
Chapter 2
Overview of Regression Models
for Cross-Sectional Univariate Categorical Data

2.1 Covariate Free Basic Univariate Multinomial Fixed
Effect Models

Let there be K individuals and an individual responds to one of the J categories.
For j = 1, . . . ,J, let π j denote the marginal probability that the response of an
individual belongs to the jth category so that ∑J

j=1 π j = 1. Suppose that yi =
[yi1, . . . ,yi j, . . . ,yi,J−1]

′ denotes the J−1 dimensional multinomial response variable
of the ith (i = 1, . . . ,K) individual such that yi j = 1 or 0, with ∑J

j=1 yi j = 1. Further
suppose that for a q-dimensional unit vector 1q, for example,

y( j)
i = δi j = [01′j−1,1,01′J−1− j]

′

denotes the response of the ith individual that belongs to the jth category for j =
1, . . . ,J−1, and

y(J)i = δiJ = 01J−1

denotes that the response of the ith individual belongs to the Jth category which
may be referred to as the reference category. It then follows that

P[yi = y( j)
i = δi j] = π j, for all j = 1, . . . ,J. (2.1)

For convenience of generalization to the covariate case, we consider

π j =

⎧
⎨

⎩

exp(β j0)

1+∑J−1
g=1 exp(βg0)

for j = 1, . . . ,J−1

1
1+∑J−1

g=1 exp(βg0)
for j = J,

(2.2)
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8 2 Overview of Regression Models for Cross-Sectional Univariate Categorical Data

It then follows that the elements of yi follow the multinomial distribution given by

P[yi1, . . . ,yi j, . . . ,yi,J−1] =
1!

yi1! · · ·yi j! · · ·yiJ!
Π J

j=1πyi j
j , (2.3)

where yiJ = 1−∑J−1
j=1 yi j. Now suppose that out of these K independent individuals,

Kj = ∑K
i=1 yi j individuals belong to the jth category for j = 1, . . . ,J, so that

∑J
j=1 Kj = K. By an argument similar to that of (2.3), one may write the joint

distribution for {Kj} with KJ = K −∑J−1
j=1 Kj, that is, the multinomial distribution

for {Kj} as

P[K1, K2, . . . ,Kj, . . . ,KJ−1] =
K!

K1! · · ·Kj! · · ·KJ!
Π J

j=1π∑K
i=1 yi j

j

=
K!

K1! · · ·KJ!
Π J

j=1π j
Kj . (2.4)

In the next section, we provide some basic properties of this multinomial distri-
bution. Inference for the multinomial probabilities through the estimation of the
parameters β j0( j = 1, . . . ,J−1), along with an example, is discussed in Sect. 2.1.2.

A derivation of the multinomial distribution (2.4):
Suppose that

Kj ∼ Poi(μ j), j = 1, . . . ,J,

where Poi(μ j) denotes the Poisson distribution with mean μ j, that is,

P(Kj|μ j) =
exp(−μ j)μ

Kj
j

Kj!
, Kj = 0,1,2, . . .

Also suppose that Kj’s are independent for all j = 1, . . . ,J It then follows that

K =
J

∑
j=1

Kj ∼ Poi(μ =
J

∑
j=1

μ j),

and conditional on total K, the joint distribution of the counts K1, . . . ,Kj, . . . ,KJ−1,
has the form

P[K1, . . . ,Kj, . . . ,KJ−1|K] =
Π J

j=1[
exp(−μ j)μ

Kj
j

Kj!
]

exp(−μ)μK

K!

,
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where now KJ = K −∑J−1
j=1 Kj is known. Now by using π j =

μ j
μ , one obtains the

multinomial distribution (2.4), where πJ = 1−∑J−1
j=1 π j is known.

Note that when K = 1, one obtains the multinomial distribution (2.3) from (2.4)
by using Kj = yi j as a special case.

2.1.1 Basic Properties of the Multinomial Distribution (2.4)

Lemma 2.1.1. The count variable Kj( j = 1, . . . ,J − 1) marginally follows a bino-
mial distribution B(Kj;K,π j), with parameters K and π j , yielding E[Kj] = Kπ j and
var[Kj] = Kπ j(1 − π j). Furthermore, for j �= k, j,k = 1, . . . ,J − 1, cov[Kj,Kk] =
−Kπ jπk.

Proof. Let

ξ1 = π1, ξ2 = [1−π1], ξ3 = [1−π1 −π2], . . . ,ξJ−1 = [1−π1 −·· ·−πJ−2].

By summing over the range of KJ−1 from 0 to [K −K1 − . . . ,KJ−2], one obtains the
marginal multinomial distribution of K1, . . . ,KJ−2 from (2.4) as

P[K1, . . . ,Kj, . . . ,KJ−2] =
K!

K1! · · ·Kj! · · ·{K −K1 −·· ·−KJ−2}!
Π J−2

j=1 πKj
j [ξJ−1]

{K−K1−···−KJ−2}

× {K −K1 −·· ·−KJ−2}!
KJ−1!{K −K1 −·· ·−KJ−2 −KJ−1}!

K−K1−···−KJ−2

∑
KJ−1=0

[
πJ−1

ξJ−1
]KJ−1 [1− πJ−1

ξJ−1
]{(K−K1−···−KJ−2)−KJ−1}

=
K!

K1! · · ·Kj! · · ·{K −K1 −·· ·−KJ−2}!
Π J−2

j=1 πKj
j [ξJ−1]

{K−K1−···−KJ−2}. (2.5)

By summing, similar to that of (2.5), successively over the range of KJ−2, . . . ,K2,
one obtains the marginal distribution of K1 as

P[K1] =
K!

K1!{K −K1}!
πK1 [1−π1]

K−K1 , (2.6)

which is a binomial distribution with parameters (K,π1). Note that this averaging
or summing technique to find the marginal distribution is exchangeable. Thus, for
any j = 1, . . . ,J −1, Kj will have marginally binomial distribution with parameters
(K,π j). This yields the mean and the variance of Kj as in the Lemma.

Next to derive the covariance between Kj and Kk, for convenience we find the
covariance between K1 and K2. For this computation, following (2.5), we first write
the joint distribution of K1 and K2 as

P[K1,K2] =
K!

K1!K2!{K −K1 −K2}!
Π 2

j=1πKj
j [ξ3]

{K−K1−K2}

=
K!

K1!K2!{K −K1 −K2}!
Π 2

j=1πKj
j [1−π1 −π2]

{K−K1−K2}. (2.7)
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It then follows that

E[K1K2] =
K

∑
K1=0

{K−K1}
∑

K2=0
K1K2

K!
K1!K2!{K−K1−K2}!

Π 2
j=1πKj

j [1−π1−π2]
{K−K1−K2}

= K(K −1)π1π2

K−2

∑
K∗

1=0

{K−2−K∗
1}

∑
K∗

2=0

{K −2}!
K∗

1 !K∗
2 !{K −2−K∗

1 −K∗
2}!

×Π 2
j=1π

K∗
j

j [1−π1 −π2]
{K−2−K∗

1−K∗
2}

= K(K −1)π1π2, (2.8)

yielding

cov[K1,K2] = E[K1K2]−E[K1]E[K2] = K(K −1)π1π2 −K2π1π2 =−Kπ1π2.
(2.9)

Now because the multinomial distribution is exchangeable in variables, one obtains
cov[Kj,Kk] =−Kπ jπk, as in the Lemma.

Lemma 2.1.2. Let

ψ1 = π1

ψ2 =
π2

1−π1
. . . . . . . . . . . .

ψJ−1 =
πJ−1

1−π1 −·· ·−πJ−2
. (2.10)

Then the multinomial probability function in (2.3) can be factored as

B(yi1;1,ψ1)B(yi2;1− yi1,ψ2) · · ·B(yi,J−1;1− yi1 −·· ·− yi,J−2,ψJ−1) (2.11)

where B(x;K∗,ψ), for example, represents the binomial probability of x successes
in K∗ trials when the success probability is ψ in each trial.

Proof. It is convenient to show that (2.11) yields (2.3). Rewrite (2.11) as

[
1!

yi1!(1− yi1)!
πyi1

1 (1−π1)
1−yi1 ]

× (1− yi1)!
yi2!(1− yi1 − yi2)!

[
π2

1−π1
]yi2 [

1−π1 −π2

1−π1
]1−yi1−yi2

. . . . . . . . .

× (1− yi1 −·· ·− yi,J−2)!
yi,J−1!(1− yi1 −·· ·− yi,J−1)!

[
πJ−1

1−π1 −·· ·−πJ−2
]yi,J−1 [

1−π1 −·· ·−πJ−1

1−π1 −·· ·−πJ−2
]1−yi1−···−yi,J−1 .

By some algebras, this reduces to (2.3).
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Lemma 2.1.3. The binomial factorization (2.11) yields the conditional means and
variances as follows:

E[Yi1] = ψ1, var[Yi1] = ψ1(1−ψ1)

E[Yi2|yi1] = (1− yi1)ψ2, var[Yi2|yi1] = (1− yi1)ψ2(1−ψ2)

. . . . . . . . .

E[Yi,J−1|yi1, · · · ,yi,J−2] = (1− yi1 −·· ·− yi,J−2)ψJ−1

var[Yi,J−1|yi1, · · · ,yi,J−2] = (1− yi1 −·· ·− yi,J−2)ψJ−1(1−ψJ−1). (2.12)

Example 2.1. Consider the multinomial model (2.4) with J = 3 categories. This
model is referred to as the trinomial probability model. Suppose that π1,π2, and π3

denote the probabilities that an individual fall into categories 1, 2, and 3, respec-
tively. Also suppose that out of K independent individuals, these three cells were
occupied by K1,K2, and K3 individuals so that K = K1 +K2 +K3. Let ψ1 = π1 and
ψ2 = π2

1−π1
. Then, similar to (2.11), it can be shown that the trinomial probability

function (2.4) (with J = 3) can be factored as the product of two binomial probability
functions as given by

B(K,K1;ψ1)B(K −K1,K2;ψ2).

Similar to Lemma 2.1.3, one then obtains the mean and variance of K2 conditional
on K1 as

E[K2|K1] = [K −K1]ψ2, and var[K2|K1] = [K −K1]ψ2(1−ψ2), (2.13)

respectively. It then follows that the unconditional mean and variance of K2 are
given by

E[K2] =EK1E[K2|K1] =EK1 [(K−K1)ψ2] = [K−Kψ1]ψ2 =K(1−π1)
π2

1−π1
=Kπ2,

(2.14)
and

var[K2] = EK1 [var{K2|K1}]+varK1 [E{K2|K1}]
= EK1 [{K −K1}ψ2(1−ψ2)]+varK1 [{K −K1}ψ2]

= K(1−π1)
π2

1−π1
[
1−π1 −π2

1−π1
]+Kπ1(1−π1)

π2
2

(1−π1)2

=
Kπ2

1−π1
[1−π1 −π2 +π1π2]

= Kπ2(1−π2), (2.15)
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respectively. Note that these unconditional mean (2.14) and variance (2.15) are the
same as in Lemma 2.1.1, but they were derived in a different way than that of
Lemma 2.1.1. Furthermore, similar to that of (2.15), the unconditional covariance
between K1 and K2 may be obtained as

cov[K1,K2] = EK1 [cov{(K1,K2)|K1}]+ covK1 [K1,E{K2|K1}]
= covK1 [K1,E{K2|K1}]
= covK1 [K1,(K −K1)ψ2] =−ψ2var[K1] =−Kπ1π2, (2.16)

which agrees with the covariance results in Lemma 2.1.

2.1.2 Inference for Proportion � j(j= 1, . . . ,J−1)

Recall from (2.4) that

P[K1, K2, . . . ,Kj, . . . ,KJ−1] =
K!

K1! · · ·KJ!
Π J

j=1π j
Kj , (2.17)

where π j by (2.2) has the formula

π j =

⎧
⎨

⎩

exp(β j0)

1+∑J−1
g=1 exp(βg0)

for j = 1, . . . ,J−1

1
1+∑J−1

g=1 exp(βg0)
for j = J,

(a) Moment estimation for �j
When Kj for j = 1, . . . ,J − 1, follow the multinomial distribution (2.17), it

follows from Lemma 2.1 that E[Kj] =Kπ j yielding the moment estimating equation
for π j as

Kj −Kπ j = 0 subject to the condition
J

∑
j=1

π j = 1. (2.18)

Because by (2.18), one writes

πJ = 1−
J−1

∑
j=1

π j = 1−
J−1

∑
j=1

Kj

K
=

K −∑J−1
j=1 Kj

K
=

KJ

K
,

thus, in general, the moment estimator for π j for all j = 1, . . . ,J, has the form

π̂ j,MM =
Kj

K
. (2.19)
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Note however that once the estimation of π j for j = 1, . . . ,J−1 is done, estimation
of πJ does not require any new information because KJ = K −∑J−1

j=1 Kj becomes
known.
(b) Likelihood Estimation of proportion �j, j = 1, . . . ,J-1

It follows from (2.17) that the log likelihood function of {π j} with πJ = 1−
∑J−1

j=1 π j is given by

logL(π1, . . . ,πJ−1) = k0 +
J

∑
j=1

Kjlog(π j), (2.20)

where k0 is the normalizing constant free from {π j}. It then follows that the
maximum likelihood (ML) estimator of π j, for j = 1, . . . ,J − 1, is the solution of
the likelihood equation

∂ logL(π1, . . . ,πJ−1)

∂π j
=

Kj

π j
− KJ

1−∑J−1
j=1 π j

= 0, (2.21)

and is given by

π̂ j,ML = π̂J,ML
Kj

KJ
. (2.22)

But, as ∑J
j=1 π̂ j,ML = 1, it follows from (2.22) that

π̂J,ML =
KJ

K
,

yielding

π̂ j,ML =
Kj

K
=

Kj

∑J
j=1 Kj

for j = 1, . . . ,J−1.

Thus, in general, one may write the formula

π̂ j,ML =
Kj

K
=

Kj

∑J
j=1 Kj

, (2.23)

for all j = 1, . . . ,J. This ML estimate in (2.23) is the same as the moment estimate
in (2.19).
(c) Illustration 2.1

To illustrate the aforementioned ML estimation for the categorical proportion,
we, for example, consider a modified version of the health care utilization data,
studied by Sutradhar (2011). This data set contains number of physician visits by
180 members of 48 families over a period of 6 years from 1985 to 1990. Various
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Table 2.1 Summary statistics of physician visits by four covariates in the health care
utilization data for 1985

Number of Visits
Covariates Level 0 1 2 3–5 ≥6 Total

Gender Male 28 22 18 16 12 96

Female 11 5 15 21 32 84

Chronic Condition No 26 20 15 16 11 88

Yes 13 7 18 21 33 92

Education Level < High School 17 5 11 10 15 58

High School 6 4 4 8 11 33

> High School 16 18 18 19 18 89

Age 20–30 23 17 14 15 15 84

31–40 1 1 3 3 3 11

41–50 4 4 5 12 8 33

51–65 10 5 8 5 13 41

66–85 1 0 3 2 5 11

Table 2.2 Categorizing the
number of physician visits

Latent number of visits Visit category 1985 visit

0 None K1 = 39

1–2 Few K2 = 60

3–5 Not so few K3 = 37

6 or more High K4 = 44

covariates such as gender, age, education level, and chronic conditions for each of
these 180 members were also collected. The full data set is available in Sutradhar
(2011, Appendix 6A). The primary objective of this study was to examine the
effects of these covariates on the physician visits by accommodating familial and
longitudinal correlations among the responses of the members. To have a feeling
about this data set, we reproduce below in Table 2.1, some summary statistics on the
physicians visit data for 1985 only.

Suppose that we group the physician visits into J = 4 categories as in Table 2.2.
In the same table we also give the 1985 health status for 180 individuals.

Note that an individual can belong to one of the four categories with a
multinomial probability as in (2.3). Now by ignoring the family grouping, that is,
assuming all 180 individuals are independent, and by ignoring the effects of the
covariates on the visits, one may use the multinomial probability model (2.17) to fit
the data in Table 2.2.

Now by (2.23), one obtains the likelihood estimate for π j, for j = 1, . . . ,4, as

π̂ j,ML =
Kj

K
,
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where K = 180. Thus, for example, for j = 1, since, K1 = 39 individuals did not pay
any visits to the physician, an estimate (likelihood or moment) for the probability
that an individual in St. John’s in 1985 belong to category 1 was

π̂1,ML = π̂1,MM = 39/180 = 0.217.

That is, approximately 22 out of 100 people did not pay any visits to the physician
in St. John’s (indicating the size of the group with no health complications) during
that year. Note that these naive estimates are bound to change when multinomial
probabilities will be modeled involving the covariates. This type of multinomial
regression model will be discussed in Sect. 2.2 and in many other places in the book.

2.1.3 Inference for Category Effects ˇj0, j = 1, . . . ,J−1,
with ˇJ0 = 0

2.1.3.1 Moment Estimating Equations for ˇj0(j = 1, . . . , J−1) Using
Regression Form

Because

E[Kj] = Kπ j for j = 1, . . . ,J−1,

with

π j =
m j

m
=

exp(β j0)

1+∑J−1
j=1 exp(β j0)

=
exp(x′jθ)

∑J
j=1 exp(x′jθ)

,

and πJ has to satisfy the relationship

πJ = 1−
J−1

∑
j=1

π j = 1−
J−1

∑
j=1

Kj

K
=

KJ

K
,

one needs to solve for θ = (β10, . . . ,β j0, . . . ,βJ−1,0)
′ satisfying

Kj −Kπ j = 0, for all j = 1, . . . ,J.

For convenience, we express all π j as functions of θ . We do this by using

x j = (01′j−1,1,01′J−1− j)
′ for j = 1, . . . ,J−1, and xJ = 01J−1,
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so that

π j =
exp(x′jθ)

∑J
j=1 exp(x′jθ)

, for all j = 1, . . . ,J. (2.24)

Now solving the moment equations Kj −Kπ j = 0 for θ = (β10, . . . ,β j0, . . . ,βJ−1,0)
′

is equivalent to solve

f (θ) = X ′(y−Kπ) = 0, (2.25)

for θ , where y = (K1, . . . ,Kj, . . . ,KJ)
′, π = (π1, . . . ,π j, . . . ,πJ)

′, and

X =

⎛

⎜
⎜
⎜
⎜
⎜
⎝

x′1
x′2
·

x′J−1
x′J

⎞

⎟
⎟
⎟
⎟
⎟
⎠

=

⎛

⎜
⎜
⎜
⎜
⎜
⎝

1 0 · 0 0
0 1 · 0 0
· · · · ·
0 0 · 0 1
0 0 · 0 0

⎞

⎟
⎟
⎟
⎟
⎟
⎠

: J× J−1.

2.1.3.2 Marginal Likelihood Estimation for ˇj0 (j = 1, . . . , J-1)
with ˇJ0 = 0

Note that due to invariance principle of the likelihood estimation method, one would
end up with solving the same likelihood estimating equation (2.23) even if one
attempts to obtain the likelihood estimating equations for β j0, j = 1, . . . ,J − 1,
directly. We clarify this point through following direct calculations.

Rewrite the multinomial distribution based log likelihood function (2.20) as

logL(π1, . . . ,πJ) = k0 +
J

∑
j=1

Kjlog(π j),

where, by (2.17), π j has the formulas

π j =

⎧
⎪⎨

⎪⎩

exp(β j0)

1+∑J−1
j=1 exp(β j0)

for j = 1, . . . ,J−1

1
1+∑J−1

j=1 exp(β j0)
for j = J.

It then follows for j = 1, . . . ,J−1, that

∂ logL(π1, . . . ,πJ)

∂β j0
=

J−1

∑
c=1

[
Kc

πc

]
∂πc

∂β j0
+[

KJ

πJ
]

∂πJ

∂β j0
, (2.26)
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where

∂πc

∂β j0
=

⎧
⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎩

{1+∑J−1
c=1 exp(βc0)}exp(β j0)−exp(β j0){exp(β j0)}

[1+∑J−1
c=1 exp(βc0)]

2 = π j(1−π j) for c = j

−exp(βc0){exp(β j0)}
[1+∑J−1

c=1 exp(βc0)]
2 =−πcπ j for c �= j, c = 1, . . . ,J−1.

−exp(β j0)

[1+∑J−1
c=1 exp(βc0)]

2 =−πJπ j for c = J.

(2.27)

By using (2.27) in (2.26), we then write the likelihood equation for β j0 as

∂ logL(π1, . . . ,πJ)

∂β j0
=

J

∑
c=1

[
Kc

πc
][−πcπ j]+

Kj

π j
[π j] = 0, (2.28)

yielding

−Kπ j +Kj = 0, for j = 1, . . . ,J−1, (2.29)

which are the same likelihood equations as in (2.23). Thus, in the likelihood
approach, similar to the moment approach, one solves the estimating equation
(2.25), that is,

f (θ) = X ′(y−Kπ) = 0 (2.30)

for θ iteratively, so that f (θ̂) = 0.
Further note that because of the definition of π j given by (2.2) or (2.17), all

estimates β̂ j0 for j = 1, . . . ,J−1 are interpreted comparing their value with βJ0 = 0.

