Chapter 2
Classical Banach Spaces and Their Duals

In the next two sections, we will consider the classical sequence and function spaces.
The main purpose of these sections is to make the necessary definitions and to identify
the dual spaces for these classical spaces. We will therefore take for granted that the
various Banach spaces are indeed Banach spaces—putting off until Sect. 2.3 the
proofs that they are complete in the given norms.

2.1 Sequence Spaces

In the context of sequence spaces, we denote by e, the sequence with 1 in the n'
coordinate, and O elsewhere, so thate, = (0,...,0,1,0,...) foralln € N. Also, we
lete = (1,1,1,...) be the constant sequence with 1 in every coordinate (not to be
confused with the base of the natural logarithm e ~ 2.718).

Definition 2.1 The set £, of p-summable sequences for p € [1, c0)is the collection
of sequences

€= {(sl,sz,... ) Y LG < oo}.
n=1

Define the p-norm on £, by

00 1/p
€1, = <Z|sn|f’> L E=E) el
n=1

The set £, is a vector space under component-wise addition and scalar multipli-
cation. (This is a nontrivial fact which we will take as given. [See Theorem A.27.])
Furthermore, £, is a Banach space when given the p-norm (for 1 < p < c0). We
leave the proof of this fact to the exercises. (See Exercise 2.7.)

The next lemma will identify the dual space of £, for p € (1, 00).

Lemma 2.2 For p € (1,00), the space E;‘, can be identified with {,, where
Lyl=n
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12 2 Classical Banach Spaces and Their Duals

Proof For simplicity, we start by assuming the scalars are real. (We will consider
the complex case at the end of the proof.)

We wish to identify the dual space of £, for p € (1, c0) as the sequence space £,
where L + 1 = 1. First, we will demonstrate how elements in £, determine linear
functionals on £,. Let n = (17,)5—, be an element in £, and define a scalar-valued
function ¢, on £, by

Go(E) =D &ty 2.1)
n=1

where & = (§,);2, is any sequence in £,. By Holder’s Inequality (Theorem A.29),

this series is absolutely convergent (whence ¢, is linear) and

00 1/p 00 1/q
|6y (&)] < (Zw) (Zmnw) = &l lInll,-
n=1 n=1

It follows that ¢, is a bounded linear functional on £, and ||¢, || < [I7]l,-

We claim that ¢, || is in fact equal to ||7|,. In order to show this, it will suffice
to find a sequence £ in £, such that |||, = 1 and ¢,(§) = [nll,. We begin by
constructing a sequence { = (,),2; so that ¢, = 17,197 (sign n,) for each n € N.

Then
o0 oo o0
Dolaal? ="l = il
n=1 n=1 n=1

where (g — 1)p = g follows from the assumption that % + é = 1. Consequently,

the sequence ¢ isin £, and ||¢]|, = ||n||3/p. Observe that
o0 [e.e] o0
60O = G0 ma = Imal (signna) o =3 Inal? = IInll.
n=1 n=1 n=1

Leté = ﬁ Then £ is a sequence in £, such that [|£]|, = 1 and such that

(&) _ linllg
[t PR F

q
9=

=lnllg * = lnllg-

$n(§) =

Therefore, for any n = (n,);2, in £,, there is a linear functional ¢, on £, such that
Inlly = ligyll and such that ¢, () = Y02, &m, forall § = (£,)2, in £,

We have demonstrated that any sequence in £, determines a bounded linear func-
tional on £,. Next, we will show that all linear functionals on £, can be obtained
in this way. Let ¢ € Z; and define a sequence n = (1;)72, by letting n; = ¥ (e;)
for each i € N. We will show that the sequence 7 is an element of £, such that
Inlly = 1y1l and such that y(£) = 352, &n; for all € = ()2, in £,
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First, we will show that 7 is in fact an element of £,. For each i € N, define

& = |ni|97" (sign ;). Then, for any n € N, we have
DGl == e
i=1 i=1 i=1
Computing the £ ,-norm of the finite sequence Y ;_, ¢; ¢;, we conclude that
1 1
n n P n P
D Ge| = (Z |;,~|"> = (Z |ni|q> :
i=1 » i=1 i=1
By assumption, the linear functional v is bounded on £, and consequently

'W (Z i €i) ZQ e
i=1 i=1

However, computing directly, we obtain

v (Zé“i ei) =Y GvleN =y ani=y Inl
i=l i=l i=l i=l

From (2.2) and (2.3), it follows that

= Il

=yl (Zw) :
P i=1

n n %
D il < vl (Zw) :
i=1 i=1

Dividing, we see that

" =5 n 1
¥l = (qu) = (ZImI") .
i=l i=1

This inequality holds for alln € N, and so n € £, and ||y || > [Inll,.

