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Abstract Theorigin of thenumerical implementationof boundary integral equations
can be traced from fifty years earlier, when the electronic computers had become
available. The full emergence of the numerical technique known as the boundary
element method occurred in the late 1970s. In implementing the method, only the
boundary of the solution domain has to be discretized into elements. In the case of a
two-dimensional problem, this is really easy to do: put closely packed points on the
boundary (a curve) and join up two consecutive neighboring points to form straight
line elements. In this chapter we present one of the applications of this method,
namely, the growth and detachment of bubbles generated by the continuous injec-
tion of gas into a quiescent liquid and the effect of partial confinement on the shape
and volume of bubbles generated by injection of a constant flow rate of gas. In the
problem of bubble generation, the contours are the surfaces of the bubbles and the
solid surfaces of the reservoir, which are all surfaces of revolution. The unknowns
involved in the formulation of the boundary element are fluid particle velocities that
define surfaces of the bubbles and the stresses on the vessel wall. First, we neglect
viscous effects and assume the flow to be irrotational so that a velocity potential
exists. In second case we solve the Stokes equations for the liquid and the evolution
equation for the surface of a bubble. Experiments with two different liquids show
that cylindrical and conical walls and cylinder walls with periodic concentric corru-
gations with a gas injected through an orifice at the bottom of the liquid may strongly
affect the shape and volume of the bubbles, and can be used to control the size of the
generated bubbles without changing the flow rate of gas.
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Fig. 1 Number of journal articles published by the year on the subject of BEM, based on the Web
of Science search. Refer to Appendix for the search criteria (Search date: May 3, 2004)

1 Introduction

Mathematicians from the eighteenth to twentieth centuries, whose contributionswere
the key to the theoretical development, are honoredwith short biographies. The origin
of the numerical implementation of boundary integral equations can be traced back
to the 1960s, when the electronic computers had become available.

The full emergence of the numerical technique known as the boundary element
method occurred in the late 1970s. This article reviews the early history of the
boundary element method up to the late 1970s.

After three decades of development, the boundary element method (BEM) has
found a firm footing in the area of numerical methods for partial differential equa-
tions. Comparing to the more popular numerical methods, such as the Finite Element
Method (FEM) and the Finite Difference Method (FDM), which can be classified
as the domain methods, the BEM distinguish itself as a boundary method, mean-
ing that the numerical discretization is conducted at reduced spatial dimension. For
example, for problems in three spatial dimensions, the discretization is performed
on the bounding surface only; and in two spatial dimensions, the discretization is on
the boundary contour only. This reduced dimension leads to smaller linear systems,
less computer memory requirements, and more efficient computation. This effect
is most pronounced when the domain is unbounded. Unbounded domain needs to
be truncated and approximated in domain methods. The BEM, on the other hand,
automatically models the behavior at infinity without the need of deploying a mesh
to approximate it. Figure1 presents the histogram of the number of journal papers
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published annually, containing BEM as a keyword (Alexander and Daisy 2005;
Costabel Martin 1986).

Because a given set of boundary and initial conditions uniquely define the solution
in the domain, the value of the function at anypoint in the interior canbe expressed as a
sole contribution of boundary values, what is achieved mathematically by the Green-
Stokes-Gauss-divergence theorem, which is the foundation of the boundary elements
method (BEM). With this method, first the full solution (function and derivatives)
at the boundary points are computed by a kind of finite-element method where the
base functions are the fundamental solutions of the PDE at the boundary nodes, then
solving a set of algebraic equations at the nodes, and finally, if needed, the value at
any internal point is directly computed by a quadrature (without interpolation).

The problem with the boundary element method is that the local integration in
the boundary is more involved than in the standard FEM because there are singular
points that require more elaborated computations. Other handicap is that the BEM
only applies to regions of constant properties. The great advantage is that for bulky
domains the number of nodes significantly decreases, particularly for infinite domains
(what explains its massive use in external fluid mechanics and geomechanics). Inci-
dentally, for infinite domains, besides the BEM, one may also resort to classical
FEM with a truncated domain progressively enlarged, or matched to an asymptotic
analytical expansion, or stretching the external elements with a log-transformation.

On the other hand, the growth and detachment of bubbles generated by the contin-
uous injection of gas into a quiescent liquid has been very much studied in conditions
where the viscosity of the liquid plays no important role (Davidson and Schuler 1960;
Longuet-Higgins et al. 1991; Marmur and Rubin 1976; Clift et al. 1978; Corchero
et al. 2006). Results of these studies are of interest in metallurgical and chemical
industries among others, where liquids of low viscosity, such as liquid metals and
aqueous solutions, need to be handled. Bubbles in these liquids can be used tomodify
the concentrations of different substances and promote chemical reactions between
them, to clean liquids from impurities captured by adhesion or diffusion processes,
and for many other purposes (López-Villa et al. 2011).

The generation and dynamics of bubbles in very viscous liquids is also of interest
but has not been so much studied. Thus, while many aspects of the dynamics of bub-
bles in unbounded viscous liquids are well understood, the formation and detachment
of bubbles in confined systems has received less attention. Bubbles in very viscous
liquids are commonly found when dealing with polymers in their liquid phases, in
the flows of lava, and in processes of oil extraction from production pipelines, among
others. The latter example is a motivation of the present work, which sprang from
interest in the so-called gas lift technique of enhanced oil recovery, where bubbles
formed by injecting gas in oil extraction pipes help pumping the oil. Another moti-
vation is the foam formation, where we study the problem of the film thickness that
is formed between the free surface of a single bubble and the wall when the bubble
reaches its critical size in the vertical circular tube with smooth or ribbed walls filled
with a quiescent liquid of high viscosity. The foam formation is very important for
enhanced oil recovery (EOR), where the foam is used for channeling oil and clogs the
fractures to keep out gas, in fractured oil reservoirs. If gas mobility can be controlled,
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oil displacement efficiency is improved (Kovscek et al. 1995). Foam is a promising
general agent for controlling gas mobility in EOR processes (Hirasaki and Lawson
1985) and in other applications, such as aquifer storage of natural gas (Witherspoon
et al. 1987) and compressed air.

