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    Chapter 2   

 Guidelines for the Choice of Sequences for Molecular 
Plant Taxonomy 

              Pascale     Besse    

    Abstract 

   This chapter presents an overview of the major plant DNA sequences and molecular methods available for 
plant taxonomy. Guidelines are provided for the choice of sequences and methods to be used, based on the 
DNA compartment (nuclear, chloroplastic, mitochondrial), evolutionary mechanisms, and the level of 
taxonomic differentiation of the plants under survey.  
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1      The Plant Genome and Regions Targeted for Molecular Plant Taxonomy 

 The nuclear genome in plants is very complex as in many eukary-
otes, as illustrated by the “C-value enigma” [ 1 ,  2 ]: although the 
overall haploid DNA content (C-value) increases with apparent 
biological complexity, some species have more DNA in their hap-
loid genome than some more complex organisms. Also, for a similar 
level of biological complexity, some species, such as plants, exhibit a 
surprisingly wide range of C-values (Fig.  1 ). This apparent discrep-
ancy can be in part explained by the occurrence of variable amounts 
of repetitive DNA in the genomes (Fig.  1 ), most of which is consti-
tuted by noncoding sequences [ 3 ].

    Most nuclear sequences targeted in molecular taxonomy experi-
ments belong to the category of highly repetitive DNA. Nuclear 
ribosomal RNA genes (nrDNA) are tandemly (side by side) repeated 
and located at a few loci in plant genomes [ 4 – 6 ] (Fig.  2 ). These, 
and particularly the ITS (internal transcribed spacers) [ 7 ,  8 ], have 
long been widely used for resolving plant taxonomic issues, initially 
using restriction analysis and then sequencing (Chapter   7    ). 
Microsatellite markers, also called STR (simple tandem repeats) or 
SSR (simple sequence repeats), are tandem repeats of small 

1.1  Repeated 
Nuclear DNA 
Sequences

http://dx.doi.org/10.1007/978-1-62703-767-9_7


40

stretches of noncoding DNA sequences, discovered in 1989 and 
named after the discovery of minisatellite and satellite DNA which 
exhibited a similar tandem structure [ 9 ] (Fig.  2 ). Microsatellites 
are widely used for diversity    studies either as powerful single locus 
markers easily amplifi ed by PCR (Chapter   9    ) or in multi-locus 
 profi ling methods revealing regions between  adjacent SSRs (inter-
simple sequence repeats, ISSR) by PCR amplifi cation (Fig.  3 )
(Chapter   11    ).

    Transposable elements (TEs) represent another class of repeated 
DNA, but the elements are dispersed across the genome instead of 
being tandemly repeated and these also can represent an important 
part of the plant nuclear genome. Two main classes of TEs exist in 
plants: class I retrotransposons (which transpose through a RNA 
copy which is then reverse transcribed into DNA and inserted at a 
new site) and class II transposons (which are excised and transpose 
directly as DNA) (Fig.  4 ). Class I retrotransposons are more numer-
ous in genomes than class II as the original copy of the transposon is 
retained after  transposition. In maize, for example, LTR (long 
 terminal repeats)-retrotransposons represent up to 70 % of the 
nuclear genome [ 10 ]. Class I transposons (either LTR-
retrotransposons or non-LTR-SINEs (short interspersed nuclear 

  Fig. 1    Haploid genome size and composition for different plant species (graph built from data taken in [ 50 ])       
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elements)) are now commonly used for phylogenetic and taxonomic 
studies. Many studies use multi-locus PCR- based profi ling methods 
such as inter-retrotransposons amplifi ed polymorphism (IRAP) 
(Fig.  3 ) which amplifi es regions between adjacent LTR repeats of 
LTR-retrotransposons (Chapter   12    ). As described for eukaryotes 
[ 11 ], SINEs are considered as perfect markers and are also being 
sequenced to build robust plant phylogenies although these studies 

  Fig. 2    Tandem repeat sequences used for molecular plant taxonomy: structure and number of tandem repeats       

  Fig. 3    Multi-locus profi ling methods using either SSR or retrotransposons as anchors       

  Fig. 4    Transposable elements in plants       
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are restricted to a limited number of plant species (mainly cultivated 
species) for which SINEs have been described and  isolated [ 12 ,  13 ].

     Contrary to ribosomal DNA nuclear genes, low-copy nuclear 
genes (LCNG) do not suffer the possible disadvantages of con-
certed evolution, paralogy, and homoplasy [ 7 ,  8 ,  14 ,  15 ] that can 
be particularly limiting for taxonomic studies in recent hybrids or 
polyploids ( see  Chapter   7    ). However, care must be taken if using 
low-copy genes belonging to multigenic families for which paral-
ogy and concerted evolution issues might still be problematic [ 16 ]. 