2.1.3.3 Joint Estimation of ˇ10, . . . ,ˇj0, . . . ,ˇJ-1,0 Using Regression Form

The log likelihood function by (2.20) has the form

logL(β10, . . . ,β(J−1)0) = k0 +
J

∑
j=1

Kjlog π j.

We now write m j = exp(β j0) for j = 1, . . . ,J−1, and mJ = exp(βJ0) = 1, and m =

∑J
j=1 m j, and re-express the above log likelihood function as

logL(β10, . . . ,β(J−1)0) = k0 +
J

∑
j=1

Kj[log m j − log m]. (2.31)

Next for θ = (β10, . . . ,β j0, . . . ,β(J−1)0)
′ express log m j in linear regression form

log m j = x′jθ (2.32)
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such that log m j = β j0 for j = 1, . . . ,J −1, and log mJ = 0. Note that finding x′j for
all j = 1, . . . ,J is equivalent to write

log m̃ = [log m1, . . . , log m j, . . . , log mJ ]
′ = Xθ ,

where the J× (J−1) covariate matrix X has the same form as in (2.25), i.e.,

X =

⎛

⎜
⎜
⎜
⎜
⎜
⎝

x′1
x′2
·

x′J−1
x′J

⎞

⎟
⎟
⎟
⎟
⎟
⎠

=

⎛

⎜
⎜
⎜
⎜
⎜
⎝

1 0 · 0 0
0 1 · 0 0
· · · · ·
0 0 · 0 1
0 0 · 0 0

⎞

⎟
⎟
⎟
⎟
⎟
⎠

: J× J−1. (2.33)

It then follows from (2.31) and (2.32) that

f (θ) =
∂ logL(θ)

∂θ
=

∂
∂θ

[
J

∑
j=1

Kjx
′
jθ −Klog m]

=
J

∑
j=1

Kjx j − K
m

∂
∂θ

[
J

∑
j=1

exp(x′jθ)]

=
J

∑
j=1

Kjx j − K
m

J

∑
j=1

m jx j

=
J

∑
j=1

Kjx j −K
J

∑
j=1

π jx j, (2.34)

yielding the likelihood estimating equation

f (θ) = X ′(y−Kπ) = 0, (2.35)

same as (2.30).

2.1.3.3.1 Likelihood Estimates and their Asymptotic Variances

Because the likelihood estimating equations in (2.35) are non-linear, one obtains
the estimate of θ = (β10, . . . ,β j0, . . . ,βJ−1,0)

′ iteratively, so that f (θ̂) = 0. Suppose
that θ̂0 is not a solution for f (θ) = 0, but a trial estimate and hence f (θ̂0) �= 0. Next
suppose that θ̂ = θ̂0+h∗ is the estimate of θ satisfying f (θ̂) = f (θ̂0+h∗) = 0. Now
by using the first order Taylor’s expansion, one writes

f (θ̂) = f (θ̂0 +h∗) = f (θ̂0)+h∗ f ′(θ)|θ=θ̂0
= f (θ)|θ=θ̂0

+(θ̂ − θ̂0) f ′(θ)|θ=θ̂0
= 0
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yielding the solution

θ̂ = θ̂0 −
[{ f ′(θ)}−1 f (θ)

] |θ=θ̂0
. (2.36)

Further, because

∂π j

∂θ ′ =
1

m2 [m
∂m j

∂θ ′ −m j
∂m
∂θ ′ ]

=
1

m2 [mm jx
′
j −m j

J

∑
j=1

m jx
′
j]

= π jx
′
j −π j

J

∑
j=1

π jx
′
j

= π jx
′
j −π jπ ′X , (2.37)

one obtains

K
∂π j

∂θ ′ = K[π jx
′
j −π jπ ′X ]. (2.38)

Consequently, it follows from (2.35) that

f ′(θ) =−KX ′ ∂π
∂θ ′ = −KX ′{diag[π1, . . . ,πJ ]−ππ ′}X

= −KX ′[Dπ −ππ ′]X , (2.39)

and the iterative equation (2.36) takes the form

θ̂(r+1) = θ̂(r)+
[

1
K
[X ′{Dπ −ππ ′}X ]−1X ′(y−Kπ)

]

θ=θ̂(r)
, (2.40)

yielding the final estimate θ̂ . The covariance matrix of θ̂ has the formula

var(θ̂) =
1
K

[
X ′{Dπ −ππ ′}X

]−1
. (2.41)

2.1.4 Likelihood Inference for Categorical Effects
ˇj0, j = 1, . . . ,J−1 with ˇJ0 =−∑J−1

j=1 β j0 Using
Regression Form

There exists an alternative modeling for π j such that β̂ j0 for j = 1, . . . ,J − 1 are
interpreted by using the restriction
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J

∑
j=1

β̂ j0 = 0, that is, β̂J0 =−
J−1

∑
j=1

β̂ j0.

As opposed to (2.17), π j’s are then defined as

π j =

⎧
⎪⎨

⎪⎩

exp(β j0)

∑J−1
c=1 exp(βc0)+exp(−∑J−1

c=1 βc0)
for j = 1, . . . ,J−1

exp(−∑J−1
c=1 βc0)

∑J−1
c=1 exp(βc0)+exp(−∑J−1

c=1 βc0)
for j = J.

(2.42)

Now for m j = exp(β j0) for j = 1, . . . ,J−1, and mJ = exp(−∑J−1
c=1 βc0), one may

use the linear form log m j = x′jθ , that is,

log m̃ = [log m1, . . . , log m j, . . . , log mJ ]
′ = Xθ ,

where, unlike in (2.25) and (2.33), X now is the J × (J − 1) covariate matrix
defined as

X =

⎛

⎜
⎜
⎜
⎜
⎜
⎝

1 0 · 0 0
0 1 · 0 0
· · · · ·
0 0 · 0 1
−1 −1 · −1 −1

⎞

⎟
⎟
⎟
⎟
⎟
⎠

. (2.43)

Thus, the likelihood estimating equation has the same form

f (θ) = X ′(y−Kπ) = 0 (2.44)

as in (2.35), but with covariate matrix X as in (2.43) which is different than that of
(2.33).

Note that because βJ0 = 0 leads to different covariate matrix X as compared to
the covariate matrix under the assumption βJ0 =−∑J−1

j=1 β j0, the likelihood estimates
for θ = (β10, . . . ,β(J−1)0)

′ would be different under these two assumptions.

2.2 Univariate Multinomial Regression Model

2.2.1 Individual History Based Fixed Regression Effects Model

Suppose that a history based survey is done so that in addition to the categorical
response status, an individual also provides p covariates information. Let wi =
[wi1, . . . ,wis, . . . ,wip]

′ denote the p-dimensional covariate vector available from
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the ith (i = 1, . . . ,K) individual. To incorporate this covariate information, the
multinomial probability model (2.1)–(2.2) may be generalized as

P[yi = y( j)
i = δi j] = π(i) j =

⎧
⎪⎨

⎪⎩

exp(β j0+β ′
jwi)

1+∑J−1
g=1 exp(βg0+β ′

gwi)
for j = 1, . . . ,J−1

1
1+∑J−1

g=1 exp(βg0+β ′
gwi)

for j = J,
(2.45)

(see also Agresti 1990, p. 343, Exercise 9.22) where β j = [β j1, . . . ,β js, . . . ,β jp]
′ for

j = 1, . . . ,J−1. Let

θ ∗ = [β ∗
1
′, . . . ,β ∗

j
′, . . . ,β ∗

J−1
′]′, where β ∗

j = [β j0,β ′
j]
′.

Then as an extension to (2.4), one may write the likelihood function as

L(θ ∗) = L(β ∗
1 , . . . ,β ∗

J−1) =
K

∏
i=1

J

∏
j=1

1! × {
π(i) j

}yi j

yi j!
(2.46)

where yiJ =
(

1−∑J−1
j=1 yi j

)
and π(i)J =

(
1−∑J−1

j=1 π(i) j

)
. It then follows that the

likelihood estimating equation for β ∗
j =

(
β j 0, β ′

j

)′
for j = 1, . . . ,J−1, that is,

∂ logL(θ ∗)
∂β ∗

j
=

∂
∂β ∗

j

[

C+
K

∑
i=1

J−1

∑
g=1

yig

(
1
wi

)′
β ∗

g −
K

∑
i=1

log

{

1+
J−1

∑
g=1

(
1
wi

)′
β ∗

g

}]

=
K

∑
i=1

[(
1
wi

)

yi j −
(

1
wi

)

π(i) j

]

=
K

∑
i=1

(
1
wi

)
[

yi j −π(i) j

]
= 0 , (2.47)

leads to the likelihood equation for θ ∗ as

∂ logL(θ ∗)
∂θ ∗ =

K

∑
i=1

[

IJ−1 ⊗
(

1
wi

)] [
yi −π(i)

]
= 0 (2.48)

where π(i) =
(
π(i)1, · · · , π(i)(J−1)

)′
corresponding to yi = (yi1, . . . ,yi(J−1))

′; wi is the
p× 1 design vector, IJ−1 is the identity matrix of order J−1, and ⊗ denotes the
Kronecker or direct product. In (2.47), C is a normalizing constant.

This likelihood equation (2.48) may be solved for θ ∗ by using the iterative
equation
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Table 2.3 Snoring and heart
disease: A frequency table

Heart disease
Snoring Yes No

Never 24 1355

Occasionally 35 603

Nearly every night 21 192

Every night 30 224

θ̂ ∗(r+1) = θ̂ ∗(r)+

[
K

∑
i=1

[

IJ−1 ⊗
(

1
wi

)]
[
diag[πi1, . . . ,πJ−1]−π(i)π ′

(i)

]
[

IJ−1 ⊗
(

1
wi

)]′]−1

|θ̂∗(r)

×
K

∑
i=1

[

IJ−1 ⊗
(

1
wi

)]
[

yi −π(i)

]

|θ̂∗(r)
, (2.49)

and the variances of the estimator may be found from the covariance matrix

var[θ̂∗] =

[
K

∑
i=1

[

IJ−1 ⊗
(

1
wi

)]
[
diag[πi1, . . . ,πJ−1]−π(i)π ′

(i)

]
[

IJ−1 ⊗
(

1
wi

)]′]−1

.

(2.50)

Note that in the absence of covariates, one estimates θ ∗ = [β10, . . . ,β j0, . . .,
βJ−1.0]

′. In this case, the estimating equation (2.48) for θ ∗ reduces to the estimating
equation (2.35) for θ , because ∑K

i=1 yi j = Kj and ∑K
i=1 π(i) j = ∑K

i=1 π j = Kπ j, for
example.

2.2.1.1 Illustration 2.2: Binary Regression Model (J= 2) with One
Covariate

2.2.1.1 (a) An Existing Analysis (Snoring as a Continuous Covariate
with Arbitrary Values)

Consider the heart disease and snoring relationship problem discussed in Agresti
(2002, Section 4.2.3, p. 121–123). The data is given in the following Table 2.3.

By treating snoring as an one dimensional (p = 1) fixed covariate wi = wi1 for
the ith individual with its values

wi ≡ wi1 = 0,2,4,5, (2.51)

for snoring never, occasionally, nearly every night, and every night, respectively,
and treating the heart disease status as the binary (J = 2) variable and writing

yi = yi1 =

⎧
⎨

⎩

1 if i ∈ yes

0 otherwise,
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Agresti (2002, Section 4.2.3, p. 121–123), for example, analyzed this ‘snoring and
heart disease’ data by fitting the binary probability model (a special case of the
multinomial probability model (2.45))

P[yi = y(1)i ] = P[yi1 = 1] = π(i)1(wi) =
exp(β10 +β11wi)

1+ exp(β10 +β11wi)
, (2.52)

and

P[yi = y(2)i ] = P[yi1 = 0] = π(i)2(wi) =
1

1+ exp(β10 +β11wi)
.

The binary likelihood is then given by

L(θ ∗) = L(β10,β11) = Π K
i=1[π(i)1(wi)]

yi1 [π(i)2(wi)]
yi2

= Π K
i=1[π(i)1(wi)]

yi1 [1−π(i)1(wi)]
1−yi1 , (2.53)

yielding the log likelihood estimating equations as

∂ log L(θ ∗)
∂θ ∗ =

∂ logΠ K
i=1

exp[yi1(w
∗
i
′θ∗)]

1+exp(w∗
i
′θ∗)

∂θ ∗ = 0, (2.54)

where

w∗
i
′ = (1,wi), and θ ∗ = β ∗

1 = (β10,β11)
′.

This log likelihood equations may be simplified as

∂ log L(θ ∗)
∂θ ∗ =

K

∑
i=1

yi1w∗
i −

K

∑
i=1

π(i)1w∗
i

=
K

∑
i=1

w∗
i [yi1 −π(i)1]

=
K

∑
i=1

(
1
wi

)

[yi1 −π(i)1] = 0. (2.55)

Note that the binary likelihood equation (2.45) is a special case of the multino-
mial likelihood equation (2.48) with J = 2. This equation may be solved for θ̂ ∗ by
using the iterative equation

θ̂ ∗(r+1) = θ̂ ∗(r)+

[
K

∑
i=1

(
1
wi

) [
π(i)1(1−π(i))

]( 1
wi

)′]−1

|θ̂∗(r)
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×
K

∑
i=1

(
1
wi

) [
yi −π(i)1

]

|θ̂∗(r)
, (2.56)

and the variances of the estimator may be found from the covariance matrix

var[θ̂ ∗] =

[
K

∑
i=1

(
1
wi

) [
π(i)1(1−π(i)1)

]( 1
wi

)′]−1

. (2.57)

For the snoring and heart disease relationship problem, the scalar covariate (wi =
wi1) based estimates are given by

θ̂ ∗ = β̂ ∗
1 ≡ [β̂10 =−3.87, and β̂11 = 0.40]′.

However using this type of scalar covariate, i.e., wi = wi1 with arbitrary values for
snoring levels does not provide actual effects of the snoring on heart disease. Below,
we illustrate a categorical covariate based estimation for this problem.

2.2.1.1 (b) A Refined Analysis (Snoring as a Fixed Covariate with Four
Nominal Levels)

In the aforementioned existing analysis, the snoring status: never, occasionally,
nearly every night, every night, has been denoted by a covariate w with values
0,2,4, and 5, respectively. This is an arbitrary coding and may not correctly reflect
the levels. To avoid confusion, in the proposed book, we will represent these L = 4
levels of the ‘snoring’ covariate for the ith individual by three dummy covariates
(p = 3) wi1,wi2,wi3 with values

(wi1,wi2,wi3) =

⎧
⎪⎪⎨

⎪⎪⎩

(1,0,0) for occasionally snoring, level 1 (�=1)
(0,1,0) for nearly every night snoring, level 2 (�=2)
(0,0,1) for every night snoring, level 3 (�=3)
(0,0,0) for never snoring, level 4 (�=4) .

Now for j = 1, . . . ,J − 1 with J = 2, by using β j1,β j2,β j3 as the effects of
wi1,wi2,wi3, on an individual’s (i = 1, . . . ,K) heart status belonging to jth category,
one may fit the probability model (2.45) to this binary data. For convenience, write
the model as

π(i) j =

⎧
⎨

⎩

exp(β j0+β j1wi1+β j2wi2+β j3wi3)

1+∑J−1
g=1 exp(βg0+βg1wi1+βg2wi2+βg3wi3)

for j = 1

1
1+∑J−1

g=1 exp(βg0+βg1wi1+βg2wi2+βg3wi3)
for j = J = 2.

(2.58)

It is of interest to estimate the parameters θ ∗ = β ∗
1 = (β10,β11,β12,β13)

′.
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After a slight modification, we may use the likelihood equation (2.45) to estimate
these parameters. More specifically, by (2.45), the likelihood equation for θ ∗ = β ∗

1
now has the form

K

∑
i=1

w∗
i [yi1 −π(i)1] =

K

∑
i=1

⎛

⎜
⎜
⎝

1
wi1

wi2

wi3

⎞

⎟
⎟
⎠ [yi1 −π(i)1] = 0. (2.59)

This equation may be solved for θ̂ ∗ iteratively by using

θ̂ ∗(r+1) = θ̂ ∗(r)+

⎡

⎢
⎢
⎢
⎣

K

∑
i=1

⎛

⎜
⎜
⎝

1
wi1

wi2

wi3

⎞

⎟
⎟
⎠

[
π(i)1(1−π(i))

]

⎛

⎜
⎜
⎝

1
wi1

wi2

wi3

⎞

⎟
⎟
⎠

′⎤

⎥
⎥
⎥
⎦

−1

|θ̂∗(r)

×
K

∑
i=1

⎛

⎜
⎜
⎝

1
wi1

wi2

wi3

⎞

⎟
⎟
⎠

[
yi −π(i)1

]

|θ̂∗(r)
, (2.60)

and the variances of the estimator may be found from the covariance matrix

var[θ̂ ∗] =

⎡

⎢
⎢
⎢
⎣

K

∑
i=1

⎛

⎜
⎜
⎝

1
wi1

wi2

wi3

⎞

⎟
⎟
⎠

[
π(i)1(1−π(i)1)

]

⎛

⎜
⎜
⎝

1
wi1

wi2

wi3

⎞

⎟
⎟
⎠

′⎤

⎥
⎥
⎥
⎦

−1

(2.61)

2.2.2 Multinomial Likelihood Models Involving One Covariate
with L = p+1 Nominal Levels

Suppose that the L = p + 1 levels of a covariate for an individual i may be
represented by p dummy covariates as

(wi1, · · · , wip) ≡

⎧
⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

( 1, 0, · · · , 0 ) −→ Level 1
( 0, 1, · · · , 0 ) −→ Level 2
( · · · · · · · · · · · ·)
( 0, 0, · · · , 1 ) −→ Level p
( 0, 0, · · · , 0 ) −→ Level p+1

(2.62)
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Table 2.4 A notational display for cell counts and probabilities for J categories under each
covariate level �

J categories of the response variable
Covariate level Quantity 1 . . . j . . . J Total

1 Cell count K[1]1 . . . K[1] j . . . K[1]J K[1]

Cell probability π[1]1 . . . π[1] j . . . π[1]J 1

. . . . . . . . . . . .

. . . . . . . . . . .

� Cell count K[�]1 . . . K[�] j . . . K[�]J K[�]

Cell probability π[�]1 . . . π[�] j . . . π[�]J 1

. . . . . . . . . . . .

. . . . . . . . . . .

L = p+1 Cell count K[p+1]1 . . . K[p+1] j . . . K[p+1]J K[p+1]

Cell probability π[p+1]1 . . . π[p+1] j . . . π[p+1]J 1

Total count K1 . . . Kj . . . KJ K

By (2.45), one may then write the probability for an individual i with covariate
at level �(�= 1, . . . , p) to be in the jth category as

π[�] j = π(i∈�) j =

⎧
⎨

⎩

exp(β j0+β j�)

1+∑J−1
g=1 exp(βg0+βg�)

for j = 1, . . . ,J−1

1
1+∑J−1

g=1 exp(βg0+βg�)
for j = J,

(2.63)

whereas for �= p+1, these probabilities are written as

π[p+1] j = π(i∈(p+1)) j =

⎧
⎨

⎩

exp(β j0)

1+∑J−1
g=1 exp(βg0)

for j = 1, . . . ,J−1

1
1+∑J−1

g=1 exp(βg0)
for j = J.

(2.64)

Using the level based probability notation from (2.63)–(2.64) into (2.46), one
may write the likelihood function as

L(θ ∗) = L[(β ∗
1 , . . . ,β ∗

j , . . . ,β ∗
(J−1)|y]

= Π p+1
�=1 Π

K[�]

i∈�
1!

yi1!yi2! . . .yiJ!
πyi1
[i∈(�)]1πyi2

[i∈(�)]2 . . . ,π
yiJ
[i∈(�)]J, (2.65)

where β ∗
j = (β j0,β j1, . . . ,β jp)

′, and K[�] denotes the number of individuals with

covariate level � so that ∑p+1
�=1 K[�] = K. Further suppose that K[�] j denote the number

of individuals those belong to the jth response category with covariate level � so that
∑J

j=1 K[�] j =K[�]. For convenience of writing the likelihood estimating equations, we
have displayed these notations for cell counts and cell probabilities as in the L× J
contingency Table 2.4.
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Note that in our notation, the row dimension L refers to the combined L levels
for the categorical covariates under consideration, and J refers to the number of
categories of a response variable. By this token, in Chap. 4, a contingency table for
a bivariate multinomial problem with L level categorical covariates will be referred
to as the L×R× J contingency table, where J refers to the number of categories of
the multinomial response variable Y as in this chapter, and R refers to the number of
categories of the other multinomial response variable Z, say. When this notational
scheme is used, the contingency Table 2.2 with four categories for Y (physician visit
status) but no covariates, has the dimension 1× 4. Thus, for a model involving no
covariates, p = 0, i.e., L = 1. Further, when there are, for example, two categorical
covariates in the model one with p1 +1 levels and the other with p2 +1 levels, one
uses p1 + p2 dummy covariates to represent these L = (p1 +1)(p2 +1) levels.