Scaling laws show that the volume of the bubbles generated by injecting a high
flow rate of gas into a very viscous liquid increases as the power 3/4 of the flow rate
and is independent of the diameter of the injection orifice. The simplestway to control
the size of the bubbles in a given liquid is, therefore, to act on the flow rate of gas.
This possibility, however, is limited in the application at hand, because the flow rate
of gas to be injected in the confined space of an extraction pipe is often determined
by other requirements of the gas lift technique. The limitation poses a problem to
control the size of the bubbles and brings to the front elements of the generation
process such as the viscous drag of the bubbles and the shear stress in the vicinity of
the walls, which are disregarded an inviscid analyses but offer a clue to the solution of
the size-control problem. In this chapter, we first neglect viscous effects and assume
the flow to be irrotational so that a velocity potential exists; in second case we solve
the Stokes equations for the liquid and the evolution equation for the surface of a
bubble. The shape of the tube in the vicinity of the injection orifice, or the use of
properly shaped injection nozzles, may cause substantial distortion of the growing
and shape of the bubbles and modify their volume at detachment. In our analysis,
a constant flow rate of gas is injected through a circular orifice at the horizontal
base of a container filled with non-viscous and very viscous liquid, and the space
where the bubbles grow can be partially confined by surrounding the orifice with a
vertical cylindrical wall or an inverted vertical cone. The extent of the confinement
can be gradually increased by decreasing the radius of the cylinder or the angle of
the cone, which allows quantifying the effect of the wall on the evolution and size
of the bubbles. This size is determined numerically and experimentally, and scaling
laws that are extensions of well-known laws for unconfined liquids are proposed and
validated.

To reach our goal the structure of the chapter is as follows. In the next section
we formulate the problem in terms of dimensionless equations for the motion of
the non-viscous liquid and the dimensionless boundary conditions for the evolution
of the free surface. In Sect. 3 we formulate the problem in terms of dimensionless
equations of motion of viscous fluids and the dimensionless boundary conditions for
the evolution of the free surface. In Sect. 4 we briefly explain the BEM method. The
main results of the numerical solution of this problem are given in Sect. 5, discussing
the evolution of the free surface during the growth of the bubble at constant gas flow
rate in conical and cylindrical containers. In Sect. 6 we compare some qualitative
experiments to our numerical results. Finally, Sect. 7 summarizes the main findings
and limitations of this work.
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2 Equations for Bubbles in Non-Viscous Liquids

Generation of bubbles by injection of a gas into a liquid at rest is an important
and much studied problem. Extensive research has been summarized in a variety of
models that address the many facets of the problem with different levels of detail;
see Clift et al. (1978), Räbiger and Vogelpohl (1986), Tsuge (1986) and Sadhal et
al. (1997) for reviews. The conceptually simplest models are based on a balance of
the forces acting on a bubble of assumed shape (see Davidson and Schuler (1960),
among others). These models clearly show the existence of a regime of low gas flow
rate in which the effect of the inertia of the liquid is negligible and the volume of
the bubbles is a constant independent of the gas flow rate, and a regime of high gas
flow rate in which the effect of the surface tension is negligible and the volume of
the bubbles increases as the 6/5 power of the gas flow rate and is independent of the
size of the injection orifice.

The original models of Davidson and Schuler (1960) and Ramakrishna et al.
(1968)which served to establish these results, have been extended to include a variety
of effects such as the viscous drag of the bubbles, the flow left by the viscous wake
of the preceding bubble, the momentum flux of the injected gas, and the different
shapes and apparent masses of the bubble at different stages of its growth. Extensions
also include a set of ad hoc criteria to account for the interference, collision and
coalescence of bubbles (Zhang and Shoji 2001), which are observed to occur at
high flow rates and eventually lead to non-periodic and chaotic regimes of bubble
generation (Leighton et al. 1991).More sophisticated non- sphericalmodels (Marmur
andRubin 1976) postulate equations ofmotion for each element of the bubble surface,
whose shape changes continuously during the growth and detachment. These models
rely on varying degrees of solutions for the potential flow of the liquid (Wraith and
Kakutani 1974). Oguz and Prosperetti (1993) numerically computed this flow using
a boundary element method and described in full detail the growth and detachment
of a single bubble at the end of a tube in different cases of interest, finding good
agreement with high speed video visualizations (see also Oguz and Zeng 1997).

This section focuses on time periodic bubbling regimes featuring coalescence
of two or more bubbles in a strictly inviscid liquid. Though the bubble generation
process ceases to be periodic when the flow rate is increased to sufficiently high
values, these more complex regimes will not be discussed here. Instead, the purpose
of the work is to examine to what extent coalescence at moderate gas flow rates can
be described in the framework of potential flow theory. In this respect, the work is
an extension of those of Oguz and Prosperetti (1993) and Oguz and Zeng (1997)
to include bubble coalescence. The main result is that potential flow computations
suffice to describe many aspects of coalescence, without resorting to any wake effect
or other effects related to the viscosity of the liquid.

Attention will be restricted to the simplest case of injection of a constant flow
rate of a gas through a single circular orifice at the bottom of an inviscid liquid at
rest (see Fig. 2). The gas will be treated as incompressible, with a density negligibly
small compared to the density of the liquid. The only parameters of the problem are
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Fig. 2 Definition sketch (a), with details of the contact line attached to the edge of the orifice (b)
and spreading on the horizontal bottom (c)

then the radius of the orifice, a, the density of the liquid, ρ, the liquid–gas surface
tension, σ, the contact angle of the surface with the bottom, θ, the gas flow rate, Q
(volume of gas injected per unit time), and the acceleration due to gravity, g. The
dimensional parameters can be grouped into a Bond number and a Weber number:

B = ρga2

σ
W e = ρQ2

σa3 (1)

The flow induced in the liquid by the train of bubbles released from the orifice is
irrotational if the viscosity of the liquid is neglected. The velocity potential, ϕ, such
that v = ∇ϕ, satisfies the Laplace equation

∇2ϕ = 0 (2)

in the liquid, to be solved with the conditions

D fi

Dt
= 0, (3)

Dϕ

Dt
= 1

2
|∇ϕ|2 − pgi − Bx + ∇ · ni , (4)
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at the surfaces of the bubbles; and ∂ϕ
∂x = 0 at the bottom (x = 0) and ∇ϕ → 0

at infinity. Here fi (x, t) = 0 is the equation of the surface of the i-th bubble, with
i = 0 denoting the bubble growing at the orifice and i = 1, 2, . . .. denoting the
bubbles detached previously. These surfaces are to be found as part of the solution.
Distances and times are non-dimensionalized with the radius of the orifice a and
the capillary time (ρa3/σ)1/2. In Eq. (4) x is the dimensionless height above the
bottom, D

Dt = ∂
∂t + v · ∇ is the material derivative at points of the bubble surfaces,

ni = ∇ fi/ |∇ fi |, and pgi is the gas pressure in the i-th bubble referred to the
pressure of the liquid at the bottom far from the orifice and scaled with a factor a/σ.
These pressures are functions of time which are determined by the conditions that
the volume of the growing bubble (i = 0) increases at a constant rate equal to the
volume of gas injected per unit time (Q), and the volumes of the detached bubbles
(i = 1, 2, . . .) do not change with time.

