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Abstract Humoral autoimmunity reflects failures in B cell tolerance and regulation.

Accordingly, B cells have long been proposed as targets for treating autoimmune

disease. The last decade has witnessed substantial growth in the number of therapeutic

agents that target B cells themselves, or molecules key to B cell survival or function.

In order to understand, develop, and eventually predict the outcomes of B cell targeted

therapies, a thorough understating of the mechanisms underlying B cell development,

activation, and regulation is necessary. Here we summarize B cell genesis, differen-

tiation, and tolerance, and illustrate how an understanding of basic B cell biology can

afford insight into the design and action of therapeutic agents.

1 Introduction and Overview

During the last decade, therapeutics targeting B cells have emerged as attractive

candidates for treating autoimmune diseases. In addition to making antibodies,

B cells perform several other roles critical to normal immune system function,

including antigen presentation and regulatory cytokine production. Further, the

extent and nature of each function varies based on the B cell subset involved, the

anatomic context, and the nature of inducing stimuli. Thus, unraveling—and

eventually predicting—the basis for B cell targeted therapeutic activity requires

understanding the developmental, selective, and homeostatic mechanisms

governing naı̈ve, activated, and antigen experienced B cell pools. Accordingly,

this chapter focuses on current understanding of these processes in both mouse

models and humans. First, an overview of B lineage commitment, subsets and

primary B cell development is provided, followed by considerations of the selective
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and homeostatic processes active in establishing and maintaining pre-immune

B cell pools. In subsequent sections, we discuss alternative routes of B cell

activation, as well as the generation of effector and memory B cell subsets. Finally,

we briefly discuss the relevance of these considerations to current thought and

practice in B cell targeted therapies.

2 B Cell Commitment, Lineages, and Development

B cells are produced continuously throughout life, initially arising from the fetal

liver and then from hematopoietic stem cells in the bone marrow (BM) (reviewed in

Busslinger 2004; Dorshkind 2002; Georgopoulos 2002). As with all eukaryotic

cells, B lineage commitment is based on transcription factor competition and cross-

regulation (Warren and Rothenberg 2003). Accordingly, acquiring B cell identity

involves both the onset of a B cell transcriptional program and the loss of other

immune cell potentials (Rothenberg and Pant 2004). Key features of B lineage

commitment are tied to the initiation of gene rearrangements at the immunoglob-

ulin (Ig) heavy and light chain loci and the expression of several “master” tran-

scription factors, notably Pax5 (Nutt and Kee 2007; Cobaleda et al. 2007). Once

common lymphoid progenitors commit to the B lineage, the transcription factor

E2A modifies chromatin marks to activate EBF and Pax5, which in turn activate a

cascade of B cell-specific genes (Allman et al. 1999; Li et al. 1996; Nutt and Kee

2007; Medvedovic et al. 2011; Singh et al. 2007; Johnson et al. 2009). More

recently, several studies have highlighted regulatory aspects of microRNAs

(MiRs) in B cell development, particularly MiR-150 (Xiao et al. 2007; Li

et al. 2013). While epigenetic regulation of B cell development is beyond the

scope of this chapter, details of this topic and its link to lymphoma are discussed

elsewhere (Xiao and Rajewsky 2009; Fernando et al. 2012).

B cells can be separated into two lineages: B-1 and B-2. Debate remains as to

whether B-1 and B-2 cells derive from a common progenitor and diverge based on

antigen-driven selection, or instead reflect the products of distinct, lineage-

restricted progenitors (Ghosn et al. 2007; Berland and Wortis 2002; Montecino-

Rodriguez and Dorshkind 2012). Regardless of their exact origins, each lineage

plays distinct yet overlapping roles in humoral immunity, reflecting differences in

their generation, antigen receptor diversity, and anatomic niche (Table 1). The

phenotypic and functional characteristics of B-1 cells are well established in

mice, but their likely human counterpart was only recently revealed (Griffin

et al. 2011). In contrast, the characterization of B-2 cells is well advanced in both

human and mice, affording more extensive comparisons.

Murine B-1 cells are derived primarily from the fetal liver and are sustained

largely by self-renewal in the periphery (Hardy 2006; Berland and Wortis 2002;

Ghosn et al. 2007). In contrast, B-2 cells arise mostly from the bone marrow and are

produced throughout life, albeit at reduced output rates with advanced age. Thus,

despite the early production and brief predominance of B-1 cells in fetal and
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neonatal life (Haughton et al. 1993), continuous B-2 cell production yields a much

larger steady-state B-2 pool in secondary lymphoid organs (Krop et al. 1996).

2.1 BCR Expression and Early B Cell Differentiation

The expression of a functional B cell antigen receptor (BCR) is fundamental to B

cell identity. Further, because BCRs are clonally distributed—each mature B cell

expresses only one combining site specificity—a large repertoire of BCRs must be

established in the pre-immune B cell compartment to afford the selectivity and

specificity associated with adaptive immune responses. In mammals, this diverse

array of BCRs is established through the rearrangement of V, D, and J gene

segments at the Ig heavy and light chain loci (Tonegawa 1983; Alt et al. 1984).