Turning back to the likelihood function (2.65), because yi j = 1 or 0, with
∑J

j=1 yi j = 1, by using the cell counts from Table 2.4, one may re-express this
likelihood function as

L(θ ∗) = L[(β ∗
1 , . . . ,β ∗

j , . . . ,β ∗
(J−1)|y] = Π p+1

�=1 (π[�]1)
K[�]1 . . .(π[�]J)

K[�]J . (2.66)

which one will maximize to estimate the desired parameters in θ ∗.

2.2.2.1 Product Multinomial Likelihood Based Estimating Equations
with a Global Regression form Using all Parameters

In some situations, it may be appropriate to assume that the cell counts for a
given level in Table 2.3 follow a multinomial distribution and the distributions
corresponding to any two levels are independent. For example, in a gender related
study, male and females may be interviewed separately and hence K[�] at �th level
may be assumed to be known, and they may be distributed in J cells, i.e., J
categories, following the multinomial distribution. Note that in this approach K
is not needed to be known in advance, rather all values for K[�] together yield

∑L
�=1 K[�] = K. Following Table 2.4, we write this multinomial probability function

at level � as

f (K[�]1, . . . ,K[�](J−1)) =
K[�]!

K[�]1! . . .K[�]J!
Π J

j=1[π[�] j]
K[�] j = L�, (2.67)

yielding the product multinomial function as

L(θ ∗) = Π p+1
�=1 f (K[�]1, . . . ,K[�](J−1)) = Π p+1

�=1 L�. (2.68)

At a given level �(� = 1, . . . , p + 1), one may then write the probabilities in
(2.63)–(2.64) for all j = 1, . . . ,J, as
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π[�] j =
exp(x′[�] jθ

∗)

∑J
g=1 exp(x′

[�]gθ ∗)
, (2.69)

where

θ ∗ = [β ∗
1
′, . . . ,β ∗

j
′, . . . ,β ∗

J−1
′]′, with β ∗

j = [β j0,β ′
j]
′,

and x′[�] j is the jth ( j = 1, . . . ,J) row of the J× (J−1)(p+1) matrix X�, defined for
�th level as follows:

X� =

⎛

⎜
⎜
⎜
⎜
⎜
⎜
⎝

x′[�]1
x′[�]2
·

x′[�](J−1)

x′[�]J

⎞

⎟
⎟
⎟
⎟
⎟
⎟
⎠

=

⎛

⎜
⎜
⎜
⎜
⎜
⎝

1 01′�−1,1,01′p−� 0 01′p · 0 01′p
0 01′p 1 01′�−1,1,01′p−� · 0 01′p
· · · · · · ·
0 01′p 0 01′p · 1 01′�−1,1,01′p−�

0 01′p 0 01′p · 0 01′p

⎞

⎟
⎟
⎟
⎟
⎟
⎠

for �= 1, . . . , p

Xp+1 =

⎛

⎜
⎜
⎜
⎜
⎜
⎜
⎝

x′[p+1]1

x′[p+1]2

·
x′[p+1](J−1)

x′[p+1]J

⎞

⎟
⎟
⎟
⎟
⎟
⎟
⎠

=

⎛

⎜
⎜
⎜
⎜
⎜
⎝

1 01′p 0 01′p · 0 01′p
0 01′p 1 01′p · 0 01′p
· · · · · · ·
0 01′p 0 01′p · 1 01′p
0 01′p 0 01′p · 0 01′p

⎞

⎟
⎟
⎟
⎟
⎟
⎠

. (2.70)

Following (2.35), the likelihood function (2.68) yields the likelihood equations

∂ log L(θ ∗)
∂θ ∗ =

p+1

∑
�=1

X ′
�

[
y[�]−K[�]π[�]

]
= 0, (2.71)

where

y[�] = [K[�]1, . . . ,K[�] j, . . . ,K[�]J]
′ and π[�] = [π[�]1, . . . ,π[�] j, . . . ,π[�]J]

′,

and X� matrices for �= 1, . . . , p+1 are given as in (2.70).
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2.2.2.1.1 Likelihood Estimates and their Asymptotic Variances

Note that the likelihood estimating equation (2.35) was developed for the covariates
free cases, that is, for the cases with p = 0, whereas the likelihood estimating
equation (2.71) is developed for one covariate with p + 1 levels, represented by
p dummy covariates. Thus, the estimating equation (2.71) may be treated as a
generalization of the estimating equation (2.35) to the p covariates case. Let θ̂ ∗ be
the solution of f (θ ∗) = 0 in (2.71). Assuming that θ̂ ∗

0 is not a solution for f (θ ∗) = 0,
but a trial estimate and hence f (θ̂ ∗

0 ) �= 0, by similar calculations as in (2.36), the
iterative equation for θ̂ ∗ is obtained as

θ̂ ∗ = θ̂ ∗
0 − [{ f ′(θ ∗)}−1 f (θ ∗)

] |θ∗=θ̂∗
0
. (2.72)

Further, by similar calculations as in (2.38), one obtains from (2.71) that

K[�]

∂π[�] j

∂θ ∗′ = K[�]

[
π[�] jx

′
[�] j −π[�] jπ ′

[�]X�

]
. (2.73)

Consequently, it follows from (2.71) that

f ′(θ ∗) =−
p+1

∑
�=1

K[�]X
′
�

∂π[�]

∂θ ∗′ = −
p+1

∑
�=1

K[�]X
′
�

[
diag(π[�]1, . . . ,π[�]J)−π[�]π ′

[�]

]
X�

= −
p+1

∑
�=1

K[�]X
′
�

[
Dπ[�] −π[�]π ′

[�]

]
X�, (2.74)

and the iterative equation (2.72) takes the form

θ̂ ∗(r+1) = θ̂ ∗(r)+

[
p+1

∑
�=1

K[�]X
′
�

[
Dπ[�] −π[�]π ′

[�]

]
X�

]−1

×
[

p+1

∑
�=1

X ′
�

(
y[�]−K[�]π[�]

)
]

θ∗=θ̂∗(r)
, (2.75)

yielding the final estimate θ̂ ∗. The covariance matrix of θ̂ ∗ has the formula

var(θ̂ ∗) =

[
p+1

∑
�=1

K[�]X
′
�{Dπ[�] −π[�]π ′

[�]}X�

]−1

. (2.76)
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2.2.2.2 Product Multinomial Likelihood Based Estimating Equations
with Local (Level Specified) Regression form Using Level Based
Parameters

Note that in the last two sections, regression parameters were grouped category
wise, that is, θ ∗ = [β ∗

1
′, . . . ,β ∗

j
′, . . . ,β ∗

J−1
′]′, where β ∗

j = [β j0,β j1, . . . ,β jp]
′ is formed

corresponding to the covariates from all p+1 levels under the jth category response.
Under product multinomial approach, it however makes more sense to group the
parameters for all categories together under a given level �(� = 1, . . . , p+ 1), and
write the estimating equations for these parameters of the multinomial distribution
corresponding to the level �, and then combine all estimating equations for overall
parameters. Thus, we first use

θ� ==

{
(β10, · · · ,βJ−1,0,β1�, · · · ,βJ−1,�)

′ = (β ′
0,β ′

�)
′ : 2(J−1)×1, for �= 1, . . . , p

(β10, · · · ,βJ−1,0)
′ = β0 : (J−1)×1 for �= p+1,

and define

log m� j = x̃′[�] jθ�

satisfying the probability formulas

π[�] j =
m� j

∑J
j=1 m� j

=
exp(x̃′[�] jθ�)

∑J
j=1 exp(x̃′

[�] jθ�)

in (2.63)–(2.64) for all j = 1, . . . ,J at a given level �. In regression form, it is
equivalent to construct the J × 2(J − 1) dummy covariate matrix X̃� for � = 1, p,
and J× (J−1) dummy covariate matrix X̃p+1, so that

log m̃� = [log m�1, · · · , log m� j, · · · , log m�J ]
′ = X̃�θ�.

It follows that X̃� must have the form

X̃� =

⎛

⎜
⎜
⎜
⎜
⎜
⎝

1 0 0 · 0 1 0 · 0
0 1 0 · 0 0 1 · 0
· · · · · · · · ·
0 0 0 · 1 0 0 · 1
0 0 0 · 0 0 0 · 0

⎞

⎟
⎟
⎟
⎟
⎟
⎠

: J×2(J−1), for �= 1, . . . , p (2.77)

X̃� =

⎛

⎜
⎜
⎜
⎜
⎜
⎝

1 0 0 · 0
0 1 0 · 0
· · · · ·
0 0 0 · 1
0 0 0 · 0

⎞

⎟
⎟
⎟
⎟
⎟
⎠

: J× (J−1), for �= p+1. (2.78)
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By similar calculations as in (2.35) (no covariate case), it follows from (2.67) (for
covariate level �) that the likelihood equation for θ� has the form

f (θ�) = X̃ ′
�(y[�]−K[�]π[�]) = 0 (2.79)

where X̃� have the forms as in (2.77) and (2.78), and

y[�] = [K[�]1, . . . ,K[�] j, . . . ,K[�]J]
′ and π[�] = [π[�]1, . . . ,π[�] j, . . . ,π[�]J]

′.

We then write a vector of distinct parameters, say θ , collecting them from all
levels and append the estimating equation (2.79) for θ� to the final estimating
equation for θ simply by using the chain rule of derivatives. In the present case
for a single categorical covariate with p+1 levels, the θ vector can be written as

θ = [β ′
0,β ′

1, . . . ,β ′
�, . . . ,β

′
p]
′ : (J−1)(p+1)×1,

with

β0 = (β10, . . . ,β j0, . . . ,β(J−1)0)
′ and β� = (β1�, . . . ,β j�, . . . ,β(J−1)�)

′ for �= 1, . . . , p,

and by appending (2.79), the likelihood estimating equation for θ has the form

f (θ) =
p+1

∑
�=1

[
∂θ ′

�

∂θ
X̃ ′
�(y[�]−K[�]π[�])

=
p+1

∑
�=1

Q�X̃
′
�(y[�]−K[�]π[�]) = 0, (2.80)

where Q�, for �= 1, . . . , p, is the (p+1)(J−1)×2(J−1) matrix and of dimension
(p+1)(J−1)× (J−1) for �= p+1. These coefficient matrices are given by

Q� =

⎛

⎜
⎜
⎜
⎝

IJ−1 0(J−1)×(J−1)

0(�−1)(J−1)×(J−1) 0(�−1)(J−1)×(J−1)

0(J−1)×(J−1) IJ−1

0(p−�)(J−1)×(J−1) 0(p−�)(J−1)×(J−1)

⎞

⎟
⎟
⎟
⎠

for �= 1, . . . , p

Qp+1 =

(
IJ−1

0(p)(J−1)×(J−1)

)

.
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2.2.2.3 Illustration 2.3 (Continuation of Illustration 2.2): Partitioning
the Product Binary (J = 2) Likelihood into Four Groups
Corresponding to Four Nominal Levels of the Snoring Covariate

Note that Table 2.3 shows that the data were collected from 2,484 independent
individuals. Because the individual status was recorded with regard to both snoring
and heart disease problems, it is reasonable to consider the snoring status and heart
disease status as two response variables. One would then analyze this data set
by using a bivariate multinomial model to be constructed by accommodating the
correlation between two multinomial response variables. This will be discussed in
Chap. 5.

2.2.2.3.1 Product Binomial Approach

If one is, however, interested to examine the effect of snoring levels on the heart
disease status, then the same data set may be analyzed by conditioning on the
snoring levels and fitting a binary distribution at a given snoring level. This leads
to a product binomial model that we use in this section to fit this snoring and heart
disease data. To be specific, following the notations from Sect. 2.2.1.1(b), let K[�] be
the number of individuals at �th snoring level. The responses of these individuals
are distributed into two categories with regard to the heart disease problem. Thus
the two cell counts at level � will follow a binomial distribution. More specifically,
because the L = p+ 1 = 4 levels are non-overlapping, one may first rewrite the
product binary likelihood function (2.65) as

L∗[(β10,β11,β12,β13)|y] = Π p+1
�=1 Π

K[�]

i=1
1!

yi1!yi2!
πyi1
[i∈(�)]1πyi2

[i∈(�)]2, (2.81)

where

yi2 = 1− yi1 and π[i∈(�)]2 = 1−π[i∈(�)]1.

Further note that because π[i∈(�)] j is not a function of i any more, without any loss
of generality we denote this by π[�] j, for j = 1,2. Also suppose that π[�]2 = 1−π[�]1,

and K[�]1 +K[�]2 = K[�], where ∑K�
i=1 yi1 = K[�]1. When these notations are used, the

binary likelihood function from (2.81) at a given level � reduces to the binomial
distribution

f (K[�]1) =
K[�]!

K[�]1!K[�]2!
(π[�]1)

K[�]1(π[�]2)
K[�]2 , (2.82)

for all �= 1, . . . , p+1, yielding the product binomial likelihood as
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L[(β10,β11,β12,β13)|K] = Π p+1
�=1

K[�]!

K[�]1!K[�]2!
(π[�]1)

K[�]1(π[�]2)
K[�]2 . (2.83)

This product binomial (2.83) likelihood function may be maximized to obtain the
likelihood estimates for the parameters involved, i.e., for β10,β11,β12, and β13.

2.2.2.3.1 (a) Estimating Equations: Global Regression Approach

Because in this example J = 2 and p+1 = 4, it follows from (2.69) that

θ ∗ = (β10,β11,β12,β13)
′,

and by following (2.70), one writes

X1 =

(
1 1 0 0
0 0 0 0

)

X2 =

(
1 0 1 0
0 0 0 0

)

X3 =

(
1 0 0 1
0 0 0 0

)

X4 =

(
1 0 0 0
0 0 0 0

)

.

Thus, by (2.71), the estimating equation for θ ∗ has the form

p+1

∑
�=1

X ′
�

[
y[�]−K[�]π[�]

]
= 0, (2.84)

where

y[�] =

(
K[�]1

K[�]2

)

and π[�] =

(
π[�]1

π[�]2

)

.

Note that for this heart disease and snoring relationship problem, the data and
probabilities in terms of global parameters θ ∗ = (β10,β11,β12,β13)

′ are given by
Level 1 (Occasional snoring):
Response count: K[1]1 = 35, K[1]2 = 603, K[1] = 638.

Probabilities: π[1]1 =
exp(β10+β11)

1+exp(β10+β11)
, and π[1]2 =

1
1+exp(β10+β11)

.
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Global regression form: π[1]1 =
exp(x′[1]1θ∗)

∑2
g=1 exp(x′

[1]gθ∗) , and π[1]2 =
exp(x′[1]2θ∗)

∑2
g=1 exp(x′

[1]gθ∗) , where

x′[1]1, for example, is the first row vector of the above written X1 : 2×4 matrix.
Level 2 (Nearly every night snoring):
Response count: K[2]1 = 21, K[2]2 = 192, K[2] = 213.

Probabilities: π[2]1 =
exp(β10+β12)

1+exp(β10+β12)
, and π[2]2 =

1
1+exp(β10+β12)

.

Global regression form: π[2]1 =
exp(x′[2]1θ∗)

∑2
g=1 exp(x′

[2]gθ∗) , and π[2]2 =
exp(x′[2]2θ∗)

∑2
g=1 exp(x′

[2]gθ∗) .

Level 3 (Every night snoring):
Response count: K[3]1 = 30, K[3]2 = 224, K[3] = 254.

Probabilities: π[3]1 =
exp(β10+β13)

1+exp(β10+β13)
, and π[3]2 =

1
1+exp(β10+β13)

.

Global regression form: π[3]1 =
exp(x′[3]1θ∗)

∑2
g=1 exp(x′

[3]gθ∗) , and π[3]2 =
exp(x′[3]2θ∗)

∑2
g=1 exp(x′

[3]gθ∗) .

Level 4 (Never snoring):
Response count: K[4]1 = 24, K[4]2 = 1355, K[4] = 1379.

Probabilities: π[4]1 =
exp(β10)

1+exp(β10)
, and π[4]2 =

1
1+exp(β10)

.

Global regression form: π[4]1 =
exp(x′[4]1θ∗)

∑2
g=1 exp(x′

[4]gθ∗) , and π[4]2 =
exp(x′[4]2θ∗)

∑2
g=1 exp(x′

[4]gθ∗) .

2.2.2.3.1 (b) Estimating Equations: Local Regression Approach

For convenience we rewrite the binary probabilities under all four levels as
Level 1 (Occasional snoring):
Probabilities: π[1]1 =

exp(β10+β11)
1+exp(β10+β11)

, and π[1]2 =
1

1+exp(β10+β11)
.

Local regression parameters: θ1 = (β10,β11)
′.

Local regression form: π[1]1 =
exp(x̃′[1]1θ1)

∑2
g=1 exp(x̃′

[1]gθ1)
, and π[1]2 =

exp(x̃′[1]2θ1)

∑2
g=1 exp(x̃′

[1]gθ1)
, yielding

the X̃1 : J×2(J−1) matrix (see (2.78)) as

X̃1 =

(
1 1
0 0

)

.

Level 2 (Nearly every night snoring):
Probabilities: π[2]1 =

exp(β10+β12)
1+exp(β10+β12)

, and π[2]2 =
1

1+exp(β10+β12)
.

Local regression parameters: θ2 = (β10,β12)
′.

Local regression form: π[2]1 =
exp(x̃′[2]1θ2)

∑2
g=1 exp(x̃′

[2]gθ2)
, and π[2]2 =

exp(x̃′[2]2θ2)

∑2
g=1 exp(x̃′

[2]gθ2)
, yielding

the X̃2 : J×2(J−1) matrix (see (2.78)) as

X̃2 =

(
1 1
0 0

)

.
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Level 3 (Every night snoring):
Probabilities: π[3]1 =

exp(β10+β13)
1+exp(β10+β13)

, and π[3]2 =
1

1+exp(β10+β13)
.

Local regression parameters: θ3 = (β10,β13)
′.

Local regression form: π[3]1 =
exp(x̃′[3]1θ3)

∑2
g=1 exp(x̃′

[3]gθ3)
, and π[3]2 =

exp(x̃′[3]2θ3)

∑2
g=1 exp(x̃′

[3]gθ3)
, yielding

the X̃3 : J×2(J−1) matrix (see (2.78)) as

X̃3 =

(
1 1
0 0

)

.

Level 4 (Never snoring):
Probabilities: π[4]1 =

exp(β10)
1+exp(β10)

, and π[4]2 =
1

1+exp(β10)
.

Local regression parameters: θ4 = (β10).

Local regression form: π[4]1 =
exp(x̃′[4]1θ4)

∑2
g=1 exp(x̃′

[4]gθ4)
, and π[4]2 =

exp(x̃′[4]2θ4)

∑2
g=1 exp(x̃′

[4]gθ4)
, yielding

the X̃4 : J× (J−1) matrix (see (2.79)) as

X̃4 =

(
1
0

)

.

The likelihood estimating equation for

θ� =
{
(β ′

0,β ′
�)

′ = (β10,β1�)
′ : 2(J−1)×1; for �= 1, . . . , p,

β10 for �= p+1 = 4,

by (2.79), has the form

X̃ ′
�(y[�]−K[�]π[�]) = 0,

for �= 1, . . . ,4. Next in this special case with

θ = (β ′
0,β ′

1, . . . ,β ′
p)

′ = (β10,β11,β12,β13)
′

the estimating equation for this parameter θ , by (2.80), has the form

4

∑
�=1

Q�X̃
′
�(y[�]−K[�]π[�]) = 0, (2.85)

where

Q� =
∂θ ′

�

∂θ
,



36 2 Overview of Regression Models for Cross-Sectional Univariate Categorical Data

for all �= 1, . . . ,4, have the forms

Q1 =

⎛

⎜
⎜
⎝

1 0
0 1
0 0
0 0

⎞

⎟
⎟
⎠ ,Q2 =

⎛

⎜
⎜
⎝

1 0
0 0
0 1
0 0

⎞

⎟
⎟
⎠ ,Q3 =

⎛

⎜
⎜
⎝

1 0
0 0
0 0
0 1

⎞

⎟
⎟
⎠ ,Q4 =

⎛

⎜
⎜
⎝

1
0
0
0

⎞

⎟
⎟
⎠ .