An additional condition is needed at the contact line of the growing bubblewith the
solid. Here the contact line will be taken to coincide with the edge of the orifice when
the angle of the liquid–gas surface with the horizontal is larger than the contact angle
(i.e. when −nx0 < cos θ, where nx0 is the vertical component of the unit normal
n0 to the attached bubble, see Fig. 2), and to spread away from the orifice with the
liquid–gas surface making a constant contact angle with the solid (−nx0 = cos θ)
otherwise. The two possibilities are sketched in Figs. 2b and c. The contact angle θ is
a third parameter of the problem, along with B and We defined in (1). Time periodic,
axisymmetric solutions of the problem have been computed numerically using a
standard boundary element method to solve the Laplace equation and a second order
Runge–Kutta method to advance the material nodes at the surfaces of the bubbles
and the velocity potential at them according to (3) and (4), with pgi (t) determined
at each time step. The implementation follows that of Oguz and Prosperetti (1993).

The final volume of the bubbles is shown in Fig. 3 as a function of the dimen-
sionless flow rate W e1/2 for two different values of the Bond number, B = 0.1 and
B = 1, which correspond to orifices of radii a = 0.85 and 2.68mm, respectively, in
pure water. The contact angle was taken as θ = 45◦ though results for other values
of θ are qualitatively similar.

Numerical computations have been carried out of the axisymmetric, irrotational,
time periodic flow induced in a quiescent strictly inviscid liquid by the growth,
detachment and coalescence of bubbles (see Figs. 4 and 5) due to the injection of
a constant gas flow rate through a horizontal submerged orifice. The results show
that this simple potential flow formulation may qualitatively describe many aspects
of the well-known transition from quasi-static generation of independent, constant
volume bubbles at low Weber numbers to inertia and buoyancy controlled growth
and interaction of bubbles at moderately high Weber numbers.
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Fig. 3 Volume of the bubbles scaled with a3 as a function of the dimensionless gas flow rate W e1/2

for B = 0.1 (upper set of curves) and B = 1(lower set of curves). The solid curves of each set
give the final volume of the bubble. The lower dashed curves give the volume of the first detached
bubble of a compound bubble, and the intermediate dashed curves give the volume of the first
detached couple when double coalescence occurs. The dotted horizontal line is the dimensionless
volume 47.497 computed in (Longuet-Higgins et al. 1991) for quasi-static detachment at B = 0.1.
For comparison, notice that the Fritz’s dimensionless volume for B = 0.1 is VF = 2π

B = 62.83.
The dotted lines at the right correspond to volumes proportional to W e3/5 (Corchero et al. 2006)

Fig. 4 Periodic generation of single bubbles for B = 0.1 and W e1/2 = 10 (a), 20 (b), and 40 (c)

3 Equations for Bubbles Growing in Non-confined
and Confined Viscous Liquid

The case of bubble generation in very viscous liquids is of interest in connection with
polymer melts (Bird et al. 1987) and molten glasses and magmas (Sahagian 1985;
Manga and Stone 1994), for example, but it has been comparatively less studied.
Using a balance of buoyancy and viscous forces on the surface of each bubble,
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Fig. 5 Four snapshots of the generation of a (double) compound bubble for B = 0.1 and W e1/2 =
100. a t = 13.77, immediately after the detachment of the leading bubble; b t = 25.34, immediately
after the detachment of the trailing bubble; c t = 25.64, immediately after breakupof the thin upward
jet; d t = 33.68, immediately after coalescence of the two bubbles. Times are non-dimensionalized
with the capillary time (ρa3/σ)1/2 and measured from the detachment of the bubble preceding
bubble 1 in (a). The period of the process is 25.34. Notice the weeping in (c) and the displacement
of the contact line away from the orifice in (c) and (d)

Davidson and Schuler (1960) proposed that the volume of the bubbles injected in
a very viscous quiescent liquid increases as the 3/4 power of the gas flow rate and
is independent of the radius of the injection orifice. This estimate is intended to
apply for high gas flow rates, for which the effect of the surface tension acting
across the contact line of the attached bubble with the solid surface of the orifice is
negligible. At very small flow rates, on the other hand, viscous forces are negligible
during most of the growth of the bubble, whose shape is determined by a hydrostatic
balance of buoyancy and surface tension. Longuet-Higgins et al. (1991) computed
the equilibrium shapes of attached bubbles and the volume at which equilibrium
state is not possible anymore and the bubble should detach. In orders of magnitude,
the volume of the bubble at detachment, V , is given in this small-flow-rate regime
by the hydrostatic balance ρgV ∼ σa, or V/a3 ∼ 1/B in dimensionless terms.
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Fig. 6 Two-dimensional projections of the reservoirs symmetrical to the gas injection needles.
Three different geometries are considered for bubbles growth in viscous fluids

Here ρ is the density of the liquid, σ is the liquid–gas surface tension, a is the radius
of the injection orifice, g is the acceleration due to gravity, and B is de Bond Number
(1).

A constant flow rate Q of an incompressible gas of negligible density and viscosity
is injected into a liquid of density ρ and viscosityμ initially at rest in a reservoir under
the action of the gravity. The gas is injected through a circular orifice of radius at the
center of the base of radius R∗ of the reservoir. The lateral wall of the reservoir may
be cylindrical, cylindrical corrugated or conical, making an angle θ to the vertical,
as sketched in Fig. 6. The gas accumulates in a bubble attached to the base of the
reservoir. The volume of this bubble increases with time until it detaches and begins
to ascend in the liquid, being replaced by a new attached bubble. The effect of the
inertia is assumed to be negligible in the motion induced in the liquid by the growth
and displacement of the bubbles. A sufficient condition for the effect of the inertia
to be negligible is that Re = ρQ

μRb
� 1 (Wong et al. 1998; Higuera 2005; Ajaev and

Homsy 2006). Here Rb is the characteristic radius of the detaching bubble or of its
upper cap.

The model used here is valid to understand the bubble formation in a very viscous
liquid in confined axisymmetric geometries (López-Villa et al. 2011). The equations
of continuity and Stokes have the following dimensionless forms, respectively

∇ · v = 0, (5)

0 = −∇ p + ∇2v − Bi (6)
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Here distances and times are scaled with the radius of the orifice a and the viscous
time μa/σ, respectively, p is the pressure, v is the velocity field: v = v∗σ/μ, i is the
normal vector pointing in the upward direction (x is the vertical coordinate).

