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Abstract Humoral autoimmunity reflects failures in B cell tolerance and regulation.
Accordingly, B cells have long been proposed as targets for treating autoimmune
disease. The last decade has witnessed substantial growth in the number of therapeutic
agents that target B cells themselves, or molecules key to B cell survival or function.
In order to understand, develop, and eventually predict the outcomes of B cell targeted
therapies, a thorough understating of the mechanisms underlying B cell development,
activation, and regulation is necessary. Here we summarize B cell genesis, differen-
tiation, and tolerance, and illustrate how an understanding of basic B cell biology can
afford insight into the design and action of therapeutic agents.

1 Introduction and Overview

During the last decade, therapeutics targeting B cells have emerged as attractive
candidates for treating autoimmune diseases. In addition to making antibodies,
B cells perform several other roles critical to normal immune system function,
including antigen presentation and regulatory cytokine production. Further, the
extent and nature of each function varies based on the B cell subset involved, the
anatomic context, and the nature of inducing stimuli. Thus, unraveling—and
eventually predicting—the basis for B cell targeted therapeutic activity requires
understanding the developmental, selective, and homeostatic mechanisms
governing naive, activated, and antigen experienced B cell pools. Accordingly,
this chapter focuses on current understanding of these processes in both mouse
models and humans. First, an overview of B lineage commitment, subsets and
primary B cell development is provided, followed by considerations of the selective
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and homeostatic processes active in establishing and maintaining pre-immune
B cell pools. In subsequent sections, we discuss alternative routes of B cell
activation, as well as the generation of effector and memory B cell subsets. Finally,
we briefly discuss the relevance of these considerations to current thought and
practice in B cell targeted therapies.

2 B Cell Commitment, Lineages, and Development

B cells are produced continuously throughout life, initially arising from the fetal
liver and then from hematopoietic stem cells in the bone marrow (BM) (reviewed in
Busslinger 2004; Dorshkind 2002; Georgopoulos 2002). As with all eukaryotic
cells, B lineage commitment is based on transcription factor competition and cross-
regulation (Warren and Rothenberg 2003). Accordingly, acquiring B cell identity
involves both the onset of a B cell transcriptional program and the loss of other
immune cell potentials (Rothenberg and Pant 2004). Key features of B lineage
commitment are tied to the initiation of gene rearrangements at the immunoglob-
ulin (Ig) heavy and light chain loci and the expression of several “master” tran-
scription factors, notably Pax5 (Nutt and Kee 2007; Cobaleda et al. 2007). Once
common lymphoid progenitors commit to the B lineage, the transcription factor
E2A modifies chromatin marks to activate EBF and Pax5, which in turn activate a
cascade of B cell-specific genes (Allman et al. 1999; Li et al. 1996; Nutt and Kee
2007; Medvedovic et al. 2011; Singh et al. 2007; Johnson et al. 2009). More
recently, several studies have highlighted regulatory aspects of microRNAs
(MiRs) in B cell development, particularly MiR-150 (Xiao et al. 2007; Li
et al. 2013). While epigenetic regulation of B cell development is beyond the
scope of this chapter, details of this topic and its link to lymphoma are discussed
elsewhere (Xiao and Rajewsky 2009; Fernando et al. 2012).

B cells can be separated into two lineages: B-1 and B-2. Debate remains as to
whether B-1 and B-2 cells derive from a common progenitor and diverge based on
antigen-driven selection, or instead reflect the products of distinct, lineage-
restricted progenitors (Ghosn et al. 2007; Berland and Wortis 2002; Montecino-
Rodriguez and Dorshkind 2012). Regardless of their exact origins, each lineage
plays distinct yet overlapping roles in humoral immunity, reflecting differences in
their generation, antigen receptor diversity, and anatomic niche (Table 1). The
phenotypic and functional characteristics of B-1 cells are well established in
mice, but their likely human counterpart was only recently revealed (Griffin
et al. 2011). In contrast, the characterization of B-2 cells is well advanced in both
human and mice, affording more extensive comparisons.

Murine B-1 cells are derived primarily from the fetal liver and are sustained
largely by self-renewal in the periphery (Hardy 2006; Berland and Wortis 2002;
Ghosn et al. 2007). In contrast, B-2 cells arise mostly from the bone marrow and are
produced throughout life, albeit at reduced output rates with advanced age. Thus,
despite the early production and brief predominance of B-1 cells in fetal and
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Table 1 Overview of B-1 and B-2 B cells

Ontogeny and

function B-1 B-2
Major roles Immune barrier; rapid, early Surveillance; adaptive immune responses;
immune responses; natural memory; produce Ab targeted to patho-
Abs; TI responses gens; secondary immune responses; TI
and TD responses
Anatomic Coelomic cavities Secondary lymphoid organs
locations Mucosal interfaces Lymphatics blood

Development

Major subsets

Spleen

Fetal liver; adult bone marrow;
self-renewal in periphery

B-1a, B-1b

Continuous generation from bone marrow
HSC pool
Transitional (TR), follicular (FO), marginal

zone (MZ), germinal center (GC),
memory B (MBC)