In addition to the considerable permutations provided by the random splicing of

multiple gene segments and independent Ig heavy-light chain pairing, nucleotide

insertion mechanisms at gene segment junctions further amplify the breadth of

BCR diversity (Komori et al. 1993). Notably, while both B-1 and B-2 lineages

undergo VDJ rearrangement, the B-1 repertoire is comparatively restricted in terms

of heavy chain V segment use, and most B-1 cells lack junctional insertions

Table 1 Overview of B-1 and B-2 B cells

Ontogeny and

function B-1 B-2

Major roles Immune barrier; rapid, early

immune responses; natural

Abs; TI responses

Surveillance; adaptive immune responses;

memory; produce Ab targeted to patho-

gens; secondary immune responses; TI

and TD responses

Anatomic

locations

Coelomic cavities

Mucosal interfaces

Spleen

Secondary lymphoid organs

Lymphatics blood

Development Fetal liver; adult bone marrow;

self-renewal in periphery

Continuous generation from bone marrow

HSC pool

Major subsets B-1a, B-1b Transitional (TR), follicular (FO), marginal

zone (MZ), germinal center (GC),

memory B (MBC)

Pool size Small Large overall; FO B cells comprise the

majority in young adult life

Primary anti-

body isotype

(s) secreted

IgM, IgA IgM, IgG

BCR/repertoire Generated by somatic recombi-

nation

J-proximal VH segments

Lack junctional diversity

Generated by somatic recombination; ran-

dom use of entire VH cluster; high

junctional diversity

Somatic mutation in GC, memory B

Key differences between B-1 and B-2 B cells in the context of this chapter are shown. These are

extensively reviewed in Montecino-Rodriguez and Dorshkind (2012) and Herzenberg (2000)
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(Pennell et al. 1989a, b; Pennell 1995; Seidl et al. 1999; Gu et al. 1990; Kantor

et al. 1997; Griffin et al. 2011; Alugupalli et al. 2004; Stoel et al. 2005).

The discrete, sequential steps of VDJ recombination provide the basis for current

nomenclatures describing the developmental stages of BM-derived B-2 cells

(Melchers 1997; Melchers et al. 1989; Hardy 1989). The three most commonly

used nomenclatures are outlined and compared in Table 2. The pro-B cell (Hardy

fractions A–C) is the earliest of these developmental stages, where recombinase

activating genes 1 and 2 (RAG1/2) join a D and JH segment at the Ig heavy chain

(IgH) locus, followed by a VH to DJH rearrangement (Oettinger et al. 1990; Schatz

et al. 1989). After a successful VHDJH recombination event at IgH, the resulting

heavy chain gene product pairs with surrogate light chain (λ5-Vpre-B) to form the

pre-BCR. Reflecting the order of Ig heavy chain constant region genes, this initially

expressed heavy chain utilizes the JH-proximal μ constant region. The pre-BCR

complex, which includes the signaling components Ig-α and Ig-β, is trafficked to

the cell surface (Pillai and Baltimore 1987; Karasuyama et al. 1994). Signaling

through the pre-BCR is critical for continued B cell differentiation, presumably as a

checkpoint for successful Ig heavy chain expression (Kitamura et al. 1992).

Pre-BCR signals lead to reduced RAG1/2 protein levels (Jung et al. 2006), as

well as a proliferative burst in these so-called large pre-B cells (Hardy fraction

C0). The RAG1/2 proteins are then re-expressed, commencing light chain

rearrangement and marking the small pre-B cell stage (Hardy fraction D). Produc-

tive light chain rearrangement at either the Ig kappa or lambda light chain locus

yields expression of a complete BCR, demarcating the immature (IMM) BM B cell

stage (Hardy fraction E).

While most details of B-2 cell differentiation and Ig gene rearrangement were

established from studies in mice, human B cell development is strikingly similar. A

decade after Cooper and colleagues suggested that different lymphoid lineages

mediate antibody production versus delayed-type hypersensitivity in animal

models, B cell precursors were described in human fetal liver (Cooper

et al. 1965, 1966; Gathings et al. 1977). While these studies were largely geared

towards diagnosing and characterizing leukemia (Preud’homme and Seligmann

1972; Vogler et al. 1978), they initiated work leading to an understanding of

human B cell development. As in mice, human B cells arise in the fetal liver or

bone marrow and are continuously generated throughout life (Nunez et al. 1996).

Furthermore, the molecular mechanisms and temporal sequence of events under-

lying human BCR expression mirror the processes described in mice (LeBien

2000). One apparent difference between mouse and human B cell development is

the contribution of the common γ chain cytokine interleukin 7 (IL-7). While murine

pro- and pre-B cells rely on IL-7 for survival and differentiation, human B cell

progenitors are IL-7 independent (Namen et al. 1988; Prieyl and LeBien 1996; Puel

et al. 1998; Noguchi et al. 1993).
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2.2 Peripheral B-2 Cell Maturation and Homeostasis in
Pre-Immune Pools

Once developing B cells reach the IMM stage, they will exit the BM within several

days, entering the circulation as transitional (TR) B cells. The TR B cell pool can be

further divided into numbered subsets, T1, T2, and T3, according to surface marker

and functional criteria (Allman et al. 2001; Carsetti et al. 1995; Loder et al. 1999).