 Despite their advantages, single-copy nuclear genes have not 
so much been used for plant taxonomy as they are much more dif-
fi cult to isolate and characterize, contrary to cpDNA or ribosomal 
nuclear DNA which has been extensively used because they are 
easily amplifi ed using universal primers [ 16 ] (Chapters   5     and   7    ). 
This situation is however changing rapidly [ 15 ,  17 ]. With the avail-
ability and affordability of new sequencing technologies [ 18 ], it is 
now becoming feasible to assess variations at a wide range of single 
or low-copy genes in nuclear genomes giving access to powerful 
phylogenomic analyses [ 19 ,  20 ]. Rather than sequencing complete 
genes for all accessions, single nucleotide polymorphisms (SNPs) 
can be searched for and analyzed (Fig.  5 ) (Chapter   8    ), and various 
sequence-based SNP assays can then be designed [ 21 ].

     Many molecular technologies also rely on revealing variations at 
randomly picked anonymous sequences in genomes. In such tech-
niques, the importance is not the nature of the target sequence 
itself, but rather the high throughput of the technology, which 
allows revealing numerous markers (loci) covering the genome. 
The aim is to give an as accurate as possible view of the genome 
diversity. This is the case for amplifi ed fragment length polymor-
phism (AFLP) (Chapter   11    ), randomly amplifi ed polymorphic 
DNA (RAPD) (Chapter   10    ), and associated techniques (Fig.  6 ) 
which use primers with arbitrary sequence to amplify genomic regions. 
Some multi-locus profi ling techniques use a combination of AFLP 
associated with the revelation of either SSR loci (selective amplifi ca-
tion of microsatellite polymorphic loci, SAMPL) (Chapter   11    ) or 

1.2  Low-Copy 
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  Fig. 5    SNPs in plants       
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LTR-retrotransposons (sequence-specifi c amplifi ed polymorphism, 
SSAP) (Chapter   12    ); others combine anchor primers in both SSR 
and LTR-retrotransposon conserved regions (retrotransposon- 
microsatellite amplifi cation polymorphism, REMAP) (Chapter   12    ) 
(Fig.  7 ). A new technology termed DArT (diversity array technology) 
[ 22 ,  23 ] was also recently developed. It uses high-throughput 
DNA-array technology to reveal polymorphisms between individ-
uals without any prior sequence information knowledge and is 
therefore applicable to non-model species.

      In plants, the genetic information is also carried on the mitochon-
drial as well as chloroplast genomes (organellar DNA). Although 
mitochondrial genome (mtDNA) has received little attention in 
plant taxonomic studies (but  see  Chapter   6    ) because of numerous 
rearrangements and low levels of sequence variation, chloroplast 
DNA (cpDNA) has been widely used in molecular plant phylogeny 
(Chapter   5    ) through sequencing, restriction, or chromatography.   

1.4  Organellar DNA

  Fig. 6    Markers revealed by RAPD and AFLP       

  Fig. 7    Multi-locus profi ling methods using a combination of anchors based on AFLP, SSR, or LTR       
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2    Evolutionary Considerations 

 The molecular clock hypothesis suggests that nucleotide substitu-
tions occur at a roughly constant rate between and within evolu-
tionary lineages across time [ 24 ] and has given rise to different 
models to estimate this evolutionary rate and its constancy [ 25 ]. 
According to the neutral theory of evolution, the speed of this rate 
(the amount of molecular variation accumulated over time) 
depends on the structural and functional constraints of the mole-
cule [ 26 ]. This can be illustrated by noncoding DNA molecules 
(such as introns or intergenic sequences) evolving much faster than 
coding DNA as they accumulate more variations over time. Also it 
is now well admitted that third position bases in codons evolve 
much faster than other positions due to the redundancy of the 
genetic code [ 26 ] (less functional constraint on the third position 
allows for more variations to accumulate over time). Most markers 
generated using RAPD or AFLP technology have been shown by 
genome-mapping experiments to cluster around the centromeres 
of chromosomes [ 27 – 30 ], a heterochromatin region with mainly 
noncoding sequences. Consequently, these markers often reveal an 
important amount of variation. 

