processing Coastal Lidar Time Series

1, null())’)
grass.run_command(’r.buffer’,

input=’DARE_BE94zm3_01m_rstdm_inv’,
output=’start_rast’, distance=res)

grass.run_command(’g.remove’,
rast=’DARE_BE94zm3_01m_rstdm_inv’)

Generate a map equal to resolution on the road
and a map equal to distance from the side of road.
grass.run_command(’r.mapcalc’,

expression=’temp=if(isnull(DARE_BE94zm3_01m_rstdm),
null(),’ + res + ’)’)

grass.run_command(’r.cost’, flags=’k’, input=’temp’,
output=’cost’, start_rast=’start_rast’)

Extract centerline connecting two points
that were digitized at opposite ends of the road.
pt1=’913795,250598’
pt2=’913992,250202’
grass.run_command(’r.mapcalc’,

expression=’cost=exp(-5*cost)’, overwrite=True)
grass.run_command(’r.cost’, flags=’k’, input=’cost’,

output=’ccost’, start_coordinates=pt1,
stop_coordinates=pt2, overwrite=True)

grass.run_command(’r.drain’, flags=’n’,
input=’ccost’, output=’NC12_centerline’,
voutput=’NC12_centerline’, coordinate=pt2)

Once the centerline is extracted, the error correction can be computed using
r.mapcalc and r.univar as before:

Purpose: Correct systematic error using
lidar-extracted centerline.
import grass.script as grass
grass.run_command(’r.mapcalc’,

expression=’NH_2008_1m_error=if(isnull(NC12_
centerline), null(),
DARE_BE94zm3_01m_rstdm-NH_2008_1m)’)

stats = grass.parse_command(’r.univar’, flags=’ge’,
map=’NH_2008_1m_error’)

correction = stats[’median’]
grass.run_command(’r.mapcalc’,

expression=’NH_2008_1m_corrected=NH_2008_1m + ’ +
correction)

References 25

References

Abramowitz, M. and Stegun, I. (1965). Handbook of mathematical functions: with formulas,
graphs, and mathematical tables, volume 55. Dover publications.

Brovelli, M. A., Cannata, M., and Longoni, U. M. (2004). LIDAR data filtering and DTM
interpolation within GRASS. Transactions in GIS, 8(2):155–174.

Hofierka, J., Parajka, J., Mitasova, H., and Mitas, L. (2002). Multivariate interpolation of
precipitation using regularized spline with tension. Transactions in GIS, 6(2):135–150.

Mitas, L. and Mitasova, H. (1999). Spatial interpolation. Geographical Information Systems:
Principles, Techniques, Management and Applications, Wiley, 481.

Mitášová, H. and Mitáš, L. (1993). Interpolation by regularized spline with tension: I. Theory and
implementation. Mathematical geology, 25(6):641–655.

Mitasova, H., Mitas, L., and Harmon, R. (2005). Simultaneous spline approximation and
topographic analysis for lidar elevation data in open-source GIS. IEEE Geoscience and Remote
Sensing Letters, 2:375–379. DOI: 10.1109/LGRS.2005.848533.

Mitasova, H., Overton, M., Recalde, J., Bernstein, D., and Freeman, C. (2009). Raster-based
analysis of coastal terrain dynamics from multitemporal lidar data. Journal of Coastal
Research, 25:207–215. DOI: 10.2112/07-0976.1.

Neteler, M. and Mitasova, H. (2008). Open source GIS: a GRASS GIS approach. New York:
Springer, third edition.

http://10.2112/07-0976.1

http://www.springer.com/978-1-4939-1834-8

	2 Processing Coastal Lidar Time Series
	2.1 General Workflow
	2.2 Analysis of Lidar Point Clouds
	2.3 Computing DEMs
	2.3.1 Masking Surveyed Areas
	2.3.2 Binning
	2.3.3 Spline Interpolation

	2.4 Eliminating Water Surface Features
	2.5 Correcting Systematic Errors
	References