2.2.2.3.1 (c) Equivalence of the Likelihood Equations (2.59)(i), (2.84)(ii), and
(2.85)(iii)

(i) The estimating equation (2.59) has the form

K

∑
i=1

⎛

⎜
⎜
⎝

1
wi1

wi2

wi3

⎞

⎟
⎟
⎠ [yi1 −πi] = 0,

which, by using

K

∑
i=1

yi1 = K[·]1,
K

∑
i=1

π(i)1 =
4

∑
�=1

K[�]π[�]1

K

∑
i=1

yi1zi1 = K[1]1,
K

∑
i=1

wi1π(i)1 = K[1]π[1]1

K

∑
i=1

yi1wi2 = K[2]1,
K

∑
i=1

wi2π(i)1 = K[2]π[2]1

K

∑
i=1

yi1wi3 = K[3]1,
K

∑
i=1

wi3π(i)1 = K[3]π[3]1, (2.86)

reduces to
⎛

⎜
⎜
⎜
⎝

K[·]1 −∑4
�=1 K[�]π[�]1

K[1]1 −K[1]π[1]1

K[2]1 −K[2]π[2]1

K[3]1 −K[3]π[3]1

⎞

⎟
⎟
⎟
⎠

= 0. (2.87)

(ii) Next, the estimating equation in (2.84) has the form

p+1

∑
�=1

X ′
�

[
y[�]−K[�]π[�]

]
= 0,
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which, for convenience, we re-express as

⎛

⎜
⎜
⎝

1 0
1 0
0 0
0 0

⎞

⎟
⎟
⎠

(
K[1]1 −K[1]π[1]1

K[1]2 −K[1]π[1]2

)

+

⎛

⎜
⎜
⎝

1 0
0 0
1 0
0 0

⎞

⎟
⎟
⎠

(
K[2]1 −K[2]π[2]1

K[2]2 −K[2]π[2]2

)

+

⎛

⎜
⎜
⎝

1 0
0 0
0 0
1 0

⎞

⎟
⎟
⎠

(
K[3]1 −K[3]π[3]1

K[3]2 −K[3]π[3]2

)

+

⎛

⎜
⎜
⎝

1 0
0 0
0 0
0 0

⎞

⎟
⎟
⎠

(
K[4]1 −K[4]π[4]1

K[4]2 −K[4]π[4]2

)

= 0. (2.88)

After a simple algebra, (2.88) reduces to (2.87).
(iii) Further, the estimating equation (2.85) has the form

p+1

∑
�=1

Q�X̃
′
�(y[�]−K[�]π[�]) = 0.

Now to see that this estimating equation is the same as (2.88), one has to simply
verify that Q�X̃ ′

� = X ′
� for � = 1, . . . , p+ 1. As the algebra below shows, this

equality holds. Here

Q1X̃ ′
1 =

⎛

⎜
⎜
⎝

1 0
0 1
0 0
0 0

⎞

⎟
⎟
⎠

(
1 0
1 0

)

=

⎛

⎜
⎜
⎝

1 0
1 0
0 0
0 0

⎞

⎟
⎟
⎠= X ′

1,

Q2X̃ ′
2 =

⎛

⎜
⎜
⎝

1 0
0 0
0 1
0 0

⎞

⎟
⎟
⎠

(
1 0
1 0

)

=

⎛

⎜
⎜
⎝

1 0
0 0
1 0
0 0

⎞

⎟
⎟
⎠= X ′

2,

Q3X̃ ′
3 =

⎛

⎜
⎜
⎝

1 0
0 0
0 0
0 1

⎞

⎟
⎟
⎠

(
1 0
1 0

)

=

⎛

⎜
⎜
⎝

1 0
0 0
0 0
1 0

⎞

⎟
⎟
⎠= X ′

3,

Q4X̃ ′
4 =

⎛

⎜
⎜
⎝

1
0
0
0

⎞

⎟
⎟
⎠

(
1 0
)
=

⎛

⎜
⎜
⎝

1 0
0 0
0 0
0 0

⎞

⎟
⎟
⎠= X ′

4.

Hence, as expected, all three estimating equations are same. Note that the estimating
equation (2.59) requires individual level information, whereas the estimating equa-
tions (2.84) and (2.85) are based on grouped or contingency type data. Between
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(2.84) and (2.85), it is easier to construct the X̃� matrices in (2.85) as coefficients
of the local level parameters than constructing similar matrices X� for (2.84)
corresponding to global parameters. However, unlike in (2.85), there is no need of
constructing the chain derivative matrices Q�, in (2.84). Thus, it is up to the users
to choose between (2.84) and (2.85). In this book we will mostly follow the global
parameters based estimating equation (2.84).

2.2.2.3.1 (d) Illustration 2.3 Continued: Application of the Product Binomial
Model to the Snoring and Heart Disease Problem

Forming the X�(� = 1, . . . ,4) matrices and writing the probabilities in global
regression form as in Sect. 2.2.2.3.1(a), and using the 4× 2 cross-table data from
Table 2.3, we now solve the likelihood estimating equation (2.85) (see also (2.71))
using the iterative equation (2.75). To be specific, because the observed probabilities
under category one (having heart disease) are relatively much smaller as compared
to those under category two, starting with an initial value of β10,0 = −3.0 and
small positive initial values for other parameters (β11,0 = β12,0 = β13,0 = 0.10), the
iterative equation (2.75) yielded converged estimates for these four parameters in
five iterations. These estimates were then used in (2.76) to compute the estimated
variances and pair-wise covariances of the estimators. The estimates and their
corresponding estimated standard errors are given in Table 2.5 below.

Note that as the snoring status is considered to be a fixed covariate (as
opposed to a response variable) with four levels, the heart disease status of an
individual follow a binary distribution at a given level. For example, it is clear
from Sect. 2.2.2.3.1(a) that an individual belonging to level 4, i.e., who snores every
night (see Table 2.3), has the probability π[4]1 =

exp(β10)
1+exp(β10)

for having a heart disease.

Table 2.5 Parameter
estimates for the snoring and
heart disease data of Table 2.3

Regression parameters
Quantity β10 β20 β30 β40

Estimate −4.034 1.187 1.821 2.023

Standard error 0.206 0.269 0.309 0.283

Table 2.6 Observed and estimated probabilities for the snoring and heart
disease data

Heart disease
Yes No

Snoring level Observed Estimated Observed Estimated
Occasionally 0.055 0.055 0.945 0.945

Nearly every night 0.099 0.099 0.901 0.901

Every night 0.118 0.118 0.882 0.882

Never 0.017 0.017 0.983 0.983
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These probabilities at all four levels may now be estimated by using the parameter
estimates from Table 2.5. These estimated probabilities along with their respective
observed probabilities are shown in Table 2.6.

Notice from the results in Table 2.6 that there is no difference between the
observed and estimated probabilities at any snoring level. This result is expected
because of the fact that the product binomial model is constructed with four
independent regression parameters to fit data in four independent cells. This type
of models are known as saturated models. In summary, the product binomial model
and the estimation of its parameters by using the likelihood approach appear to
be perfect for both fitting and interpretation of the data. Note that the observed
and estimated probabilities appear to support that as the snoring level increases the
probability for an individual to have a heart disease gets larger.

Remark that when the same snoring data is analyzed by using the snoring as a
covariate with arbitrary codes, as it was done in Sect. 2.2.1.1(a) following Agresti
(2002, Section 4.2.3, p. 121–123), one obtains the estimated probabilities for an
individual to have a heart disease as

0.049, 0.094, 0.134, 0.020

based on individual’s corresponding snoring level: occasional; nearly every night;
every night; or never. Agresti (2002, Table 4.2) reported these probabilities as

0.044, 0.093, 0.132, 0.021,

which are slightly different. In any case, these estimated probabilities, as opposed
to the estimated probabilities shown in Table 2.6, appear to be far apart from the
corresponding observed probabilities under the ‘yes’ heart disease category. Thus,
it is recommended not to use any modeling approach based on arbitrary coding for
the fixed categorical covariates.

2.2.2.4 Illustrations Using Multinomial Regression Models Involving
Responses with J > 2 Categories Along with One Two Levels
Categorical Covariate

2.2.2.4.1 Illustration 2.4: Analysis of 2× J(= 3) Aspirin and Heart Attacks
Data Using Product Multinomial Approach

To illustrate the application of product multinomial model (2.68)–(2.69) we revisit
here the aspirin use and heart attack data set earlier described by Agresti (2002,
Section 2.1.1), for example, using a full multinomial (or log linear model) approach.
We reproduce the data set below in Table 2.7. We describe and analyze this data
using product multinomial approach.

This data set was originally recorded from a report on the relationship between
aspirin use and heart attacks by the Physicians Health Study Research Group at
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Table 2.7
Cross-classification of aspirin
use and myocardial infarction

Myocardial infarction
Fatal Non-Fatal No
Attack Attack Attack Total

Aspirin 5 99 10,933 11,037

Placebo 18 171 10,845 11,034

Total 23 270 21,778 22,071

Harvard Medical School. The Physicians Health Study was a 5 year randomized
study of whether regular aspirin intake reduces mortality from cardiovascular
disease. A physician participating in the study took either one aspirin tablet or a
placebo, every other day, over the 5 year study period. This was a blind study
for the participants as they did not know whether they were taking aspirin or
a placebo for all these 5 years. By considering the heart attack status as one
multinomial response variable with three categories (fatal, non-fatal, and no attacks)
and the treatment as another multinomial response variable with two categories
(placebo and aspirin use), Agresti (2002) used a full multinomial approach and
described the association (correlation equivalent) between the two variables through
computing certain odds ratios. In notation, let zi = (zi1, . . . ,zir, . . . ,zi,R−1)

′ be the
second multinomial response, but, with R categories, so that when zi is realized at
the rth category, one writes

z(r)i = (01′r−1,1,01′R−1−r)
′, for r = 1, . . . ,R−1; and z(R)i = 01′R−1.

Then many existing approaches write the joint probabilities, for example, for the
aspirin use and heart attack data, as

πr j = P[zi = z(r)i ,yi = y( j)
i ], for all i = 1, . . . ,22071, r = 1,2, j = 1, . . . ,3

=
exp(αr +β j +φr j)

∑2
r=1 ∑3

j=1 exp(αr +β j +φr j)

=
mr j

∑2
r=1 ∑3

j=1 mr j
=

mr j

m
, (2.89)

where αr is the rth category effect of the z variable, β j is the jth category effect of
the y variable, and φr j is the corresponding interaction effect of y and z variables,
on any individual. These parameters are restricted by the dependence of the last
category of each variable on their remaining independent categories. Thus, in this
example, one may use

α2 = β3 = φ13 = φ21 = φ22 = φ23 = 0,

and fit the full multinomial model to the data in Table 2.7 by estimating the
parameters

α1,β1,β2,φ11, and φ12.
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The estimation is achieved by maximizing the full multinomial likelihood

L(θ ∗) = Π 2
r=1Π 3

j=1πKr j
r j , (2.90)

with respect to θ ∗ = (α1,β1,β2,φ11,φ12)
′, where Kr j is the number of individuals in

the (r, j)th cell in Table 2.7, for example, K12 = 99.
This full multinomial approach, that is, considering the treatment as a response

variable, lacks justification. This can be understood simply by considering a
question that, under the study condition, can the response of one randomly chosen
individual out of 22,071 participants belong to one of the six cells in the Table 2.7.
This is not possible, because, even though, the placebo pill or aspirin was chosen by
some one for a participant with a prior probability, the treatment was made fixed for
an individual participant for the whole study period. Thus, treatment variable here
must be considered as a fixed regression covariate with two levels. This prompted
one to reanalyze this data set by using the product multinomial model (2.68)–(2.69)
by treating heart attack status as the multinomial response variable only and the
treatment as a categorical covariate with two levels. By this token, for both cross-
sectional and longitudinal analysis, this book emphasizes on appropriate modeling
for the categorical data by distinguishing categorical covariates from categorical
responses.

Product multinomial global regression approach:

Turning back to the analysis of the categorical data in Table 2.7, following (2.69) we
first write the multinomial probabilities at two levels of the treatment covariate as
follows. Note that in notation of the model (2.69), for this heart attack and aspirin
use data, we write J = 3 and p+1 = 2, and

θ ∗ = (β10,β11,β20,β21)
′.

When the model (2.68)–(2.69) is compared with (2.90)–(2.91), α1 from the latter
model is not needed. Also, even though

β10,β20,β11,β21

in the model (2.69) are, respectively, equivalent to the notations

β1,β2,φ11,φ12

of the model (2.90), they do not have, however, the same interpretation. This is
because, β11 and β21 in (2.69) are simply regression effects of the covariate level 1
on first two categories, whereas φ11 and φ12 in (2.90) are treated to be association
or odds ratio parameters. But, there is a definition problem with these odds ratio
parameters in this situation, because treatment here cannot represent a response
variable.
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Now for the product multinomial model (2.68)–(2.69), one writes the level based
{J× (J−1)(p+1)} ≡ {3×4} covariate matrices as

X1 =

⎛

⎝
1 1 0 0
0 0 1 1
0 0 0 0

⎞

⎠

X2 =

⎛

⎝
1 0 0 0
0 0 1 0
0 0 0 0

⎞

⎠ .

Then the cell probabilities and their forms in terms of the global parameters θ ∗ =
(β10,β11,β20,β21)

′ are given by
Level 1 (Aspirin user):
Response count: K[1]1 = 5, K[1]2 = 99, K[1]3 = 10,933, K[1] = 11,037.
Probabilities:

π[1]1 =
exp(β10 +β11)

1+∑2
g=1 exp(βg0 +βg1)

, π[1]2 =
exp(β20 +β21)

1+∑2
g=1 exp(βg0 +βg1)

,

π[1]3 =
1

1+∑2
g=1 exp(βg0 +βg1)

. (2.91)

Global regression form:

π[1]1 =
exp(x′[1]1θ ∗)

∑3
j=1 exp(x′

[1] jθ ∗)
, π[1]2 =

exp(x′[1]2θ ∗)

∑3
j=1 exp(x′

[1] jθ ∗)
,

π[1]3 =
exp(x′[1]3θ ∗)

∑3
j=1 exp(x′

[1] jθ ∗)
,

where x′[1]2, for example, is the second row vector of the above written X1 : 3× 4
matrix.
Level 2 (Placebo user):
Response count: K[2]1 = 18, K[2]2 = 171, K[2]3 = 10,845, K[2] = 11,034.
Probabilities:

π[2]1 =
exp(β10)

1+∑2
g=1 exp(βg0)

, π[2]2 =
exp(β20)

1+∑2
g=1 exp(βg0)

,

π[2]3 =
1

1+∑2
g=1 exp(βg0)

. (2.92)
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Table 2.8 Parameter
estimates for the treatment
and heart attack status data of
Table 2.7

Regression parameters
Quantity β10 β11 β20 β21

Estimate −6.401 −1.289 −4.150 −0.555

Standard error 0.2360 0.5057 0.0771 0.1270

Global regression form:

π[2]1 =
exp(x′[2]1θ ∗)

∑3
j=1 exp(x′

[2] jθ ∗)
, π[2]2 =

exp(x′[2]2θ ∗)

∑3
j=1 exp(x′

[2] jθ ∗)
,

π[2]3 =
exp(x′[2]3θ ∗)

∑3
j=1 exp(x′

[2] jθ ∗)
.

Now following (2.71) and using the iterative equation (2.75), we solve the
product multinomial based likelihood estimating equation

2

∑
�=1

X ′
�

[
y[�]−K[�]π[�]

]
= 0, (2.93)

where

y[�] =

⎛

⎜
⎝

K[�]1

K[�]2

K[�]3

⎞

⎟
⎠ and π[�] =

⎛

⎜
⎝

π[�]1

π[�]2

π[�]3

⎞

⎟
⎠ .

These estimates and their corresponding standard errors computed by using (2.76)
are reported in Table 2.8.

In order to interpret these parameter estimates, notice from the formulas from
the probabilities under level 2 (placebo group) that the values of β10 and β20 would
determine the probabilities of a placebo user individual to be in the ‘fatal attack’
or ‘non-fatal attack’ group, as compared to β30 = 0 used for probability for the
same individual to be in the reference group, that is, in the ‘no attack’ group. To
be specific, when the large negative values of β10(= −6.401) and β20(= −4.150)
are compared to β30 = 0, it becomes clear by (2.92) that the probability of a
placebo user to be in the ‘no attack’ group is very large, as expected, followed
by the probabilities for the individual to be in the ‘non-fatal’ and fatal groups,
respectively. Further because the value of β10+β11 would determine the probability
of an aspirin user in the ‘fatal attack’ group, the negative value of β11(= −1.289)
shows that an aspirin user has smaller probability than a placebo user to be in the
‘fatal attack’ group. Other estimates can be interpreted similarly. Now by using
these estimates from Table 2.8, the estimates for all three categorized multinomial
probabilities in (2.91) under aspirin user treatment level, and in (2.92) under
placebo user treatment level, may be computed. These estimated probabilities along
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Table 2.9 Observed and estimated multinomial probabilities for
the treatment versus heart attack status data of Table 2.7

Myocardial Infarction
Proportion/ Fatal Non-Fatal No
Probability Attack Attack Attack Total

Aspirin Observed 0.00045 0.00897 0.99058 1.00
Estimated 0.00045 0.00897 0.99058 1.00

Placebo Observed 0.00163 0.01550 0.98287 1.00
Estimated 0.00163 0.01550 0.98287 1.00

with their counterpart (observed proportions) are displayed in Table 2.9. Similar to
Table 2.6 for the snoring and heart disease problem data, it is clear from Table 2.9
that the observed and estimated probabilities are same. This happens because the
four independent parameters, namely β10, β11, β20, and β21 are used to define
the probabilities in (2.91)–(2.92) (see also (2.68)–(2.69)) to fit four independent
observations, two under aspirin user treatment level and another two under the
placebo user treatment level. Thus a saturated model is fitted through solving the
corresponding optimal likelihood estimating equations (2.93), and the parameter
estimates shown in Table 2.8 are consistent and highly efficient (details are not
discussed here).

Remark that the estimates of the regression parameters under two (independent)
categories shown in Table 2.8 were obtained by applying the product multinomial
estimating equation (2.93) to the observed data given in the contingency Table 2.7.
However, because the data in this table are clearly laid out under each of the
two treatment levels, one may easily reconstruct the individual level response
and covariate information without any identity of the individual. Suppose that the
treatment covariate is defined as

wi =

{
1 for aspirin taken by the ith individual
0 otherwise,

and the multinomial response of this individual is given by

yi =

⎧
⎨

⎩

(1, 0)′ if this ith individual had fatal attack
(0, 1)′ if this ith individual had non fatal attack
(0, 0)′ otherwise, i.e., if this ith individual had no attack.

Consequently, one may directly solve the individual history based multinomial
likelihood estimating equation (2.48) to obtain the same estimates (as in Table 2.8)
of the regression parameters involved in the probability model (2.45).

Turning back to the results shown in Table 2.9, it is clear that the estimated
proportion of individuals whose heart attack was either fatal or non-fatal is shown to
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Table 2.10
Cross-classification of gender
and physician visit

Physician visit status
Gender None Few Not so few High Total

Male 28 40 16 12 96

Female 11 20 21 32 84

Total 38 62 36 44 180

be (0.00045+0.00897)= 0.00942 for the aspirin group, and (0.00164+0.01562)=
0.01726 for the placebo group, indicating the advantage of using aspirin as
opposed to using none. This type of comparison is also available in Agresti (1990,
Section 2.2.4, page 17), but by using only observed data. Later on it was emphasized
in Agresti (2002, Section 2.1.1) for the comparison of the distribution of responses
under each treatment level, but unlike in this section, no model was fitted.

2.2.2.4.2 Analysis of Physician Visits Data with J = 4 Categories

We continue to illustrate the application of the product multinomial likelihood
models now by considering the physician visits data described in Table 2.1. We
consider the physician visits in four categories: none, few, not so few, and high visits,
as indicated in Table 2.2, whereas there were three categories for heart attack status
in the treatment versus heart attack data considered in the last section. To be specific,
for the physician visits data, we will fit the product multinomial models to examine
the marginal effects of (1) gender; (2) chronic disease; and (3) education levels, on
the physician visits, in the following Sects. 2.2.2.4.2(a), (b), and (c), respectively.