 The evolutionary rate of a molecule is also driven by its evolu-
tionary mechanisms. Microsatellite markers are the most variable 
molecules known to date. They are mostly noncoding molecules and 
vary in length (due to the variation in the number of tandem repeti-
tions or VNTR) due to replication slippage (SMM model [ 31 ]), 
which occurs at a high frequency (10 −6  to 10 −2 ) in plants [ 32 ]. 
Microsatellites with shorter motifs and greater number of repeats are 
more prone to replication slippage and are thus the most variable 
[ 33 ]. ISSR, SAMPL, and REMAP markers, which use a microsatel-
lite locus as an anchor, also benefi ciate to a certain extent from the 
microsatellite length hyper-variability. Minisatellite sequences that 
tend to evolve through unequal crossing-over (IAM model [ 31 ]), 
which is a phenomenon with greater frequency than simple base 
mutations, also vary in length (i.e., number of tandem repeats) with 
great frequency. Both types of sequences have been for this reason 
used for generating powerful DNA fi ngerprints in human [ 34 ,  35 ] 
and subsequently in numerous species including plants. 

 Most tandemly repeated sequences in the genome evolve 
through what is known as “concerted evolution” or molecular drive 
[ 36 ,  37 ], which involves mechanisms such as unequal crossing- over 
or biased gene conversion. Over time, the sequences that compose 
a family of tandem repeats within an individual genome are main-
tained similar, thanks to this concerted evolution [ 6 ,  38 – 40 ]. Such 
sequences also tend to be maintained identical through close lin-
eages within a species and will therefore display a slower evolution-
ary rate than molecules without concerted evolution. 
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 In the cpDNA, like in the nDNA, intergenic noncoding 
sequences evolve faster than coding sequences. For example, by 
testing seven different sequences on a range of land plants, [ 41 ] 
classifi ed these sequences by order of variation as follows:  psb K- 
psb I  >  trn H- psb A >  atp F- atp H >  mat K >  rpo B >  rpo C1 >  rbc L, illus-
trating that cpDNA intergenic regions are more variable than 
coding regions. Globally, in plants, organellar sequences evolve 
more slowly than nuclear sequences: mtDNA evolves three times 
slower than cpDNA, which in turn evolves two times slower than 
nDNA (average synonymous substitution rates per site per year for 
mtDNA and cpDNA are 0.2–1.0 × 10 −9  and 1.0–3.0 × 10 −9 , respec-
tively [ 42 ]) (Chapter   6    ). Even the most variable of intergenic 
regions in cpDNA is less variable than nuclear ITS: ITS reveals 
2.81 % sequence divergence in a range of plant families compared 
to 1.24 % divergence for  trn H- psb A, one of the most variable inter-
genic cpDNA regions [ 43 ]. 

 Finally, class I TEs are good classifi cation criteria to evaluate 
species phylogenetic relationships; their mode of transposition 
(“copy–paste” mode) makes them numerous and implies no ambi-
guity in the ancestral state defi nition, which is, for a given locus, 
the absence of TE [ 11 ,  12 ]. Class II TEs are less appropriate for 
phylogenetic issues mainly because of their direct mode of transpo-
sition (“cut–paste” mode) which, associated with possibilities of 
horizontal transfer, can lead to erroneous classifi cations (TE phylo-
genetic trees not concordant with species phylogenetic history) 
[ 44 ,  45 ].  

3    Choice of Sequences for Molecular Taxonomy 

 These evolutionary considerations are of primary importance when 
one wants to use a DNA sequence to infer phylogenetic relation-
ships between a set of accessions. Two questions have to be consid-
ered when starting a molecular taxonomy project:

    1.    What is the degree of time divergence between the accessions 
under study? Do we want to address variations at the intra-
specifi c level (population level) or are we comparing species 
from the same genus or different genera from the same family 
or above?   

   2.    What is the evolutionary rate of the molecule that will be used 
to infer relationships between accessions?     

 The rule to keep in mind is that the further we need to go in evo-
lutionary times, the slower the molecule must evolve. Going too far 
with too much diverging sequences will lead to homoplasy (characters 
identical by state, not by descent) through convergence or reversion. 
On the opposite, slow evolving sequences will not be enough in 
discriminating for groups that have evolved recently (Fig.  8 ). 
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  Fig. 8    Illustration of the usefulness of rapidly evolving versus slow evolving 
sequences in molecular taxonomy assessment of recently or anciently diverged 
groups. The curvilinear relationship between molecular changes and time is rep-
resented theoretically starting with a constant accumulation rate (molecular clock 
hypothesis) which plateaus as a consequence of the saturation of the sequence 
over time. The faster the sequence evolves, the faster the plateau is reached       

Figure  9  illustrates this rule: if a very slow evolving sequence is 
used, it might be unable to differentiate the two hypothetical spe-
cies under study (Fig.  9a ). A sequence with an intermediate rate of 
evolution and concerted evolution would allow the identifi cation 
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of each species, but would be unable to reveal any intraspecifi c 
variability (Fig.  9b ). To reach such level of informativeness, one 
would need to use a single-copy gene (Fig.  9c ) or a microsatellite 
marker (Fig.  9d ), but the latter, due to high evolutionary rate, may 
generate homoplasy (*) which could lead to erroneous interpreta-
tions if comparing species A and B, as individual B4 would appear 
more related to species A than to individuals from species B. Such 
rapidly evolving sequences are therefore not appropriate for studying 
relationships at too high taxonomic levels.