(2.2)

2.3)

It remains to show that |[¥|| < |In|l, and that ¥ = ¢,, where ¢, is defined by
(2.1). Since we have already demonstrated that ||¢, || < [Inll4, it suffices to show that

w=¢n~

Suppose & = (§)72, € £, and let EM = (&,...,£,,0,...) foreachn € N.
We claim that £™ converges to & in the norm on £ »- To see this, observe that

Z;’il |& 1P < oo, by assumption, and consequently

0 1/p
Jim & —£], = lim ( 2 '&"p) "

i=n+1

2.4)
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Now, observe that

¥ (§7) = (Z & e,> =Y &Yl =) En.
i=1 i=1

Therefore, by the continuity of i,

oo
— 1 (n)y — . —
YE) = lim y(E™) = ;a ni = dy(&).
It follows that ¥ = ¢,,, which is the desired result.
Now assume the scalar field is C. The proof in this case is essentially the same.
However, when defining ¢,, forn € N, let ¢, = |1,]?"! p,, where p, is a complex
number such that |p,| = 1 and n,, p, = |n,|. The argument proceeds as it did in the

real case. O
The previous theorem identified the dual space of £,, for p € (1, 00) as the space
Ly, where L + = =1, via the dual space action

nE) =Y &,
n=1

where & = (§,);2, isin £, and n = (,);2, is in £,. In the above equation, we write
n(&) as shorthand for ¢,(§), where ¢, is the linear functional corresponding to n
that appears in (2.1). The object 7 is a sequence in the space £,, but we write n(§)
because we are viewing 7 as a linear functional in £7).

Next, we wish to identify the dual space of ¢;. In order to do this, we must
introduce a new space of sequences.

Definition 2.3 The set £, of bounded sequences is the collection of sequences

{(éfn n=1 Sup|$n| < OO}

neN

Define the supremum norm on £, by

€1l = sup [5a], & = (Eu)pZ; € €oo

neN

The set £. is a vector space under component-wise addition and scalar
multiplication and is a Banach space when given the supremum norm.

Lemma 2.4 The space £} can be identified with £

Proof The proof is similar to the proof of Lemma 2.2 and is left to the reader. (See
Exercise 2.2.) As in Lemma 2.2, the dual space action is

77(5) = Zgnnnv
n=1

where now & = (§,),2, isin £y and n = (1,)52, is in £ O
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Since we identify the dual space of £, with £,, itis standard to write £}, = £,. When
we write this, however, it is understood that we mean there is a way of identifying
the linear functionals in £}, with the sequences in £, and the identification is shown
explicitly by the dual space action n(§) = fo:] &M, where £ = (§,)72, isin £,
and n = (9,)52, isin £,.

We summarize our results in the following theorem.

Theorem 2.5 Let p € [1,00) and suppose q is such that % + 5 = 1, with the
convention that ¢ = oo when p = 1. Then £}, = {.

Proof See Lemmas 2.2 and 2.4.
The relationship between the exponents p and g in Theorem 2.5 motivates the
next definition.

Definition 2.6 If p € [1, c0) and if ¢ is such that % + 1 = 1, with the convention
that g = oo when p = 1, then p and ¢ are called conjugate exponents.

If p and g are conjugate exponents that are both finite, then £}, = £, and £ = £,,.
Since €7 = £, it is natural to ask if £; is the dual space of £,. While £; C €%, the
spaces do not coincide. The argument used in the proof of Lemma 2.2 for p € (1, 00)
fails in the case p = oo because there exist bounded sequences (§,);2 ; that do not
satisfy the equation that corresponds to (2.4) for the case p = oo. That is, we can
find & € £ such that

lim | — ™| = lim (SUP |$k|> #0, (2.5)
n—oo n—oo k>n
where €™ = (&1,...,£,,0,...). As a simple example, let £ = e, the constant

sequence having every term equal to 1. We have that |e|l.c = 1, and so e is an
element of £, but ||e — e, = 1 foralln € N.
Let us now consider the space of sequences for which the limit in (2.1.5) is O.