Pool size Small Large overall; FO B cells comprise the
majority in young adult life
Primary anti- IgM, IgA IgM, IgG

body isotype
(s) secreted
BCR/repertoire  Generated by somatic recombi-
nation
J-proximal Vy segments

Lack junctional diversity

Generated by somatic recombination; ran-
dom use of entire Vy cluster; high
junctional diversity

Somatic mutation in GC, memory B

Key differences between B-1 and B-2 B cells in the context of this chapter are shown. These are
extensively reviewed in Montecino-Rodriguez and Dorshkind (2012) and Herzenberg (2000)

neonatal life (Haughton et al. 1993), continuous B-2 cell production yields a much
larger steady-state B-2 pool in secondary lymphoid organs (Krop et al. 1996).

2.1 BCR Expression and Early B Cell Differentiation

The expression of a functional B cell antigen receptor (BCR) is fundamental to B
cell identity. Further, because BCRs are clonally distributed—each mature B cell
expresses only one combining site specificity—a large repertoire of BCRs must be
established in the pre-immune B cell compartment to afford the selectivity and
specificity associated with adaptive immune responses. In mammals, this diverse
array of BCRs is established through the rearrangement of V, D, and J gene
segments at the Ig heavy and light chain loci (Tonegawa 1983; Alt et al. 1984).
In addition to the considerable permutations provided by the random splicing of
multiple gene segments and independent Ig heavy-light chain pairing, nucleotide
insertion mechanisms at gene segment junctions further amplify the breadth of
BCR diversity (Komori et al. 1993). Notably, while both B-1 and B-2 lineages
undergo VDJ rearrangement, the B-1 repertoire is comparatively restricted in terms
of heavy chain V segment use, and most B-1 cells lack junctional insertions
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(Pennell et al. 1989a, b; Pennell 1995; Seidl et al. 1999; Gu et al. 1990; Kantor
et al. 1997; Griffin et al. 2011; Alugupalli et al. 2004; Stoel et al. 2005).

The discrete, sequential steps of VDJ recombination provide the basis for current
nomenclatures describing the developmental stages of BM-derived B-2 cells
(Melchers 1997; Melchers et al. 1989; Hardy 1989). The three most commonly
used nomenclatures are outlined and compared in Table 2. The pro-B cell (Hardy
fractions A—C) is the earliest of these developmental stages, where recombinase
activating genes 1 and 2 (RAG1/2) join a D and Jy segment at the Ig heavy chain
(IgH) locus, followed by a Vy to DJy rearrangement (Oettinger et al. 1990; Schatz
et al. 1989). After a successful VyDJy recombination event at [gH, the resulting
heavy chain gene product pairs with surrogate light chain (A5-Vpre-B) to form the
pre-BCR. Reflecting the order of Ig heavy chain constant region genes, this initially
expressed heavy chain utilizes the Jy-proximal p constant region. The pre-BCR
complex, which includes the signaling components Ig-a and Ig-f, is trafficked to
the cell surface (Pillai and Baltimore 1987; Karasuyama et al. 1994). Signaling
through the pre-BCR is critical for continued B cell differentiation, presumably as a
checkpoint for successful Ig heavy chain expression (Kitamura et al. 1992).
Pre-BCR signals lead to reduced RAG1/2 protein levels (Jung et al. 2006), as
well as a proliferative burst in these so-called large pre-B cells (Hardy fraction
C’). The RAGI1/2 proteins are then re-expressed, commencing light chain
rearrangement and marking the small pre-B cell stage (Hardy fraction D). Produc-
tive light chain rearrangement at either the Ig kappa or lambda light chain locus
yields expression of a complete BCR, demarcating the immature (IMM) BM B cell
stage (Hardy fraction E).

While most details of B-2 cell differentiation and Ig gene rearrangement were
established from studies in mice, human B cell development is strikingly similar. A
decade after Cooper and colleagues suggested that different lymphoid lineages
mediate antibody production versus delayed-type hypersensitivity in animal
models, B cell precursors were described in human fetal liver (Cooper
et al. 1965, 1966; Gathings et al. 1977). While these studies were largely geared
towards diagnosing and characterizing leukemia (Preud’homme and Seligmann
1972; Vogler et al. 1978), they initiated work leading to an understanding of
human B cell development. As in mice, human B cells arise in the fetal liver or
bone marrow and are continuously generated throughout life (Nunez et al. 1996).
Furthermore, the molecular mechanisms and temporal sequence of events under-
lying human BCR expression mirror the processes described in mice (LeBien
2000). One apparent difference between mouse and human B cell development is
the contribution of the common y chain cytokine interleukin 7 (IL-7). While murine
pro- and pre-B cells rely on IL-7 for survival and differentiation, human B cell
progenitors are IL-7 independent (Namen et al. 1988; Prieyl and LeBien 1996; Puel
et al. 1998; Noguchi et al. 1993).
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Table 2 B-2 developmental stages in the bone marrow

