
Chapter 2
Decreasing the Disturbance Coupled
to Amplifiers

Since the amplifier is often the first signal processing stage in a system, it is likely that
it may be subjected to the highest levels of disturbance, although the signal level at its
input is still low. The signal-to-error ratio (ser) may therefore be degraded severely
and these losses in ser can not be compensated adequately by other signal processing
stages. Therefore, this work concentrates on presenting design strategies for negative-
feedback amplifiers with reduced emi susceptibility. Moreover, it is assumed that the
subsequent signal processing stages are less susceptible to disturbances, and that the
disturbance level in these stages is lower.

Analysis is an important part of design. To analyze em compatibility, the design is
split in two parts: circuit components and interconnects (Reitsma 2005; Canavero et
al. 1990). The (active) circuit components1 are responsible for nonlinear distortion
of signals and envelope detection, which is analyzed with network theory. The inter-
connects are mainly responsible for disturbing signal transport, which is analyzed
using electromagnetic field analysis. This chapter will present methods to estimate
the disturbing signal in the interconnect(s) for a given em environment, and measures
for reducing this disturbance.

Section 2.1 presents a discussion about coupling of electromagnetic fields to the
interconnects of negative-feedback amplifiers. Properties of the interconnect and
their effect on the intended signal transfer is discussed in Sects. 2.2, 2.3, 2.4, and
2.5, while methods to estimate the amount of disturbance induced in an interconnect
connected to an amplifier are presented in Sect. 2.6. The disturbance can be common-
mode, which may be transferred to a differential-mode disturbance. This effect, and
some measures for reducing common-mode disturbances are described in Sect. 2.7.
Disturbances can also be reduced by using a conductive shield. Shield design is
therefore discussed in Sect. 2.8. Finally, Sect. 2.9 presents the conclusions.

1 Practical resistors, capacitors and inductors also show non-ideal behavior, specifically at higher
frequencies. Their non-ideal behavior is extensively dealt with in textbooks, e.g., (Meijer 1996;
Goedbloed 1993; Ott 2009), to which the interested reader is referred. Possible nonlinear behavior
of passive components, e.g., electrolytic capacitors are not investigated, but may be analyzed with
the methods presented in this work.
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28 2 Decreasing the Disturbance Coupled to Amplifiers

2.1 Coupling of Electromagnetic Fields

In principle em-fields can be coupled to the negative-feedback amplifier by coupling
to the source, the interconnect between the source and amplifier, the amplifier, the
interconnect between the load and amplifier, the load, and the interconnect to the
power supply as Fig. 2.1 shows. The resulting disturbance is depicted by voltage and
current sources (Paul 1992). Source Es may be a voltage or current signal source, and
Zl is the load impedance. Note that the depicted disturbance sources are differential-
mode sources. Common-mode disturbances may also occur, but are not shown in
Fig. 2.1.

Designing for low emi susceptibility is equivalent to minimizing the disturbing
sources and/or decreasing their adverse effect on the signal-to-error ratio (ser).

It may be expected that the loop formed by source, interconnect, and the input
of the amplifier and the output loop consisting of the amplifier, interconnect, and
load, respectively, are much better receptors for em-fields than the amplifier. The
latter usually has small dimensions and may be shielded or assumed to be shielded
in the first design stages. Therefore, the design problem is simplified at this stage by
assuming that interference picked up by the amplifier itself is negligible compared to
that picked up by loops formed by the interconnects. The validity of this assumption
has to be checked later in the design process and (if necessary) measures have to be
taken to ensure that it is valid.

Interference reaching the amplifier via the input interconnect can not be distin-
guished from the intended signal when it is in the passband of the amplifier. For an
ideal amplifier, no adverse effects exist when the disturbance is out-of-band. As was
discussed in Chap. 1, practical amplifiers will show adverse effects that are quadrat-
ically dependent on the disturbing signal reaching its input.
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Fig. 2.1 Interference coupling to an amplifier with source, load, power supply, and associated
interconnects

http://dx.doi.org/10.1007/978-3-319-00593-5_1
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For the ideal amplifier, interference pick-up at the output-load interconnect results
in an addition of the disturbance to the load signal. Usually the disturbance is much
smaller than the intended signal. Some of the disturbance will be transferred to the
input in practical amplifiers, where its effect will be the same as in the case where
interference is coupled directly to the input. The disturbance caused by interference at
the output may expected to be smaller compared to disturbance at the input, because
some attenuation of the disturbance may be expected to occur in the transfer from
output to input. Therefore, emphasis in this work is placed on the disturbance at the
input of the amplifier, where its adverse effect is maximal.

