
Chapter 2
Classical Banach Spaces and Their Duals

In the next two sections, we will consider the classical sequence and function spaces.
The main purpose of these sections is to make the necessary definitions and to identify
the dual spaces for these classical spaces. We will therefore take for granted that the
various Banach spaces are indeed Banach spaces—putting off until Sect. 2.3 the
proofs that they are complete in the given norms.

2.1 Sequence Spaces

In the context of sequence spaces, we denote by en the sequence with 1 in the nth

coordinate, and 0 elsewhere, so that en = (0, . . . , 0, 1, 0, . . .) for all n ∈ N. Also, we
let e = (1, 1, 1, . . .) be the constant sequence with 1 in every coordinate (not to be
confused with the base of the natural logarithm e ≈ 2.718).

Definition 2.1 The set �p of p-summable sequences for p ∈ [1,∞) is the collection
of sequences

�p =
{

(ξ1, ξ2, . . . , ξn, . . .) :
∞∑

n=1

|ξn|p < ∞
}

.

Define the p-norm on �p by

‖ξ‖p =
( ∞∑

n=1

|ξn|p
)1/p

, ξ = (ξn)∞n=1 ∈ �p.

The set �p is a vector space under component-wise addition and scalar multipli-
cation. (This is a nontrivial fact which we will take as given. [See Theorem A.27.])
Furthermore, �p is a Banach space when given the p-norm (for 1 ≤ p < ∞). We
leave the proof of this fact to the exercises. (See Exercise 2.7.)

The next lemma will identify the dual space of �p for p ∈ (1,∞).

Lemma 2.2 For p ∈ (1,∞), the space �∗p can be identified with �q , where
1
p
+ 1

q
= 1.
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12 2 Classical Banach Spaces and Their Duals

Proof For simplicity, we start by assuming the scalars are real. (We will consider
the complex case at the end of the proof.)

We wish to identify the dual space of �p for p ∈ (1,∞) as the sequence space �q ,
where 1

p
+ 1

q
= 1. First, we will demonstrate how elements in �q determine linear

functionals on �p. Let η = (ηn)∞n=1 be an element in �q and define a scalar-valued
function φη on �p by

φη(ξ ) =
∞∑

n=1

ξn ηn, (2.1)

where ξ = (ξn)∞n=1 is any sequence in �p. By Hölder’s Inequality (Theorem A.29),
this series is absolutely convergent (whence φη is linear) and

|φη(ξ )| ≤
( ∞∑

n=1

|ξn|p
)1/p ( ∞∑

n=1

|ηn|q
)1/q

= ‖ξ‖p‖η‖q .

It follows that φη is a bounded linear functional on �p and ‖φη‖ ≤ ‖η‖q .
We claim that ‖φη‖ is in fact equal to ‖η‖q . In order to show this, it will suffice

to find a sequence ξ in �p such that ‖ξ‖p = 1 and φη(ξ ) = ‖η‖q . We begin by
constructing a sequence ζ = (ζn)∞n=1 so that ζn = |ηn|q−1 (sign ηn) for each n ∈ N.
Then ∞∑

n=1

|ζn|p =
∞∑

n=1

|ηn|(q−1)p =
∞∑

n=1

|ηn|q ,

where (q − 1)p = q follows from the assumption that 1
p
+ 1

q
= 1. Consequently,

the sequence ζ is in �p and ‖ζ‖p = ‖η‖q/p
q . Observe that

φη(ζ ) =
∞∑

n=1

ζn · ηn =
∞∑

n=1

|ηn|q−1 (sign ηn) · ηn =
∞∑

n=1

|ηn|q = ‖η‖q
q .

Let ξ = ζ

‖ζ‖p
. Then ξ is a sequence in �p such that ‖ξ‖p = 1 and such that

φη(ξ ) = φη(ζ )

‖ζ‖p

= ‖η‖q
q

‖η‖q/p
q

= ‖η‖q− q
p

q = ‖η‖q .