When the bubble grows the dimensionless gas flow rate Q is constant and the
capillary number is a dimensionless flow rate

Ca = μQ

σa2 . (7)

When a bubble is formed in the liquid, a free surface of the form f (x, t) > 0
exists. Equations (5) and (6) must be solved with the boundary conditions

D fi

Dt
= 0, (8)

− pni + τ ′ · ni = (∇ · ni − pgi )ni , (9)

on the surfaces of the i-th bubbles and

v = 0 (10)

on the inner cylinder’s surface (r = R∗), and at infinity, because the fluid does not
move there. Moreover, the pressure far from the bubble must satisfy

p + Bx = constant. (11)

The uniform pressure of the gas in the bubble, pg(t), is determined using the
conditions that the volume V of the bubble increases linearly with time at a rate equal
to Q for the attached bubble. In dimensionless variables,

dV

dt
= Ca. (12)

In above equations n = ∇ f/ |∇ f | is a unit vector normal to the surface of the
bubble, τ ′ = ∇v + (∇v)T is the dimensionless viscous stress tensor, x and r are
distances along the axis of the reservoir and normal to it. The condition (8) shows
that the surfaces of the bubbles are fluid surfaces which separate the liquid from the
gas, and therefore there is no mass exchange through them. The condition (9), in
turn, expresses the balance of the stress acting on surfaces of the bubbles.

If the gas pressure pgi is known in each bubble, the Eqs. (5) and (6) together
with the boundary conditions determine velocity fields and fluid pressure, and in
particular, the velocity on the surface of each bubble. To determine the pressures
and complete the formulation of the problem conditions to be used, the volumes of
the released bubbles (i > 1) are assumed constant and equal to the volumes at the
instant of their release.
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Fig. 7 Details of the contact line with two possibilities of line of contact of the bubble adhesion

An additional condition is needed at the contact line of the growing bubble with
the solid. Here the contact line will be taken to coincide with the edge of the orifice
when the angle of the liquid–gas surface with the horizontal bottom is larger than the
contact angle (i.e. when −nx0 < cos θ, where nx0 is the vertical component of the
unit normal vector n0 to the attached bubble), and to spread away from the orifice,
with the liquid–gas surface making a constant contact angle with the solid bottom
(−nx0 < cos θ) otherwise (Higuera 2005); see Fig. 7.

The line of contact of the bubble adhered (i = 1) with the reservoir base is a
circle which may coincide with the edge of the orifice or move to a position r > 1
to be determined. Figures7a and b illustrate both possibilities. In the first case, the
radius of the contact line coincides with the hole edge, r = 1. In the second case,
the angle which the bubble surface makes with the base of the reservoir must match
the contact angle θ, which is a property of the liquid and the material of the shell.

Then the problem contains five dimensionless parameters which are the Bond
number, B, the capillary number Ca, the dimensionless radius of the base of the
reservoir R = R∗/a, semiangle of the conical base α and the contact angle θ of the
liquid with the base (Fig. 7).

The set of equations given above will satisfy the outflow boundary conditions at
infinity, the non-slip conditions on walls, and the quasi-static pressure balance. The
evolution of the free surface (bubble shapes) is given by the solution of Eq. (8), under
a fourth order Runge-Kutta scheme, which is attained after solving the hydrodynamic
problem, imposed by Eqs. (5) and (6), by using the BEMmethod (López-Villa et al.
2011). The reservoir configurations are shown in Fig. 6.
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4 Method for Numerical Solution

We seek for axisymmetric solutions of the Eqs. (5)–(12).We use a standard boundary
elementsmethod (Pozrikidis 1992, 2002) to solve the Stokes Eqs. (5) and (6) with the
boundary conditions (9)–(11), and a fourth order Runge-Kutta method to calculate
the evolution of free surface f given by (8).

4.1 History

After three decades of development, the boundary element method (BEM) has found
a firm footing in the arena of numerical methods for partial differential equations.
Compared to more popular numerical methods, such as the Finite Element Method
(FEM) and the Finite Difference Method (FDM), both of which can be classified
as the domain methods, the BEM distinguishes itself as a boundary method, mean-
ing that the numerical discretization is conducted at reduced spatial dimension. For
example, for problems in three spatial dimensions, the discretization is performed
on the bounding surface only; and in two spatial dimensions, the discretization is
on the boundary contour only. This reduced dimension leads to linear systems, less
computer memory requirements, and more efficient computation. These advantages
are most notorious when the domain is unbounded. Unbounded domain needs to
be truncated and approximated in domain methods. The BEM, on the other hand,
automatically models the behavior at infinity without the need of deploying a mesh
to approximate it. In the modern day industrial settings, mesh preparation is the most
intensive labor and the most costly portion in numerical modeling, particularly for
the FEM. Without the need of dealing with the interior mesh, the BEM is more
cost effective in mesh preparation. For problems involving moving boundaries, the
adjustment of the mesh is much easier with the BEM. With these advantages, the
BEM is indeed an essential part in the repertoire of the modern day computational
tools (Alexander and Daisy 2005).

One can view BEM as the numerical implementation of boundary integral equa-
tions based on Green’s formula, in which the piecewise element concept of the FEM
is utilized for the discretization.

4.2 BEM in Axisymmetric Domains

In this section we describe the standard boundary elements method for three-
dimensional flow in an axisymmetric domain. Our goal is to reduce the boundary
integral equation to a one-dimensional equation, or a system of one-dimensional
equations, over the trace of the boundaries in an azimuthal plane. First, the Green’s
functions of Stokes flow represent solutions of the continuity equation ∇ · v = 0 and
the singularly forced Stokes equation
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− ∇ P + μ∇2v + gδ (x − x0) = 0, (13)

where δ(x−x0) isDirac’s delta function in three dimensions,g is an arbitrary constant,
x0 is an arbitrary point. Introducing the Green’s function G for three dimensions, we
write the solution of (13) in the form

ui = 1

8πμ
Gi j (x − x0) gi , (14)

here x is the observation or field point. Physically, (14) expresses the velocity field
due to a concentrated point force of strength g placed at the point x0, and may be
identified with the flow produced by the slow settling of a small particle. In the
literature of boundary integral methods, the Green’s function may appear under the
names fundamental solution or propagator (Pozrikidis 1992).