TR cells are found in the blood and spleen, but rarely enter the lymphatics.

Moreover, they are the last stage before developing cells enter one of the two

mature pre-immune B-2 pools: the follicular (FO) or marginal zone (MZ) B subsets

(Pillai and Cariappa 2009). Whereas FO B cells are recirculating and thus found in

the blood and secondary lymphoid organs, MZ B cells—at least in mice—are

sessile and instead home to and reside within the marginal zone of the splenic

white pulp (Gray et al. 1982; Pillai et al. 2005; Lu and Cyster 2002). Besides

occupying different physical niches, FO and MZ B cells display different BCR

signaling characteristics and serve distinct functions (Martin and Kearney 2002;

Pillai and Cariappa 2009; MacLennan et al. 1982; Oliver et al. 1997). While the

mechanisms dictating which mature subset TR B cells will enter are not fully

understood, BCR specificity, cytokine availability, and competition with

preexisting mature B cells are all contributors (Martin and Kearney 2002; Thien

et al. 2004; Allman and Pillai 2008). For example, MZ B cells express a skewed

repertoire of BCR specificities, sharing some features with the B-1 repertoire.

Further, under normal homeostatic conditions most TR B cells enter the FO pool,

but under B lymphopenic conditions the MZ fate is favored (Agenes and Freitas

1999; Srivastava et al. 2005).

While not absolutely congruent with the analogously named subsets in mice,

four B cell subsets are defined among human peripheral blood B cells, based on the

differential expression of CD19, CD38, CD27, CD24, and IgD (Table 3). These

include TR, FO, MZ-like, and memory B cell populations. A more detailed

discussion of subset demarcation, and comparisons with the corresponding mouse

Table 2 B-2 developmental stages in the bone marrow

Developmental stages

Status of Ig lociOsmond Melchers and Rolink Hardy

Pro-B Pre-pro B A Germline

Pro-B B D–JH rearrangement

C VH–DJH rearrangement

Pre-B Large pre B C0 VH DJH pairs with λ5-Vpre-B
Pre-BCR surface expression

Small pre B D Vκ–Jκ or Vλ–Jλ rearrangement

Immature B Immature B E Complete BCR (receptor editing can occur)

Comparison of the nomenclatures used to identify developmental B cell subsets and how they

relate to key VDJ recombination events (comprehensively reviewed in Osmond et al. 1998; Hardy

et al. 2000)
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subsets, can be found elsewhere (Scholz et al. 2011). Recent studies of human B

cell reconstitution after B cell depletion indicate that these peripheral subsets and

their differentiative order largely recapitulate murine B cell ontogeny; BM émigrés

initially seed the TR B cell pool, followed by appearance of the more mature FO

and MZ-like subsets (Anolik et al. 2007; Roll et al. 2006; Leandro et al. 2006;

Palanichamy et al. 2009; Suryani et al. 2010).

Once established, the maintenance of mature pre-immune B cell pools relies on

signals from survival cytokines, primarily those in the BLyS family of ligands and

receptors. This subfamily of the tumor necrosis factor (TNF) superfamily consists of two

cytokines, BLyS (B Lymphocyte Stimulator a.k.a. BAFF) and A proliferation-inducing

ligand (APRIL); and three receptors, BLyS receptor 3 (BR3, a.k.a. BAFF-R), trans-

membrane activator and cyclophilin ligand interactor (TACI), and B cell maturation

antigen (BCMA) (Hahne et al. 1998; Kelly et al. 2000; Madry et al. 1998; Moore

et al. 1999; von Bulow and Bram 1997). BLyS binds with the greatest affinity to BR3,

less strongly to TACI, and with low affinity to BCMA (Bossen and Schneider 2006;

Day et al. 2005). In contrast, APRIL binds with high affinity to both TACI and BCMA,

but negligibly to BR3.