Therefore, for any η = (ηn)∞n=1 in �q , there is a linear functional φη on �p such that
‖η‖q = ‖φη‖ and such that φη(ξ ) =∑∞

n=1 ξnηn for all ξ = (ξn)∞n=1 in �p.
We have demonstrated that any sequence in �q determines a bounded linear func-

tional on �p. Next, we will show that all linear functionals on �p can be obtained
in this way. Let ψ ∈ �∗p and define a sequence η = (ηi)∞i=1 by letting ηi = ψ(ei)
for each i ∈ N. We will show that the sequence η is an element of �q such that
‖η‖q = ‖ψ‖ and such that ψ(ξ ) =∑∞

i=1 ξiηi for all ξ = (ξi)∞i=1 in �p.
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First, we will show that η is in fact an element of �q . For each i ∈ N, define
ζi = |ηi |q−1 (sign ηi). Then, for any n ∈ N, we have

n∑

i=1

|ζi |p =
n∑

i=1

|ηi |(q−1)p =
n∑

i=1

|ηi |q .

Computing the �p-norm of the finite sequence
∑n

i=1 ζi ei , we conclude that

∥
∥
∥
∥
∥

n∑

i=1

ζi ei

∥
∥
∥
∥
∥

p

=
(

n∑

i=1

|ζi |p
) 1

p

=
(

n∑

i=1

|ηi |q
) 1

p

.

By assumption, the linear functional ψ is bounded on �p, and consequently

∣
∣
∣
∣
∣
ψ

(
n∑

i=1

ζi ei

)∣
∣
∣
∣
∣
≤ ‖ψ‖

∥
∥
∥
∥
∥

n∑

i=1

ζi ei

∥
∥
∥
∥
∥

p

= ‖ψ‖
(

n∑

i=1

|ηi |q
) 1

p

. (2.2)

However, computing directly, we obtain

ψ

(
n∑

i=1

ζi ei

)

=
n∑

i=1

ζi ψ(ei) =
n∑

i=1

ζi ηi =
n∑

i=1

|ηi |q . (2.3)

From (2.2) and (2.3), it follows that

n∑

i=1

|ηi |q ≤ ‖ψ‖
(

n∑

i=1

|ηi |q
) 1

p

.

Dividing, we see that

‖ψ‖ ≥
(

n∑

i=1

|ηi |q
)1− 1

p

=
(

n∑

i=1

|ηi |q
) 1

q

.

This inequality holds for all n ∈ N, and so η ∈ �q and ‖ψ‖ ≥ ‖η‖q .
It remains to show that ‖ψ‖ ≤ ‖η‖q and that ψ = φη, where φη is defined by

(2.1). Since we have already demonstrated that ‖φη‖ ≤ ‖η‖q , it suffices to show that
ψ = φη.

Suppose ξ = (ξi)∞i=1 ∈ �p and let ξ (n) = (ξ1, . . . , ξn, 0, . . . ) for each n ∈ N.
We claim that ξ (n) converges to ξ in the norm on �p. To see this, observe that∑∞

i=1 |ξi |p < ∞, by assumption, and consequently

lim
n→∞

∥
∥ξ − ξ (n)

∥
∥

p
= lim

n→∞

( ∞∑

i=n+1

|ξi |p
)1/p

= 0. (2.4)
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Now, observe that

ψ
(
ξ (n)
) = ψ

(
n∑

i=1

ξi ei

)

=
n∑

i=1

ξi ψ(ei) =
n∑

i=1

ξi ηi .

Therefore, by the continuity of ψ ,

ψ(ξ ) = lim
n→∞ψ(ξ (n)) =

∞∑

i=1

ξi ηi = φη(ξ ).

It follows that ψ = φη, which is the desired result.
Now assume the scalar field is C. The proof in this case is essentially the same.

However, when defining ζn, for n ∈ N, let ζn = |ηn|q−1ρn, where ρn is a complex
number such that |ρn| = 1 and ηn ρn = |ηn|. The argument proceeds as it did in the
real case. �

The previous theorem identified the dual space of �p for p ∈ (1,∞) as the space
�q , where 1

p
+ 1

q
= 1, via the dual space action

η(ξ ) =
∞∑

n=1

ξnηn,

where ξ = (ξn)∞n=1 is in �p and η = (ηn)∞n=1 is in �q . In the above equation, we write
η(ξ ) as shorthand for φη(ξ ), where φη is the linear functional corresponding to η

that appears in (2.1). The object η is a sequence in the space �q , but we write η(ξ )
because we are viewing η as a linear functional in �∗p.

Next, we wish to identify the dual space of �1. In order to do this, we must
introduce a new space of sequences.

Definition 2.3 The set �∞ of bounded sequences is the collection of sequences

�∞ =
{

(ξn)∞n=1 : sup
n∈N

|ξn| < ∞
}

.