It is convenient to classify the Green’s functions into three categories depending
on the topology of the domain of flow. First, we have the free-space Green’s function
for infinite unbounded flow; second, theGreen’s functions for infinite or semi-infinite
flow that are bounded by a solid surface; and third, the Green’s function for internal
flow are completely confined by solid surfaces. The Green’s functions in the second
and third categories are required to vanish over the internal or external boundaries
of the flow. As the observation point x approaches the pole x0 all Green’s functions
exhibit singular behavior and, to leading order, behave like the free-space Green’s
function. The Green’s functions for infinite unbounded or bounded flow are required
to decay at infinity at a rate equal to or lower than that of the free-space Green’s
function.

∂Gij (x − x0)
∂xi

= 0, (15)

for (14).
Integrating (15) over a volume of fluid that is bounded by the surface D and using

the divergence theorem, we find

∫
D

Gij (x − x0)ni (x) dS (x) = 0, (16)

independently of whether the pole x0 is located inside, right on, or outside D.
The vorticity, pressure, and stress fields associated with the flow (15) may be

presented in the corresponding forms:

ωi = 1

8πμ
�i j (x − x0) g j , (17)
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P = 1

8πμ
p j (x − x0) g j , (18)

τi j = 1

8πμ
T i jk (x − x0) g j , (19)

where�, p, andT are the vorticity tensor, pressure vector, and stress tensor associated
with the Green’s function The stress tensor T, in particular, is defined as

T i jk (x − x0) = −δikp j (x − x0) + ∂Gi j (x − x0)
∂xk

+ ∂Gi j (x − x0)
∂xi

. (20)

It will be noted that T i jk = Tk ji as required by the symmetry of the stress tensor
τ . When the domain of flow is infinite, we require that all �, p, and vanish as the
observation point is moved to infinity.

Considering first axisymmetric flow with no swirling motion, we observe that in
cylindrical coordinates, none of the boundary variables is a function of the azimuthal
angle. This reduces the number of variable.

In the problem of bubble generation, the contours are the surfaces of the bubbles
and the solid surfaces of the reservoir, which are all surfaces of revolution. The
unknowns involved in the formulation of the boundary element are the velocities of
fluid particle that define surfaces of the bubbles and the stresses on the vessel wall.

We introduce the dimensionless driving pressure P = p + Bx , which allows us
to write the Stokes Eq. (6) as

0 = −∇P + ∇2v = ∇ · τ , (21)

where τ = −PI + τ ′ is a modified stress tensor, with fluid pressure replaced by the
driving pressure. The stress of liquid on the surface of the i-th bubble, given by left
hand side of (9), is then

− pni + τ ′ · ni = −Pni + τ ′ · ni + Bxni . (22)

We will use the notation f = τ · n for the modified stress on the limiting contour
of the liquid, where n is the normal to the contour directed towards the liquid. With
this notation −pni + τ ′ · ni = f + Bxni and the boundary condition (9) on the
bubble, the i-th surface takes the form

f = (∇ · ni − Bx − pgi
)

ni . (23)

Additionally, we use the Green’s functions for axisymmetric flow, which are the
solutions of Stokes equations in unlimited space (14) with the stresses concentrated
on a circumference of radius r0 centered at point x0 on the axis of symmetry. These
forces can be either directed along the axis of symmetry or be in perpendicular to
it, which gives rise to two distinct solutions whose velocity and motion pressure
distributions denoted as Gx (x, x0) and Px (x, x0) for axial force, and Gr (x, x0) and
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Pr (x, x0) for a radial force. Here, x = (x, r0) and x = (x, r) (a generic point) in
cylindrical coordinates defined above. The equations to be solved to determine the
Green’s functions are

∇ · Gx = 0, 0 = −∇Px + ∇2Gx + 8πδ (x, x0) ex , (24)

and
∇ · Gr = 0, 0 = −∇Pr + ∇2Gr + 8πδ (x, x0) er , (25)

with the conditions (Gx , Px ) → 0 and (Gr , Pr ) → 0 at infinity. In these equa-
tions ex , er , are the unit vectors parallel and perpendicular to the axis of symmetry,
respectively, δ is the Dirac function, and 8π factor is introduced by convention. We
will also use the notation T r and T x for stress tensor of the solutions (24) and (25).
These solutions are known and are given in Appendix A.

Given that ∇ · v = ∇ · Gx = 0 verifies that

∇ · (
Gx · τ − v · T x) = Gx · (∇ · τ ) − v · (∇ · T x) .

Using (22) and (24) (i.e.∇ ·τ = 0 and∇ ·T x = 8πδ (x, x0) ex ) in the second term
of the above equality, and by integrating the result over the volume occupied by liquid
and using the Gauss theorem for flow in an axisymmetric domain and transforming
the integral of the first member in a surface integral. Then in a line integral on the
meridional section of the bubbles and the walls tube denoted as C, is obtained

−
∫

c
Gx (x, x0) · f (x) r (x) dl (x) +

∫
c

v (x) · Tx (x, x0) n (x) r (x) dl (x)

= 8πr0vx (x0) , (26)

where f (x), r (x) and dl (x) are defined in a point x in the contour C, which are,
respectively, the distance from this point to the axis of symmetry, and the arc element
on the boundary. Similarly,

−
∫

c
Gr (x, x0) · f (x) r (x) dl (x) +

∫
c

v (x) · Tr (x, x0) n (x) r (x) dl (x)

= 8πr0vr (x0) , (27)

In the derivation of (26) and (27) it is assumed that the circumference on which
the force is applied is concentrated in the volume occupied by liquid. If not, the
second members of these equations are null. The second integral on the left hand
side of (26) and (27) diverge when the point tends x0 to the contour C. A detailed
calculation, deforming the contour in the vicinity of x0 (see, for example, Pozrikidis
1992) shows that for x0 ∈ C ,
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vj (x0) = − 1
4π

∫
c

G j
k (x, x0) fk (x)

r

r0
dl + 1

4π

∫ PV

c
vk (x) T j

kl (x, x0) nl (x)
r

r0
dl,

(28)
where PV indicates the principal value of the integral and subscripts notation was
used with or (i, j, k) = x or r, for compactness.

Equation (28) is a ratio between speeds and stresses on the contour surface C
domain occupied by the liquid. If stresses f were known at all points of C, this
equation lets calculate the velocity of the liquid in C. Similarly, if in v C is known the
equation allows compute f (except for an undetermined constant P; see Pozrikidis
2002).

In the problem of bubble generation, v = 0 on the solid surfaces wetted by the
liquid. The velocity of liquid on the bubbles is unknown, however, themodified stress
can be obtained by using Eq. (23). Moreover, suppose all bubble stresses are known
at a certain instant. The stress given by Eq. (23) would then be known if pgi were
known. In this case, the solution of (28) determines the velocity of the liquid on the
surfaces of the bubbles and stresses on the solid surfaces. With pgi unknown, the
stress on the bubble i is the sum of a known stress (∇ · ni − Bx ) ni , and a normal
uniform stress, −pgi ni .