Definition 2.7 Let ¢y be the space of all sequences converging to 0:
co = {32, : Jim & =0].
n—o0
The space ¢ is a Banach space with the supremum norm

1§ Moo = sup &, & = ()L € co.

Theorem 2.8 cj = ¢;.

The proof is similar to that of Lemma 2.2 and is left as an exercise for the reader.
(See Exercise 2.2.) The last sequence space we discuss is the space c.

Definition 2.9 Let ¢ be the space of all convergent sequences:
c= {(En);o:I : lim &, exists} )
n— 00

The space c is also a Banach space with the supremum norm. Perhaps surprisingly,
the dual space of c is also ¢}, albeit with a slightly different dual space action. (See
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Example 2.22.) It is straightforward to show that ¢ is a closed subspace of ¢, and in
turn c is a closed subspace of £,. (See Exercise 2.1.)

2.2 Function Spaces

In this section, let (£2, X', 1) be a measure space, where u is a positive measure.
The theorems in this section are true for positive o -finite measure spaces, but for
simplicity we will assume ©(£2) < o0o. As before, K denotes the underlying scalar
field, which is either R or C. We begin by recalling some definitions from measure
theory. (See Appendix A for a more detailed discussion.)

Definition 2.10 If A is a subset of £2, then the characteristic function of A is the
function
1 ifweA,

xa(@) = {o ifodA.

The characteristic function of A is a measurable function if and only if A is a
measurable subset of §2.

Definition 2.11 For p € [1, 00), the set of p-integrable functions (or L ,-functions)
on (§2, X, ) is the collection

L,(2,Y,n)= {f : 2 — K a measurable function : f [ f1Pdu < oo}
2

We often write this space as L,(£2, t) or L,(u) when there is no risk of confusion.

The set L,(u) is actually a collections of equivalence classes of measurable
functions. Two functions in L, (1) are considered equivalent if they differ only on a
set of -measure zero. Despite this, we will usually speak of the elements in L (1)
as functions, rather than equivalence classes of functions. We remark that the set
L , (1) is a vector space under pointwise addition and scalar multiplication. (As with
£, in the previous section, this is a nontrivial result. [See Theorem A.27.])

Define the p-norm on L, (1) by

Ifll, = (fg|f|f’du)”, fe L.

We will show that L ,(w) is a Banach space in the p-norm (for 1 < p < o0) in
the next section. (See Theorem 2.25.)
As in the case of sequence spaces, we must consider the case p = oo separately.

Definition 2.12 Let (£2, X', 1) be a measure space. The essential supremum norm
of a measurable function f is defined to be

[ flloo = inf {K : (| f] > K) = 0}.
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The set of essentially bounded functions (or L.o-functions) on (£2, X, ) is the
collection

Loo($2, X, 1) = {f : 2 — K a measurable function : || f]oc < 00}.

We often write Lo, (§2, i) or Lo (1) when there is no risk of confusion.

As is the case for L ,(11) when p is finite, the set L (u) is a collection of equiva-
lence classes of measurable functions and (as before) we consider two functions to
be equal in L, () if they differ only on a set of p-measure zero.

The set L () is a vector space under pointwise addition and scalar multiplication.
The essential supremum defines anorm on L (1) and L, (1¢) is a Banach space when
given this norm. (See Theorem 2.26.) We use the terminology “essentially bounded”
to describe the functions in Ly (@) and call || f || the “essential supremum” of | f|
in Ly (1), because the quantity || f || is the smallest number K such that | f| < K
a.e.(u).

We wish to identify the dual space of L ,(u), where p € [1, 00). We will see that,
analogous to the case of sequence spaces, the dual space of L, (1) is L,(u), where
p and g are conjugate exponents. In this case, however, the dual action of L,(i) on
L ,(u) is given by integration. That is, if f € L,(u) and g € L,(w), then the dual
action of g on f is given by

g(f)=‘/ Fedu.
2

Notice that g is a function on §2. Here, however, we write g( f) because we view
g as an element of the dual space L,(u)*. As before, we write L,(u)* = Lg(i)
to indicate the identification of linear functionals in L ,(u)* with elements of the
function space L (u).