Within the pre-immune B-2 cell pools, TR, FO, and MZ B cells express BR3

(Stadanlick et al. 2008; Hsu et al. 2002) and require signals via this receptor for their

survival. Accordingly, both BLyS and BR3 deficiencies independently yield profound

reductions in TR and mature B cell numbers (Harless et al. 2001; Lentz et al. 1996,

1998; Miller and Hayes 1991; Miller et al. 1992; Yan et al. 2001). Conversely, BLyS

transgenics or mice given exogenous BLyS show increased FO and MZ B cell

numbers (Mackay et al. 1999; Thien et al. 2004). The current models for peripheral

B cell homeostasis posit that B cells fill the mature pre-immune pools until most of the

available BLyS is bound to cell surface BR3 and TACI; and at that point B cell

Table 3 Comparison of mouse and human peripheral B cell subset phenotypes

Subsets Mouse Human

Transitional B220+AA4.1+CD24hiIgM+

BR3+TACI+
CD20+CD27�CD38hiIgM+CD24hi

BR3+

Mature pre-immune CD23+CD21/35+

IgDhiIgMlo (FO+)

CD23�CD21/35hi

IgDloIgMhiCD1d+ (MZ+)

BR3+TACI+

CD20+CD27�CD38+

IgM+IgD+ (Naı̈ve+)

CD20+CD23�CD21hi

IgDloIgMhiCD1d+ (MZ+-like)

BR3+TACI+

Germinal center B220+GL7+Fas+PNA+

IgD�IgM�

BR3+

CD20+CD38+IgD�

BR3+

Plasma cell IgD�B220lo, CD138hi

TACI+ and/or BCMA+
CD20�CD38hiCD27hiCD138+

TACI+ and/or BCMA+

Memory B cell B220+CD80+CD73+PD-L2+ CD20+CD38�CD27+

Major surface marker differences between pre-immune and antigen experienced B cell subsets

including BLyS receptor expression are shown. Memory B cell BLyS receptor profiles remain

poorly defined (Tangye et al. 2006; Scholz et al. 2011; Tomayko et al. 2010)
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capacity is maximal so the pool size remains constant unless BLyS levels change

substantially.

Far less is understood about the homeostatic mechanisms operating in B-1 B

cells. However, B-1 cell homeostasis differs fundamentally from B-2 cells in two

ways. First, unlike B-2 cells, the B-1 compartment is maintained largely by self-

renewal, rather than by the continuous influx of new cells generated from

HSC-derived progenitors. Second, B-1 B cells are largely independent of BLyS,

since BLyS depletion in mice has little or no effect on B-1 pools, despite the

profound depletion of B-2 cells (Scholz et al. 2008).

Though human B cell homeostasis is less extensively characterized, evidence

suggests mechanisms parallel to those in mice. For example, human B cells also

bind BLyS and express BR3 in both TR and naı̈ve pools (Darce et al. 2007;

Palanichamy et al. 2009; Ng et al. 2004; Sims et al. 2005; Carter et al. 2005).

Furthermore, homozygous BR3 deletion results in a B cell developmental block at

the TR stage, severely reducing numbers of mature pools—as has long been

appreciated in BR3- or BLyS-deficient mice (Warnatz et al. 2009; Thompson

et al. 2001; Schiemann et al. 2001). These observations imply an inverse relation-

ship between total B cells and BLyS levels, conceptually consistent with the notion

that BLyS signals via BR3 are key homeostatic regulators of the pre-immune B cell

pools. Indeed, BR3 deficiency, B cell lymphopenia, or B cell depletion therapy

leads to elevated serum BLyS levels (Cambridge et al. 2006; Kreuzaler et al. 2012).

Nevertheless, there is also evidence that human and nonhuman primate B cells are

somewhat less sensitive to BLyS depletion than murine B cells. In contrast to

murine FO B cells, a higher percentage of human B cells survive in culture without

BLyS and show only small improvements in survival with added BLyS (Avery

et al. 2003; Sims et al. 2005; Tangye et al. 2006). Furthermore, antibody-mediated

BLyS depletion partially ablates late TR and mature naı̈ve B cell subsets in humans

and nonhuman primates, but to a lesser degree than in mice (Scholz et al. 2008;

Calero et al. 2010; Halpern et al. 2006; Vugmeyster et al. 2006; Baker et al. 2003).

Differences in B cell sensitivity to BLyS may reflect differences in BLyS receptor

expression levels and/or BLyS availability within different anatomic locales: for

example, splenic MZ B cells of both mice and nonhuman primates are highly

sensitive to BLyS (Scholz et al. 2008; Vugmeyster et al. 2006). In toto, these

studies indicate a critical role for BLyS ligands and receptors in the size and content

of the primary human B cell repertoire.

3 Immune Tolerance and the Selection of Pre-Immune B

Cell Pools

Early demonstrations of acquired tolerance led to the clonal selection paradigm,

which posits the selective elimination of clones bearing autoreactive antigen receptors

(Billingham et al. 1953; Owen 1945; Burnet 1976). Indeed, the random recombination

and nucleotide insertion mechanisms underlying Ig gene expression unavoidably
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yield self-reactive BCRs, necessitating mechanisms to eliminate or silence potential

autoreactivity. In accord with this idea, multiple checkpoints are imposed during B

cell development that reduce the likelihood that self-reactive B cells will enter the

mature FO and MZ pools.