Define the supremum norm on �∞ by

‖ξ‖∞ = sup
n∈N

|ξn|, ξ = (ξn)∞n=1 ∈ �∞.

The set �∞ is a vector space under component-wise addition and scalar
multiplication and is a Banach space when given the supremum norm.

Lemma 2.4 The space �∗1 can be identified with �∞.

Proof The proof is similar to the proof of Lemma 2.2 and is left to the reader. (See
Exercise 2.2.) As in Lemma 2.2, the dual space action is

η(ξ ) =
∞∑

n=1

ξnηn,

where now ξ = (ξn)∞n=1 is in �1 and η = (ηn)∞n=1 is in �∞. �
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Since we identify the dual space of �p with �q , it is standard to write �∗p = �q . When
we write this, however, it is understood that we mean there is a way of identifying
the linear functionals in �∗p with the sequences in �q and the identification is shown
explicitly by the dual space action η(ξ ) = ∑∞

n=1 ξnηn, where ξ = (ξn)∞n=1 is in �p

and η = (ηn)∞n=1 is in �q .
We summarize our results in the following theorem.

Theorem 2.5 Let p ∈ [1,∞) and suppose q is such that 1
p
+ 1

q
= 1, with the

convention that q = ∞ when p = 1. Then �∗p = �q .

Proof See Lemmas 2.2 and 2.4.
The relationship between the exponents p and q in Theorem 2.5 motivates the

next definition.

Definition 2.6 If p ∈ [1,∞) and if q is such that 1
p
+ 1

q
= 1, with the convention

that q = ∞ when p = 1, then p and q are called conjugate exponents.

If p and q are conjugate exponents that are both finite, then �∗p = �q and �∗q = �p.
Since �∗1 = �∞, it is natural to ask if �1 is the dual space of �∞. While �1 ⊆ �∗∞, the
spaces do not coincide. The argument used in the proof of Lemma 2.2 for p ∈ (1,∞)
fails in the case p = ∞ because there exist bounded sequences (ξn)∞n=1 that do not
satisfy the equation that corresponds to (2.4) for the case p = ∞. That is, we can
find ξ ∈ �∞ such that

lim
n→∞‖ξ − ξ (n)‖∞ = lim

n→∞

(

sup
k>n

|ξk|
)

�= 0, (2.5)

where ξ (n) = (ξ1, . . . , ξn, 0, . . . ). As a simple example, let ξ = e, the constant
sequence having every term equal to 1. We have that ‖e‖∞ = 1, and so e is an
element of �∞, but ‖e − e(n)‖∞ = 1 for all n ∈ N.

Let us now consider the space of sequences for which the limit in (2.1.5) is 0.

Definition 2.7 Let c0 be the space of all sequences converging to 0:

c0 =
{

(ξn)∞n=1 : lim
n→∞ ξn = 0

}
.

The space c0 is a Banach space with the supremum norm

‖ξ‖∞ = sup
n∈N

|ξn|, ξ = (ξn)∞n=1 ∈ c0.

Theorem 2.8 c∗0 = �1.

The proof is similar to that of Lemma 2.2 and is left as an exercise for the reader.
(See Exercise 2.2.) The last sequence space we discuss is the space c.

Definition 2.9 Let c be the space of all convergent sequences:

c =
{

(ξn)∞n=1 : lim
n→∞ ξn exists

}
.

The space c is also a Banach space with the supremum norm. Perhaps surprisingly,
the dual space of c is also �1, albeit with a slightly different dual space action. (See
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Example 2.22.) It is straightforward to show that c0 is a closed subspace of c, and in
turn c is a closed subspace of �∞. (See Exercise 2.1.)

2.2 Function Spaces

In this section, let (Ω , Σ , μ) be a measure space, where μ is a positive measure.
The theorems in this section are true for positive σ -finite measure spaces, but for
simplicity we will assume μ(Ω) < ∞. As before, K denotes the underlying scalar
field, which is either R or C. We begin by recalling some definitions from measure
theory. (See Appendix A for a more detailed discussion.)

Definition 2.10 If A is a subset of Ω , then the characteristic function of A is the
function

χA(ω) =
{

1 if ω ∈ A,

0 if ω �∈ A.

The characteristic function of A is a measurable function if and only if A is a
measurable subset of Ω .