In both the case of the ideal and the practical amplifier, the disturbing signal
in the passband can not be distinguished from the information signal. Fortunately, a
disturbance usually gets noticeable at higher frequencies, as will be shown in the next
section. On top of that, measures to decrease the em-coupling are usually effective
at low frequencies and may become less effective at high frequencies (out-of-band).
It may therefore be possible that the disturbance generated in the passband is still
small enough to maintain the ser. The out-of-band interference may, however, cause
deterioration of the ser.

In the remainder of this chapter we concentrate on determining the total disturbing
signal at the input of an ideal amplifier. This disturbing signal gives the in-band ser
to be expected directly and is also used in Chaps. 5 and 6 to determine the ser due
to envelope detection.

Finally, interference may be coupled to the power supply interconnect. For a bal-
anced power supply the resulting disturbance is balanced out and does not degrade
the system performance. When the balancing is not ideal, or when there is no balanc-
ing at all, the disturbance may hamper system performance. For the power supply,
however, the signal of interest (i.e., dc voltage/current) and the disturbance are well
separated in the frequency domain. Filtering at low frequencies (e.g., a few Hz), is thus
a powerful method to prevent disturbances on the power supply that hamper the ser.

2.1.1 Coupling Mechanisms

As was discussed earlier, the interconnects are responsible for transport of both
the desired information and disturbance. The latter may also be called erroneous
information or error(s) for short.

Errors in negative-feedback amplifiers can be divided in: errors due to noise,
errors due to signal power, errors due to bandwidth limitations, and errors due to
interference, as discussed in Chap. 1. Errors due to noise and signal power are mainly
determined by the implementation of the negative-feedback amplifier. Apart from the
negative-feedback amplifier bandwidth limitations and interference induced errors
are also affected by the interconnect. The errors due to bandwidth limitations and
interference caused by non-ideal behavior of the interconnects are discussed in this
chapter.

http://dx.doi.org/10.1007/978-3-319-00593-5_5
http://dx.doi.org/10.1007/978-3-319-00593-5_6
http://dx.doi.org/10.1007/978-3-319-00593-5_1
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An ideal interconnect does not have any resistance and does not receive or radiate
electromagnetic fields. The ideal interconnect is commonly used in drawing schemat-
ics. It is just a line that forms a node for the various components connected to it, and it
does not affect the signal transfer in any way. Real interconnects do affect the signal
transfer, radiate and receive electromagnetic fields, and therefore a model describing
these effects on the signal transfer is required. The model of the interconnect should
be as simple as possible, yet it should be able to predict errors due to bandwidth
limitations and interference caused by the interconnect with reasonable accuracy.

The resistance and loss of electromagnetic fields may cause bandwidth limitations
and linear distortion to occur in interconnects. Reception of electromagnetic fields
cause disturbances (errors) to be induced in the interconnect. In this work it is assumed
that the interconnect has to be designed so that it does not introduce bandwidth
limitations, i.e., it does not degrade the bandwidth specifications, and it does not
introduce unacceptably large errors due to interference.

Simple models for the interconnect are presented in Sects. 2.2–2.6. These models
can be used to analyze the generation of errors in the interconnect. They will be used
to determine the remaining variables in the design of the interconnect such that for
a given source, information domain and interference, a certain minimal ser can be
maintained.

2.2 Electrical Model of the Interconnect

Any interconnect, whether it is a two-wire line, a coax cable, or a pair of traces on
a printed circuit board, in essence is a two-port and thus shows a transfer between
the input and output ports, and an impedance. The resistivity (ρ) of the conductor
material causes the conductors to have a resistance that depends on the dimensions of
the interconnect. The skin effect causes an ‘ac’ component to occur in the resistance
that increases with the square root of the frequency (Paul 1992).