3.1 Deletion and Receptor Editing in the Bone Marrow

While some losses occur among developing B cells at the pre-B stage, the first point

at which a complete BCR specificity can be leveraged for selection is at the IMM

BM stage. Several powerful transgenic mouse models have identified two general

mechanisms through which autoreactive specificities are eliminated or altered at this

stage. Following the seminal findings of Nossal and Pike, compelling evidence has

accumulated for the selective elimination of IMM B cells bearing self-reactive BCRs,

driven by strong BCR ligation (Nossal and Pike 1975; Goodnow 2007; Nemazee and

Weigert 2000). In addition, avid BCR signaling at the IMM B cell stage can lead to

continued RAG expression and successive light chain gene rearrangements, thus

altering BCR specificity via a process dubbed receptor editing (Tiegs et al. 1993;

Gay et al. 1993; Luning Prak et al. 2011). This specificity-based central tolerance

checkpoint is stringent, as only about 10 % of IMM B cells proceed through this

checkpoint and exit the BM (Allman et al. 1993; Forster and Rajewsky 1990).

Evidence for similar processes in humans was established through single cloning

and re-expression of Igs from human B cell subsets. In these studies, Nussenzweig

and colleagues showed that nearly 75 % of BM precursors express autoreactive or

polyreactive BCRs, and that these are purged from the repertoire as cells transit

successive maturation stages (Wardemann et al. 2003). Interestingly, in some

autoimmune patients these checkpoints were faulty (Meffre and Wardemann

2008; Yurasov and Nussenzweig 2007; Yurasov et al. 2005).

3.2 Transitional B Cell Selection

Despite the ~ 90 % losses due to negative selection in the BM, autoreactive and

polyreactive clones nonetheless enter TR pools. While no longer capable of RAG

reactivation and editing, TR cells remain subject to deletional tolerance mecha-

nisms (Allman et al. 2001; Fulcher and Basten 1994; Goodnow et al. 1988; Rolink

et al. 1998; Carsetti et al. 1995). Moreover, in addition to negative selection

mediated by avid BCR signals, cells at the TR checkpoint also undergo a form of

positive selection, whereby a minimal level of so-called tonic BCR signaling is

required for survival and ultimate maturation (Monroe 2006). Thus, under normal

physiological conditions, only about 30 % of TR B cells—and thus about 3 % of the

original IMM B cell cohort—successfully continue to the mature FO or MZ pools

(Allman et al. 1993). Importantly, and in contrast to BM selection, the stringency of

peripheral tolerance is flexible and determined through interclonal competition
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based on BCR signal strength and the ability to acquire BLyS (Cyster et al. 1994;

Thien et al. 2004; Hondowicz et al. 2007). Thus, excess BLyS relaxes peripheral

selection, allows autoreactive clones to enter otherwise forbidden mature

pre-immune pools, and is associated with development of humoral autoimmunity

in mice (Groom et al. 2002; Khare et al. 2000; Mackay et al. 1999).

In accordance with this relationship, BLyS levels correlate with serum autoanti-

body titers in Sjogren’s syndrome and other systemic rheumatic diseases (Mariette

et al. 2003; Cheema et al. 2001; Stohl et al. 2003). Despite the effectiveness of

negative and peripheral selection, autoreactive B cells are found in mature pools in a

quiescent state, suggesting the presence of additional poorly understood regulatory

mechanisms (Wardemann et al. 2003). Finally, studies in humans receiving B cell

ablation therapies such as rituximab or stem cell transplantation have provided not

only detailed kinetics of human TR maturation but also novel surface markers to

identify these immature B cell subsets (Palanichamy et al. 2009; Suryani et al. 2010;

Anolik et al. 2007; Roll et al. 2006; Leandro et al. 2006). Further phenotypic marker

studies, as well as functional and gene expression analyses, should help to further

discriminate human B cell subsets (Anolik et al. 2009). Lastly, studies of human

BCRs at the IMM and TR stages of development suggest that selection is based on

specificity, and that either or both of these tolerogenic checkpoints are defective in

humoral autoimmune diseases (von Boehmer and Melchers 2010; Meffre and

Wardemann 2008; Wardemann et al. 2003; Yurasov et al. 2005; Wardemann and

Nussenzweig 2007).

4 B Cell Activation and Humoral Immune Responses

BCR ligation initiates downstream signaling systems that foster activation. Char-

acteristics of the subsequent humoral immune response are dictated by the type of

antigen, the B cell differentiative subset(s) involved, the avidity of BCR cross

linking, and intercellular interactions. In general, B cell responses follow the two-

signal paradigm (Bretscher and Cohn 1970), whereby BCR ligation (signal 1) must

be followed by additional activation and differentiation cues (signal 2) that are

delivered via other cells or molecules. Two broad categories of humoral responses

are defined based on the source of the second signal. The thymus-dependent

(TD) response involves second signals that are delivered when B cells internalize,

process, and present protein antigens to CD4 helper T cells. In contrast, the second

signal in thymus-independent (TI) responses is delivered through innate immune

receptors such as Toll like receptors (TLRs) expressed by the B cells themselves

(TI-1), or through exceptionally intense BCR cross linking alone (TI-2).