Developmental stages

Osmond Melchers and Rolink Hardy Status of Ig loci
Pro-B Pre-pro B A Germline

Pro-B B D-Jy rearrangement

C Vyu—DIJy rearrangement
Pre-B Large pre B c Vy DJy pairs with A5-Vpre-B
Pre-BCR surface expression

Small pre B D V,—J, or V,-J, rearrangement

Immature B Immature B E Complete BCR (receptor editing can occur)

Comparison of the nomenclatures used to identify developmental B cell subsets and how they
relate to key VDJ recombination events (comprehensively reviewed in Osmond et al. 1998; Hardy
et al. 2000)

2.2  Peripheral B-2 Cell Maturation and Homeostasis in
Pre-Immune Pools

Once developing B cells reach the IMM stage, they will exit the BM within several
days, entering the circulation as transitional (TR) B cells. The TR B cell pool can be
further divided into numbered subsets, T1, T2, and T3, according to surface marker
and functional criteria (Allman et al. 2001; Carsetti et al. 1995; Loder et al. 1999).
TR cells are found in the blood and spleen, but rarely enter the lymphatics.
Moreover, they are the last stage before developing cells enter one of the two
mature pre-immune B-2 pools: the follicular (FO) or marginal zone (MZ) B subsets
(Pillai and Cariappa 2009). Whereas FO B cells are recirculating and thus found in
the blood and secondary lymphoid organs, MZ B cells—at least in mice—are
sessile and instead home to and reside within the marginal zone of the splenic
white pulp (Gray et al. 1982; Pillai et al. 2005; Lu and Cyster 2002). Besides
occupying different physical niches, FO and MZ B cells display different BCR
signaling characteristics and serve distinct functions (Martin and Kearney 2002;
Pillai and Cariappa 2009; MacLennan et al. 1982; Oliver et al. 1997). While the
mechanisms dictating which mature subset TR B cells will enter are not fully
understood, BCR specificity, cytokine availability, and competition with
preexisting mature B cells are all contributors (Martin and Kearney 2002; Thien
et al. 2004; Allman and Pillai 2008). For example, MZ B cells express a skewed
repertoire of BCR specificities, sharing some features with the B-1 repertoire.
Further, under normal homeostatic conditions most TR B cells enter the FO pool,
but under B lymphopenic conditions the MZ fate is favored (Agenes and Freitas
1999; Srivastava et al. 2005).

While not absolutely congruent with the analogously named subsets in mice,
four B cell subsets are defined among human peripheral blood B cells, based on the
differential expression of CD19, CD38, CD27, CD24, and IgD (Table 3). These
include TR, FO, MZ-like, and memory B cell populations. A more detailed
discussion of subset demarcation, and comparisons with the corresponding mouse
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Table 3 Comparison of mouse and human peripheral B cell subset phenotypes

Subsets Mouse Human
Transitional B220*AA4.17CD24" 1IgM* CD20"CD27 - CD38"IgM*CD24"
BR3'TACT* BR3*
Mature pre-immune  CD23*CD21/35" CD20*CD27-CD38*
IgD"IgM'® (FO™) IgM*IgD* (Naive®)
CD23~CD21/35" CD20"CD23-CD21™
IgD"°IgMMCD1d* (MZ) IgD"°IgMMCD1d* (MZ*-like)
BR3*TACT* BR3*TACT"
Germinal center B220"GL7"Fas*PNA* CD20*CD38*IgD~
IgD IgM ™~ BR3*
BR3*
Plasma cell IgD~B220'", CD138" CD20~CD38"CD27"CD138*
TACI* and/or BCMA™ TACI* and/or BCMA*
Memory B cell B220*CD80"CD73*PD-L2*  CD20*CD38 CD27*

Major surface marker differences between pre-immune and antigen experienced B cell subsets
including BLyS receptor expression are shown. Memory B cell BLyS receptor profiles remain
poorly defined (Tangye et al. 2006; Scholz et al. 2011; Tomayko et al. 2010)

subsets, can be found elsewhere (Scholz et al. 2011). Recent studies of human B
cell reconstitution after B cell depletion indicate that these peripheral subsets and
their differentiative order largely recapitulate murine B cell ontogeny; BM émigrés
initially seed the TR B cell pool, followed by appearance of the more mature FO
and MZ-like subsets (Anolik et al. 2007; Roll et al. 2006; Leandro et al. 20006;
Palanichamy et al. 2009; Suryani et al. 2010).