The current flowing in the conductor generates magnetic fields both around and
inside the conductor, resulting in an external inductance (i.e., the self inductance)
and an internal inductance, respectively. This internal inductance is usually negli-
gible compared to the external inductance (Paul 1992). Charge distributed over the
conductor surface result in an electric field, resulting in a capacitance. The resistance,
capacitance and inductance of the interconnect may result in errors in the information
transfer due to bandwidth constraints or when reflections of the signal occur.

Interconnects, and complete systems can, based on their dimensions, be divided
in electrically-small and electrically-large interconnects. ‘Large’ in the case of inter-
connects (and even complete systems) means that the dimensions of the interconnect
become comparable to or greater than the wavelength, λ, of the signal. For engineer-
ing purposes, an interconnect is electrically-large when it is larger or equal to λ/10
(Goedbloed 1993). Smaller interconnects (i.e., <λ/10 in length) are regarded to be
electrically-small. The signal may be both intended and parasitic due to a disturbance.
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Note that the same interconnect can be small for the intended signal but large for the
disturbance, or vice-versa. The latter is not considered in this work.

Coupling of a disturbance depends on the distance between the interference source
and the receptor. Here, two cases can also be distinguished since the distance (d)
can be electrically-small or electrically-large. A distance is large when compared to

the antenna size (Reitsma 2005); d ≥ 2D2/λ, with D being the maximum overall
antenna dimension (Sinnema 1988). In the case of small dipoles, the distance becomes
large at an approximate value of λ/(2π) (Goedbloed 1993). Distance d is then large
when d ≥ λ/(2π). The latter boundary is usually used in emc engineering.

When d is small, the coupling is considered near-field, and when d is large, a
far-field coupling problem (Paul 1992; Goedbloed 1993). The near-field coupling
can be represented by a coupling capacitance and a mutual inductance. This is not
the case for far-field coupling as the electromagnetic wave propagation has to be
considered in that case.

For the coupling of interference, four different situations can be distinguished.
When we take the length L of the interconnect as representative for the dimensions
of the interconnect, we have (Reitsma 2005):

1. both L and d are small
2. L is small and d is large
3. L is large and d is small
4. both L and d are large

Case 1 results in coupling to a lumped element model representation of the intercon-
nect via mutual inductance (M12) and a coupling capacitance (C12) (Paul 1992), see
Fig. 2.2a. The distributed resistance of the interconnect is represented by a resistance
(R), the inductance and capacitance by L and C , respectively, and the conductance
between the conductors by G. Coupling of disturbance via mutual inductance and
coupling capacitance is often called crosstalk.

The second case (2, above) represents plane wave coupling to a small interconnect.
In this work only the receiving small interconnect is considered. It is assumed that
the designer can not do anything to reduce the interference generated by emitters at a
large distance. The plane wave induces a voltage (represented by voltage source, u)
and a current (represented by current source, i) in the lumped element model of the
interconnect, as depicted in Fig. 2.2b. The plane wave is represented three vectors−→
E ,

−→
H , and

−→
S , being the electric field, the magnetic field, and the Poynting vector,

respectively. The disturbance induced by the plane wave is represented by a single
voltage (u) and current source (i) (Paul 1992). Estimating the effects of plane wave
coupling on electrically-short interconnects is discussed in Sect. 2.6.1.

Case 3 gives coupling via distributed mutual inductance and coupling capaci-
tance to transmission lines. In the case of transverse electromagnetic (tem) field
propagation, the fields have no component parallel to the uniform line conductors
(Paul 1992; Sinnema 1988; Smith 1977). The model of an electrically-long intercon-
nect suffering from near-field disturbance is shown in Fig. 2.2c (Reitsma 2005). The
‘uniform’ property of a transmission line refers to the constancy of the conductor



