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Guidelines for the Choice of Sequences for Molecular
Plant Taxonomy

Pascale Besse

Abstract

This chapter presents an overview of the major plant DNA sequences and molecular methods available for
plant taxonomy. Guidelines are provided for the choice of sequences and methods to be used, based on the
DNA compartment (nuclear, chloroplastic, mitochondrial), evolutionary mechanisms, and the level of
taxonomic differentiation of the plants under survey.
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1 The Plant Genome and Regions Targeted for Molecular Plant Taxonomy

The nuclear genome in plants is very complex as in many eukary-
otes, as illustrated by the “C-value enigma” [1, 2]: although the
overall haploid DNA content (C-value) increases with apparent
biological complexity, some species have more DNA in their hap-
loid genome than some more complex organisms. Also, for a similar
level of biological complexity, some species, such as plants, exhibit a
surprisingly wide range of C-values (Fig. 1). This apparent discrep-
ancy can be in part explained by the occurrence of variable amounts
of repetitive DNA in the genomes (Fig. 1), most of which is consti-
tuted by noncoding sequences [ 3].

1.1 Repeated Most nuclear sequences targeted in molecular taxonomy experi-
Nuclear DNA ments belong to the category of highly repetitive DNA. Nuclear
Sequences ribosomal RNA genes (nrDNA) are tandemly (side by side) repeated

and located at a few loci in plant genomes [4-6] (Fig. 2). These,
and particularly the ITS (internal transcribed spacers) [7, 8], have
long been widely used for resolving plant taxonomic issues, initially
using restriction analysis and then sequencing (Chapter 7).
Microsatellite markers, also called STR (simple tandem repeats) or
SSR (simple sequence repeats), are tandem repeats of small
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Fig. 1 Haploid genome size and composition for different plant species (graph built from data taken in [50])

stretches of noncoding DNA sequences, discovered in 1989 and
named after the discovery of minisatellite and satellite DNA which
exhibited a similar tandem structure [9] (Fig. 2). Microsatellites
are widely used for diversity studies either as powerful single locus
markers easily amplified by PCR (Chapter 9) or in multi-locus
profiling methods revealing regions between adjacent SSRs (inter-
simple sequence repeats, ISSR) by PCR amplification (Fig. 3)
(Chapter 11).

Transposable elements (TEs) represent another class of repeated
DNA, but the elements are dispersed across the genome instead of
being tandemly repeated and these also can represent an important
part of the plant nuclear genome. Two main classes of TEs exist in
plants: class I retrotransposons (which transpose through a RNA
copy which is then reverse transcribed into DNA and inserted at a
new site) and class II transposons (which are excised and transpose
directly as DNA) (Fig. 4). Class I retrotransposons are more numer-
ous in genomes than class II as the original copy of the transposon is
retained after transposition. In maize, for example, LTR (long
terminal repeats)-retrotransposons represent up to 70 % of the
nuclear genome [10]. Class I transposons (either LTR-
retrotransposons or non-LTR-SINEs (short interspersed nuclear
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Fig. 2 Tandem repeat sequences used for molecular plant taxonomy: structure and number of tandem repeats
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Fig. 3 Multi-locus profiling methods using either SSR or retrotransposons as anchors
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Fig. 4 Transposable elements in plants

elements)) are now commonly used for phylogenetic and taxonomic
studies. Many studies use multi-locus PCR-based profiling methods
such as inter-retrotransposons amplified polymorphism (IRAP)
(Fig. 3) which amplifies regions between adjacent LTR repeats of
LTR-retrotransposons (Chapter 12). As described for eukaryotes
[11], SINEs are considered as perfect markers and are also being
sequenced to build robust plant phylogenies although these studies


http://dx.doi.org/10.1007/978-1-62703-767-9_12

42 Pascale Besse

1.2 Low-Copy
Nuclear Genes

1.3 Anonymous
Sequences

SNP

.AGATA.......TCAC.......GTCAA... plant species 2

J L J
100-300 bp 100-300 bp

Fig. 5 SNPs in plants

are restricted to a limited number of plant species (mainly cultivated
species) for which SINEs have been described and isolated [12, 13].