Theorem 2.13 Let (£2, X, 1) be a positive finite measure space. If p and g are
conjugate exponents, where p € [1,00), then L,(u)* = Ly ().

Proof Start by assuming the scalars are real. We begin with the case p € (1, 00).
Let g € L,(1), where % + é = 1, and define a scalar-valued function ¢, on L ,(11)
by

Mﬂ=me,fﬂ¢m 2.6)

We will show first that ¢, is a linear functional on L ,(u) such that [|¢.]l = llgll4,
and then we will show that all linear functionals on L ,(u) can be achieved in this
way.

We note that ¢ is linear (by the linearity of the integral) and |¢, (/)| < | flI,lIgll4
(by Holder’s Inequality). Thus, ¢, is a bounded linear functional and [|¢, || < |Igll,-
In order to show equality of the norms, it suffices to find a function f in L (1) such
that || f1|, = 1 and such that ¢,(f) = ||g|l,. First, define a scalar-valued function A
on £2 by letting h(x) = |g(x)|?~" (sign g(x)) for each x € £2. Then
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1 1
P »
a1, = (/ FIR du) = </ g1’ du) = llgl#’”,
2 2

where (¢ — 1)p = q follows from the assumption that % + é = 1. It follows that &

isin L,(1). Next, observe that ¢,(h) = [ g||Z. Now, let f = MLH” Then || ]|, = 1
and

¢e(h) _ ligllg
¢ (f) = = = l1gllg-
‘ el gl !
Therefore, ¢, is a bounded linear functional on L ,(u) and ||¢g|l = llgl-

We now wish to show that any bounded linear functional in L ,(x)* can be written
as in (2.6) for some g in L, (). To that end, let ¥ be a bounded linear functional
in the dual space L,(u)*. Define a measure v on (£2, X) by v(A) = ¥ (x4) for all
A € X. It is routine to show that v is finitely additive (by the linearity of v), and it
is countably additive by the continuity of {r. We also claim that v <« u. That is, v
is absolutely continuous with respect to . To see this, suppose A € X is such that
u(A) = 0. Because ¢ is bounded,

W = 1Y)l < 1V IHxall, e = 1Y 1 m(A)!” = 0.

By the Radon—Nikodym Theorem (Theorem A.24), there exists a measurable func-
tion g € Li(u) such that v(A) = ngdu for all A € X. Therefore, for every
Ae X,

Y(xa) =v(A) = / gdp = / xagd .
A 2
By linearity, it follows that (f) = |, o J8du whenever f is a simple measurable
function. Let f € L, (u) be a real nonnegative essentially bounded measurable
function. Since (£2, ¥, u) is a finite measure space, it follows that f € L,(u). Thus,

there exists a sequence of simple measurable functions (f,,)52, such that f, > f,_
forall n € N, and such that || f — f, ||, — 0 asn — oo. By the continuity of v,

W) = fim s = tim [, gdu
n—0o0 n—oo 0
Therefore, by Lebesgue’s Dominated Convergence Theorem (Theorem A.17),
vin = [ fedn feLaGnL,go. £ 20
Q2

To extend this to an arbitrary real function in Lo(t) N L, (1), let

fP=Fxerm=0 and  f7 = —f X fo<op

and observe that f = f* — f~.
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We claim that g € L,(u). For each n € N, define a function /,, on £2 by letting
hn = X{gl<n |g|?~" (sign g). Then, for each n € N, we have &, € Loo(ut) N L,(w)
and

() = / 1817 d.
{lgl<n}

By assumption, the linear functional v is bounded on L ,(1), and so it follows that
[ (hu)| < ll@ll [1Aa]l . Computing the L ,-norm of ,, and once again observing that
(g — Dp = g, we see that

1 1
P P
Il = (/ lgl@=1r du) = (/ Iglqdu> .
{lgl<n) (lgl<n}

Therefore,

1

»
/ 1817 dw = Y (h)l < 1Yl hall, = VIl (/ g1 dM) .
{lgl=n) {Igl<n)