Definition 2.11 For p ∈ [1,∞), the set of p-integrable functions (or Lp-functions)
on (Ω , Σ , μ) is the collection

Lp(Ω , Σ , μ) =
{

f : Ω → K a measurable function :
∫

Ω

|f |p dμ < ∞
}

.

We often write this space as Lp(Ω , μ) or Lp(μ) when there is no risk of confusion.
The set Lp(μ) is actually a collections of equivalence classes of measurable

functions. Two functions in Lp(μ) are considered equivalent if they differ only on a
set of μ-measure zero. Despite this, we will usually speak of the elements in Lp(μ)
as functions, rather than equivalence classes of functions. We remark that the set
Lp(μ) is a vector space under pointwise addition and scalar multiplication. (As with
�p in the previous section, this is a nontrivial result. [See Theorem A.27.])

Define the p-norm on Lp(μ) by

‖f ‖p =
(∫

Ω

|f |p dμ

) 1
p

, f ∈ Lp(μ).

We will show that Lp(μ) is a Banach space in the p-norm (for 1 ≤ p < ∞) in
the next section. (See Theorem 2.25.)

As in the case of sequence spaces, we must consider the case p = ∞ separately.

Definition 2.12 Let (Ω , Σ , μ) be a measure space. The essential supremum norm
of a measurable function f is defined to be

‖f ‖∞ = inf {K : μ(|f | > K) = 0} .
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The set of essentially bounded functions (or L∞-functions) on (Ω , Σ , μ) is the
collection

L∞(Ω , Σ , μ) = {f : Ω → K a measurable function : ‖f ‖∞ < ∞} .
We often write L∞(Ω , μ) or L∞(μ) when there is no risk of confusion.

As is the case for Lp(μ) when p is finite, the set L∞(μ) is a collection of equiva-
lence classes of measurable functions and (as before) we consider two functions to
be equal in L∞(μ) if they differ only on a set of μ-measure zero.

The setL∞(μ) is a vector space under pointwise addition and scalar multiplication.
The essential supremum defines a norm on L∞(μ) and L∞(μ) is a Banach space when
given this norm. (See Theorem 2.26.) We use the terminology “essentially bounded”
to describe the functions in L∞(μ) and call ‖f ‖∞ the “essential supremum” of |f |
in L∞(μ), because the quantity ‖f ‖∞ is the smallest number K such that |f | ≤ K

a.e.(μ).
We wish to identify the dual space of Lp(μ), where p ∈ [1,∞). We will see that,

analogous to the case of sequence spaces, the dual space of Lp(μ) is Lq(μ), where
p and q are conjugate exponents. In this case, however, the dual action of Lq(μ) on
Lp(μ) is given by integration. That is, if f ∈ Lp(μ) and g ∈ Lq(μ), then the dual
action of g on f is given by

g(f ) =
∫

Ω

fgdμ.

Notice that g is a function on Ω . Here, however, we write g(f ) because we view
g as an element of the dual space Lp(μ)∗. As before, we write Lp(μ)∗ = Lq(μ)
to indicate the identification of linear functionals in Lp(μ)∗ with elements of the
function space Lq(μ).

Theorem 2.13 Let (Ω , Σ , μ) be a positive finite measure space. If p and q are
conjugate exponents, where p ∈ [1,∞), then Lp(μ)∗ = Lq(μ).

Proof Start by assuming the scalars are real. We begin with the case p ∈ (1,∞).
Let g ∈ Lq(μ), where 1

p
+ 1

q
= 1, and define a scalar-valued function φg on Lp(μ)

by

φg(f ) =
∫

Ω

fgdμ, f ∈ Lp(μ). (2.6)

We will show first that φg is a linear functional on Lp(μ) such that ‖φg‖ = ‖g‖q ,
and then we will show that all linear functionals on Lp(μ) can be achieved in this
way.

We note that φg is linear (by the linearity of the integral) and |φg(f )| ≤ ‖f ‖p‖g‖q

(by Hölder’s Inequality). Thus, φg is a bounded linear functional and ‖φg‖ ≤ ‖g‖q .
In order to show equality of the norms, it suffices to find a function f in Lp(μ) such
that ‖f ‖p = 1 and such that φg(f ) = ‖g‖q . First, define a scalar-valued function h

on Ω by letting h(x) = |g(x)|q−1 (sign g(x)) for each x ∈ Ω . Then
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‖h‖p =
(∫

Ω

|g|(q−1)p dμ

) 1
p

=
(∫

Ω

|g|q dμ

) 1
p

= ‖g‖q/p
q ,

where (q − 1)p = q follows from the assumption that 1
p
+ 1

q
= 1. It follows that h

is in Lp(μ). Next, observe that φg(h) = ‖g‖q
q . Now, let f = h

‖h‖p
. Then ‖f ‖p = 1

and

φg(f ) = φg(h)

‖h‖p

= ‖g‖q
q

‖g‖q/p
q

= ‖g‖q .