Once established, the maintenance of mature pre-immune B cell pools relies on
signals from survival cytokines, primarily those in the BLyS family of ligands and
receptors. This subfamily of the tumor necrosis factor (TNF) superfamily consists of two
cytokines, BLyS (B Lymphocyte Stimulator a.k.a. BAFF) and A proliferation-inducing
ligand (APRIL); and three receptors, BLyS receptor 3 (BR3, a.k.a. BAFF-R), trans-
membrane activator and cyclophilin ligand interactor (TACI), and B cell maturation
antigen (BCMA) (Hahne et al. 1998; Kelly et al. 2000; Madry et al. 1998; Moore
et al. 1999; von Bulow and Bram 1997). BLyS binds with the greatest affinity to BR3,
less strongly to TACI, and with low affinity to BCMA (Bossen and Schneider 2006;
Day et al. 2005). In contrast, APRIL binds with high affinity to both TACI and BCMA,
but negligibly to BR3.

Within the pre-immune B-2 cell pools, TR, FO, and MZ B cells express BR3
(Stadanlick et al. 2008; Hsu et al. 2002) and require signals via this receptor for their
survival. Accordingly, both BLyS and BR3 deficiencies independently yield profound
reductions in TR and mature B cell numbers (Harless et al. 2001; Lentz et al. 1996,
1998; Miller and Hayes 1991; Miller et al. 1992; Yan et al. 2001). Conversely, BLyS
transgenics or mice given exogenous BLyS show increased FO and MZ B cell
numbers (Mackay et al. 1999; Thien et al. 2004). The current models for peripheral
B cell homeostasis posit that B cells fill the mature pre-immune pools until most of the
available BLyS is bound to cell surface BR3 and TACI; and at that point B cell
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capacity is maximal so the pool size remains constant unless BLyS levels change
substantially.

Far less is understood about the homeostatic mechanisms operating in B-1 B
cells. However, B-1 cell homeostasis differs fundamentally from B-2 cells in two
ways. First, unlike B-2 cells, the B-1 compartment is maintained largely by self-
renewal, rather than by the continuous influx of new cells generated from
HSC-derived progenitors. Second, B-1 B cells are largely independent of BLyS,
since BLyS depletion in mice has little or no effect on B-1 pools, despite the
profound depletion of B-2 cells (Scholz et al. 2008).

Though human B cell homeostasis is less extensively characterized, evidence
suggests mechanisms parallel to those in mice. For example, human B cells also
bind BLyS and express BR3 in both TR and naive pools (Darce et al. 2007;
Palanichamy et al. 2009; Ng et al. 2004; Sims et al. 2005; Carter et al. 2005).
Furthermore, homozygous BR3 deletion results in a B cell developmental block at
the TR stage, severely reducing numbers of mature pools—as has long been
appreciated in BR3- or BLyS-deficient mice (Warnatz et al. 2009; Thompson
et al. 2001; Schiemann et al. 2001). These observations imply an inverse relation-
ship between total B cells and BLyS levels, conceptually consistent with the notion
that BLyS signals via BR3 are key homeostatic regulators of the pre-immune B cell
pools. Indeed, BR3 deficiency, B cell lymphopenia, or B cell depletion therapy
leads to elevated serum BLyS levels (Cambridge et al. 2006; Kreuzaler et al. 2012).
Nevertheless, there is also evidence that human and nonhuman primate B cells are
somewhat less sensitive to BLyS depletion than murine B cells. In contrast to
murine FO B cells, a higher percentage of human B cells survive in culture without
BLyS and show only small improvements in survival with added BLyS (Avery
et al. 2003; Sims et al. 2005; Tangye et al. 2006). Furthermore, antibody-mediated
BLYyS depletion partially ablates late TR and mature naive B cell subsets in humans
and nonhuman primates, but to a lesser degree than in mice (Scholz et al. 2008;
Calero et al. 2010; Halpern et al. 2006; Vugmeyster et al. 2006; Baker et al. 2003).
Differences in B cell sensitivity to BLyS may reflect differences in BLyS receptor
expression levels and/or BLyS availability within different anatomic locales: for
example, splenic MZ B cells of both mice and nonhuman primates are highly
sensitive to BLyS (Scholz et al. 2008; Vugmeyster et al. 2006). In toto, these
studies indicate a critical role for BLyS ligands and receptors in the size and content
of the primary human B cell repertoire.

3 Immune Tolerance and the Selection of Pre-Immune B
Cell Pools

Early demonstrations of acquired tolerance led to the clonal selection paradigm,
which posits the selective elimination of clones bearing autoreactive antigen receptors
(Billingham et al. 1953; Owen 1945; Burnet 1976). Indeed, the random recombination
and nucleotide insertion mechanisms underlying Ig gene expression unavoidably
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yield self-reactive BCRs, necessitating mechanisms to eliminate or silence potential
autoreactivity. In accord with this idea, multiple checkpoints are imposed during B
cell development that reduce the likelihood that self-reactive B cells will enter the
mature FO and MZ pools.