2.2.2.4.2 (a) Illustration 2.5: Analysis for Gender Effects on Physician Visits

To examine the gender effects on the physician visits we use the data from Table 2.1
and display them in the 2× 4 contingency Table 2.10. For convenience of fitting
the product multinomial model (2.67)–(2.69) to this data, for each gender level we
write the multinomial observation, probabilities under each of four categories, and
the global regression form along with corresponding covariate matrix, as follows:
Level 1 (Male):
Response count: K[1]1 = 27, K[1]2 = 42, K[1]3 = 15, K[1]4 = 12, K[1] = 96.
Probabilities:

π[1]1 =
exp(β10 +β11)

1+∑3
g=1 exp(βg0 +βg1)

, π[1]2 =
exp(β20 +β21)

1+∑3
g=1 exp(βg0 +βg1)

,

π[1]3 =
exp(β30 +β31)

1+∑3
g=1 exp(βg0 +βg1)

, π[1]4 =
1

1+∑3
g=1 exp(βg0 +βg1)

. (2.94)
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Global regression form:

π[1]1 =
exp(x′[1]1θ ∗)

∑4
j=1 exp(x′

[1] jθ ∗)
, π[1]2 =

exp(x′[1]2θ ∗)

∑4
j=1 exp(x′

[1] jθ ∗)
,

π[1]3 =
exp(x′[1]3θ ∗)

∑4
j=1 exp(x′

[1] jθ ∗)
,π[1]4 =

exp(x′[1]4θ ∗)

∑4
j=1 exp(x′

[1] jθ ∗)
,

where

θ ∗ = (β10,β11,β20,β21,β30,β31)
′,

and x′[1]3, for example, is the third row vector of the X1 : 4×6 matrix given by

X1 =

⎛

⎜
⎜
⎝

1 1 0 0 0 0
0 0 1 1 0 0
0 0 0 0 1 1
0 0 0 0 0 0

⎞

⎟
⎟
⎠ . (2.95)

Level 2 (Female):
Response count: K[2]1 = 11, K[2]2 = 20, K[2]3 = 21, K[2]4 = 32, K[2] = 84.
Probabilities:

π[2]1 =
exp(β10)

1+∑3
g=1 exp(βg0)

, π[2]2 =
exp(β20)

1+∑3
g=1 exp(βg0)

,

π[2]3 =
exp(β30)

1+∑3
g=1 exp(βg0)

, π[2]4 =
1

1+∑3
g=1 exp(βg0)

. (2.96)

Global regression form:

π[2]1 =
exp(x′[2]1θ ∗)

∑4
j=1 exp(x′

[2] jθ ∗)
, π[2]2 =

exp(x′[2]2θ ∗)

∑4
j=1 exp(x′

[2] jθ ∗)
,

π[2]3 =
exp(x′[2]3θ ∗)

∑4
j=1 exp(x′

[2] jθ ∗)
,π[2]4 =

exp(x′[2]4θ ∗)

∑4
j=1 exp(x′

[2] jθ ∗)
,

where θ ∗ remains the same as

θ ∗ = (β10,β11,β20,β21,β30,β31)
′,

and x′[2]3, for example, is the third row vector of the X2 : 4×6 matrix given by
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Table 2.11 Parameter estimates for the gender and physician visit status data
of Table 2.10

Regression parameters
Quantity β10 β11 β20 β21 β30 β31

Estimate −1.068 1.915 −0.470 1.674 −0.421 0.709

Standard error 0.3495 0.4911 0.2850 0.4354 0.2808 0.4740

X2 =

⎛

⎜
⎜
⎝

1 0 0 0 0 0
0 0 1 0 0 0
0 0 0 0 1 0
0 0 0 0 0 0

⎞

⎟
⎟
⎠ . (2.97)

Now following (2.71) and using the iterative equation (2.75), we solve the
product multinomial based likelihood estimating equation

2

∑
�=1

X ′
�

[
y[�]−K[�]π[�]

]
= 0, (2.98)

where

y[�] =

⎛

⎜
⎜
⎜
⎝

K[�]1

K[�]2

K[�]3

K[�]4

⎞

⎟
⎟
⎟
⎠

and π[�] =

⎛

⎜
⎜
⎜
⎝

π[�]1

π[�]2

π[�]3

π[�]3

⎞

⎟
⎟
⎟
⎠
.

These estimates and their corresponding standard errors computed by using (2.76)
are reported in Table 2.11.

Notice from (2.96) that the estimates of β10, β20, and β30 indicate the relative
probability for a female to be in none, few, and not so few categories, respectively,
as compared to the probability for high category determined by β40 = 0 (by
assumption).

Because all three estimates are negative, the estimate for β10 being large negative,
it follows that a female has the highest probability to be in ‘high visit’ group and
smallest probability to be in the ‘none’ (never visited) group. By the same token, it
follows from (2.94) that the largest value for β20+β21 = 1.204 estimate as compared
to its reference value 0.0 indicates that a male has the highest probability to be in
the ‘few visits’ group. These probabilities can be verified from Table 2.12 where
we have displayed the estimated as well as observed probabilities. In summary, the
estimated probabilities in Table 2.12 show that a female visits the physician for more
number of times as compared to a male. These results are in agreement with those
of health care utilization study reported in Sutradhar (2011, Section 4.2.8) where
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Table 2.12 Observed and estimated multinomial probabilities for the
gender versus physician visits data of Table 2.10

Physician visit status

Gender Probability None Few Not so few High Total

Male Observed 0.2917 0.4166 0.1667 0.1250 1.0

Estimated 0.2917 0.4166 0.1667 0.1250 1.0

Female Observed 0.1309 0.2381 0.2500 0.3810 1.0

Estimated 0.1309 0.2381 0.2500 0.3810 1.0

Table 2.13
Cross-classification of
chronic condition and
physician visit

Physician visit status

Chronic condition None Few Not so few High Total

Yes 13 25 21 33 92

No 26 35 16 11 88

Total 39 60 37 44 180

the actual number of visits (as opposed to visit category) were analyzed by fitting
a familial/clustered model using the so-called generalized quasi-likelihood (GQL)
estimation approach.

2.2.2.4.2 (b) Illustration 2.6: Analysis for Chronic Condition Effects
on Physician Visits

To examine the chronic condition effects on the number of visits, we first display
the physician visit data in the form a contingency (cross-classified) table. More
specifically, the 2 × 4 cross-classified Table 2.13 shows the distribution of the
number of the respondents under four visit categories at a given chronic condition
level. The chronic condition covariate has two levels. One of the levels represents
the individuals with no chronic disease, and the individuals with one or more
chronic disease have been assigned to the other group (level). Note that because
both Tables 2.10 and 2.13 contain one categorical covariate with two levels, the
probability models for the data in Table 2.13 would be the same as that of Table 2.10.
The only difference is in the names of the levels. For this reason we do not reproduce
the probability formulas and the form of X� matrices. However because the data are
naturally different we write them in notation as follows:
Chronic condition level 1 (Yes):
Response count: K[1]1 = 13, K[1]2 = 25, K[1]3 = 21, K[1]4 = 33, K[1] = 92.
Chronic condition level 2 (No):
Response count: K[2]1 = 25, K[2]2 = 37, K[2]3 = 15, K[2]4 = 11, K[2] = 88.
We then solve the product multinomial likelihood estimating equation (2.98). The
estimates of the regression parameters involved in the probability formulas (2.94)
and (2.96) for the cross-classified data in Table 2.13 are given in Table 2.14. The
estimates probabilities are shown in Table 2.15.
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Table 2.14 Parameter estimates for the chronic condition and physician visit
status data of Table 2.13

Regression parameters
Quantity β10 β11 β20 β21 β30 β31

Estimate 0.860 −1.792 1.157 −1.435 0.375 −0.827

Standard error 0.3597 0.4864 0.3457 0.4356 0.3917 0.4810

Table 2.15 Observed and estimated multinomial probabilities for the chronic condi-
tion versus physician visits data of Table 2.13

Physician visit status

Chronic condition Probability None Few Not so few High Total

Yes Observed 0.1413 0.2717 0.2283 0.3587 1.0

Estimated 0.1413 0.2717 0.2283 0.3587 1.0

No Observed 0.2955 0.3977 0.1818 0.1250 1.0

Estimated 0.2955 0.3977 0.1818 0.1250 1.0

Notice from (2.96) that the estimates of β10, β20, and β30, would indicate the
relative probability for an individual with no chronic disease to be in none, few, and
not so few categories, respectively, as compared to the probability for being in high
category determined by β40 = 0 (by assumption). Consequently,

β̂20 = 1.157 > β̂10 > β̂30 > β40 = 0

indicates that an individual with no chronic disease has higher probability of paying
no visits or a few visits, as compared to paying higher number of visits, which is
expected. By the same token,

[β̂10 + β̂11 = 0.860−1.792 =−0.932]< [β̂30 + β̂31]< [β̂20 + β̂21]< 0,

indicates that an individual with chronic disease has higher probability of paying
larger number of visits. Note however that these estimates also indicate that
irrespective of chronic condition a considerably large number of individuals pay
at least a few visits, which may be natural or due to other covariate conditions.

2.2.2.4.2 (c) Illustration 2.7: Analysis for Education Level Effects
on Physician Visits

We continue to illustrate the application of product multinomial approach now by
examining the marginal effects of education status of an individual on the physician
visit. Three levels of education are considered, namely low (less than high school
education), medium (high school education), and high (more than high school
education). The cross-classified data for education level versus physician visits,
obtained from Table 2.1, are shown in Table 2.16.
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Table 2.16 Cross-classification of education level and physician visit

Physician visit status

Education level None Few Not so few High Total

Low (< High School) 17 16 10 15 58

Medium (High School) 6 8 8 11 33

High (> High School) 16 36 19 18 89

Total 39 60 37 44 180

Notice that it is appropriate to consider the education level at a given year (1985)
as a fixed covariate. Here this covariate has three levels and two dummy covariates
can be used to represent these three levels of education. Now to construct the
likelihood estimating equation (2.71), following (2.69), we, for convenience, present
the probabilities and their regression form as follows.
Level 1 (Low education):
Response count: K[1]1 = 17, K[1]2 = 16, K[1]3 = 10, K[1]4 = 15, K[1] = 58.
Probabilities:

π[1]1 =
exp(β10 +β11)

1+∑3
g=1 exp(βg0 +βg1)

, π[1]2 =
exp(β20 +β21)

1+∑3
g=1 exp(βg0 +βg1)

,

π[1]3 =
exp(β30 +β31)

1+∑3
g=1 exp(βg0 +βg1)

, π[1]4 =
1

1+∑3
g=1 exp(βg0 +βg1)

. (2.99)

Global regression form: For

θ ∗ = (β10,β11,β12,β20,β21,β22,β30,β31,β32)
′,

the above probabilities may be re-expressed as

π[1]1 =
exp(x′[1]1θ ∗)

∑4
j=1 exp(x′

[1] jθ ∗)
, π[1]2 =

exp(x′[1]2θ ∗)

∑4
j=1 exp(x′

[1] jθ ∗)
,

π[1]3 =
exp(x′[1]3θ ∗)

∑4
j=1 exp(x′

[1] jθ ∗)
,π[1]4 =

exp(x′[1]4θ ∗)

∑4
j=1 exp(x′

[1] jθ ∗)
,

where x′[1]3, for example, is the third row vector of the X1 : 4×9 matrix given by

X1 =

⎛

⎜
⎜
⎝

1 1 0 0 0 0 0 0 0
0 0 0 1 1 0 0 0 0
0 0 0 0 0 0 1 1 0
0 0 0 0 0 0 0 0 0

⎞

⎟
⎟
⎠ . (2.100)
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Level 2 (Medium education):
Response count: K[2]1 = 6, K[2]2 = 8, K[2]3 = 8, K[2]4 = 11, K[2] = 33.
Probabilities:

π[2]1 =
exp(β10 +β12)

1+∑3
g=1 exp(βg0 +βg2)

, π[2]2 =
exp(β20 +β22)

1+∑3
g=1 exp(βg0 +βg2)

,

π[2]3 =
exp(β30 +β32)

1+∑3
g=1 exp(βg0 +βg2)

, π[2]4 =
1

1+∑3
g=1 exp(βg0 +βg2)

. (2.101)

Global regression form:

π[2]1 =
exp(x′[2]1θ ∗)

∑4
j=1 exp(x′

[2] jθ ∗)
, π[2]2 =

exp(x′[2]2θ ∗)

∑4
j=1 exp(x′

[2] jθ ∗)
,

π[2]3 =
exp(x′[2]3θ ∗)

∑4
j=1 exp(x′

[2] jθ ∗)
,π[2]4 =

exp(x′[2]4θ ∗)

∑4
j=1 exp(x′

[2] jθ ∗)
,

where θ ∗ remains the same, but the covariate matrix X2 is given by

X2 =

⎛

⎜
⎜
⎝

1 0 1 0 0 0 0 0 0
0 0 0 1 0 1 0 0 0
0 0 0 0 0 0 1 0 1
0 0 0 0 0 0 0 0 0

⎞

⎟
⎟
⎠ . (2.102)

Level 3 (High education):
Response count: K[3]1 = 16, K[2]2 = 36, K[3]3 = 19, K[3]4 = 18, K[3] = 89.
Probabilities:

π[3]1 =
exp(β10)

1+∑3
g=1 exp(βg0)

, π[3]2 =
exp(β20)

1+∑3
g=1 exp(βg0)

,

π[3]3 =
exp(β30)

1+∑3
g=1 exp(βg0)

, π[3]4 =
1

1+∑3
g=1 exp(βg0)

. (2.103)

Global regression form:

π[3]1 =
exp(x′[3]1θ ∗)

∑4
j=1 exp(x′

[3] jθ ∗)
, π[3]2 =

exp(x′[3]2θ ∗)

∑4
j=1 exp(x′

[3] jθ ∗)
,

π[3]3 =
exp(x′[3]3θ ∗)

∑4
j=1 exp(x′

[3] jθ ∗)
,π[3]4 =

exp(x′[3]4θ ∗)

∑4
j=1 exp(x′

[3] jθ ∗)
,
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Table 2.17 Parameter estimates for the education level and physician visit status data of
Table 2.16

Regression parameters

Quantity β10 β11 β12 β20 β21 β22 β30 β31 β32

Estimate −0.118 0.243 −0.488 0.693 −0.629 −1.012 0.054 −0.460 −0.373

Standard error 0.3436 0.4935 0.6129 0.2887 0.4610 0.5470 0.3289 0.5243 0.5693

where θ ∗ remains the same, but the covariate matrix X3 is given by

X3 =

⎛

⎜
⎜
⎝

1 0 0 0 0 0 0 0 0
0 0 0 1 0 0 0 0 0
0 0 0 0 0 0 1 0 0
0 0 0 0 0 0 0 0 0

⎞

⎟
⎟
⎠ . (2.104)

Now following (2.71) and using the iterative equation (2.75), we solve the
product multinomial based likelihood estimating equation

2

∑
�=1

X ′
�

[
y[�]−K[�]π[�]

]
= 0, (2.105)

where

y[�] =

⎛

⎜
⎜
⎜
⎝

K[�]1

K[�]2

K[�]3

K[�]4

⎞

⎟
⎟
⎟
⎠

and π[�] =

⎛

⎜
⎜
⎜
⎝

π[�]1

π[�]2

π[�]3

π[�]4

⎞

⎟
⎟
⎟
⎠
.

These estimates and their corresponding standard errors computed by using (2.76)
are reported in Table 2.17. Further by using these estimates in the probability
formulas in (2.99), (2.101), and (2.103), we compute the estimated probabilities,
which are same as the corresponding observed probabilities. For the sake of
completeness, these probabilities are displayed in Table 2.18.

Notice from (2.103) that the estimates of β10, β20, and β30 indicate the relative
probability for an individual with high education to be in none, few, and not so few
categories, respectively, as compared to the probability for high category determined
by β40 = 0 (by assumption). A large positive value of β̂20 = 0.693 as compared to
β40 = 0 shows that a large proportion of individuals belonging to the high education
group paid a few visits to the physician. Similarly, for the individuals with medium
level education, the negative values of β̂ j0 + β̂ j2 for j = 1,2,3, such as β̂20 + β̂22 =
(0.693 − 1.012) = −0.319, as compared to 0 show that a large proportion of
individuals in this group paid high visits to the physician. On the contrary, by using
(2.99), the largest positive value of β̂10+ β̂11 = (−0.118+0.243) = 0.125 indicates
that a large proportion of individuals in the low education group did not pay any
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Table 2.18 Observed and estimated multinomial probabilities for the education
level versus physician visits data of Table 2.16

Physician visit status

Education level Probability None Few Not so few High Total

Low Observed 0.2931 0.2759 0.1724 0.2586 1.0

Estimated 0.2931 0.2759 0.1724 0.2586 1.0

Medium Observed 0.1819 0.2424 0.2424 0.3333 1.0

Estimated 0.1819 0.2424 0.2424 0.3333 1.0

High Observed 0.1798 0.4045 0.2135 0.2022 1.0

Estimated 0.1798 0.4045 0.2135 0.2022 1.0

visits. Thus, in general, most of the individuals in the low education group paid no
visits to the physician, whereas most of the individuals with higher education paid
a moderate number of visits (few visits). These categorical data based results agree,
in general, with those reported in Sutradhar (2011, Section 4.2.8) based on original
counts. However, the present categorical data based analysis naturally reveals more
detailed pattern of visits.

2.2.3 Multinomial Likelihood Models with L= (p+1)(q+1)
Nominal Levels for Two Covariates with Interactions

Let there be two categorical covariates, one with p+1 levels and the other with q+1
levels. Following (2.45), for an individual i, we use the p-dimensional vector wi =
[wi1, . . . ,wis, . . . ,wip]

′ containing p dummy covariates to represent p+ 1 levels of
the first categorical covariate, and the q-dimensional vector vi = [vi1, . . . ,vim, . . . ,viq]

′
containing q dummy covariates to represent the q+1 levels of the second categorical
covariate. Further, let wi(vi) be a pq-dimensional nested covariate vector with vi

nested within wi. That is,

wi(vi) = [wi1vi1, . . . ,wi1viq,wi2v11, . . . ,wisvim, . . . ,wipviq]
′.

Similar to (2.45), one may then write the probability for the response of the ith
individual to be in the jth ( j = 1, . . . ,J) category as

P[yi = y( j)
i = δi j] = π(i) j =

⎧
⎨

⎩

exp(β j0+β ′
jwi+ξ ′

jvi+φ ∗
j
′wi(vi))

1+∑J−1
g=1 exp(βg0+β ′

gwi+ξ ′
gvi+φ ∗

g
′wi(vi))

for j = 1, . . . , J−1

1
1+∑J−1

g=1 exp(βg0+β ′
gwi+ξ ′

gvi+φ ∗
g
′wi(vi))

for j = J,

(2.106)

where β j = [β j1, . . . ,β js, . . . ,β jp]
′, ξ j = [ξ j1, . . . ,ξ jm, . . . ,ξ jq]

′, and φ ∗
j be the

pq-dimensional vector of interaction effects of the covariates defined as

φ ∗
j = [φ ∗

j11, . . . ,φ ∗
j1q,φ ∗

j21, . . . ,φ ∗
jsm, . . . ,φ ∗

jpq]
′.
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Note that in (2.89), the interaction effects of two response variables are denoted by
{φr j} whereas in (2.106), {φ ∗

jum} represent the interaction effects of two covariates

on the response yi = y( j)
i . Thus, a clear difference is laid out so that one does not

use the same model to deal with contingency tables between two responses, and
the contingency tables between one response and one or two or more categorical
covariates. To be more explicit, one must use the probabilities in (2.89) to construct
a full multinomial model, whereas the probabilities in (2.106) should be used to
construct the product multinomial model.

Note that the p + 1 levels corresponding to the covariate vector wi may be
formed as

(wi1, · · · , wip) ≡

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

( 1, 01′p−1) −→ Level 1
( 01′1, 1, 01′p−2) −→ Level 2
( · · · · · · · · · · · ·)

( 01′�1−1, 1, 01′p−�1
) −→ Level �1

( · · · · · · · · · · · ·)
( 01′p−1, 1 ) −→ Level p

( 01′p) −→ Level p+1

(2.107)

Similarly, the q+1 levels corresponding to the covariate vector vi may be formed as

(vi1, · · · , viq) ≡

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

( 1, 01′q−1) −→ Level 1
( 01′1, 1, 01′q−2) −→ Level 2
( · · · · · · · · · · · ·)

( 01′�2−1, 1, 01′q−�2
) −→ Level �2

( · · · · · · · · · · · ·)
( 01′q−1, 1 ) −→ Level q

( 01′q) −→ Level q+1

(2.108)

Consequently, by (2.106), we may write the level based probabilities for an
individual i, with covariates at level (�1, �2), to be in the jth category as

π[�1,�2] j = π(i∈{�1,�2}) j

=

⎧
⎪⎨

⎪⎩

exp(β j0+β j�1+ξ j�2+φ ∗
j,�1�2

)

1+∑J−1
g=1 exp(βg0+βg�1+ξg�2+φ ∗

g,�1�2
)

for j = 1, . . . ,J−1;�1 = 1, . . . , p;�2 = 1, . . . ,q

1
1+∑J−1

g=1 exp(βg0+βg�1+ξg�2+φ ∗
g,�1�2

)
for j = J; �1 = 1, . . . , p;�2 = 1, . . . ,q,

(2.109)
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π[�1,q+1] j = π(i∈{�1,q+1}) j

=

⎧
⎨

⎩

exp(β j0+β j�1 )

1+∑J−1
g=1 exp(βg0+βg�1 )

for j = 1, . . . ,J−1;�1 = 1, . . . , p

1
1+∑J−1

g=1 exp(βg0+βg�1 )
for j = J; �1 = 1, . . . , p,

(2.110)

π[p+1,�2] j = π(i∈{p+1,�2}) j

=

⎧
⎨

⎩

exp(β j0+ξ j�2
)

1+∑J−1
g=1 exp(βg0+ξg�2

)
for j = 1, . . . ,J−1;�2 = 1, . . . ,q

1
1+∑J−1

g=1 exp(βg0+ξg�2
)

for j = J; �2 = 1, . . . ,q,
(2.111)

and

π[p+1,q+1] j = π(i∈{p+1,q+1}) j

=

⎧
⎨

⎩

exp(β j0)

1+∑J−1
g=1 exp(βg0)

for j = 1, . . . ,J−1

1
1+∑J−1

g=1 exp(βg0)
for j = J.