Therefore, φg is a bounded linear functional on Lp(μ) and ‖φg‖ = ‖g‖q .
We now wish to show that any bounded linear functional in Lp(μ)∗ can be written

as in (2.6) for some g in Lq(μ). To that end, let ψ be a bounded linear functional
in the dual space Lp(μ)∗. Define a measure ν on (Ω , Σ) by ν(A) = ψ(χA) for all
A ∈ Σ . It is routine to show that ν is finitely additive (by the linearity of ψ), and it
is countably additive by the continuity of ψ . We also claim that ν � μ. That is, ν

is absolutely continuous with respect to μ. To see this, suppose A ∈ Σ is such that
μ(A) = 0. Because ψ is bounded,

|ν(A)| = |ψ(χA)| ≤ ‖ψ‖ ‖χA‖Lp(μ) = ‖ψ‖μ(A)1/p = 0.

By the Radon–Nikodým Theorem (Theorem A.24), there exists a measurable func-
tion g ∈ L1(μ) such that ν(A) = ∫

A
g dμ for all A ∈ Σ . Therefore, for every

A ∈ Σ ,

ψ(χA) = ν(A) =
∫

A

gdμ =
∫

Ω

χAgdμ.

By linearity, it follows that ψ(f ) = ∫
Ω

fgdμ whenever f is a simple measurable
function. Let f ∈ L∞(μ) be a real nonnegative essentially bounded measurable
function. Since (Ω , Σ , μ) is a finite measure space, it follows that f ∈ Lp(μ). Thus,
there exists a sequence of simple measurable functions (fn)∞n=1 such that fn ≥ fn−1

for all n ∈ N, and such that ‖f − fn‖p → 0 as n → ∞. By the continuity of ψ ,

ψ(f ) = lim
n→∞ψ(fn) = lim

n→∞

∫

Ω

fn gdμ.

Therefore, by Lebesgue’s Dominated Convergence Theorem (Theorem A.17),

ψ(f ) =
∫

Ω

fgdμ, f ∈ L∞(μ) ∩ Lp(μ), f ≥ 0.

To extend this to an arbitrary real function in L∞(μ) ∩ Lp(μ), let

f + = f χ{x:f (x)≥0} and f − = −f χ{x:f (x)<0},

and observe that f = f + − f −.
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We claim that g ∈ Lq(μ). For each n ∈ N, define a function hn on Ω by letting
hn = χ{|g|≤n} |g|q−1 (sign g). Then, for each n ∈ N, we have hn ∈ L∞(μ) ∩ Lp(μ)
and

ψ(hn) =
∫

{|g|≤n}
|g|q dμ.

By assumption, the linear functional ψ is bounded on Lp(μ), and so it follows that
|ψ(hn)| ≤ ‖φ‖ ‖hn‖p. Computing the Lp-norm of hn, and once again observing that
(q − 1)p = q, we see that

‖hn‖p =
(∫

{|g|≤n}
|g|(q−1)p dμ

) 1
p

=
(∫

{|g|≤n}
|g|q dμ

) 1
p

.

Therefore,

∫

{|g|≤n}
|g|q dμ = |ψ(hn)| ≤ ‖ψ‖ ‖hn‖p = ‖ψ‖

(∫

{|g|≤n}
|g|q dμ

) 1
p

.

Dividing, we obtain

‖ψ‖ ≥
(∫

{|g|≤n}
|g|q dμ

)1− 1
p

=
(∫

{|g|≤n}
|g|q dμ

) 1
q

.

Thus, by Fatou’s Lemma (Theorem A.16),

‖g‖q =
(∫

Ω

lim inf
n→∞ χ{|g|≤n}|g|q dμ

)1/q

≤
(

lim inf
n→∞

∫

Ω

χ{|g|≤n}|g|q dμ

)1/q

≤ ‖ψ‖.