Important differences between TD and TI responses include the pre-immune B

cell populations that participate, the antibody isotypes generated, the response

duration, the ultimate antibody affinity, and the extent of immunological memory

established. In general, B-2 cells, particularly those in the FO compartment, are the

major contributors to TD responses. In contrast, TI responses arise primarily from
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either B-1 cells or the B-2 lineage MZ subset. These differences likely reflect the

BCR signaling characteristics and differentiative potential of these pools, as well as

the nature of inducing signals. TI responses are of short duration and skewed

towards IgM production, whereas TD responses are more protracted and usually

culminate in substantial class switched antibody of the IgG isotypes. Moreover, TD

responses display a gradual but profound increase in average antibody affinity—a

process termed affinity maturation. Finally, while both types of response can

generate relatively long-lived antibody forming cells and memory B cells, TD

responses are substantially more robust in this regard.

4.1 T-Independent Responses and Natural Antibodies

Within days after TI antigen challenge, substantial numbers of antibody secreting

plasma cells (PCs) appear in splenic extrafollicular regions (Tarlinton 2008;

Gourley et al. 2004). The antibodies made by this extrafollicular response are

largely IgM and display comparatively low affinity for antigen. Within 2–3

weeks, the vast majority of these PCs die, although recent evidence indicates

some long-term PC persistence and memory B cell (MBC) formation (Bortnick

et al. 2012; Obukhanych and Nussenzweig 2006).

In addition to participating in responses to overt TI antigenic stimuli, some B-1

B cells are apparently constitutively activated and produce so-called natural anti-

bodies (Bos et al. 1989; Baumgarth 2011). These polyreactive antibodies of the IgM

and IgA isotypes bind epitopes on pathogens and commensals, as well as self-

components such as cellular debris and phospholipids (Haas et al. 2005; Binder and

Silverman 2005; Griffin et al. 2011). In conjunction with their use of a restricted set

of IgH and IgL variable regions that do not include junctional insertions, these

features suggest that B-1 B cells are “innate-like,” serving both barrier and house-

keeping functions with a limited and relatively invariable set of ligand receptors

(Herzenberg 2000).

Several autoimmune prone mice highlight a role for TI activation of autoreactive

B cells; particularly from the standpoint of antigens containing TLR7, 8, and

9 ligands (Pisitkun et al. 2006; Leadbetter et al. 2002; Herlands et al. 2008). How

these activation cues lead to sustained autoantibody production nonetheless

remains unclear and is an active area of investigation.

4.2 T-Dependent Responses, Germinal Centers, and
Affinity Maturation

As with TI responses, within days of TD antigen challenge, substantial numbers of

PCs that generate low-affinity IgM appear in splenic extrafollicular regions.
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However, a few days later clusters of proliferating B cells appear at the borders of

B cell follicles and T cell zones in the lymph nodes and spleen (Nieuwenhuis and

Opstelten 1984; Jacob et al. 1991). These are germinal centers (GCs); transient

structures wherein the unique functional features of TD responses emerge, including

affinity maturation as well as efficient memory B cell (MBC) and long-lived plasma

cell generation.

GC formation requires a series of cognate, bi-directional interactions between

activated CD4 T cells and activated, antigen-presenting B cells. Detailed discussions

of these interactions are found elsewhere (Victora and Nussenzweig 2012), but they

include MHCII-restricted presentation by the B cell, costimulation via CD40-CD40L,

and key cytokines such as IL-21. Together, these interactions result in the adoption of a

GC B cell transcriptional program driven largely by Bcl-6 (Allman et al. 1996; Dent

et al. 1997; Shaffer et al. 2000; Basso and Dalla-Favera 2010). A key gene upregulated

in GC B cells is activation-induced deaminase (AID), which creates point mutations in

Ig V regions (Muramatsu et al. 2000; Pavri et al. 2010). This so-called somatic

hypermutation (SHM) mechanism results in clonal variants of GC B cells with altered

antigen affinity and specificity (Pavri and Nussenzweig 2011). Through selective

competition and survival, clonal variants with higher affinity for antigen are selectively

preserved, whereas those with lower affinity are at a selective disadvantage and die

(Zotos and Tarlinton 2012). The details surrounding preferential survival remain an area

of intense investigation, but clearly involve competition for antigen as well as survival

signals. Currently popularmodels posit that the anatomically definedGC light zones are

where competition for antigen and T helper cell survival factors occurs; whereas

proliferation and AID-mediated SHM occur in GC dark zones (MacLennan 1994).

AID also mediates class switch recombination (Muramatsu et al. 2000). Regulation of

GC formation and resolution, light and dark zone designations and functions, and

outcomes are broadly similar betweenmice and humans (Victora et al. 2012; Schmidlin

et al. 2009; Diehl et al. 2012; Durandy et al. 2007; Peron et al. 2007).