Given the linearity of the Eq. (28), the velocity on the surfaces of bubbles and
stress on solid surfaces are

v = v0 +
∑

i
vi (pgi

)
and f = f 0 +

∑
i
f i (pgi

)
(29)

where v0 and f 0 are the velocity and the stress calculated for all pgi = 0 in (18), and
vi and f i are the velocity and the stress calculated for f = 0 on all surfaces of the
bubbles except the bubble i, where f = −ni.

Equation (28) provide the solution of (27) in terms of the pressures of the gas in
the bubbles, pgi . We now need to establish equations to calculate these pressures.
These equations express the conditions (12) and the volumes of the bonded bubbles
released (i > 1) are constant and the volume of the bubble grows linearly with time.
In terms of the velocities of the liquid (28), the rate of change of volume of the bubble
j is

dVj

dt
= 2π

∫
c j

v · njrdl = a j0 +
∑

i
a ji pgi , (30)

where C j is the contour of the bubble, and a j0 and a ji are easily calculated from
velocities v0 and vi . Thus, the linear equations are obtained

a10 +
∑

i
a1i pgi = Ca and a j0 +

∑
i
a ji pgi = 0 for j > 1, (31)

which determine pgi and complete the solution (28) given the surfaces of the bubbles.
To complete the formulation of the problem, we must consider the conditions (8),

expressing the surface of each bubble moving with the local velocity the liquid. The
position x(t) of a fluid particle on the surface of a bubble satisfies
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Fig. 8 Meridional sections of bubbles which are about to detach from the base of a cylindrical
reservoir for B = 0.2, Ca = 10, and R = 5 (a), 4 (b) and 3.5 (c)

dx
dt

= v (x, t) , (32)

where v(x, t) is the solution of (28)–(31) at the point x on the surface in the time t.
To solve numerically the integral Eq. (28), the contours of the bubbles and solid

surfaces must be discretized. This is done using Ni nodes distributed uniformly
on the bubble boundary i and Nd nodes on the base of the reservoir, distributed
non-uniformly with space increasing with distance from the axis of symmetry. The
integrals in (28) are calculated using a Gaussian integration with six points allocated
in the interval between each pair of nodes. The surface is discretized with a finite
number of nodes that move as material particles. Numerical tests conducted with
different numbers of nodes show that 120 nodes give sufficient resolution.

The value θ = 45◦ has been used for the contact angle in the computations that
follow. Numerical computations with other values θ of show that the effect of the
contact angle on the volume of the bubbles is small as far as θ < 90◦.

5 Numerical Results

From the numerical solutions a set of important results are achieved. These results
are compared with experiments qualitatively, where the effects of reservoir geometry
and film thickness is studied.

5.1 Cylindrical Reservoir

Some numerical computations have been carried out to study the growth and detach-
ment of a bubble in a cylindrical reservoir and validate it with experiments. Figure8
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Fig. 9 Plots of a volume V f and b aspect ratio Γ of a bubble at detachment from the base of the
cylindrical reservoir as functions of it R for B = 0.2, and Ca = 10

shows a bubble which is about to detach from the base of the reservoir for B = 0.2,
Ca = 10, and the three values R = 5, 4 and 3.5 of the dimensionless radius of the
reservoir. Figure9 shows plots of Vf, volume of detachment, and the aspect ratio
Γ of the bubble (defined as the ratio of the height to the maximum diameter of the
bubble) as functions of R.

The finite radius of the reservoir affects only the high-flow-rate regime for the
values of B and R used here. The decrease of Γ with increasing R in Fig. 9b is in
qualitative agreement with the estimate L f /R ∼ Ca/

(
B R4

)
for columnar bubbles.

The decrease of Vf in Fig. 9a also agrees with the previous estimates, according
to which the ratio of the volume of a columnar bubble to the volume of a bubble
detaching in an infinite reservoir is of order (Ca/B)1/4 /R forCa/B large compared
to R4. Figure9 shows Vf as a function of Ca for B = 0.2 and three values of R.
The nearly linear increase of Vf agrees with the estimate Vf ∼ Ca/B. Notice, in
comparison, that Vf ∼ (Ca/B)3/4 for a bubble in an infinite reservoir.
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Fig. 10 Meridional sections of bubbles growing in cones which are about to detach from the base
of a conical reservoir for B = 0.2, Ca = 50, R = 1.2, and various values of α

Numerical computations also show (results not displayed) that the center of mass
of a columnar attached bubble rises linearly with time during the growth of the
bubble, and that the velocity of the center of mass is nearly constant, except in the
early stages of the process, when the bubble is still small compared to the radius of
the tube.

5.2 Conical Reservoirs

Figure10 shows the shape of a bubble which is about to detach from the base of
a conical reservoir for B = 0.2, Ca = 50, R = 1.2, and various values of the
semi-angle of the cone, α, and Fig. 11 shows the volume Vf and the aspect ratio
Γ of the detaching bubble as functions of α and different values of B and Ca. As
it can be seen, the volume of the bubble always increases as the angle of the cone
decreases, the effect being more pronounced for small values of the Bond number,
for which the bubble is larger and therefore more easily affected by the wall of the
reservoir. Figure11a displays an important result of this work, namely, that at low
Bond numbers and high capillary numbers, the volume of the bubbles can be easily
controlled through the angle of the cone without having to change the flow rate. This
is a desirable feature in some applications.

These results can be rationalized by means of a straightforward extension of the
estimations of the previous section for the high-flow-rate regime in cylindrical reser-
voirs. Figure10 shows that the bubbles in conical reservoirs are columnar for mod-
erately small values of α, with a cap that increases linearly with its height above the
bottom of the reservoir. (See also Fig. 11b; the bubble is slender for smaller than 30◦).
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Fig. 11 Plots of a volume V f and b aspect ratio Γ of a bubble at detachment from the base of a
conical reservoir as functions of α, for R = 1.2 and (B, Ca) = (0.2, 10)(solid), (2, 10) (dashed),
and (2, 20) (dotted). Symbols in panel (b) show the values of Γ measured experimentally for
B = 0.0176 (�) and B = 0.15 (♦), with Ca = 50.78 and R = 1.2

5.3 Corrugated Pipes

For the corrugated cylinder case, the numerical study was done to understand how
corrugations affect the bubble shape. We tried different number of nodes distributed
along the tube walls, and found that as in the case of the smooth walls, the number
of nodes has no importance on qualitative behavior.