(2.112)

Next we display the observed cell counts in notation under all J categories
and covariates level (�1, �2). Note that by transforming the rectangular levels to
a real valued level, that is, using the relabeling formula {� ≡ [(�1 − 1)(q + 1) +
�2], �1 = 1, . . . , p+1;�2 = 1, . . . ,q+1}, one may still use the Table 2.4 after a slight
adjustment to display the cell counts in the present setup with two covariates. The
cell counts with level adjustment are shown in Table 2.19.

Note that even though the cell probabilities in Tables 2.4 and 2.19 are denoted by
the same notation π[�] j, they are however different. The difference lies in the form of
global regression parameter θ ∗. To be more specific, the probabilities in Table 2.4
follow the formulas in (2.63)–(2.64), which were further re-expressed by (2.69) as

π[�] j =
exp(x′[�] jθ

∗)

∑J
g=1 exp(x′

[�]gθ ∗)
,

with

θ ∗ = [β ∗
1
′, . . . ,β ∗

j
′, . . . ,β ∗

J−1
′]′, where β ∗

j = [β j0,β ′
j]
′.

Note that once θ ∗ is written, the row vector x′[�] j becomes specified from the prob-
ability formulas. Now because π[�] j in Table 2.19 represent the two covariates level
based probabilities defined in (2.109)–(2.112), the global regression parameters are
different than θ ∗ in (2.69).
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Table 2.19 A notational display for cell counts and probabilities for J categories under
covariates level (�1, �2)−→ Newlevel �= (�1 −1)(q+1)+ �2

J response categories

Covariates level New level Quantity 1 . . . J Total

(1,1) 1 Count K[1]1 . . . K[1]J K[1]

Probability π[1]1 . . . π[1]J 1

. . . . . . . . .

. . . . . . .

(1,q+1) q+1 Count K[q+1]1 . . . K[q+1]J K[q+1]

Probability π[q+1]1 . . . π[q+1]J 1

(2,1) q+2 Count K[q+2]1 . . . K[q+2]J K[q+2]

Probability π[q+2]1 . . . π[q+2]J 1

. . . . . . . . .

. . . . . . .

(�1, �2) � Count K[�]1 . . . K[�]J K[�]

Probability π[�]1 . . . π[�]J 1

. . . . . . . . .

. . . . . . .

(p+1,q+1) (p+1)(q+1) Count K[(p+1)(q+1)]1 . . . K[(p+1)(q+1)]J K[(p+1)(q+1)]

Probability π[(p+1)(q+1)]1 . . . π[(p+1)(q+1)]J 1

Let θ ∗∗ denote the regression parameters used in two covariates level based
probabilities in (2.109)–(2.112). To be specific, we write

θ ∗∗ = [β ∗∗
1

′, . . . ,β ∗∗
j

′, . . . ,β ∗∗
J−1

′]′ : {(J−1)(p+1)(q+1)}×1, (2.113)

where

β ∗∗
j = [β j0, β ′

j, ξ ′
j, φ ∗′

j]
′ : {(p+1)(q+1)}×1,

with

β ′
j = [β j1, . . . ,β js, . . . ,β jp]

ξ ′
j = [ξ j1, . . . ,ξ jm, . . . ,ξ jq]

φ ∗′
j = [φ ∗

j,11, . . . ,φ ∗
j,1q,φ ∗

j,21, . . . ,φ ∗
j,sm, . . . ,φ ∗

j,pq],

by (2.106).
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Consequently, at level

�= (�1 −1)(q+1)+ �2, �1 = 1, . . . , p+1; �2 = 1, . . . ,q+1,

all probabilities defined in (2.109)–(2.112) may be expressed as

π[�] j =
exp(x′[�] jθ

∗∗)

∑J
g=1 exp(x′

[�]gθ ∗∗)
, (2.114)

where x′[�] j : 1× (J − 1)(p+ 1)(q+ 1) is the jth ( j = 1, . . . ,J) row vector of the
X� : J× (J−1)(p+1)(q+1) matrix at the �th level (�= 1, . . . ,(p+1)(q+1)). We
construct this jth row vector of the X� matrix in four groups as follows.

Group 1: �= {(�1 −1)q+ �2} for �1 = 1, . . . , p; �2 = 1, . . . ,q

x′[�] j = x′[(�1−1)q+�2] j

=

⎧
⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

[
01′( j−1)(p+1)(q+1),

{1,01′�1−1,1,01′p−�1
,01′�2−1,1,01′q−�2

,01′(�1−1)q+�2−1,1,01′pq−[(�1−1)q+�2]
},

01′(J−1− j)(p+1)(q+1)

]
, for j = 1, . . . ,J−1

01′(J−1)(p+1)(q+1), for j = J.

(2.115)

Group 2: �= {(�1 −1)(q+1)+(q+1)} for �1 = 1, . . . , p

x′[�] j = x′[(�1−1)(q+1)+(q+1)] j

=

⎧
⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

[
01′( j−1)(p+1)(q+1),

{1,01′�1−1,1,01′p−�1
,01′q,01′pq,},

01′(J−1− j)(p+1)(q+1)

]
, for j = 1, . . . ,J−1

01′(J−1)(p+1)(q+1), for j = J.

(2.116)

Group 3: �= {p(q+1)+ �2} for �2 = 1, . . . ,q

x′[�] j = x′[p(q+1)+�2] j

=

⎧
⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

[
01′( j−1)(p+1)(q+1),

{1,01′p,01′�2−1,1,01′q−�2
,01′pq,},

01′(J−1− j)(p+1)(q+1)

]
, for j = 1, . . . ,J−1

01′(J−1)(p+1)(q+1), for j = J.

(2.117)

Group 4: �= {(p+1)(q+1)}

x′[�] j = x′[(p+1)(q+1)] j
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=

⎧
⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

[
01′( j−1)(p+1)(q+1),

{1,01′p,01′q,01′pq,},
01′(J−1− j)(p+1)(q+1)

]
, for j = 1, . . . ,J−1

01′(J−1)(p+1)(q+1), for j = J.

(2.118)

Now by replacing θ ∗ with θ ∗∗ in (2.67)–(2.68), by similar calculations as in
(2.71), one obtains the likelihood equations for θ ∗∗ as

∂ log L(θ ∗∗)
∂θ ∗∗ =

(p+1)(q+1)

∑
�=1

X ′
�

[
y[�]−K[�]π[�]

]
= 0, (2.119)

where

y[�] = [K[�]1, . . . ,K[�] j, . . . ,K[�]J]
′ and π[�] = [π[�]1, . . . ,π[�] j, . . . ,π[�]J]

′,

with probabilities are being given by (2.114) or equivalently by (2.109)–(2.112), and
furthermore X� matrices for �= 1, . . . ,(p+1)(q+1) are given as in (2.115)–(2.118).

Note that after slight adjustment in notation, one may use the iterative equation
(2.75) to solve this likelihood equation in (2.119). To be specific, the iterative
equation to solve (2.119) for the final estimate for θ ∗∗ is given by

θ̂ ∗∗(r+1) = θ̂ ∗∗(r)+

[
(p+1)(q+1)

∑
�=1

K[�]X
′
�

[
Dπ[�] −π[�]π ′

[�]

]
X�

]−1

×
[
(p+1)(q+1)

∑
�=1

X ′
�

(
y[�]−K[�]π[�]

)
]

θ∗∗=θ̂∗∗(r)
, (2.120)

where Dπ[�] = diag[π[�]1, . . . ,π[�] j, . . . ,π[�]J]. Furthermore, the covariance matrix of

θ̂ ∗∗ has the formula

var(θ̂ ∗∗) =

[
(p+1)(q+1)

∑
�=1

K[�]X
′
�{Dπ[�] −π[�]π ′

[�]}X�

]−1

. (2.121)

2.2.3.1 Illustration 2.8: Analysis for the Effects of Both Gender
and Chronic Condition on the Physician Visits

The marginal effects of gender and chronic condition on the physician visits
were discussed in Sects. 2.2.2.4.2(a) and (b), respectively. To illustrate the product
multinomial model for a response variable (physician visit) based on two categorical
covariates, discussed in the last section, we now consider gender and chronic
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Table 2.20 2×2×4 contingency table for the physician visit data corresponding to gender
and chronic condition of the individuals

Physician visit status

Gender Chronic condition None Few Not so few High Level total (K�)

Male One or more 8 13 9 10 40

None 20 27 7 2 56

Female One or more 5 12 12 23 52

None 6 8 9 9 32

Table 2.21 Cell counts and probabilities for J = 4 physician visit categories under covariates
level (�1, �2) for �1 = 1,2; and �2 = 1,2

Physician visit status

Covariates level New level (�) Quantity None Few Not so few High Level total (K[�])

(1,1) 1 Count 8 13 9 10 40

Probability π[1]1 π[1]2 π[1]3 π[1]4 1.0

(1,2) 2 Count 20 27 7 2 56

Probability π[2]1 π[2]2 π[2]3 π[2]4 1.0

(2,1) 3 Count 5 12 12 23 52

Probability π[3]1 π[3]2 π[3]3 π[3]4 1.0

(2,2) 4 Count 6 8 9 9 32

Probability π[4]1 π[4]2 π[4]3 π[4]4 1.0

condition as two covariates and examine their marginal as well as joint (interaction
between the two covariates) effects on the physician visit. For the purpose, following
the Table 2.19, we first present the observed counts as in the 2×2×4 contingency
Table 2.20. Note that this contingency table is not showing the distribution for
three response variables, rather, it shows the distribution of one response variable
at different marginal and joint levels for the two covariates. Consequently, it is
appropriate to use the product multinomial approach to analyze the data of this
Table 2.20.

Further to make the cell probability formulas clear and precise, we use the data
from Table 2.20 and put them in Table 2.21 along with probabilities following the
format of Table 2.19.

Next, we write the formulas for the probabilities in Table 2.21 in the form of
(2.109)–(2.112), and also in global regression form as follows:
Level 1 (Group 1) (based on �1 = 1, �2 = 1):
Probabilities:

π[1]1 =
exp(β10 +β11 +ξ11 +φ∗

1,11)

1+∑3
g=1 exp(βg0 +βg1 +ξg1 +φ∗

g,11)
, π[1]2 =

exp(β20 +β21 +ξ21 +φ∗
2,11)

1+∑3
g=1 exp(βg0 +βg1 +ξg1 +φ∗

g,11)
,



60 2 Overview of Regression Models for Cross-Sectional Univariate Categorical Data

π[1]3 =
exp(β30 +β31 +ξ31 +φ∗

3,11)

1+∑3
g=1 exp(βg0 +βg1 +ξg1 +φ∗

g,11)
, π[1]4 =

1

1+∑3
g=1 exp(βg0 +βg1 +ξg1 +φ∗

g,11)
.

(2.122)

Global regression form:

π[1]1 =
exp(x′[1]1θ ∗∗)

∑4
j=1 exp(x′

[1] jθ ∗∗)
, π[1]2 =

exp(x′[1]2θ ∗∗)

∑4
j=1 exp(x′

[1] jθ ∗∗)
,

π[1]3 =
exp(x′[1]3θ ∗∗)

∑4
j=1 exp(x′

[1] jθ ∗∗)
,π[1]4 =

exp(x′[1]4θ ∗∗)

∑4
j=1 exp(x′

[1] jθ ∗∗)
,

where

θ ∗∗ = (β10,β11,ξ11,φ ∗
1,11,β20,β21,ξ21,φ ∗

2,11,β30,β31,ξ31,φ ∗
3,11,)

′,

and x′[1]3, for example, is the third row vector of the X1 : 4×12 matrix given by

X1 =

⎛

⎜
⎜
⎝

1′4 01′4 01′4
01′4 1′4 01′4
01′4 01′4 1′4
01′4 01′4 01′4

⎞

⎟
⎟
⎠ . (2.123)

Level 2 (Group 2) (based on �1 = 1):
Probabilities:

π[2]1 =
exp(β10 +β11)

1+∑3
g=1 exp(βg0 +βg1)

, π[2]2 =
exp(β20 +β21)

1+∑3
g=1 exp(βg0 +βg1)

,

π[2]3 =
exp(β30 +β31)

1+∑3
g=1 exp(βg0 +βg1)

, π[2]4 =
1

1+∑3
g=1 exp(βg0 +βg1)

. (2.124)

Global regression form:

π[2]1 =
exp(x′[2]1θ ∗∗)

∑4
j=1 exp(x′

[2] jθ ∗∗)
, π[2]2 =

exp(x′[2]2θ ∗∗)

∑4
j=1 exp(x′

[2] jθ ∗∗)
,

π[2]3 =
exp(x′[2]3θ ∗∗)

∑4
j=1 exp(x′

[2] jθ ∗∗)
,π[2]4 =

exp(x′[2]4θ ∗∗)

∑4
j=1 exp(x′

[2] jθ ∗∗)
,

where θ ∗∗ is the same as above, that is,

θ ∗∗ = (β10,β11,ξ11,φ ∗
1,11,β20,β21,ξ21,φ ∗

2,11,β30,β31,ξ31,φ ∗
3,11,)

′,
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and x′[2]3, for example, is the third row vector of the X2 : 4×12 matrix given by

X2 =

⎛

⎜
⎜
⎝

1′2 01′2 01′4 01′4
01′4 1′2 01′2 01′4
01′4 01′4 1′2 01′2
01′2 01′2 01′4 01′4

⎞

⎟
⎟
⎠ . (2.125)

Level 3 (Group 3) (based on �2 = 1):
Probabilities:

π[3]1 =
exp(β10 +ξ11)

1+∑3
g=1 exp(βg0 +ξg1)

, π[3]2 =
exp(β20 +ξ21)

1+∑3
g=1 exp(βg0 +ξg1)

,

π[3]3 =
exp(β30 +ξ31)

1+∑3
g=1 exp(βg0 +ξg1)

, π[3]4 =
1

1+∑3
g=1 exp(βg0 +ξg1)

. (2.126)

Global regression form:

π[3]1 =
exp(x′[3]1θ ∗∗)

∑4
j=1 exp(x′

[3] jθ ∗∗)
, π[3]2 =

exp(x′[3]2θ ∗∗)

∑4
j=1 exp(x′

[3] jθ ∗∗)
,

π[3]3 =
exp(x′[3]3θ ∗∗)

∑4
j=1 exp(x′

[3] jθ ∗∗)
,π[3]4 =

exp(x′[3]4θ ∗∗)

∑4
j=1 exp(x′

[3] jθ ∗∗)
,

where x′[3]3, for example, is the third row vector of the X3 : 4×12 matrix given by

X3 =

⎛

⎜
⎜
⎝

1 0 1 0 01′4 01′4
01′4 1 0 1 0 01′4
01′4 01′4 1 0 1 0
01′4 01′4 0 0 0 0

⎞

⎟
⎟
⎠ . (2.127)

Level 4 (Group 4)
Probabilities:

π[4]1 =
exp(β10)

1+∑3
g=1 exp(βg0)

, π[4]2 =
exp(β20)

1+∑3
g=1 exp(βg0)

,

π[4]3 =
exp(β30)

1+∑3
g=1 exp(βg0)

, π[4]4 =
1

1+∑3
g=1 exp(βg0)

. (2.128)

Global regression form:

π[4]1 =
exp(x′[4]1θ ∗∗)

∑4
j=1 exp(x′

[4] jθ ∗∗)
, π[4]2 =

exp(x′[4]2θ ∗∗)

∑4
j=1 exp(x′

[4] jθ ∗∗)
,
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Table 2.22 Parameter estimates for the gender and chronic condition versus physician
visit status data of Table 2.21

Regression parameters
Quantity β10 β11 ξ11 φ ∗

1,11 β20 β21 ξ21 φ ∗
2,11

Estimate −0.405 2.708 −1.121 −1.405 −0.118 2.720 −.533 −1.808

Standard error 0.5270 0.9100 0.7220 1.1385 0.4859 0.8793 0.6024 1.0377

Quantity β30 β31 ξ31 φ ∗
3,11

Estimate 0.000 1.253 −0.651 −0.708

Standard error 0.4714 0.9301 0.5908 1.0968

Table 2.23 Estimated/observed probabilities corresponding to the data
given in 2×2×4 contingency Table 2.20

Physician visit status

Gender Chronic condition None Few Not so few High

Male One or more 0.2000 0.3250 0.2250 0.2500

None 0.3572 0.4821 0.1250 0.0357

Female One or more 0.0962 0.2308 0.2308 0.4422

None 0.1874 0.2500 0.2813 0.2813

π[4]3 =
exp(x′[4]3θ ∗∗)

∑4
j=1 exp(x′

[4] jθ ∗∗)
,π[4]4 =

exp(x′[4]4θ ∗∗)

∑4
j=1 exp(x′

[4] jθ ∗∗)
,

where x′[4]3, for example, is the third row vector of the X4 : 4×12 matrix given by

X4 =

⎛

⎜
⎜
⎝

1 01′3 01′4 01′4
01′4 1 01′3 01′4
01′4 01′4 1 01′3
01′4 01′4 01′3 0

⎞

⎟
⎟
⎠ . (2.129)

Using the gender and chronic condition versus physician visits data from
Table 2.21, we now solve the likelihood estimating equation (2.119), i.e.,

∂ log L(θ ∗∗)
∂θ ∗∗ =

(p+1)(q+1)

∑
�=1

X ′
�

[
y[�]−K[�]π[�]

]
= 0,

for θ ∗∗. The estimates for all components in θ ∗∗ along with their standard errors are
given in Table 2.22.

Now by using the regression estimates from Table 2.22 into the probability for-
mulas (2.112), (2.124), (2.126), and (2.128), one obtains the estimated probabilities
as in Table 2.23. The estimated and observed probabilities are the same.

We now interpret the estimates of the parameters from Table 2.22. Because at
level 4, i.e., for a female with no chronic disease, the category probabilities for the



2.3 Cumulative Logits Model for Univariate Ordinal Categorical Data 63

first three categories are determined by the respective estimates of β10,β20, and β30,
as compared to the conventional value β40 = 0, it is easier to interpret their role
first. For example, β̂30 = 0.0 shows that an individual in this group has the same
probability to be in the third (not so few ) or fourth (high) physician visits category.
Further, smaller negative value for β̂20 = −0.118 as compared to β̂10 = −0.405
shows that the individual in this group has a much higher probability to pay a few
visits to the physician as opposed to paying no visits at all.

Next the values of (β̂ j0 + ξ̂ j1) for j = 1,2,3, as compared to β40 + ξ41 = 0.0
would determine relative probability of an individual at level 3 (group 3) to be in
the jth category. Note that group 3 individuals are female with one or more chronic
disease. For example, the small negative and equal values of β̂20 + ξ̂21 =−0.651 =

β̂30 + ξ̂31 as compared to large negative value of β̂10 + ξ̂11 = −1.526 indicate that
a female with chronic disease has increasing probabilities to pay more visit to the
physicians. But a male with chronic disease, i.e., an individual belonging to group
1 (level 1), has smaller probability to pay a high physician visit. This follows from
relatively large positive value of β̂20 + β̂21 + ξ̂21 + φ̂ ∗

2,11 = 0.261 as compared to

small negative value of β̂30 + β̂31 + ξ̂31 + φ̂ ∗
3,11 = −0.106, and β40 + β41 + ξ41 +

φ ∗
4,11 = 0.0.

