Preface

Categorical data, whether categories are nominal or ordinal, consist of multinomial
responses along with suitable covariates from a large number of independent
individuals, whereas longitudinal categorical data consist of similar responses and
covariates collected repeatedly from the same individuals over a small period of
time. In the latter case, the covariates may be time dependent but they are always
fixed and known. Also it may happen in this case that the longitudinal data are not
available for the whole duration of the study from a small percentage of individuals.
However, this book concentrates on complete longitudinal multinomial data analysis
by developing various parametric correlation models for repeated multinomial
responses. These correlation models are relatively new and they are developed
by generalizing the correlation models for longitudinal binary data [Sutradhar
(2011, Chap. 7), Dynamic Mixed Models for Familial Longitudinal Data, Springer,
New York]. More specifically, this book uses dynamic models to relate repeated
multinomial responses which is quite different than the existing books where
longitudinal categorical data are analyzed either marginally at a given time point
(equivalent to assume independence among repeated responses) or by using the so-
called working correlations based GEE (generalized estimating equation) approach
that cannot be trusted for the same reasons found for the longitudinal binary (two
category) cases [Sutradhar (2011, Sect. 7.3.6)]. Furthermore, in the categorical data
analysis, whether it is a cross-sectional or longitudinal study, it may happen in some
situations that responses from individuals are collected on more than one response
variable. This type of studies is referred to as the bivariate or multivariate categorial
data analysis. On top of univariate categorical data analysis, this book also deals with
such multivariate cases, especially bivariate models are developed under both cross-
sectional and longitudinal setups. In the cross-sectional setup, bivariate multinomial
correlations are developed through common individual random effect shared by
both responses, and in the longitudinal setup, bivariate structural and longitudinal
correlations are developed using dynamic models conditional on the random effects.

As far as the main results are concerned, whether it is a cross-sectional or longi-
tudinal study, it is of interest to examine the distribution of the respondents (based
on their given responses) under the categories. In longitudinal studies, the possible

vii



viii Preface

change in distribution pattern over time is examined after taking the correlations
of the repeated multinomial responses into account. All these are done by fitting
a suitable univariate multinomial probability model in the cross-sectional setup
and correlated multinomial probability model in the longitudinal setup. Also these
model fittings are first done for the cases where there is no covariate information
from the individuals. In the presence of covariates, the distribution pattern may also
depend on them, and it becomes important to examine the dependence of response
categories on the covariates. Remark that in many existing books, covariates are
treated as response variables and contingency tables are generated between response
variable and the covariates, and then a full multinomial or equivalently a suitable
log linear model is fitted to the joint cell counts. This approach lacks theoretical
justification mainly because the covariates are usually fixed and known and hence
the Poisson mean rates for joint cells should not be constructed using association
parameters between covariates and responses. This book avoids such confusions
and emphasizes on regression analysis all through to understand the dependence of
the response(s) on the covariates.

The book is written primarily for the graduate students and researchers in
statistics, biostatistics, and social sciences, among other applied statistics research
areas. However, the univariate categorical data analysis discussed in Chap. 2 under
cross-sectional setup, and in Chap. 3 under longitudinal setup with time indepen-
dent (stationary) covariates, is written for undergraduate students as well. These
two chapters containing cross-sectional and longitudinal multinomial models, and
corresponding inference methodologies, would serve as the theoretical foundation
of the book. The theoretical results in these chapters have also been illustrated by
analyzing various biomedical or social science data from real life. As a whole, the
book contains six chapters. Chapter 4 contains univariate longitudinal categorical
data analysis with time dependent (non-stationary) covariates, and Chaps. 5 and 6
are devoted to bivariate categorical data analysis in cross-sectional and longitudinal
setup, respectively. The book is technically rigorous. More specifically, this is
the first book in longitudinal categorical data analysis with high level technical
details for developments of both correlation models and inference procedures,
which are complemented in many places with real life data analysis illustrations.
Thus, the book is comprehensive in scope and treatment, suitable for a graduate
course and further theoretical and/or applied research involving cross-sectional
as well as longitudinal categorical data. In the same token, a part of the book
with first three chapters is suitable for an undergraduate course in statistics and
social sciences. Because the computational formulas all through the book are well
developed, it is expected that the students and researchers with reasonably good
computational background should have no problems in exploiting them (formulas)
for data analysis.