3.1 Deletion and Receptor Editing in the Bone Marrow

While some losses occur among developing B cells at the pre-B stage, the first point
at which a complete BCR specificity can be leveraged for selection is at the IMM
BM stage. Several powerful transgenic mouse models have identified two general
mechanisms through which autoreactive specificities are eliminated or altered at this
stage. Following the seminal findings of Nossal and Pike, compelling evidence has
accumulated for the selective elimination of IMM B cells bearing self-reactive BCRs,
driven by strong BCR ligation (Nossal and Pike 1975; Goodnow 2007; Nemazee and
Weigert 2000). In addition, avid BCR signaling at the IMM B cell stage can lead to
continued RAG expression and successive light chain gene rearrangements, thus
altering BCR specificity via a process dubbed receptor editing (Tiegs et al. 1993;
Gay et al. 1993; Luning Prak et al. 2011). This specificity-based central tolerance
checkpoint is stringent, as only about 10 % of IMM B cells proceed through this
checkpoint and exit the BM (Allman et al. 1993; Forster and Rajewsky 1990).

Evidence for similar processes in humans was established through single cloning
and re-expression of Igs from human B cell subsets. In these studies, Nussenzweig
and colleagues showed that nearly 75 % of BM precursors express autoreactive or
polyreactive BCRs, and that these are purged from the repertoire as cells transit
successive maturation stages (Wardemann et al. 2003). Interestingly, in some
autoimmune patients these checkpoints were faulty (Meffre and Wardemann
2008; Yurasov and Nussenzweig 2007; Yurasov et al. 2005).

3.2 Transitional B Cell Selection

Despite the ~ 90 % losses due to negative selection in the BM, autoreactive and
polyreactive clones nonetheless enter TR pools. While no longer capable of RAG
reactivation and editing, TR cells remain subject to deletional tolerance mecha-
nisms (Allman et al. 2001; Fulcher and Basten 1994; Goodnow et al. 1988; Rolink
et al. 1998; Carsetti et al. 1995). Moreover, in addition to negative selection
mediated by avid BCR signals, cells at the TR checkpoint also undergo a form of
positive selection, whereby a minimal level of so-called tonic BCR signaling is
required for survival and ultimate maturation (Monroe 2006). Thus, under normal
physiological conditions, only about 30 % of TR B cells—and thus about 3 % of the
original IMM B cell cohort—successfully continue to the mature FO or MZ pools
(Allman et al. 1993). Importantly, and in contrast to BM selection, the stringency of
peripheral tolerance is flexible and determined through interclonal competition
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based on BCR signal strength and the ability to acquire BLyS (Cyster et al. 1994;
Thien et al. 2004; Hondowicz et al. 2007). Thus, excess BLyS relaxes peripheral
selection, allows autoreactive clones to enter otherwise forbidden mature
pre-immune pools, and is associated with development of humoral autoimmunity
in mice (Groom et al. 2002; Khare et al. 2000; Mackay et al. 1999).

In accordance with this relationship, BLyS levels correlate with serum autoanti-
body titers in Sjogren’s syndrome and other systemic rheumatic diseases (Mariette
et al. 2003; Cheema et al. 2001; Stohl et al. 2003). Despite the effectiveness of
negative and peripheral selection, autoreactive B cells are found in mature pools in a
quiescent state, suggesting the presence of additional poorly understood regulatory
mechanisms (Wardemann et al. 2003). Finally, studies in humans receiving B cell
ablation therapies such as rituximab or stem cell transplantation have provided not
only detailed kinetics of human TR maturation but also novel surface markers to
identify these immature B cell subsets (Palanichamy et al. 2009; Suryani et al. 2010;
Anolik et al. 2007; Roll et al. 2006; Leandro et al. 2006). Further phenotypic marker
studies, as well as functional and gene expression analyses, should help to further
discriminate human B cell subsets (Anolik et al. 2009). Lastly, studies of human
BCRs at the IMM and TR stages of development suggest that selection is based on
specificity, and that either or both of these tolerogenic checkpoints are defective in
humoral autoimmune diseases (von Boehmer and Melchers 2010; Meffre and
Wardemann 2008; Wardemann et al. 2003; Yurasov et al. 2005; Wardemann and
Nussenzweig 2007).

4 B Cell Activation and Humoral Immune Responses

BCR ligation initiates downstream signaling systems that foster activation. Char-
acteristics of the subsequent humoral immune response are dictated by the type of
antigen, the B cell differentiative subset(s) involved, the avidity of BCR cross
linking, and intercellular interactions. In general, B cell responses follow the two-
signal paradigm (Bretscher and Cohn 1970), whereby BCR ligation (signal 1) must
be followed by additional activation and differentiation cues (signal 2) that are
delivered via other cells or molecules. Two broad categories of humoral responses
are defined based on the source of the second signal. The thymus-dependent
(TD) response involves second signals that are delivered when B cells internalize,
process, and present protein antigens to CD4 helper T cells. In contrast, the second
signal in thymus-independent (TT) responses is delivered through innate immune
receptors such as Toll like receptors (TLRs) expressed by the B cells themselves
(TI-1), or through exceptionally intense BCR cross linking alone (TI-2).
Important differences between TD and TI responses include the pre-immune B
cell populations that participate, the antibody isotypes generated, the response
duration, the ultimate antibody affinity, and the extent of immunological memory
established. In general, B-2 cells, particularly those in the FO compartment, are the
major contributors to TD responses. In contrast, TI responses arise primarily from
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either B-1 cells or the B-2 lineage MZ subset. These differences likely reflect the
BCR signaling characteristics and differentiative potential of these pools, as well as
the nature of inducing signals. TI responses are of short duration and skewed
towards IgM production, whereas TD responses are more protracted and usually
culminate in substantial class switched antibody of the IgG isotypes. Moreover, TD
responses display a gradual but profound increase in average antibody affinity—a
process termed affinity maturation. Finally, while both types of response can
generate relatively long-lived antibody forming cells and memory B cells, TD
responses are substantially more robust in this regard.