Dividing, we obtain

1-1 1

P q

Il = (/ Iglqdu) =(/ Iglqdu> .
{lgl<n} {lgl<n}

Thus, by Fatou’s Lemma (Theorem A.16),

1/q

1/q
lglly = (/ limiinf xo<ny|g|? du) < (liminf/ Xilgl<n}|gl? du) < Iyl
Q n—oo n—oo 0

Therefore, g isin L,(n) and ||gll, < 1Vl

It remains to show that ¢ = ¢,. If f is a real nonnegative function in L ,(u),
then we may choose a sequence ( f,,)52, of simple measurable functions such that f,
increases to f* almost everywhere and such that f;, — f inthe L,-normasn — oo.
We have already established that ¥ (f,) = [, o fngdu foralln € N. We also know
that ¥ (f,) — ¥(f) asn — oo, because i is a continuous linear functional on
L,(u). Since f € L,(u) and g € L,(u), it follows that fg € Li(u), by Holder’s
Inequality. Thus,
tim [ igdn= [ fedn

2 2

n—o00o

by Lebesgue’s Dominated Convergence Theorem. Therefore, ¥ ( f) = ¢,(f) for all
nonnegative functions f in L ,(u). As before, we may extend this to all real functions
in L,(u) by writing f = f* — f~.

We have now proven the theorem for p € (1, 00) when the scalar field is R. In
order to extend this result to C, we argue as above, but define the function & by the
rule i = |g|9~! p, where p : £2 — C is a function such that |p| = 1 and g p = |g|.
Similarly, we let h, = x{jg<n) 1817~ p foreachn € N. This argument proves that ¢,
is a bounded linear functional on L ,(u) for all g € L, (). It also proves that for any
bounded linear functional ¥ on L,(i), there exists a function g € L,(u) such that
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Y (f) = ¢g(f) for all real functions f in L ,(u). To extend this result to complex
functions f in L ,(u), write f = R(f) + 1 I(f), where N(f) and I(f) are the real
and imaginary parts of f, respectively, and use linearity.
For p = 1, the proof is similar to the case when p € (1,00) and is left to the
reader. (See Exercise 2.3.) O
As is the case with sequence spaces, the dual of L., (w) need not be Li(u).
Theorem 2.13 remains true when w is a positive o -finite measure. Such a case
can be seen in the following example.

Example 2.14 Consider the measure space (N, 2N m), where 2N denotes the power
set of N (the collection of all subsets of N), and m is counting measure on N (i.e.,
the set function for which m(A) is the cardinality of the set A € N). Suppose that
feL,N, 2N, m), where p € [1,00). Then,

1/p 00 1/p
£, = <fNIf|”dm) = (Zlf(n)l”) :

n=1

We see that f in L,(N, 2N, m) corresponds to the sequence (f(n))o2, in €,. The
same conclusion holds for p = oco. Therefore,

L,N,2Ym)=1¢,, 1<p<ococ.

Let us now consider spaces of continuous functions.

Definition 2.15 Let K be a compact metric space. We denote the collection of
scalar-valued continuous functions on K by C(K). Define the supremum norm on
C(K) by
[ fllo =suplf(®l, f e CK).
tek

The set C(K) is a vector space under pointwise addition and scalar multiplication
and is a Banach space when given the supremum norm. (See Theorem 2.27.) If we
wish to emphasize the underlying scalar field, we will write Cr(K) or Cc(K).

Observe that, for f € C(K), the quantity || || is actually the maximum of | f],
since a continuous function attains its supremum on compact sets.

Remark 2.16 We use the notation || - || to represent both the supremum norm on
C(K) (for a compact metric space K) and the essential supremum norm on L. (i)
(for a measure space (£2, A, u)). If there is any risk of confusion, we will write
Il - ey and || - || L, to denote the norm on C(K) and L (1), respectively.

We wish to identify the dual space of C(K). To that end, we consider the following
example, where K = [0, 1]. In this case, we write C(K) = C[0, 1].

Example 2.17 Consider the following linear functionals on C[O0, 1]:

1
(a) (Integration) f —>/ f@)dtr.
(b) (Point evaluation) f0—> f(s)fors € K.
1
(¢) (Integration against Ly functions) f — / f(@)g(t)dtfor g € L1(0,1).
0
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