The primary purpose of this book is to present ideas for developing correlation
models for longitudinal categorical data, and obtaining consistent and efficient
estimates for the parameters of such models. Nevertheless, in Chaps. 2 and 5,
we consider categorical data analysis in cross-sectional setup for univariate and
bivariate responses, respectively. For the analysis of univariate categorical data in
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Chap. 2, multinomial logit models are fitted irrespective of the situations whether
the data contain any covariates or not. To be specific, in the absence of covariates,
the distribution of the respondents under selected categories is computed by
fitting multinomial logit model. In the presence of categorical covariates, similar
distribution pattern is computed but under different levels of the covariate, by fitting
product multinomial models. This is done first for one covariate with suitable levels
and then for two covariates with unequal number of levels. Both nominal and ordinal
categories are considered for the response variable but covariate categories are
always nominal. Remark that in the presence of covariates, it is of primary interest to
examine the dependence of response variable on the covariates, and hence product
multinomial models are exploited by using a multinomial model at a given level of
the covariate. Also, as opposed to the so-called log linear models, the multinomial
logit models are chosen for two main reasons. First, the extension of log linear
model from the cross-sectional setup to the longitudinal setup appears to be difficult
whereas the primary objective of the book is to deal with longitudinal categorical
data. Second, even in the cross-sectional setup with bivariate categorical responses,
the so-called odds ratio (or association) parameters based Poisson rates for joint cells
yield complicated marginal probabilities for the purpose of interpretation. In this
book, this problem is avoided by using an alternative random effects based mixed
model to reflect the correlation of the two variables but such models are developed
as an extension of univariate multinomial models from cross-sectional setup.
With regard to inferences, the likelihood function based on product multinomial
distributions is maximized for the case when univariate response categories are
nominal. For the inferences for ordinal categorical data, the well-known weighted
least square method is used. Also, two new approaches, namely a binary mapping
based GQL (generalized quasi-likelihood) and pseudo-likelihood approaches, are
developed. The asymptotic covariances of such estimators are also computed.
Chapter 3 deals with longitudinal categorical data analysis. A new parametric
correlation model is developed by relating the present and past multinomial
responses. More specifically, conditional probabilities are modeled using such
dynamic relationships. Both linear and non-linear type models are considered
for these dynamic relationships based conditional probabilities. The models are
referred to as the linear dynamic conditional multinomial probability (LDCMP)
and multinomial dynamic logit (MDL) models, respectively. These models have
pedagogical virtue of reducing to the longitudinal binary cases. Nevertheless, for
simplicity, we discuss the linear dynamic conditional binary probability (LDCBP)
and binary dynamic logit (BDL) models in the beginning of the chapter, followed by
detailed discussion on LDCMP and MDL models. Both covariate free and stationary
covariate cases are considered. As far as the inferences for longitudinal binary data
are concerned, the book uses the GQL and likelihood approaches, similar to those
in Sutradhar (2011, Chap. 7), but the formulas in the present case are simplified in
terms of transitional counts. The models are then fitted to a longitudinal Asthma
data set as an illustration. Next, the inferences for the covariate free LDCMP model
are developed by exploiting both GQL and likelihood approaches; however, for
simplicity, only likelihood approach is discussed for the covariate free MDL model.
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In the presence of stationary covariates, the LDCMP and MDL regression models
are fitted using the likelihood approach. As an illustration, the well-known Three
Miles Island Stress Level (TMISL) data are reanalyzed in this book by fitting the
LDCMP and MDL regression models through likelihood approach. Furthermore,
correlation models for ordinal longitudinal multinomial data are developed and the
models are fitted through a binary mapping based pseudo-likelihood approach.

Chapter 4 is devoted to theoretical developments of correlation models for lon-
gitudinal multinomial data with non-stationary covariates, whereas similar models
were introduced in Chap. 3 for the cases with stationary covariates. As opposed
to the stationary case, it is not sensible to construct contingency tables at a given
level of the covariates in the non-stationary case. This is because the covariate
levels are also likely to change over time in the non-stationary longitudinal setup.
Consequently, no attempt is made to simplify the model and inference formulas in
terms of transitional counts. Two non-stationary models developed in this chapter
are referred to as the NSLDCMP (non-stationary LDCMP) and NSMDL (non-
stationary MDL) models. Likelihood inferences are employed to fit both models.
The chapter also contains discussions on some of the existing models where odds
ratios (equivalent to correlations) are estimated using certain “working” log linear
type working models. The advantages and drawbacks of this type of “working”
correlation models are also highlighted.

Chapters 2 through 4 were confined to the analysis of univariate longitudinal
categorical data. In practice, there are, however, situations where more than one
response variables are recorded from an individual over a small period of time.
For example, to understand how diabetes may affect retinopathy, it is important
to analyze retinopathy status of both left and right eyes of an individual. In this
problem, it may be of interest to study the effects of associated covariates on both
categorical responses, where these responses at a given point of time are structurally
correlated as they are taken from the same individual. In Chap. 5, this type of
bivariate correlations is modeled through a common individual random effect shared
by both response variables, but the modeling is confined, for simplicity, to the cross-
sectional setup. Bivariate longitudinal correlation models are discussed in Chap. 6.
For inferences for the bivariate mixed model in Chap. 5, we have developed a
likelihood approach where a binomial approximation to the normal distribution
of random effects is used to construct the likelihood estimating equations for
the desired parameters. Chapter 5 also contains a bivariate normal type linear
conditional model, but for multinomial response variables. A GQL estimation
approach is used for the inferences. The fitting of the bivariate normal model
is illustrated by reanalyzing the well-known WESDR (Wisconsin Epidemiologic
Study of Diabetic Retinopathy) data.

In Chap. 6, correlation models for longitudinal bivariate categorical data are
developed. This is done by using a dynamic model for each multinomial variables
conditional on the common random effect shared by both variables. Theoretical
details are provided for both model development and inferences through a GQL
estimation approach. The bivariate models discussed in Chaps. 5 and 6 may be
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extended to the multivariate multinomial setup, which is, however, beyond the scope
of the present book. The incomplete longitudinal multinomial data analysis is also
beyond the scope of the present book.

St. John’s, Newfoundland, Canada Brajendra C. Sutradhar
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