Figure12 shows differences between bubbles formed in tubes with several cor-
rugation wavelengths in the viscous case, and in Fig. 13 the cases in the inviscid
approximation are shown with different amplitudes of corrugation. Figure13 shows
that the film thickness is small in the case of a small capillary number.

In Figs. 14 and 15we observe the bubbles detachment process and a possible appli-
cation to understand the foams formed in viscous fluids in porous media (Kovscek
et al. 1995; Hirasaki et al. 2006).
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Fig. 12 Bubble shapes in corrugated cylinders of same amplitude but different wavelengths of the
corrugations. The conditions are for viscous liquid and Ca = 25, B = 0.2

Fig. 13 Bubble shapes in corrugated cylinders of same wavelenghts but different amplitudes. a
Bubbles growing in nearly inviscid liquid, i.e., Ca = 0.1 and B = 0.2. In b Ca = 1 and B = 0.2.
Notice that the thickness of the film in both cases is very thin
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Fig. 14 Details of the bubble detachment process and the effect of the tube wall

Fig. 15 Bubble shapes in the corrugated pipe compared to a bubble growing in a porous medium
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Fig. 16 Bubble in a vertical tube (a). Notice the existence of a film of thickness b∗. b Plot of the
scaled dimensionless film thickness b/R as a function of the scaled capillary number Ca/R2

5.4 The Film Thickness

In Fig. 16a it is shown that during the bubble growth in the pipe there is an annular
film of thickness b∗. In a classical study of the lubrication theory, the dimensionless
thickness of the film scales as

b

R
∼

(
Ca

R2

) 2
3

, (33)

which is valid whenever Ca → 0 and R and the Bond number are also small. In
Fig. 16b a plot obtained from the numerical computations that obeys the relation (33)
is given. In such a plot the continuous curve was obtained through our numerical
solution. Meanwhile, the dashed part of the curve only shows the trend given by
Eq. (33) but was numerically inaccessible. Despite it, in this case, clearly b → 0 if
Ca → 0. Physically the condition Ca → 0 implies that the bubble in an inviscid
liquid touches the inner solid wall.

Figure17a shows some bubble profiles: in this case they were obtained for low
capillary numbers and it is evident that the film thickness tends towards zero for small
values of Ca and R. It can also be seen that the profiles show some “corrugations”,
this is because they become unstable when the height of the tubes is very large
compared with the tube radius, i.e. in this case height of the tube is 30 times the
radius. In experiments it was observed that when Ca � 1 the small bubble profiles
are unstable.

Moreover, very different results were obtained when the film thickness was com-
puted for very viscous liquids, i.e., Ca � 1 in the limit of low Bond number. In
Fig. 17b it is possible to notice that the film thickness tend towards a constant value
when the capillary number increases. In Fig. 18 it is sketched how b → constant for
Ca � 1 . In dimensional terms the actual thickness of the annular film, b∗ → 1.5a∗,
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Fig. 17 Bubble shapes in cylinders filled with a liquid of low viscosity and b with very viscous
liquid. In a the height and the film thickness between the bubble and the wall diminishes when
Ca → 0 (Ca = 0.4, 0.3, 0.2 and 0.1). In b the film thickness b → constant , for Ca � 1. The
larger bubble corresponds to Ca = 35; other cases are Ca = 20, 10 and 5. The dimensionless pipe
radius was R = 5

Fig. 18 Plot of the thickness of the annular film, b, as a function of the capillary number,Ca. Notice
that b → constant for Ca � 1

i.e., the lower value of b∗ is 1.5 times the radius of the gas injection orifice. Physically,
this condition is attained in very viscous liquids or at very large gas flow rates.
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Fig. 19 Volume of a bubble attached to the base of a conical reservoir filled with glycerine as a
function of time during the growth of the bubble for B = 0.0176, R = 1.2, and different values of
the semi-angle of the cone. α = 10◦ (�), 20◦(x), 25◦(�), 30◦(�) and 90◦ (�)

6 Experiments

A series of experiments have been carried out to study the growth and detachment of
bubbles in very viscous liquids. Glycerine and a silicone oil have been used in dif-
ferent experiments. The properties of glycerine at 25◦ are: density ρ = 1260 kg/m3,
viscosity μ = 7.9 × 10−1 N s/m2, and surface tension σ = 6.3 × 10−2 N/m. The
properties of the silicone oil at the same temperature are: density ρ = 971 kg/m3,
viscosity μ = 9.71 × 10−1 N s/m2. In each experiment, a large open container with
an horizontal bottom where a circular orifice of radius a = 0.3mm has been drilled
was filled with the chosen liquid to a height of 100mm.

A glass tube of inner radius R∗ = 3.2mm was set vertically and concentrically
with the orifice to form a cylindrical reservoir. Conical reservoirs of various angles
were formed by carefully inserting cones made of acetate sheet concentrically with
the orifice. Air was pumped through a capillary tube 40cm long and 0.6mm of inner
diameter which ends at the orifice in the bottom of the container. We found in a
previous work (Corchero et al. 2006) that a length of 40cm suffices to make the
pressure drop in the air line it is large compared to the pressure variations in the
bubble during the growth process and therefore ensure a constant flow rate in our
experiments, which is one of the premises of the numerical work. To check that
the flow rate is constant, the evolution of the attached bubble was video recorded;
the contour of the bubble was extracted from the video images using a standard
algorithm (Russ 2002) implemented in a home made code; and the volume of the
bubble, V(t), and the height of its center of mass, xCM(t), were computed assuming
that the bubble is axisymmetric. Some sample plots of V as a function of time for a
bubble growing in glycerine within conical reservoirs of various angles are shown
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Fig. 20 Growth of bubbles at different angles of inclination α

in Fig. 19. The approximate linear variation of V with time shows that the flow
rate is nearly constant and independent of the angle of the cone. The value of the
flow rate determined by fitting a straight line to the experimental data of Fig. 19 is
Q = 364.5mm3/s. The same procedure was used to measure the flow rate of air
injected into silicone oil and in cylindrical containers. The flow rate was found to be
nearly constant in all cases.

Figure20 shows the shapes of bubbles in glycerine which are about to detach
from the injection orifice in conical reservoirs of various angles. Here α = 90◦
corresponds to a bubble detaching in an infinite reservoir, and the shape of the bubbles
begin to differ significantly from this case when α becomes smaller than about 30◦.
Coalescence between previously detached bubbles can be seen in some of the images.
The presence of the conical wall of the reservoir increases the drag of the ascending
bubbles, decreasing their velocity and apparently promoting coalescence. We plan
to analyze this important aspect of the generation of bubbles in a future work. The
gas flow rate in this sequence of experiments is that measured from Fig. 19. Values
of the dimensionless parameters are Bo = 0.0176, Ca = 50.78 and R = 1.2.