2.3 Cumulative Logits Model for Univariate Ordinal
Categorical Data

There are situations where the categories for a response may also be ordinal by
nature. For example, when the individuals in a study are categorized to examine
their agreement or disagreement on a policy issue with, say, three political groups
A, B, and C, these three categories are clearly nominal. However, in the treatment
versus heart attack status data analyzed in Sect. 2.2.2.4.1, the three categories
accommodating the heart attack status, namely no attack, non-fatal, and fatal attacks,
can also be treated as ordinal categories. Similarly, in the physician visit study in
Sect. 2.2.2.4.2, four physician visit status, namely none, few, not so few, and high
visits, can be treated as ordinal categories. Now because of this additional ordinal
property of the categorical responses, one may collapse the J > 2 categories in
a cumulative fashion into two (J′ = 2) categories and use simpler binary model
to fit such collapsed data. Note however that there will be various binary groups
depending on which category in the middle is used as a cut point. This approach is
referred to as the cumulative logits model approach and we discuss this alternative
modeling of the categorical data in this section provided the categories also exhibit
order in them.
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2.3.1 Cumulative Logits Model Involving One Covariate
with L = p+1 Levels

Suppose that similar to Sect. 2.2.2, π[�] j denotes the probability for an individual
i with covariate at level �(� = 1, . . . , p+ 1) to be in the jth category, but because
categories are ordered, one may collapse the J categories based multinomial model
to a binary model with

F[�] j =
j

∑
c=1

π[�]c

representing the probability for the binary response to be in any categories between
1 and j, and

1−F[�] j =
J

∑
c= j+1

π[�]c

representing the probability for the binary response to be in any categories beyond j.
Consequently, unlike in Sect. 2.2.2, instead of modeling individual category based
probabilities π[�] j, one may model the binary probability F[�] j by using the linear
logits relationship

L[�] j = log

[
1−F[�] j

F[�] j

]

=

{
α j0 +α j� for j = 1, . . . ,J−1; �= 1, . . . , p
α j0 for j = 1, . . . ,J−1; �= p+1.

(2.130)

We refer to this model (2.130) as the logit model 1 (LM1). Also, three other logit
models are considered in the next section with relation to a real life data example.

Note that for j = 1, . . . ,J − 1, the logit relationship in (2.130) is equivalent to
write

1−F[�] j =

⎧
⎨

⎩

exp(α j0+α j�)

1+exp(α j0+α j�)
for �= 1, . . . , p

exp(α j0)

1+exp(α j0)
for �= p+1.

(2.131)

Remark that the logits in (2.130) satisfy the monotonic constraint given in the
following lemma.

Lemma 2.3.1. The logits in (2.130) satisfy the monotonic property

L[�]1 ≥ L[�]2 ≥ . . .≥ L[�](J−1). (2.132)

Proof. Since

F[�]1 ≤ F[�]2 ≤ . . .≤ F[�](J−1),
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and

(1−F[�]1)≥ (1−F[�]2)≥ . . .≥ (1−F[�](J−1)),

one obtains

F[�]1
1−F[�]1

≤ F[�]2
1−F[�]2

≤ . . .≤ F[�](J−1)

1−F[�](J−1)
.

Hence the lemma follows because L[�] j = log
[

1−F[�] j
F[�] j

]
for all j = 1, . . . ,J−1.

2.3.1.1 Weighted Least Square Estimation for the Parameters
of the Cumulative Logits Model (2.130)

We describe this estimation technique in the following steps.

Step 1. Writing the logits in linear regression form

Let F(π) be a vector consisting of all possible logits, where π represents all
J(p+1) individual cell probabilities. That is,

F = F(π) =
[
L′

1, . . . ,L
′
�, . . . ,L

′
p+1

]′
: (J−1)(p+1)×1, (2.133)

where L� is the vector of J−1 logits given by

L� =
[
L[�]1, . . . ,L[�] j, . . . ,L[�](J−1)

]′
, (2.134)

with L[�] j defined as in (2.130). Note that these logits for j = 1, . . . ,J − 1 are
functions of all J individual probabilities π[�]1, . . . ,π[�]J at the covariate level �.

Now define the regression parameters vector α as

α =
[
α ′

0,α ′
1, . . . ,α ′

�, . . . ,α
′
p

]′
, (2.135)

where

α0 = [α10, . . . ,α(J−1)0]
′ and α� = [α1�, . . . ,α(J−1)�]

′,

for �= 1, . . . , p. Next by using (2.135) and (2.130), one may then express the logits
vector (2.133) in the linear regression form as

F = Xα, (2.136)
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where

X =

⎡

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

IJ−1 X1

IJ−1 X2

· ·

IJ−1 Xp

IJ−1 Xp+1

⎤

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

: (J−1)(p+1)× (J−1)(p+1), (2.137)

with

X� =

⎛

⎜
⎜
⎜
⎝

x′[�]1
x′[�]2
·

x′[�](J−1)

⎞

⎟
⎟
⎟
⎠

: (J−1)× (J−1)p, for �= 1, . . . , p+1 (2.138)

where, for j = 1, . . . ,J−1,

x′[�] j =
(

01′(�−1)(J−1) 01′j−1 1 01′J−1− j 01′(p−�)(J−1)

)
for �= 1, . . . , p

x′[p+1] j = 01′p(J−1). (2.139)

Step 2. Formulation of F(�) in terms of �

Write

π = [π ′
[1], . . . ,π

′
[�], . . . ,π

′
[p+1]]

′ : J(p+1)×1, (2.140)

where at covariate level �, as in Sect. 2.2.2, all J cell probabilities are denoted by
π[�], that is,

π[�] = [π[�]1, . . . ,π[�] j, . . . ,π[�]J]
′,

π[�] j being the probability for the response of an individual with �th level covariate
information to be in the jth category.

Notice from (2.130) that L[�] j has the form

L[�] j = log

[
1−F[�] j

F[�] j

]

= log

[
∑J

c= j+1 π[�]c

∑ j
c=1 π[�]c

]
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=

[

log{
J

∑
c= j+1

π[�]c}− log{
j

∑
c=1

π[�]c}
]

. (2.141)

Consequently, L� defined in (2.134) can be expressed as

L� = [L[�]1, . . . ,L[�](J−1)]
′

= [

(

log{
J

∑
c=2

π[�]c}− log{
1

∑
c=1

π[�]c}
)

, . . . ,

(

log{
J

∑
c=J

π[�]c}− log{
J−1

∑
c=1

π[�]c}
)

]′

= M∗log (A∗π[�]), (2.142)

where π[�] is defined by (2.140), and A∗ and K∗ have the forms:

A∗ =

⎡

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

1′1 01′J−1

01′1 1′J−1

1′2 01′J−2

01′2 1′J−2

· ·

· ·

1′J−1 01′1

01′J−1 1′1

⎤

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

: 2(J−1)× J, (2.143)

and

M∗ =

⎡

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

−1 1 01′2 01′2(J−3)

01′2 −1 1 01′2(J−3)

· · · ·

01′2(J−3) 01′2 −1 1

⎤

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

: (J−1)×2(J−1), (2.144)

respectively. Now by using (2.142), it follows from (2.133) that
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F = F(π) =

⎛

⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎝

L1

L2

·
·

L�

·
·

Lp+1

⎞

⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎠

=

⎛

⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎝

M∗log (A∗π[1])

M∗log (A∗π[2])

·
·

M∗log (A∗π[�])

·
·

M∗log (A∗π[p+1])

⎞

⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎠

= [Ip+1 ⊗M∗] log [(Ip+1 ⊗A∗)π]

= Mlog (Aπ), (2.145)

where π = [π ′
[1], . . . ,π

′
[�], . . . ,π

′
[p+1]]

′, and ‘⊗’ denotes the direct or Kronecker
product.

Step 3. Forming a ‘working’ linear model

Using notations from Step 2 (2.145) in (2.136) under Step 1, one consequently
solves α satisfying

F = F(π) = Mlog (Aπ) = Xα. (2.146)

Note that this (2.146) is not an estimating equation yet as π is unknown in practice.
This means the model (population average) Eq. (2.146) does not involve any data.
However, by using the observed proportion p for π , one may write an approximate
(working) linear regression model with correlated errors as follows:

F(p)≈ F(π)+
∂F(π)

∂π ′ [p−π] = F(π)+ ε , (J−1)(p+1)×1 (2.147)

where ε may be treated as an error vector. Next, because for a given �, the cell counts
{K[�] j, j = 1, . . . ,J} follow the multinomial probability distribution (2.67) [see also
Table 2.4 for data display], it follows that

E[p[�] j] = E[
K[�] j

K[�]
] = π[�] j, for all j and �,

that is E[p] = π , where π is defined by (2.140), and p is the corresponding observed
proportion vector, with p[�] = [p[�] j, . . . , p[�] j, . . . , p[�]J]

′. It then follows that

E[ε ] = 0,

cov[ε ] =
[

∂F(π)
∂π ′

]

cov(p)

[
∂F ′(π)

∂π

]
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=

[
∂F(π)

∂π ′

]

V

[
∂F ′(π)

∂π

]

= Σε (say), (J−1)(p+1)× (J−1)(p+1). (2.148)

Note that the approximation in (2.147) follows from the so-called Taylor’s series
expansion for F(p). To be specific, for u = 1, . . . ,(J−1)(p+1), the uth component
of F(p) may be expanded in Taylor’s series form as

Fu(p) = Fu(π)+(p−π)′
∂Fu(π)

∂π
+ ε∗u,K(||p[1]−π[1]||, . . . , ||p[�]−π[�]||, . . . , ||p[p+1]−π[p+1]||), (2.149)

where for K = ∑p+1
�=1 K[�], ε∗u,K(·) is a higher order remainder term in the Taylor’s

expansion, and it is a function of Euclidian distances

||p[�]−π[�]||=
√
√
√
√

J

∑
j=1

[p[�] j −π[�] j]2, for all �= 1, . . . , p+1.

Further note that when min�{K[�]}→ ∞ it can be shown that

ε∗u,K(·)→ 0 in probability (2.150)

(see, for example, Rao (1973, p. 387); Bishop et al. (1975, Sec. 14.6) for details on
this convergence property). Thus, for all u= 1, . . . ,(J−1)(p+1), and using (2.150),
one obtains the approximate linear relationship (2.147) from (2.149). Finally by
using (2.146), one may fit the linear model

F(p) = F(π)+ ε

= Xα + ε , (2.151)

(see also Grizzle et al. (1969), Haberman (1978, pp. 64–77)) where F(p) =
Mlog (Ap) with M and A as given by (2.145), and the error vector ε has the zero
mean vector and covariance matrix Σε as given by (2.148).

Step 4. WLS (weighted least square) estimating equation

Consequently, one may write the WLS estimating equation for α as

X ′Σ−1
ε [F(p)−Xα] = 0, (2.152)

and obtain the WLS estimator of α as

α̂WLS = [X ′Σ−1
ε X ]−1X ′Σ−1

ε F(p). (2.153)
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For similar use of the WLS approach in fitting models to ordinal data, one may
be referred to Semenya and Koch (1980) and Semenya et al. (1983) (see also
Agresti (1984, Section 7.2, Appendix A.2); Koch et al. (1992)). For computation
convenience, one may further simplify Σε from (2.148) as

Σε = cov[F(p)] =

[
∂F(π)

∂π ′

]

V

[
∂F ′(π)

∂π

]

=

[
∂Mlog Aπ

∂π ′

]

V

[
∂Mlog Aπ

∂π ′

]′

= MD−1AVA′D−1M′ = QV Q′, (say), (2.154)

where D = diag[Aπ] : 2(J − 1)(p+ 1)× 2(J − 1)(p+ 1), Aπ : 2(J − 1)(p+ 1)× 1
being given by (2.145). Hence, using Σε from (2.154) into (2.153), one may re-
express α̂WLS as

α̂WLS =
[
X ′(QV Q′)−1X

]−1
X ′(QV Q′)−1F(p), (2.155)

with F(p) = Mlog Ap. Note that to compute α̂WLS by (2.155), one requires
to replace the D matrix by its unbiased estimate D̂ = diag[Ap]. Next, because,
cov[F(p)] = QV Q′ by (2.154), by treating D as a known matrix, one may compute
the covariance of the WLS estimator of α as

cov[α̂WLS] =
[
X ′(QV Q′)−1X

]−1
, (2.156)

which can be estimated by replacing π with p, that is,

ˆcov[α̂WLS] =
[
X ′(QV Q′)−1X

]−1
|π=p . (2.157)

Further note that the V matrix in (2.154)–(2.157) has the block diagonal form
given by

V =
⊕p+1

�=1
[cov(p[�])] : (p+1)J× (p+1)J, (2.158)

where

cov(p[�]) =
1

K[�]

[
diag[π[�]1, . . . ,π[�] j, . . . ,π[�]J]−π[�]π ′

[�]

]
. (2.159)
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Table 2.24 Cross-classification of gender and physician visit along
with observed proportions

Physician visit status

Gender None Few Not so few High Total

Male 28 40 16 12 96

Cell proportion 0.2917 0.4166 0.1667 0.1250 1.0

Female 11 20 21 32 84

Cell proportion 0.1309 0.2381 0.2500 0.3810 1.0

2.3.1.1.1 Illustration 2.9: Weighted Least Square Fitting of the Cumulative
Logits Model to the Gender Versus Physician Visit Data

Recall the physician visit status data for male and female from Table 2.10. For
convenience, we redisplay these data along with observed proportions as in the
following Table 2.24. Note that the physician visit status can be treated as ordinal
categorical. However, among others, this data set was analyzed in Sect. 2.2.2.4 by
applying the product multinomial likelihood approach discussed in Sects. 2.2.2.1
and 2.2.2.2, where categories were treated to be nominal. As discussed in last
section, when categories are treated to be ordinal, one may fit the cumulative
probability ratios based logits model to analyze such data. The logit models
are different than standard multinomial models used for the analysis of nominal
categorical data. We now follow the logit model and inferences discussed in the
last section to reanalyze the gender versus physician visit status data shown in
Table 2.24.

We first write the observed proportion vector p as

p = [p′[1], p′[2]]
′, (2.160)

with

p[1] = [p[1]1, p[1]2, p[1]3, p[1]4]
′ = [0.2917, 0.4166, 0.1667, 0.1250]′

p[2] = [p[2]1, p[2]2, p[2]3, p[2]4]
′ = [0.1309, 0.2381, 0.2500, 0.3810]′.

Next we follow the steps from the previous section and formulate the matrices
and vectors to compute α̂ by (2.155).

Step 1. Constructing F(�) = X˛ under LM 1

To define X and α , we write the vector of logits by (2.133) as

F(π) = [L′
1,L

′
2]
′ : 6×1, (2.161)
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with

L1 = [L[1]1,L[1]2,L[1]3]
′

L2 = [L[2]1,L[2]2,L[2]3]
′,

where by (2.130)

L[1]1 = α10 +α11

L[1]2 = α20 +α21

L[1]3 = α30 +α31,

and

L[2]1 = α10

L[2]2 = α20

L[2]3 = α30,

producing α by (2.135) as

α = [α ′
0,α ′

1]
′

= [α10,α20,α30,α11,α21,α31]
′. (2.162)

Now to express F(π) in (2.161) as F(π) = Xα with α as in (2.162), one must write
the 6×6 matrix X as

X =

⎡

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

1 0 0 1 0 0

0 1 0 0 1 0

0 0 1 0 0 1

1 0 0 0 0 0

0 1 0 0 0 0

0 0 1 0 0 0

⎤

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

(2.163)

This matrix satisfies the notations from (2.137) to (2.139).
Note that as indicated in the last section, we also consider three other logit models

as follows:

LM2. Instead of using the model (2.130), one may use different restriction on the
level effect parameters and write the logit model as
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L[�] j = log

[
1−F[�] j

F[�] j

]

=

{
α j0 +α j� for j = 1, . . . ,J−1; �= 1, . . . , p
α j0 −∑p

�=1 α j� for j = 1, . . . ,J−1; �= p+1.
(2.164)

yielding six logits for the gender versus physician visit data as

L[1]1 = α10 +α11

L[1]2 = α20 +α21

L[1]3 = α30 +α31,

and

L[2]1 = α10 −α11

L[2]2 = α20 −α21

L[2]3 = α30 −α31.

For

α = [α ′
0,α ′

1]
′

= [α10,α20,α30,α11,α21,α31]
′,

the aforementioned six logits produce the X matrix as

X =

⎡

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

1 0 0 1 0 0

0 1 0 0 1 0

0 0 1 0 0 1

1 0 0 −1 0 0

0 1 0 0 −1 0

0 0 1 0 0 −1

⎤

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

. (2.165)

LM3. Now suppose that unlike the models (2.130) and (2.164), one uses the same
level effect parameter, say α1�, under all response categories. Then, similar to
LM1, the logits can be expressed as

L[�] j = log

[
1−F[�] j

F[�] j

]

=

{
α j0 +α1� for j = 1, . . . ,J−1; �= 1, . . . , p
α j0 for j = 1, . . . ,J−1; �= p+1.

(2.166)

yielding six logits for the gender versus physician visit data as
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L[1]1 = α10 +α11

L[1]2 = α20 +α11

L[1]3 = α30 +α11,

and

L[2]1 = α10

L[2]2 = α20

L[2]3 = α30.

For

α = [α ′
0,α ′

1]
′

= [α10,α20,α30,α11]
′,

the aforementioned six logits produce the X : 6×4 matrix as

X =

⎡

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

1 0 0 1

0 1 0 1

0 0 1 1

1 0 0 0

0 1 0 0

0 0 1 0

⎤

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

. (2.167)

LM4. Suppose that we use the same regression parameters as in the model
(2.166), but use the restriction on the level effect parameters as in (2.164). One
may then express the logits as

L[�] j = log

[
1−F[�] j

F[�] j

]

=

{
α j0 +α1� for j = 1, . . . ,J−1; �= 1, . . . , p
α j0 −∑p

�=1 α1� for j = 1, . . . ,J−1; �= p+1.

(2.168)

yielding six logits for the gender versus physician visit data as

L[1]1 = α10 +α11

L[1]2 = α20 +α11

L[1]3 = α30 +α11,
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and

L[2]1 = α10 −α11

L[2]2 = α20 −α11

L[2]3 = α30 −α11.

For

α = [α ′
0,α ′

1]
′

= [α10,α20,α30,α11]
′,

the aforementioned six logits produce the X : 6×4 matrix as

X =

⎡

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

1 0 0 1

0 1 0 1

0 0 1 1

1 0 0 −1

0 1 0 −1

0 0 1 −1

⎤

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

. (2.169)

Step 2. Developing notations to write F(�) = Mlog (A�) satisfying (2.145)

Now because J = 4, for a given �(� = 1,2), A∗ and M∗ matrices by (2.143) and
(2.144), are written as

A∗ =

⎡

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

1 0 0 0

0 1 1 1

1 1 0 0

0 0 1 1

1 1 1 0

0 0 0 1

⎤

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

: 6×4, (2.170)
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and

M∗ =

⎡

⎢
⎢
⎢
⎣

−1 1 0 0 0 0

0 0 −1 1 0 0

0 0 0 0 −1 1

⎤

⎥
⎥
⎥
⎦

: 3×6, (2.171)

respectively. Note that these matrices are constructed following the definition of the
logits, that is, satisfying

L� = [L[�]1,L[�]2,L[�]3]
′ = M∗log (A∗π[�]),

as shown by (2.141)–(2.142). Thus, for the present gender versus physician visit
status data, by (2.145), we write

M =

(
M∗ 0U3×6

0U3×6 M∗

)

: 6×12, A =

(
A∗ 0U6×4

0U6×4 A∗

)

: 12×8, (2.172)

with U3×6, for example, as the 3× 6 unit matrix, satisfying F(π) = Mlog (Aπ),
where

π = [π ′
[1],π

′
[2]]

′

= [π[1]1,π[1]2,π[1]3,π[1]4,π[2]1,π[2]2,π[2]3,π[2]4]
′.

We now directly go to Step 4 and use (2.155) to compute the WLS estimate for
the regression parameter vector α .