    Guidelines for the choice of sequences to be used depending 
on the level of taxonomic divergence are illustrated (Fig.  10 ). 
It must be kept in mind that the level of taxonomic differentiation 
can vary considerably depending on the species group; therefore 
one always needs to perform preliminary tests of various sequences 
on a representative subset of accessions to assess their power in dif-
ferentiating our own individuals, species, or genera of interest.

  Fig. 9    Illustration of the differentiation power of DNA molecules depending on 
their evolutionary rates       
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4       Genetic Considerations 

 Knowledge of the mode of inheritance of the molecules under 
study is also of great importance. Nuclear sequences are inherited 
in a Mendelian fashion, with contribution from both parents. 
Organellar (chloroplastic and mitochondrial) sequences are almost 
always uniparentally inherited (generally maternally, but see [ 46 ]). 
This can have important consequences when building a molecular 
phylogeny, as individuals or species of interspecifi c origin will 
appear inconsistently on the trees generated with each type of 
markers (Fig.  11 ): a species B of hybrid origin will be grouped with 
its mother species A using cytoplasmic sequences, although it will 
appear different from it on the nuclear tree.

   AFLP, RAPD, ISSR, and other multi-locus profi ling methods 
generate >90 % dominant markers [ 47 ]. The polymorphism revealed 
is mainly due to mutations in the hybridization region of one of the 
primers, leading to either amplifi cation of the locus (presence) or null 
allele (absence of amplifi cation), i.e., a dominant system (Fig.  12 ). 
Consequently, such methods provide only biallelic markers.

   On the other hand, microsatellites are very powerful monolocus 
markers as they are multiallelic and codominant (Fig.  12 ). They are 
indeed widely used in molecular ecology and population genetic 
studies as heterozygous loci can be clearly identifi ed and allelic fre-
quencies can be calculated to test for deviations from Hardy-Weinberg 
equilibrium. One microsatellite multiallelic marker provides as much 
genetic information as four to ten biallelic AFLP markers [ 48 ]. 

 SNP markers are monolocus, codominant, but are biallelic. 
Indeed, they evolve through the infi nite sites (IAM) model: given 

  Fig. 10    General guidelines for the choice of markers to be used for plant taxonomy       
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the low rate of substitutions in genomes (the average synonymous 
substitution rate in plant nuclear genome is about 5.0–30.0 × 10 −9  
per site per year [ 42 ]), the probability of more than one mutation 
at a given site is negligible; therefore each SNP is almost exclusively 
found only with two different states among the four possible (A, 
G, C, or T). For population genetic studies, it will be necessary to 
compensate the low allelic diversity of SNP markers by increasing 
the number of studied loci (2–6 times more SNP locus are needed 
as compared to microsatellites [ 49 ] to reach the same level of 
informativeness).  

5    Analyzing Results 

 Fragment length data (different band sizes visualized and coded 
after electrophoretic separation) will only be analyzed using 
distance- based methods (e.g., UPGMA or neighbor joining), 
whereas sequence data will be analyzed either using distance-based 
methods or more powerfully using character-based methods (e.g., 
using maximum parsimony or maximum likelihood), allowing true 
phylogenetic trees to be constructed rather than phenetic trees 
(Chapter   13    ). Always remember that the tree built is a sequence 
tree, not a species trees. For all the reasons discussed above, using 
different sequences can lead to different trees refl ecting the differ-
ent evolutionary patterns of the sequences under study.  

  Fig. 11    A hypothetic phylogeny involving a hybrid species B whose maternal parent is species A       

  Fig. 12    Different genetic profi les: dominant versus codominant markers       
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6    Further Exploration: Chromosomal Organization 

 In plants, genome organization is very complex and polyploidy can 
be an important speciation mode. It will be almost impossible to 
differentiate, for example, a diploid species from a related auto-
polyploid species in a phylogenetic tree. Molecular taxonomy can 
be greatly enhanced in some taxonomic complex plant groups by 
assessing not only phylogenetic relationships but also genome 
organization to determine introgression, hybridization, or poly-
ploidization (by analyzing either chromosomes or simply genome 
size) (Chapters   14    –  16    ).     
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