Contrary to ribosomal DNA nuclear genes, low-copy nuclear
genes (LCNG) do not suffer the possible disadvantages of con-
certed evolution, paralogy, and homoplasy [7, 8, 14, 15] that can
be particularly limiting for taxonomic studies in recent hybrids or
polyploids (see Chapter 7). However, care must be taken if using
low-copy genes belonging to multigenic families for which paral-
ogy and concerted evolution issues might still be problematic [16].
Despite their advantages, single-copy nuclear genes have not
so much been used for plant taxonomy as they are much more dit-
ficult to isolate and characterize, contrary to cpDNA or ribosomal
nuclear DNA which has been extensively used because they are
casily amplified using universal primers [16] (Chapters 5 and 7).
This situation is however changing rapidly [15, 17]. With the avail-
ability and affordability of new sequencing technologies [18], it is
now becoming feasible to assess variations at a wide range of single
or low-copy genes in nuclear genomes giving access to powerful
phylogenomic analyses [19, 20]. Rather than sequencing complete
genes for all accessions, single nucleotide polymorphisms (SNPs)
can be searched for and analyzed (Fig. 5) (Chapter 8), and various
sequence-based SNP assays can then be designed [21].

Many molecular technologies also rely on revealing variations at
randomly picked anonymous sequences in genomes. In such tech-
niques, the importance is not the nature of the target sequence
itself, but rather the high throughput of the technology, which
allows revealing numerous markers (loci) covering the genome.
The aim is to give an as accurate as possible view of the genome
diversity. This is the case for amplified fragment length polymor-
phism (AFLP) (Chapter 11), randomly amplified polymorphic
DNA (RAPD) (Chapter 10), and associated techniques (Fig. 6)
which use primers with arbitrary sequence to amplify genomic regions.
Some multi-locus profiling techniques use a combination of AFLP
associated with the revelation of either SSR loci (selective amplifica-
tion of microsatellite polymorphic loci, SAMPL) (Chapter 11) or
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Fig. 7 Multi-locus profiling methods using a combination of anchors based on AFLP, SSR, or LTR

1.4 Organellar DNA

LTR-retrotransposons (sequence-specific amplified polymorphism,
SSAP) (Chapter 12); others combine anchor primers in both SSR
and LTR-retrotransposon conserved regions (retrotransposon-
microsatellite amplification polymorphism, REMAP) (Chapter 12)
(Fig. 7). A new technology termed DArT (diversity array technology)
[22, 23] was also recently developed. It uses high-throughput
DNA-array technology to reveal polymorphisms between individ-
uals without any prior sequence information knowledge and is
therefore applicable to non-model species.

In plants, the genetic information is also carried on the mitochon-
drial as well as chloroplast genomes (organellar DNA). Although
mitochondrial genome (mtDNA) has received little attention in
plant taxonomic studies (but see Chapter 6) because of numerous
rearrangements and low levels of sequence variation, chloroplast
DNA (cpDNA) has been widely used in molecular plant phylogeny
(Chapter 5) through sequencing, restriction, or chromatography.
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2 Evolutionary Considerations

The molecular clock hypothesis suggests that nucleotide substitu-
tions occur at a roughly constant rate between and within evolu-
tionary lineages across time [24] and has given rise to different
models to estimate this evolutionary rate and its constancy [25].
According to the neutral theory of evolution, the speed of this rate
(the amount of molecular variation accumulated over time)
depends on the structural and functional constraints of the mole-
cule [26]. This can be illustrated by noncoding DNA molecules
(such as introns or intergenic sequences) evolving much faster than
coding DNA as they accumulate more variations over time. Also it
is now well admitted that third position bases in codons evolve
much faster than other positions due to the redundancy of the
genetic code [26] (less functional constraint on the third position
allows for more variations to accumulate over time). Most markers
generated using RAPD or AFLP technology have been shown by
genome-mapping experiments to cluster around the centromeres
of chromosomes [27-30], a heterochromatin region with mainly
noncoding sequences. Consequently, these markers often reveal an
important amount of variation.

The evolutionary rate of a molecule is also driven by its evolu-
tionary mechanisms. Microsatellite markers are the most variable
molecules known to date. They are mostly noncoding molecules and
vary in length (due to the variation in the number of tandem repeti-
tions or VNTR) due to replication slippage (SMM model [31]),
which occurs at a high frequency (10 to 1072) in plants [32].
Microsatellites with shorter motifs and greater number of repeats are
more prone to replication slippage and are thus the most variable
[33]. ISSR, SAMPL, and REMAP markers, which use a microsatel-
lite locus as an anchor, also beneficiate to a certain extent from the
microsatellite length hyper-variability. Minisatellite sequences that
tend to evolve through unequal crossing-over (IAM model [31]),
which is a phenomenon with greater frequency than simple base
mutations, also vary in length (i.e., number of tandem repeats) with
great frequency. Both types of sequences have been for this reason
used for generating powerful DNA fingerprints in human [34, 35]
and subsequently in numerous species including plants.