The aspect ratio Γ of the bubbles in Fig. 20 and others was also extracted from the
images and is included in Fig. 12b (triangles and diamonds), where it is compared to
numerical results obtained for similar values of the dimensionless parameters. The
comparison is reasonably good, though the experimental values of Γ increase with
decreasing somewhat faster than the numerical values, and become larger than them
for small values of α. We think that the difference is due to the vertical momentum
injected with the gas, which was not taken into account in the numerical compu-
tations. The evolution of the center of mass of the bubble is shown in Fig. 21 and
compared to numerical results. The nearly linear increase of xCM with time is to
be compared to the xCM ∝ t1/3 evolution expected for a round bubble growing in
an infinite reservoir (Davidson and Schuler 1960). The difference clearly shows the
effect of the conical wall.

Only silicone oil was used in experiments with cylindrical reservoirs because
glycerine tends to produce small bubbles that linger in the reservoir for a long time
and interfere with the observation of the bubble attached to the orifice. Figure22
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Fig. 21 Height of the center of mass of a bubble attached to the base of a conical reservoir as a
function of time during the growth of the bubble for Bo = 0.04, Ca = 70.23, R = 1.2 and = 15◦.
Symbols are experimental results and the solid curve shows the results of the numerical computation

Fig. 22 Five equispaced images spanning the period of growth of a bubble attached to the base of
a cylindrical reservoir for B = 0.04, Ca = 209.94 and R = 10.66. The period of bubbling is 1.33 s

shows five images equispaced in time that span the cycle of growth and detachment of
a bubble. The flow rate of gas measured from the video record is Q = 419.59mm3/s
in this experiment, and the period of bubbling is 1.33 s. Values of the dimensionless
parameters are Bo = 0.04, Ca = 209.94 and R = 10.66. Figure23 shows profiles
bubbles formed into tubes with periodic corrugations c = 7.33, dimensionless radius
R∗ = 3.7, Bo = 0.2 to different capillary number.

7 Conclusions

The growth of a bubble due to the injection of a constant flow rate of a gas through
an orifice in the horizontal base of a container filled with a very viscous liquid has
been investigated numerically and experimentally in conditions in which nearby
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Fig. 23 dimension of profiles bubbles formed into tubes with periodic corrugations c = 7.33,
dimensionless radius R∗ = 3.7, Bo = 0.2 to different capillary number

solid walls partially confine the space where the bubble is allowed to grow. Conical,
cylindrical and cylindrical with corrugations walls coaxial with the injection orifice
have been used to allow easy control of the extent of the confinement by simply
changing the angle of the cone or the radius of the cylinder or frequency in the
corrugated case.

Numerical solutions of the Stokes equations for the liquid and the evolution equa-
tion for the free surface of the bubble show that the wall near the injection orificemay
have an important effect on the shape of the bubble and its volume at detachment.
Computations for small Bond numbers (Bo = 0.2) and moderately large capillary
numbers (of the order of 10) made with BEM show that vertically elongated bubbles
with volumes significantly larger than those of the round bubbles generated in the
absence of walls are obtained when the radius of the cylindrical wall is smaller than
about six times the radius of the orifice, or when the semi- angle of the cone is smaller
than about 30◦. The computed distributions of forces on the surface of the bubble
and the wall suggest that buoyancy, viscous drag and viscous friction with the wall
all play a role in the dynamics of the bubbles. A brief explanation of the foundations
of the BEM in axi-symmetric domains was given in order to understand the esence
of the method.

Experiments have been carried out with two different viscous liquids that have
allowed to explore wide ranges of the Bond and capillary numbers keeping the effect
of the inertia of the liquid small. Good qualitative agreement has been found between
numerical and experimental results. The known scaling law for the volumeof a bubble
at detachment from the bottom of an unconfined liquid has been extended to take
into account the presence of conical or cylindrical walls. For a conical reservoir, the
semi-angle of the cone appears as an extra factor α−1/4 multiplying the standard
(Ca/Bo)3/4 scaling. For a cylindrical reservoir, the exponent may change from 3/4
to 1 when the radius of the cylinder decreases.
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The results of the work may have a bearing on the methods of enhanced oil
recovery, where properly shape injection nozzles may allow optimizing the volume
of the bubbles generated in oil production pipes without having to change the flow
rate of gas or the foams injection in homogeneous or fractured reservoirs.
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SIP20131821 and SIP20131821-IPN, and also acknowledge the CONACyT for its partial support
through the project SENER-CONACyT 146735.

Appendix A. The Green’s Functions for Axisymmetric Flow

This Appendix lists Green functions for axisymmetric flow generated by a ring force
of unit strength located at (x0, r0) and pointing in the direction ek with k = r, x .
Defining the following quantities in cylindrical coordinares

Z = x − x0

L =
√

Z2 + (r + r0)

D =
√

Z2 +
√

Z2 + (r + r0)

S =
√

Z2 + r2 + r20

m = 2 (rr0)
1
2

L

and elliptic integrals

K (m) =
∫ π

2

0

dθ√
1 − m2sen2θ

E (m) =
∫ π

2

0

√
1 − m2sen2θdθ,

we have

Gx
x = 4

r

L

(
K + E

Z2

D2

)

Gx
r = 2

Z

L

(
K − E

S2 − r2

D2

)

Gr
x = 2

r Z

r0L

(
−K + E

S2 − 2r20
D2

)
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Gr
r = 2

1

r0L

[
−k

(
S2 + Z2

)
− E

(
L2 + Z2S2

D2

)]

T x
x x = 8

r Z3

D2

(
K − E

4S2

D2

)

T x
x r = T x

r x = −4
Z2

D2L

[
K

S2 − 2r2

L2 − E

(
1 + 8r20

(
2r20 − s2

)
D2L2

)]

T x
r r = −4

r Z

L

[
K

(
1

r2
+ 2Z2

D2L2

)
− E

D2

(
6 − S2

(
1

r2
+ 8Z2

D2L2

))]

T r
x r = −4

r Z

r0D2L

[
K
2r20 − S2

L2 − E

(
1 + 8r20

(
2r2 − S2

)
D2L2

)]

T r
x r = T r

r x = −4
Z

r0

[
K

(
Z2S2

D2L2 − 2

)
+ E

D2

(
2S2 − Z2 − 16r2r20 Z2

D2L2

)]

T r
r r = −4

r

L

[
K

r0
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r2
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