Therefore, g is in Lq(μ) and ‖g‖q ≤ ‖ψ‖.
It remains to show that ψ = φg . If f is a real nonnegative function in Lp(μ),

then we may choose a sequence (fn)∞n=1 of simple measurable functions such that fn

increases to f almost everywhere and such that fn → f in the Lp-norm as n → ∞.
We have already established that ψ(fn) = ∫

Ω
fn g dμ for all n ∈ N. We also know

that ψ(fn) → ψ(f ) as n → ∞, because ψ is a continuous linear functional on
Lp(μ). Since f ∈ Lp(μ) and g ∈ Lq(μ), it follows that fg ∈ L1(μ), by Hölder’s
Inequality. Thus,

lim
n→∞

∫

Ω

fn g dμ =
∫

Ω

fg dμ,

by Lebesgue’s Dominated Convergence Theorem. Therefore, ψ(f ) = φg(f ) for all
nonnegative functions f in Lp(μ). As before, we may extend this to all real functions
in Lp(μ) by writing f = f + − f −.

We have now proven the theorem for p ∈ (1,∞) when the scalar field is R. In
order to extend this result to C, we argue as above, but define the function h by the
rule h = |g|q−1 ρ, where ρ : Ω → C is a function such that |ρ| = 1 and g ρ = |g|.
Similarly, we let hn = χ{|g|≤n} |g|q−1 ρ for each n ∈ N. This argument proves that φg

is a bounded linear functional on Lp(μ) for all g ∈ Lq(μ). It also proves that for any
bounded linear functional ψ on Lp(μ), there exists a function g ∈ Lq(μ) such that
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ψ(f ) = φg(f ) for all real functions f in Lp(μ). To extend this result to complex
functions f in Lp(μ), write f = �(f ) + i �(f ), where �(f ) and �(f ) are the real
and imaginary parts of f , respectively, and use linearity.

For p = 1, the proof is similar to the case when p ∈ (1,∞) and is left to the
reader. (See Exercise 2.3.) �

As is the case with sequence spaces, the dual of L∞(μ) need not be L1(μ).
Theorem 2.13 remains true when μ is a positive σ -finite measure. Such a case

can be seen in the following example.

Example 2.14 Consider the measure space (N, 2N, m), where 2N denotes the power
set of N (the collection of all subsets of N), and m is counting measure on N (i.e.,
the set function for which m(A) is the cardinality of the set A ⊆ N). Suppose that
f ∈ Lp(N, 2N, m), where p ∈ [1,∞). Then,

‖f ‖p =
(∫

N

|f |p dm

)1/p

=
( ∞∑

n=1

|f (n)|p
)1/p

.

We see that f in Lp(N, 2N, m) corresponds to the sequence (f (n))∞n=1 in �p. The
same conclusion holds for p = ∞. Therefore,

Lp(N, 2N, m) = �p, 1 ≤ p ≤ ∞.

Let us now consider spaces of continuous functions.

Definition 2.15 Let K be a compact metric space. We denote the collection of
scalar-valued continuous functions on K by C(K). Define the supremum norm on
C(K) by

‖f ‖∞ = sup
t∈K

|f (t)|, f ∈ C(K).

The set C(K) is a vector space under pointwise addition and scalar multiplication
and is a Banach space when given the supremum norm. (See Theorem 2.27.) If we
wish to emphasize the underlying scalar field, we will write CR(K) or CC(K).

Observe that, for f ∈ C(K), the quantity ‖f ‖∞ is actually the maximum of |f |,
since a continuous function attains its supremum on compact sets.

Remark 2.16 We use the notation ‖ · ‖∞ to represent both the supremum norm on
C(K) (for a compact metric space K) and the essential supremum norm on L∞(μ)
(for a measure space (Ω , A, μ)). If there is any risk of confusion, we will write
‖ · ‖C(K) and ‖ · ‖L∞(μ) to denote the norm on C(K) and L∞(μ), respectively.

We wish to identify the dual space of C(K). To that end, we consider the following
example, where K = [0, 1]. In this case, we write C(K) = C[0, 1].

Example 2.17 Consider the following linear functionals on C[0, 1]:

(a) (Integration) f →
∫ 1

0
f (t) dt.

(b) (Point evaluation) f → f (s) for s ∈ K .

(c) (Integration against L1 functions) f →
∫ 1

0
f (t) g(t) dt for g ∈ L1(0, 1).
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