Most tandemly repeated sequences in the genome evolve
through what is known as “concerted evolution” or molecular drive
[36, 37], which involves mechanisms such as unequal crossing-over
or biased gene conversion. Over time, the sequences that compose
a family of tandem repeats within an individual genome are main-
tained similar, thanks to this concerted evolution [6, 38—40]. Such
sequences also tend to be maintained identical through close lin-
eages within a species and will therefore display a slower evolution-
ary rate than molecules without concerted evolution.
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In the c¢pDNA, like in the nDNA, intergenic noncoding
sequences evolve faster than coding sequences. For example, by
testing seven different sequences on a range of land plants, [41]
classified these sequences by order of variation as follows: ps6K-
psbI> trnH-psbA > atpE-atpH > matK> rpoB > rpoCl > rbcL,  illus-
trating that cpDNA intergenic regions are more variable than
coding regions. Globally, in plants, organellar sequences evolve
more slowly than nuclear sequences: mtDNA evolves three times
slower than cpDNA, which in turn evolves two times slower than
nDNA (average synonymous substitution rates per site per year for
mtDNA and cpDNA are 0.2-1.0x10-? and 1.0-3.0x 10-%, respec-
tively [42]) (Chapter 6). Even the most variable of intergenic
regions in cpDNA is less variable than nuclear ITS: ITS reveals
2.81 % sequence divergence in a range of plant families compared
to 1.24 % divergence for trnH- psbA, one of the most variable inter-
genic cpDNA regions [43].

Finally, class I TEs are good classification criteria to evaluate
species phylogenetic relationships; their mode of transposition
(“copy—paste” mode) makes them numerous and implies no ambi-
guity in the ancestral state definition, which is, for a given locus,
the absence of TE [11, 12]. Class II TEs are less appropriate for
phylogenetic issues mainly because of their direct mode of transpo-
sition (“cut—paste” mode) which, associated with possibilities of
horizontal transfer, can lead to erroneous classifications (TE phylo-
genetic trees not concordant with species phylogenetic history)

[44, 45].

3 Choice of Sequences for Molecular Taxonomy

These evolutionary considerations are of primary importance when
one wants to use a DNA sequence to infer phylogenetic relation-
ships between a set of accessions. Two questions have to be consid-
ered when starting a molecular taxonomy project:

1. What is the degree of time divergence between the accessions
under study? Do we want to address variations at the intra-
specific level (population level) or are we comparing species
from the same genus or different genera from the same family
or above:?

2. What is the evolutionary rate of the molecule that will be used
to infer relationships between accessions?

The rule to keep in mind is that the further we need to go in evo-
lutionary times, the slower the molecule must evolve. Going too far
with too much diverging sequences will lead to homoplasy (characters
identical by state, not by descent) through convergence or reversion.
On the opposite, slow evolving sequences will not be enough in
discriminating for groups that have evolved recently (Fig. 8).
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Fig. 8 lllustration of the usefulness of rapidly evolving versus slow evolving
sequences in molecular taxonomy assessment of recently or anciently diverged
groups. The curvilinear relationship between molecular changes and time is rep-
resented theoretically starting with a constant accumulation rate (molecular clock
hypothesis) which plateaus as a consequence of the saturation of the sequence
over time. The faster the sequence evolves, the faster the plateau is reached

Figure 9 illustrates this rule: if a very slow evolving sequence is
used, it might be unable to differentiate the two hypothetical spe-
cies under study (Fig. 9a). A sequence with an intermediate rate of
evolution and concerted evolution would allow the identification



Guidelines for Choice of Sequences 47

Genus X
species X.A species X.B
- individuals o o individuals
L__ Al A2 A3 A4 A5 Bl B2 B3 B4 BS -
A
% [ ) ] J ] ] ] Il ] ] ]
E
z
(e]
2 i
§ =]
3| [i I ] ) ( ] 3
= =]
N | s s | |
=
(]
="e]
g :
1 [— —  — s
2 — — — g
S R
=} | ) | [ I |
[ ] [ J ]
(o] B —
Y [— :::__
<
% ==
—J —

Fig. 9 lllustration of the differentiation power of DNA molecules depending on
their evolutionary rates

of each species, but would be unable to reveal any intraspecific
variability (Fig. 9b). To reach such level of informativeness, one
would need to use a single-copy gene (Fig. 9¢) or a microsatellite
marker (Fig. 9d), but the latter, due to high evolutionary rate, may
generate homoplasy (*) which could lead to erroneous interpreta-
tions if comparing species A and B, as individual B4 would appear
more related to species A than to individuals from species B. Such
rapidly evolving sequences are therefore not appropriate for studying
relationships at too high taxonomic levels.