4.1 T-Independent Responses and Natural Antibodies

Within days after TI antigen challenge, substantial numbers of antibody secreting
plasma cells (PCs) appear in splenic extrafollicular regions (Tarlinton 2008;
Gourley et al. 2004). The antibodies made by this extrafollicular response are
largely IgM and display comparatively low affinity for antigen. Within 2-3
weeks, the vast majority of these PCs die, although recent evidence indicates
some long-term PC persistence and memory B cell (MBC) formation (Bortnick
et al. 2012; Obukhanych and Nussenzweig 2006).

In addition to participating in responses to overt TI antigenic stimuli, some B-1
B cells are apparently constitutively activated and produce so-called natural anti-
bodies (Bos et al. 1989; Baumgarth 2011). These polyreactive antibodies of the IgM
and IgA isotypes bind epitopes on pathogens and commensals, as well as self-
components such as cellular debris and phospholipids (Haas et al. 2005; Binder and
Silverman 2005; Griffin et al. 2011). In conjunction with their use of a restricted set
of IgH and IgL variable regions that do not include junctional insertions, these
features suggest that B-1 B cells are “innate-like,” serving both barrier and house-
keeping functions with a limited and relatively invariable set of ligand receptors
(Herzenberg 2000).

Several autoimmune prone mice highlight a role for TT activation of autoreactive
B cells; particularly from the standpoint of antigens containing TLR7, 8, and
9 ligands (Pisitkun et al. 2006; Leadbetter et al. 2002; Herlands et al. 2008). How
these activation cues lead to sustained autoantibody production nonetheless
remains unclear and is an active area of investigation.

4.2 T-Dependent Responses, Germinal Centers, and
Affinity Maturation

As with TI responses, within days of TD antigen challenge, substantial numbers of
PCs that generate low-affinity IgM appear in splenic extrafollicular regions.
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However, a few days later clusters of proliferating B cells appear at the borders of
B cell follicles and T cell zones in the lymph nodes and spleen (Nieuwenhuis and
Opstelten 1984; Jacob et al. 1991). These are germinal centers (GCs); transient
structures wherein the unique functional features of TD responses emerge, including
affinity maturation as well as efficient memory B cell (MBC) and long-lived plasma
cell generation.

GC formation requires a series of cognate, bi-directional interactions between
activated CD4 T cells and activated, antigen-presenting B cells. Detailed discussions
of these interactions are found elsewhere (Victora and Nussenzweig 2012), but they
include MHClII-restricted presentation by the B cell, costimulation via CD40-CD40L,
and key cytokines such as IL-21. Together, these interactions result in the adoption of a
GC B cell transcriptional program driven largely by Bcl-6 (Allman et al. 1996; Dent
et al. 1997; Shaffer et al. 2000; Basso and Dalla-Favera 2010). A key gene upregulated
in GC B cells is activation-induced deaminase (AID), which creates point mutations in
Ig V regions (Muramatsu et al. 2000; Pavri et al. 2010). This so-called somatic
hypermutation (SHM) mechanism results in clonal variants of GC B cells with altered
antigen affinity and specificity (Pavri and Nussenzweig 2011). Through selective
competition and survival, clonal variants with higher affinity for antigen are selectively
preserved, whereas those with lower affinity are at a selective disadvantage and die
(Zotos and Tarlinton 2012). The details surrounding preferential survival remain an area
of intense investigation, but clearly involve competition for antigen as well as survival
signals. Currently popular models posit that the anatomically defined GC light zones are
where competition for antigen and T helper cell survival factors occurs; whereas
proliferation and AID-mediated SHM occur in GC dark zones (MacLennan 1994).
AID also mediates class switch recombination (Muramatsu et al. 2000). Regulation of
GC formation and resolution, light and dark zone designations and functions, and
outcomes are broadly similar between mice and humans (Victora et al. 2012; Schmidlin
et al. 2009; Diehl et al. 2012; Durandy et al. 2007; Peron et al. 2007).