Since GCB cells undergo a randomBCR diversification process, the formation of

autoreactive specificities is an unavoidable consequence (Diamond and Scharff

1984; Alabyev et al. 2007). Accordingly, active selection against incipient

autoreactive GC B cell clones must also occur, although the mechanisms remain

debated (Zou and Diamond 2013). Current models include direct death signaling

through Fas–FasL interactions, as well as an inability to access survival cytokines

due to loss of cognate antigen-presenting ability. Nonetheless, there is clear evidence

for GC and/or post-GC selective checkpoints in both mice and humans

(Wong et al. 2012; Yan et al. 2012; Tiller et al. 2007). Moreover, there is evidence

for defects in this tolerance checkpoint in some SLE patients (Cappione et al. 2005).

4.3 Long-Lived Plasma Cells and Memory B Cells

Humoral responses, particularly TD responses, culminate in the establishment of

long-lived PCs and MBC. Long-lived PCs can persist for the life of the organism;

however, the basis for their longevity and precise differentiative origin remain an
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area of intense investigation. Commitment to the PC fate involves the expression of

B lymphocyte induced maturation protein 1 (Blimp1), which extinguishes the

mature B cell gene expression program (Shaffer et al. 2002). Blimp1 initiates the

PC transcriptional program in part through repression of both Bcl6 and Pax5

(Angelin-Duclos et al. 2000; Martins and Calame 2008). In addition, a plethora

of stress response genes, presumably to cope with sustained antibody secretion

(Oracki et al. 2010), are upregulated via the transcription factor Xbp1 (Reimold

et al. 2001). Long-lived PCs home to and reside in the BM, affording stable and

high antibody titers for the lifetime of the host (Schittek and Rajewsky 1990;

Manz et al. 1997). For example, TD responses from vaccines or pathogens confer

protection for years or decades in humans (Pinna et al. 2009; Plotkin 2008; Amanna

et al. 2007). Accordingly, given their robust nature and remarkable lifespan, long-

lived BM PCs are of particular concern in the context of autoimmunity. Indeed,

among patients where long-lived PCs are the source of pathogenic autoantibodies,

ablative therapies targeting pre-immune and MBC pools may have little impact

(Slifka et al. 1998). Thus, specifically targeting PCs is an important yet compara-

tively unexplored area in therapeutics for humoral autoimmune disorders.

MBCs are the result of antigen-driven clonal expansion long after an immuno-

logical challenge (Crotty et al. 2003). They remain in the host at elevated frequencies

and are less dependent on T cell help for their reactivation (Maruyama et al. 2000).

Whether antigen persistence plays a role in their maintenance remains debated, but at

least some MBCs endure in the apparent absence of antigen (Vieira and Rajewsky

1990). Furthermore, MBC have a lower BCR signaling threshold, enabling more

rapid entry into cell cycle compared to pre-immune pools (Gagro et al. 2003; Good

et al. 2009; Yefenof et al. 1986). Moreover, the Ig genes of MBCs can be highly

mutated or not, andMBCs can express either switched or unswitchedBCRs (Gourley

et al. 2004; Anderson et al. 2007). Lastly, MBCs are generally derived from GCs;

however, evidence also exists for GC-independent MBC generation (Shlomchik and

Weisel 2012).

In contrast to the relationship between BLyS and pre-immune B cell homeostasis,

survival requisites for memory and plasma cells are not yet resolved. Alternative

members of the BLyS ligand and receptor family may play a role, but are likely

redundant with other survival promoting mechanisms. For example, B cells stimu-

lated with TLR-4, 7, and 9 ligands upregulate TACI expression, suggesting APRIL

or BLyS may be important for the differentiation of short-lived PCs and/or their

persistence (Treml et al. 2007; Groom et al. 2007). Similarly, long-lived PCs express

both TACI and BCMA, suggesting APRIL may be an important cytokine for long-

lived plasma cell homeostasis. Indeed, reductions—but not complete elimination—

of plasma cells were noted when BLyS and APRIL were simultaneously blocked

in vivo (Benson et al. 2008). Other cytokines, interleukins, and chemokine receptors

are clearly involved in PC survival, suggesting considerable redundancy (Oracki

et al. 2010). Whether these can be targeted individually or en masse to achieve

therapeutic benefit is not yet clear, but may raise considerable off-target hurdles,

inasmuch as eliminating long-livedmemory and PC pools could significantly impact

preexisting immunity to pathogens or vaccine antigens.
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5 Overview of B Cells as Therapeutic Targets

Therapeutics targeting different B cell subsets and activation points are likely to

differ in their activity and efficacies both within and between various autoimmune

diseases. Indeed, several therapeutic agents that target B lineage cells are in clinical

use or development for treating autoimmune diseases (Chugh 2012). The basic

strategies involve targeting B cell-specific surface markers, depleting key survival

factors, or disrupting critical intercellular or intracellular functions. Key examples

of each of these approaches include rituximab (anti-CD20), belimumab (anti-

BLyS), CD40 blockade, and bortezomib (proteasome inhibitor), respectively.

Here, we briefly consider the effects and implications of each therapy, in order to

illustrate how an understanding of B cell biology may provide insight into predicted

outcomes, mechanism(s) of action, and potential drawbacks.