32 2 Decreasing the Disturbance Coupled to Amplifiers

Fig. 2.2 Representations of both electrically-small and large interconnects suffering from interfer-
ence due to crosstalk (2.2a, 2.2c) and plane wave coupling (2.2b, 2.2d). a Lumped representation
of an electrically short interconnect. Crosstalk is represented by a lumped capacitance C12 and
mutual inductance M12 to an interference source, which is depicted by the dotted line. b Lumped
representation of plane wave coupling to an electrically short interconnect. The disturbance induced
by the plane wave can be represented by a voltage and current source. c A uniform electrically-long
interconnect suffering from crosstalk can be modelled by a cascade of infinitesimal length (dl)
sections of the interconnect. d A uniform electrically-long interconnect suffering from plane wave
interference can be modelled by a cascade of infinitesimal length (dl) sections of the interconnect

geometry (spacing and cross-sectional area), conductor material, and the surround-
ing dielectric medium over the length of the line (Smith 1977). The interconnect and
its electrical properties are represented by a cascade of small sections (dl) of the
interconnect. The same holds for the coupling parameters M12 and C12.

Solving the transmission line equations (Paul 1992; Sinnema 1988; Smith 1977)
results in the familiar expressions for the characteristic impedance (Z0) and the
propagation constant (γ ). Equations for determining the crosstalk in electrically-
long interconnects are presented in Paul (1992) and Reitsma (2005). In this work,
we are interested in disturbance due to out-of-band interference. Since out-of-band
interference is often caused by sources located far away, crosstalk is not discussed
in this work. The interested reader is referred to literature for measures to decrease
crosstalk, e.g., (Reitsma 2005; Paul 1992; Ott 2009).



2.2 Electrical Model of the Interconnect 33

Finally, case 4 often depends on solving Maxwell’s equation numerically. For
some specific cases, like coupling to an isolated resonant antenna, analytical results
are available, e.g., (Orfanidis 2004; Sinnema 1988; King 1956). The coupling of
electromagnetic waves to (cylindrical) antennas for various frequencies (i.e., also
non-resonant frequencies) may be determined by approximate equations given in,
e.g., (King 1956). In this work it is assumed that no isolated antennas (i.e., inter-
connects) occur. This means that a conductive (ground) plane is present at a small
distance away from the interconnect. For this situation, analytical closed form equa-
tions exist (Smith 1977) and will be presented in Sect. 2.6.2. Equations that also take
nonuniformities of the interconnect into account can be found in Haase (2005), but
will not be presented here for reasons of simplicity.

Fig. 2.2d depicts the electrically-long interconnect that is subjected to a plane
wave. The effects of an interfering plane wave are now represented by the combined
effects of infinitesimal voltage and current sources (udl and idl, respectively) (Paul
1992). Section 2.6.2 presents equations giving the total amount of disturbing current
or voltage at the terminals of the interconnect. The combined effect of all sources
(and the characteristic impedance) is thus taken into account in these equations.

The (lumped model) parameters R, L , C , and G can be determined from the
equations presented in Table 2.1. Conductance G may often be neglected in practical
cases, since ωC � G, and R may often be neglected because it is smaller than
the source impedance in most practical cases. These conditions are assumed in the
remainder of this chapter.

2.3 Intended Signal Transfer in Electrically-Small Interconnect

When the interconnect is electrically-small, its behavior can be modelled using
lumped elements, as was shown in Sect. 2.2. However, the way the lumped compo-
nents are connected depends on the terminating impedances. Since an interconnect
can be terminated at both sides, there are two terminating impedances. The two termi-
nating impedances result in four extreme cases: both Z1 and Z2 are low (e.g., a short
circuit), both Z1 and Z2 are high (e.g., an open connect), Z1 is low and Z2 is high,
and Z1 is high and Z2 is low. These four combinations result in four lumped models
of the interconnect (see Fig. 2.3). Note that the lumped components are connected in
such a way that their effect on the signal transfer is maximal.