Since GC B cells undergo a random BCR diversification process, the formation of
autoreactive specificities is an unavoidable consequence (Diamond and Scharff
1984; Alabyev et al. 2007). Accordingly, active selection against incipient
autoreactive GC B cell clones must also occur, although the mechanisms remain
debated (Zou and Diamond 2013). Current models include direct death signaling
through Fas—FasL interactions, as well as an inability to access survival cytokines
due to loss of cognate antigen-presenting ability. Nonetheless, there is clear evidence
for GC and/or post-GC selective checkpoints in both mice and humans
(Wong et al. 2012; Yan et al. 2012; Tiller et al. 2007). Moreover, there is evidence
for defects in this tolerance checkpoint in some SLE patients (Cappione et al. 2005).

4.3 Long-Lived Plasma Cells and Memory B Cells

Humoral responses, particularly TD responses, culminate in the establishment of
long-lived PCs and MBC. Long-lived PCs can persist for the life of the organism;
however, the basis for their longevity and precise differentiative origin remain an
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area of intense investigation. Commitment to the PC fate involves the expression of
B lymphocyte induced maturation protein 1 (Blimpl), which extinguishes the
mature B cell gene expression program (Shaffer et al. 2002). Blimpl1 initiates the
PC transcriptional program in part through repression of both Bcl6 and Pax5
(Angelin-Duclos et al. 2000; Martins and Calame 2008). In addition, a plethora
of stress response genes, presumably to cope with sustained antibody secretion
(Oracki et al. 2010), are upregulated via the transcription factor Xbpl (Reimold
et al. 2001). Long-lived PCs home to and reside in the BM, affording stable and
high antibody titers for the lifetime of the host (Schittek and Rajewsky 1990;
Manz et al. 1997). For example, TD responses from vaccines or pathogens confer
protection for years or decades in humans (Pinna et al. 2009; Plotkin 2008; Amanna
et al. 2007). Accordingly, given their robust nature and remarkable lifespan, long-
lived BM PCs are of particular concern in the context of autoimmunity. Indeed,
among patients where long-lived PCs are the source of pathogenic autoantibodies,
ablative therapies targeting pre-immune and MBC pools may have little impact
(Slifka et al. 1998). Thus, specifically targeting PCs is an important yet compara-
tively unexplored area in therapeutics for humoral autoimmune disorders.

MBC:s are the result of antigen-driven clonal expansion long after an immuno-
logical challenge (Crotty et al. 2003). They remain in the host at elevated frequencies
and are less dependent on T cell help for their reactivation (Maruyama et al. 2000).
Whether antigen persistence plays arole in their maintenance remains debated, but at
least some MBCs endure in the apparent absence of antigen (Vieira and Rajewsky
1990). Furthermore, MBC have a lower BCR signaling threshold, enabling more
rapid entry into cell cycle compared to pre-immune pools (Gagro et al. 2003; Good
et al. 2009; Yefenof et al. 1986). Moreover, the Ig genes of MBCs can be highly
mutated or not, and MBCs can express either switched or unswitched BCRs (Gourley
et al. 2004; Anderson et al. 2007). Lastly, MBCs are generally derived from GCs;
however, evidence also exists for GC-independent MBC generation (Shlomchik and
Weisel 2012).

In contrast to the relationship between BLyS and pre-immune B cell homeostasis,
survival requisites for memory and plasma cells are not yet resolved. Alternative
members of the BLyS ligand and receptor family may play a role, but are likely
redundant with other survival promoting mechanisms. For example, B cells stimu-
lated with TLR-4, 7, and 9 ligands upregulate TACI expression, suggesting APRIL
or BLyS may be important for the differentiation of short-lived PCs and/or their
persistence (Treml et al. 2007; Groom et al. 2007). Similarly, long-lived PCs express
both TACI and BCMA, suggesting APRIL may be an important cytokine for long-
lived plasma cell homeostasis. Indeed, reductions—but not complete elimination—
of plasma cells were noted when BLyS and APRIL were simultaneously blocked
in vivo (Benson et al. 2008). Other cytokines, interleukins, and chemokine receptors
are clearly involved in PC survival, suggesting considerable redundancy (Oracki
et al. 2010). Whether these can be targeted individually or en masse to achieve
therapeutic benefit is not yet clear, but may raise considerable off-target hurdles,
inasmuch as eliminating long-lived memory and PC pools could significantly impact
preexisting immunity to pathogens or vaccine antigens.
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5 Overview of B Cells as Therapeutic Targets

Therapeutics targeting different B cell subsets and activation points are likely to
differ in their activity and efficacies both within and between various autoimmune
diseases. Indeed, several therapeutic agents that target B lineage cells are in clinical
use or development for treating autoimmune diseases (Chugh 2012). The basic
strategies involve targeting B cell-specific surface markers, depleting key survival
factors, or disrupting critical intercellular or intracellular functions. Key examples
of each of these approaches include rituximab (anti-CD20), belimumab (anti-
BLyS), CD40 blockade, and bortezomib (proteasome inhibitor), respectively.
Here, we briefly consider the effects and implications of each therapy, in order to
illustrate how an understanding of B cell biology may provide insight into predicted
outcomes, mechanism(s) of action, and potential drawbacks.