Two biologicals that have been applied to humoral autoimmunity are largely

targeted towards eliminating members of pre-immune B cell subsets: rituximab and

belimumab. Rituximab directly depletes B cells by targeting the CD20 surface

molecule. Although effective for treatment of RA, rituximab has yielded perplexing

results in off-label use for SLE (Looney et al. 2004; Sanz et al. 2011; Stohl et al. 2011).

The basis for such confounding outcomes is unclear, but might reflect unwanted

effects on B cell selection, or the lack of activity on relevant subsets in some subjects.

For example, since BLyS levels are inversely related to mature B cell numbers,

serum BLyS levels increase when B cells are ablated (Cambridge et al. 2006;

Kreuzaler et al. 2012). Thus, depletion of mature pre-immune B cells pools without

comcomitantly limiting BLyS availability could lead to temporarily relaxed TR

selection, affording entry of autoreactive clonotypes tomature naı̈ve pool (Cambridge

et al. 2006). Alternatively, because long-lived PCs lack CD20 surface expression,

rituximab may not target the cells responsible for pathogenic antibody production in

some subjects (Pescovitz 2006).

Belimumab—an anti-BLyS monoclonal antibody that neutralizes soluble

BLyS—is one of several therapeutic agents designed to target BLyS family mem-

bers (Cancro et al. 2009; Vincent et al. 2013). This approach ablates pre-immune B

cell pools, albeit through survival cytokine blockade rather than direct B cell

targeting. Clinical trial results demonstrated reductions in serum BLyS levels

following treatment, as expected; along with significant and sustained reductions

in mature pre-immune and activated B cells (Wallace et al. 2009; Furie et al. 2011).

Nonetheless, the degree of depletion was less than might have been predicted by

mouse studies, possibly reflecting the comparatively lower BLyS reliance of human

FO B cells (Tangye et al. 2006). Therefore, reducing BLyS levels concomitant with

B cell ablation may “normalize” TR selection, although this has not yet been

directly assessed.

Other agents have been developed to target activated and antigen experienced B

cell subsets. Some impede interactions of activated B cells with elements of T cell

help, possibly influencing ongoing or emerging GC reactions, while others are aimed

primarily at antibody secreting plasma cells per se. Thus, in SLE patients,
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administration of CD40L blocking antibody results in decreased PCs, lowered anti-

double-strandedDNAantibody levels, and reduced proteinuria (Grammer et al. 2003).

Whether this reflects disruption of ongoingGC responseswhere negative selection has

failed is unclear, but warrants further investigation. Indeed, there is ample evidence

that some autoimmune disorders require T cell help (Jiang et al. 2007; Diamond

et al. 1992; Shlomchik et al. 1990; Mohan et al. 1995), so blocking T-B interactions

may be a highly attractive therapeutic approach.Accordingly, further understanding of

B cell selection and tolerance checkpoints in TD responses may suggest future

therapies.

How memory or plasma cell subsets are impacted by current ablative approaches

remains unclear, probably reflecting heterogeneity and insufficient phenotypic

delineation of memory B cell subsets (Anolik et al. 2009). For example, despite

results from both mouse studies and clinical trials indicating that MBC and PC

pools are not substantially affected by anti-BLyS treatment, initial increases in

circulating MBC, followed by a gradual return to baseline levels, were observed in

belimumab clinical trials (Wallace et al. 2009; Furie et al. 2011). Nevertheless,

there were sustained and significant decreases in a plasma cell subset implicated in

SLE pathogenesis, along with IgG anti-dsDNA Ab and ANA titers, while Ab titers

to previous immunizations were maintained (Jacobi et al. 2003; Chatham

et al. 2012; Furie et al. 2011; Navarra et al. 2011). These results raise the possibility

of targeting pathogenic MBCs or PCs while sparing others.

Bortezomib is a proteasome inhibitor originally developed for multiple myeloma.

Because PCs synthesize massive amounts of antibody, inhibiting proteasome func-

tion induces apoptosis through the unfolded protein response (Obeng et al. 2006).

Therefore, inhibiting the proteasome has become an attractive novel therapy. Treat-

ment of lupus prone mice with bortezomib protects from nephritis (Neubert

et al. 2008). Similar results were also produced in an experimental model of

autoimmune myasthenia gravis (Gomez et al. 2011). Interestingly, bortezomib

selectively targets TD generated PCs but spares early TI type 2 responses (Lang

et al. 2010). Unfortunately, because molecular inhibitors are global, the therapy

lacks the specificity that antibody-based therapeutics provide. A more detailed

discussion about bortezomib’s role in treating humoral autoimmune disorders can

be found elsewhere (Fierabracci 2012).

6 Perspective

Over the past two decades, research in basic B cell biology has cleared the path for

the development of therapeutic agents for treating autoimmune disease. With

increasing understanding of development, tolerance checkpoints, and function, the

coming years promise to yield increasingly targeted agents to allow manipulation of

specific B cell types as improved therapies are designed.
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