Guidelines for the choice of sequences to be used depending
on the level of taxonomic divergence are illustrated (Fig. 10).
It must be kept in mind that the level of taxonomic differentiation
can vary considerably depending on the species group; therefore
one always needs to perform preliminary tests of various sequences
on a representative subset of accessions to assess their power in dif-
ferentiating our own individuals, species, or genera of interest.
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Level of analysis Recommended target DNA/methodology
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cpDNA: rbel, psaB, psbB, pshC, matK ...
mtDNA

Fig. 10 General guidelines for the choice of markers to be used for plant taxonomy

4 Genetic Considerations

Knowledge of the mode of inheritance of the molecules under
study is also of great importance. Nuclear sequences are inherited
in a Mendelian fashion, with contribution from both parents.
Organellar (chloroplastic and mitochondrial) sequences are almost
always uniparentally inherited (generally maternally, but see [46]).
This can have important consequences when building a molecular
phylogeny, as individuals or species of interspecific origin will
appear inconsistently on the trees generated with each type of
markers (Fig. 11): a species B of hybrid origin will be grouped with
its mother species A using cytoplasmic sequences, although it will
appear different from it on the nuclear tree.

AFLP, RAPD, ISSR, and other multi-locus profiling methods
generate >90 % dominant markers [47]. The polymorphism revealed
is mainly due to mutations in the hybridization region of one of the
primers, leading to either amplification of the locus (presence) or null
allele (absence of amplification), i.e., a dominant system (Fig. 12).
Consequently, such methods provide only biallelic markers.

On the other hand, microsatellites are very powerful monolocus
markers as they are multiallelic and codominant (Fig. 12). They are
indeed widely used in molecular ecology and population genetic
studies as heterozygous loci can be clearly identified and allelic fre-
quencies can be calculated to test for deviations from Hardy-Weinberg
equilibrium. One microsatellite multiallelic marker provides as much
genetic information as four to ten biallelic AFLP markers [48].

SNP markers are monolocus, codominant, but are biallelic.
Indeed, they evolve through the infinite sites (IAM) model: given
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Fig. 11 A hypothetic phylogeny involving a hybrid species B whose maternal parent is species A
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Fig. 12 Different genetic profiles: dominant versus codominant markers

the low rate of substitutions in genomes (the average synonymous
substitution rate in plant nuclear genome is about 5.0-30.0x 10~°
per site per year [42]), the probability of more than one mutation
at a given site is negligible; therefore each SNP is almost exclusively
found only with two different states among the four possible (A,
G, C, or T). For population genetic studies, it will be necessary to
compensate the low allelic diversity of SNP markers by increasing
the number of studied loci (2—-6 times more SNP locus are needed
as compared to microsatellites [49] to reach the same level of
informativeness).

5 Analyzing Results

Fragment length data (different band sizes visualized and coded
after electrophoretic separation) will only be analyzed using
distance-based methods (e.g., UPGMA or neighbor joining),
whereas sequence data will be analyzed either using distance-based
methods or more powerfully using character-based methods (e.g.,
using maximum parsimony or maximum likelihood), allowing true
phylogenetic trees to be constructed rather than phenetic trees
(Chapter 13). Always remember that the tree built is a sequence
tree, not a species trees. For all the reasons discussed above, using
different sequences can lead to different trees reflecting the differ-
ent evolutionary patterns of the sequences under study.
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6 Further Exploration: Chromosomal Organization

In plants, genome organization is very complex and polyploidy can
be an important speciation mode. It will be almost impossible to
differentiate, for example, a diploid species from a related auto-
polyploid species in a phylogenetic tree. Molecular taxonomy can
be greatly enhanced in some taxonomic complex plant groups by
assessing not only phylogenetic relationships but also genome
organization to determine introgression, hybridization, or poly-
ploidization (by analyzing either chromosomes or simply genome
size) (Chapters 14-16).
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