Two biologicals that have been applied to humoral autoimmunity are largely
targeted towards eliminating members of pre-immune B cell subsets: rituximab and
belimumab. Rituximab directly depletes B cells by targeting the CD20 surface
molecule. Although effective for treatment of RA, rituximab has yielded perplexing
results in off-label use for SLE (Looney et al. 2004; Sanz et al. 2011; Stohl et al. 2011).
The basis for such confounding outcomes is unclear, but might reflect unwanted
effects on B cell selection, or the lack of activity on relevant subsets in some subjects.
For example, since BLyS levels are inversely related to mature B cell numbers,
serum BLyS levels increase when B cells are ablated (Cambridge et al. 2006;
Kreuzaler et al. 2012). Thus, depletion of mature pre-immune B cells pools without
comcomitantly limiting BLyS availability could lead to temporarily relaxed TR
selection, affording entry of autoreactive clonotypes to mature naive pool (Cambridge
et al. 2006). Alternatively, because long-lived PCs lack CD20 surface expression,
rituximab may not target the cells responsible for pathogenic antibody production in
some subjects (Pescovitz 2006).

Belimumab—an anti-BLyS monoclonal antibody that neutralizes soluble
BLyS—is one of several therapeutic agents designed to target BLyS family mem-
bers (Cancro et al. 2009; Vincent et al. 2013). This approach ablates pre-immune B
cell pools, albeit through survival cytokine blockade rather than direct B cell
targeting. Clinical trial results demonstrated reductions in serum BLyS levels
following treatment, as expected; along with significant and sustained reductions
in mature pre-immune and activated B cells (Wallace et al. 2009; Furie et al. 2011).
Nonetheless, the degree of depletion was less than might have been predicted by
mouse studies, possibly reflecting the comparatively lower BLyS reliance of human
FO B cells (Tangye et al. 2006). Therefore, reducing BLyS levels concomitant with
B cell ablation may “normalize” TR selection, although this has not yet been
directly assessed.

Other agents have been developed to target activated and antigen experienced B
cell subsets. Some impede interactions of activated B cells with elements of T cell
help, possibly influencing ongoing or emerging GC reactions, while others are aimed
primarily at antibody secreting plasma cells per se. Thus, in SLE patients,
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administration of CD40L blocking antibody results in decreased PCs, lowered anti-
double-stranded DNA antibody levels, and reduced proteinuria (Grammer et al. 2003).
Whether this reflects disruption of ongoing GC responses where negative selection has
failed is unclear, but warrants further investigation. Indeed, there is ample evidence
that some autoimmune disorders require T cell help (Jiang et al. 2007; Diamond
et al. 1992; Shlomchik et al. 1990; Mohan et al. 1995), so blocking T-B interactions
may be a highly attractive therapeutic approach. Accordingly, further understanding of
B cell selection and tolerance checkpoints in TD responses may suggest future
therapies.

How memory or plasma cell subsets are impacted by current ablative approaches
remains unclear, probably reflecting heterogeneity and insufficient phenotypic
delineation of memory B cell subsets (Anolik et al. 2009). For example, despite
results from both mouse studies and clinical trials indicating that MBC and PC
pools are not substantially affected by anti-BLyS treatment, initial increases in
circulating MBC, followed by a gradual return to baseline levels, were observed in
belimumab clinical trials (Wallace et al. 2009; Furie et al. 2011). Nevertheless,
there were sustained and significant decreases in a plasma cell subset implicated in
SLE pathogenesis, along with IgG anti-dsDNA Ab and ANA titers, while Ab titers
to previous immunizations were maintained (Jacobi et al. 2003; Chatham
et al. 2012; Furie et al. 2011; Navarra et al. 2011). These results raise the possibility
of targeting pathogenic MBCs or PCs while sparing others.

Bortezomib is a proteasome inhibitor originally developed for multiple myeloma.
Because PCs synthesize massive amounts of antibody, inhibiting proteasome func-
tion induces apoptosis through the unfolded protein response (Obeng et al. 2006).
Therefore, inhibiting the proteasome has become an attractive novel therapy. Treat-
ment of lupus prone mice with bortezomib protects from nephritis (Neubert
et al. 2008). Similar results were also produced in an experimental model of
autoimmune myasthenia gravis (Gomez et al. 2011). Interestingly, bortezomib
selectively targets TD generated PCs but spares early TI type 2 responses (Lang
et al. 2010). Unfortunately, because molecular inhibitors are global, the therapy
lacks the specificity that antibody-based therapeutics provide. A more detailed
discussion about bortezomib’s role in treating humoral autoimmune disorders can
be found elsewhere (Fierabracci 2012).

6 Perspective

Over the past two decades, research in basic B cell biology has cleared the path for
the development of therapeutic agents for treating autoimmune disease. With
increasing understanding of development, tolerance checkpoints, and function, the
coming years promise to yield increasingly targeted agents to allow manipulation of
specific B cell types as improved therapies are designed.
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