Step 4. Computation of ˆ̨ WLS by (2.155)

Notice that V matrix in (2.155) is computed by (2.158), that is,

V = var[p] = var[p′[1], p′[2]]
′

=

(
var[p[1]] cov[p[1], p′[2]]

cov[p[2], p′[1]] var[p[2]]

)

=

(
V1 0
0 V2

)

, (2.173)

where

K[1]V1 = diag[π[1]1,π[1]2,π[1]3,π[1]4]−π[1]π ′
[1]

K[2]V2 = diag[π[2]1,π[2]2,π[2]3,π[2]4]−π[2]π ′
[2].
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Table 2.25 Parameter estimates and their standard errors under selected cumulative logit
models for gender versus physician visit status data

Logit model parameters based on gender and 4 visit categories

Logit model Quantity α̂10 α̂20 α̂30 α̂11 α̂21 α̂31

LM1 Estimate 1.893 0.537 −0.485 −1.006 −1.424 −1.461

Standard error 0.324 0.226 0.225 0.394 0.319 0.382

LM2 Estimate 1.390 −0.175 −1.216 −0.503 −0.712 −0.750

Standard error 0.197 0.159 0.190 0.197 0.159 0.191

LM3 Estimate 2.107 0.508 −0.524 −1.312 - -

Standard error 0.261 0.215 0.214 0.285 - -

LM4 Estimate 1.451 −0.148 −1.180 −0.656 - -

Standard error 0.189 0.157 0.181 0.142 - -

One however needs to use an estimate of this V matrix to compute α̂WLS by (2.155).
Now because p[1] and p[2] are unbiased estimates for π[1] and π[2], respectively, V
matrix may be estimated as

V̂ =

(
V̂1 0
0 V̂2

)

, (2.174)

where

K[1]V̂1 = diag[p[1]1, p[1]2, p[1]3, p[1]4]− p[1]p
′
[1]

K[2]V̂2 = diag[p[2]1, p[2]2, p[2]3, p[2]4]− p[2]p
′
[2],

with p[1] and p[2] as given by (2.160).
Next we compute D̂ = diag[Ap], where A is given in (2.172). Further compute

Q̂ = MD̂−1A. Finally by using these estimates V̂ , Q̂, and F(p) = Mlog (Ap) into
(2.155), we obtain α̂WLS by using X matrix from (2.163), (2.165), (2.167), and
(2.169), under the models LM1, LM2, LM3, and LM4, respectively. These estimates
along with their standard errors computed by (2.157) are reported in Table 2.25.

We now use the estimates from Table 2.25 and compute the logits under all four
models. The observed logits are also computed using the observed proportions from
Table 2.24. For interpretation convenience we display the exponent of the logits, i.e.,
exp(L[�] j) under all four models in Table 2.26. Notice that LM1 and LM2 produce
the same logits, similarly LM3 and LM4 also produce the same logits. Thus, proper
restriction on level based parameters is important but restrictions can vary. Next, it
is clear from the table that LM1 (or LM2) fits the observed logits exactly, whereas
the logits produced by LM3 (or LM4) are slightly different than the observed logits.
This shows that level (gender) based covariates do not play the same role under all
four response categories. Thus, using three different regression parameters, namely
α1 j for j = 1, . . . ,3, is more appropriate than using only one parameter, namely α11.
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Table 2.26 Observed and estimated logits under selected cumulative
logit models for gender versus physician visit status data

Logit estimates

Gender Logits Observed LM1 LM2 LM3 LM4

Male exp(L[1]1) 2.428 2.428 2.428 2.214 2.214

exp(L[1]2) 0.411 0.411 0.411 0.447 0.447

exp(L[1]3) 0.143 0.143 0.143 0.159 0.159

Female exp(L[2]1) 6.639 6.639 6.639 8.225 8.225

exp(L[2]2) 1.710 1.710 1.710 1.662 1.662

exp(L[2]3) 0.616 0.616 0.616 0.592 0.592

Furthermore, when logits of males are compared to those of the females, all three
logits for the male group appear to be smaller than the corresponding logits for the
female group, i.e.,

L[1] j ≤ L[2] j, for all j = 1,2,3,

showing that more females pay large number of visits to their physician as compared
to males. These results agree with the analysis discussed in Sect. 2.2.2.4.2(a) and
the results reported in Table 2.12, where it was found through direct multinomial
regression fitting that females paid relatively more visits as compared to males.

2.3.1.2 Binary Mapping Based Pseudo-Likelihood Estimation Approach

Based on the form of the cumulative logits from (2.130)–(2.131), in this approach
we utilize the binary information at every cut point for an individual and write a
likelihood function. For the purpose, for an individual i with covariate level � and
responding in category h(h = 1, . . . ,J) [this identifies the ith individual as i ∈ (�,h)],
we define a cut point j ( j = 1, . . . ,J−1) based ‘working’ or ‘pseudo’ binary variable

b( j)
i∈(�,h) =

{
1 for given response category h > j
0 for given response category h ≤ j,

(2.175)

with probabilities following (2.130)–(2.131) as

Pr[b( j)
i∈(�,h) = 1] =

J

∑
c= j+1

π[�]c = 1−F[�] j

=

⎧
⎨

⎩

exp(α j0+α j�)

1+exp(α j0+α j�)
for �= 1, . . . , p

exp(α j0)

1+exp(α j0)
for �= p+1.

(2.176)
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Table 2.27 Cumulative counts as responses at cut points j =
1, . . . ,J − 1, reflecting the cumulative probabilities (2.176), under
covariate level �

Binomial response
Cut point Low group (g∗ = 1) High group (g* = 2) Total
1 K∗

[�]1 = ∑1
c=1 K[�]c K[�]−K∗

[�]1 K[�]

. . . .

j K∗
[�] j = ∑ j

c=1 K[�]c K[�]−K∗
[�] j K[�]

. . . .

J−1 K∗
[�](J−1) = ∑J−1

c=1 K[�]c K[�]−K∗
[�](J−1) K[�]

representing the probability for the binary response to be in category h beyond j;
and

Pr[b( j)
i∈(�,h) = 0] =

j

∑
c=1

π[�]c = F[�] j

= =

{
1

1+exp(α j0+α j�)
for �= 1, . . . , p

1
1+exp(α j0)

for �= p+1.
(2.177)

representing the probability for the binary response to be in a category h between 1
and j inclusive.

Now as a reflection of the cut points based cumulative probabilities (2.176)–
(2.177), for convenience, we display the response counts computed from Table 2.4,
at every cut points, as in Table 2.27. We use the notation K∗

[�] j = ∑ j
c=1 K[�]c, whereas

in Table 2.4, K[�]c is the number of individuals with covariate at level � those belong
to category c for their responses.

Note that K[�]−K∗
[�] j follows the binomial distribution Bin(K[�],1−F[�] j), where

[1−F[�] j] = ∑J
c= j+1 π[�]c = π∗

[�] j by (2.176). Furthermore, the regression parameters
in (2.176)–(2.177) may be expressed by a vector α as in (2.135), that is,

α =
[
α ′

0,α ′
1, . . . ,α ′

�, . . . ,α
′
p

]′
,

where

α0 = [α10, . . . ,α(J−1)0]
′ and α� = [α1�, . . . ,α(J−1)�]

′,

for �= 1, . . . , p. Alternatively, similar to (2.69), these parameters may be represented
by

α = [α∗
1
′, . . . ,α∗

j
′, . . . ,α∗

J−1
′]′, with α∗

j = [α j0,α j1, . . . ,α j�, . . . ,α jp]
′. (2.178)
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Now for a given form of α , we first write a pseudo-likelihood function by using the
pseudo binary probabilities from (2.175)–(2.177), as

L(α) = Π p+1
�=1 Π J−1

j=1 Π
K[�]

[i∈(�,h)| j,�]

[

{F[�] j}1−b( j)
i∈(�,h)

][

{1−F[�] j}b( j)
i∈(�,h)

]

= Π p+1
�=1 Π J−1

j=1

[
{F[�] j}∑ j

c=1 K[�]c

][
{1−F[�] j}∑J

c= j+1 K[�]c
]

= Π p+1
�=1 Π J−1

j=1

[
{F[�] j}∑ j

c=1 K[�]c

][
{1−F[�] j}K[�]−∑ j

c=1 K[�]c

]
(2.179)

= Π J−1
j=1

[

Π p
�=1

exp{(K[�]−K∗
[�] j)(α j0 +α j�)}

[1+ exp(α j0 +α j�)]
K[�]

]

×
[

exp{(K[p+1]−K∗
[p+1] j)(α j0)}

[1+ exp(α j0)]
K[p+1]

]

, (2.180)

where K∗
[�] j = ∑ j

c=1 K[�]c for j = 1, . . . ,J−1, and for all �= 1, . . . , p+1.
Next, in order to write the log likelihood estimating equation in an algebraic

convenient form, we use the α in the form of (2.178) and first re-express 1−F[�] j
and F[�] j from (2.176)–(2.177) as

1−F[�] j =
exp(x′[�] jα)

1+ exp(x′
[�] jα)

F[�] j =
1

1+ exp(x′
[�] jα)

, (2.181)

where x′[�] j is the jth ( j = 1, . . . ,J−1) row of the (J−1)× (J−1)(p+1) matrix X�,
defined for �th level as follows:

X� =

⎛

⎜
⎜
⎜
⎝

x′[�]1
x′[�]2
·

x′[�](J−1)

⎞

⎟
⎟
⎟
⎠

=

⎛

⎜
⎜
⎜
⎝

1 01′�−1,1,01′p−� 0 01′p · 0 01′p
0 01′p 1 01′�−1,1,01′p−� · 0 01′p
· · · · · · ·
0 01′p 0 01′p · 1 01′�−1,1,01′p−�

⎞

⎟
⎟
⎟
⎠

for �= 1, . . . , p
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Xp+1 =

⎛

⎜
⎜
⎜
⎝

x′[p+1]1

x′[p+1]2

·
x′[p+1](J−1)

⎞

⎟
⎟
⎟
⎠

=

⎛

⎜
⎜
⎜
⎝

1 01′p 0 01′p · 0 01′p
0 01′p 1 01′p · 0 01′p
· · · · · · ·
0 01′p 0 01′p · 1 01′p

⎞

⎟
⎟
⎟
⎠
. (2.182)

The log likelihood equation for α may then be written from (2.179) as

∂Log L(α)

∂α
=

p+1

∑
�=1

J−1

∑
j=1

[

(K[�]−K∗
[�] j)

∂
∂α

{log (1−F[�] j)}

+ K∗
[�] j

∂
∂α

{log F[�] j}
]

=
p+1

∑
�=1

J−1

∑
j=1

[

(K[�]−K∗
[�] j)

∂
∂α

{log (
exp(x′[�] jα)

1+ exp(x′
[�] jα)

)}

+ K∗
[�] j

∂
∂α

{log
1

1+ exp(x′
[�] jα)

}
]

=
p+1

∑
�=1

J−1

∑
j=1

[
(K[�]−K∗

[�] j){F[�] jx[�] j}

− K∗
[�] j{(1−F[�] j)x[�] j}}

]

=
p+1

∑
�=1

J−1

∑
j=1

x[�] j
[
K[�]F[�] j −K∗

[�] j

]

= −
p+1

∑
�=1

J−1

∑
j=1

x[�] j
[
K∗
[�] j −K[�]F[�] j

]

=
p+1

∑
�=1

J−1

∑
j=1

x[�] j
[
(K[�]−K∗

[�] j)−K[�](1−F[�] j)
]

(2.183)

=
p+1

∑
�=1

X ′
�

[
y∗[�]−K[�]π∗

[�]

]
= f (α) = 0, (2.184)

where

y∗[�] = [K[�]−K∗
[�]1, . . . ,K[�]−K∗

[�] j, . . . ,K[�]−K∗
[�](J−1)]

′ and

π∗
[�] ≡ [π∗

[�]1, . . . ,π
∗
[�] j, . . . ,π

∗
[�](J−1)]

′ = [1−F[�]1, . . . ,1−F[�] j, . . . ,1−F[�](J−1)]
′,
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with X� matrices for � = 1, . . . , p+ 1 as given in (2.182). Note that this estimating
equation form in (2.184) is similar to (2.71), but they are quite different estimating
equations.

2.3.1.2.1 Pseudo-Likelihood Estimates and their Asymptotic Variances

Let α̂ be the solution of f (α) = 0 in (2.184). Assuming that α̂0 is not a solution
for f (α) = 0 but a trial estimate, and hence f (α̂0) �= 0, by similar calculations as in
(2.36), the iterative equation for α̂∗ is obtained as

α̂ = α̂0 −
[{ f ′(α)}−1 f (α)

] |α=α̂0 . (2.185)

Next, by similar calculations as in (2.183), one writes

∂π∗
[�] j

∂α ′ =
∂ (1−F[�] j)

∂α ′

= F[�] j(1−F[�] j)x
′
[�] j = π∗

[�] j(1−π∗
[�] j)x

′
[�] j, (2.186)

yielding

∂π∗
[�]

∂α ′ = diag[π∗
[�]1(1−π∗

[�]1), . . . ,π
∗
[�](J−1)(1−π∗

[�](J−1))]X�

= Dπ∗
[�]

X�. (2.187)

By (2.187), it then follows from (2.184) that

f ′(α) =
∂ 2Log L(α)

∂α∂α ′

= −
p+1

∑
�=1

K[�]X
′
�Dπ∗

[�]
X�. (2.188)

Thus, by (2.188), the iterative equation (2.185) takes the form

α̂(r+1) = α̂(r)+

[
p+1

∑
�=1

K[�]X
′
�Dπ∗

[�]
X�

]−1

×
[

p+1

∑
�=1

X ′
�

(
y∗[�]−K[�]π∗

[�]

)
]

α=α̂(r)

, (2.189)

yielding the final estimate α̂ .
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Next because

var[y∗[�] j −K[�]π∗
[�] j] = var[K∗

[�] j −K[�]F[�] j]

= var[
j

∑
c=1

K[�]c], (2.190)

and K∗
[�] j follows the binomial distribution with parameters K[�] and π∗

[�] j = [1−F[�] j],
one writes

var[y∗[�] j −K[�]π∗
[�] j] = K[�]F[�] j[1−F[�] j] = K[�]π∗

[�] j[1−π∗
[�] j]. (2.191)

It then follows from (2.189) that var(α̂) has the formula given by

var(α̂) =

[
p+1

∑
�=1

K[�]X
′
�Dπ∗

[�]
X�

]−1

. (2.192)

2.3.1.3 Binary Mapping Based GQL Estimation Approach

By Table 2.27, consider the response vector

y∗[�] = [K[�]−K∗
[�]1, . . . ,K[�]−K∗

[�] j, . . . ,K[�]−K∗
[�](J−1)]

′

[see also (2.184)], where

y∗[�] j = [K[�]−K∗
[�] j]∼ Bin(K[�],π∗

[�] j),

with

π∗
[�] j = 1−F[�] j =

exp(x′[�] jα)

1+ exp(x′
[�] jα)

by (2.181). By following Sutradhar (2003, Section 3), one may then write a GQL
estimating equation for α as

p+1

∑
�=1

∂ [K[�]π∗
[�]

′]

∂α

[
cov(Y ∗

[�])
]−1

[y∗[�]−K[�]π∗
[�]] = 0, (2.193)

where

∂π∗
[�]

′

∂α
= X ′

�Dπ∗
[�]
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by (2.187), and

cov[Y ∗
[�]] = K[�]Dπ∗

[�]

by (2.191). The GQL estimating equation (2.193) then reduces to

p+1

∑
�=1

X ′
�[y

∗
[�]−K[�]π∗

[�]] = 0,

which is the same as the pseudo-likelihood estimating equation given by (2.184).
Hence the GQL estimate of α is the same as the likelihood estimate found by
(2.189), and its asymptotic covariance matrix is the same as that of the likelihood
estimates given by (2.192).

2.3.1.4 Some Remarks on GQL Estimation for Fitting the Multinomial
Model (3.63) Subject to Category Order Restriction

Notice from (2.184) that

y∗[�] = [K[�]−K∗
[�]1, . . . ,K[�]−K∗

[�] j, . . . ,K[�]−K∗
[�](J−1)]

′

= [y∗[�]1, . . . ,y
∗
[�] j, . . . ,y

∗
[�](J−1)]

′, (2.194)

is a cumulative response vector with its expectation

E[y∗[�]] = K[�]π∗
[�]

≡ K[�][π∗
[�]1, . . . ,π

∗
[�] j, . . . ,π

∗
[�](J−1)]

′

= K[�][1−F[�]1, . . . ,1−F[�] j, . . . ,1−F[�](J−1)]
′, (2.195)

with

π∗
[�] j = 1−F[�] j =

J

∑
c= j+1

π[�]c, (2.196)

where, by (2.63) and (2.64), the multinomial probabilities are defined as

π[�]c =

⎧
⎨

⎩

exp(βc0+βc�)

1+∑J−1
g=1 exp(βg0+βg�)

for c = 1, . . . ,J−1

1
1+∑J−1

g=1 exp(βg0+βg�)
for c = J,

(2.197)

for �= 1, . . . , p, whereas for �= p+1, these probabilities are given as
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π[p+1]c =

⎧
⎨

⎩

exp(βc0)

1+∑J−1
g=1 exp(βg0)

for c = 1, . . . ,J−1

1
1+∑J−1

g=1 exp(βg0)
for c = J.

(2.198)

Use x[�]J = 01(J−1)(p+1) for all � = 1, . . . , p+ 1, along with x[�]c from (2.182) for
c = 1, . . . ,J−1; and �= 1, . . . , p+1, and re-express all π[�]c in (2.196)–(2.197) as

π[�]c =
exp(x′[�]cβ )

∑J
g=1 exp(x′

[�]gβ )
, (2.199)

where, similar to (2.178),

β = [β ∗
1
′, . . . ,β ∗

j
′, . . . ,β ∗

J−1
′]′, with β ∗

j = [β j0,β j1, . . . ,β j�, . . . ,β jp]
′. (2.200)

Note that α parameters in (2.178) and β parameters in (2.198) are different, even
though they have some implicit connection. Here, one is interested to estimate β for
the purpose of comparing π∗

[�] j = ∑J
c=1 π[�]c with 1−π∗

[�] j = ∑ j
c=1 π[�]c. We construct

a GQL estimating equation (Sutradhar 2004, 2011) for β as follows.

2.3.1.4.1 GQL Estimating Equation for β

2.3.1.4.1 (a) Computation of cov(y∗[�]) = Γ[�] = (γ[�] jh) : (J−1)× (J−1)

The elements of the Γ matrix are computed as follows.

γ[�] j j = var[y∗[�] j −K[�]π∗
[�] j]

= var[K∗
[�] j −K[�]F[�] j]

= var[
j

∑
c=1

K[�]c]

= K[�]

[
j

∑
c=1

π[�]c(1−π[�]c)−
j

∑
c�=c′

π[�]cπ[�]c′

]

, for j = 1, . . . ,J−1. (2.201)

Next, for j < h, j,h = 1, . . . ,J−1,

γ[�] jh = cov[y∗[�] j −K[�]π∗
[�] j,y

∗
[�]h −K[�]π∗

[�]h]

= cov[
j

∑
c=1

K[�]c,
h

∑
c=1

K[�]c]
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= K[�]

[
j

∑
c=1

π[�]c(1−π[�]c)−
j

∑
c �=c′

π[�]cπ[�]c′ −
j

∑
c=1

h

∑
c′= j+1

π[�]cπ[�]c′

]

.(2.202)

Also it follows that γ[�] jh = γ[�]h j.

2.3.1.4.1 (b) Computation of
∂π∗

[�]
′

∂β : (J−1)(p+1)× (J−1)

It is sufficient to compute the derivative of a general element, say π∗
[�] j with respect

to β . That is,

∂π∗
[�] j

∂β
=

J

∑
c= j+1

∂π[�]c

∂β

=
J

∑
c= j+1

[

π[�]c

{

x[�]c −
J

∑
u=1

π[�]ux[�]u

}]

=
J

∑
c= j+1

[
π[�]c

{
x[�]c −X ′

�π[�]

}]

= A∗
[�] j(x,β ) : (J−1)(p+1)×1, (say), (2.203)

yielding

∂π∗
[�]

′

∂β
=
(

A∗
[�]1(x,β ) . . . A∗

[�] j(x,β ) . . . A∗
[�](J−1)(x,β )

)
(J−1)(p+1)× (J−1)

= A∗
[�](x,β ), (say). (2.204)

Next, by following Sutradhar (2004), and using (2.200)–(2.201), and (2.203), we
can write a GQL estimating equation for β as

p+1

∑
�=1

K[�]

∂π∗
[�]

′

∂β
Γ −1
[�]

(
y∗[�]−K[�]π∗

[�]

)

=
p+1

∑
�=1

K[�]A
∗
[�](x,β )Γ

−1
[�]

(
y∗[�]−K[�]π∗

[�]

)
= 0 (2.205)

The solution of this GQL estimating equation (2.204) for β may be obtained
iteratively by using the iterative formula
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β̂ (r+1) = β̂ (r)+

⎡

⎣

{
p+1

∑
�=1

K2
[�]A

∗
[�](x,β )Γ

−1
[�] A∗

[�]
′(x,β )

}−1

×
p+1

∑
�=1

K[�]A
∗
[�](x,β )Γ

−1
[�]

(
y∗[�]−K[�]π∗

[�]

)
]

β=β̂ (r)

, (2.206)

yielding the final GQL estimate β̂GQL, along with its asymptotic (as min1≤�≤p+1

K[�] → ∞) covariance matrix

cov[β̂GQL] =

[
p+1

∑
�=1

K2
[�]A

∗
[�](x,β )Γ

−1
[�] A∗

[�]
′(x,β )

]−1

. (2.207)
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