When it is assumed that Z1 represents the impedance of the signal source and Z2
the load of the source (i.e., the input impedance of the amplifier), it may easily be
identified that Fig. 2.3a represents the model of an interconnect of a current processing
amplifier and Fig. 2.3b represents the model of an interconnect of a voltage processing
amplifier. Figures 2.3c and d represent situations that usually will not occur in case
of negative-feedback amplifiers. They may, however, occur when emc measures
are taken, e.g., a shielding conductor connected to the reference via short circuits
(Z1 = Z2 = 0), or a floating interconnect (Z1 = Z2 = ∞).
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Fig. 2.3 The lumped model that best represents the electrical behavior of an electrically-small
interconnect depends on the terminating resistances. a Lumped model of interconnect in case Z1 is
high and Z2 is low. b Lumped model of interconnect in case Z1 is low and Z2 is high. c Lumped
model of interconnect in case Z1 and Z2 are both low. d Lumped model of interconnect in case Z1
and Z2 are both high

The inductance, capacitance, and resistance of the interconnect depend on its
dimensions. The smaller the dimensions, the smaller the values of these lumped
components become. The maximal dimensions of the interconnect therefore follow
directly from the bandwidth requirement.

For example, consider a voltage domain information channel. Impedance Z1 is
the source impedance and is taken to be the source resistance Rs for simplicity. Z2 is
the input impedance of a voltage processing amplifier and is therefore ideally infinite.
The transfer of the interconnect equals

Hu(s) = 1

s2LC + s(RsC + L
Z2

) + 1 + Rs
Z2

≈ 1

s2LC + s RsC + 1
. (2.1)

From this equation it follows that the bandwidth, B, of the transfer is estimated as2

B ≈ 1
2π RsC in most practical cases. For the bandwidth of the interconnect to have a

negligible effect on the signal transfer and processing, it should be designed so that
it is ≥5 times the bandwidth of the amplifier. From this requirement the maximal
dimensions of the interconnect can be determined (see Sect. 2.5).

The solid line in Fig. 2.4 shows Hu of an electrically-short interconnect in case
L equals 1 μH, C equals 4 pF and the source impedance is a resistance Rs of 1
k�. The interconnect has no adverse effect on the signal transfer at low frequencies.
The capacitance of the interconnect and the source resistance limit the bandwidth to

2 When the current domain channel is evaluated, the same approximation for the bandwidth of the
interconnect is found. The assumptions are now: Z2 is ideally zero, and when not zero much smaller
than Z1. Z1 is for simplicity also taken equal to the source resistance Rs .
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Fig. 2.4 Transfers of two voltage domain channels with the same inductance and capacitance
values (1 μH and 4 pF, respectively). The source impedance is Zs = 1 k� and the amplifier’s input
impedance Zin = ∞. The solid line depicts the Bode plot of the electrically-short channel. The
dashed line depicts the Bode plot of an electrically-long channel with length L of 1 m and Z0=
500 �

about 39.8 MHz. Transfer Hu decreases at a rate of 20 dB/dec for frequencies higher
than the bandwidth. L does not affect Hu in the depicted frequency range.

2.4 Intended Signal Transfer in Electrically-Large Interconnect

The generally used name for a long interconnect is transmission line. The equations
describing the behavior of long interconnects are therefore called transmission line
equations. Both characteristic impedance, Z0 and propagation constant, γ , determine
the behavior of an electrically large interconnect.

Z0 is given by Sinnema (1988), Smith (1977):

Z0 =
√

R + jωL

G + jωC
. (2.2)

The resistance per meter is given by R, the inductance per meter by L , the conduc-
tance per meter by G, and the capacitance per meter by C . For frequencies ωL � R
and ωC � G, the characteristic impedance reduces to Z0 = √

L/C . Note that com-
pared to an interconnect without insulation, the Z0 of an interconnect with insulation
around the conductors is a factor

√
εr lower, because C is the same factor larger. R,

G, L , and C can be determined for various long interconnects with the equations
presented in Sect. 2.5 (Table 2.1).

Propagation constant γ is defined as
√

(R + jωL)(G + jωC) = α + jβ, where
α is the attenuation constant and β is the phase constant of the transmission line. It
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gives a measure for the attenuation and phase shift that a signal experiences while
traveling across the transmission line.

The attenuation constant α represents dissipative losses in the conductors and in
the dielectric medium and is for low loss lines given by α = R

2Z0
+ G Z0

2 (Smith 1977).
Resistance R increases with the square root of the frequency due to the skin effect
(see Table 2.1). The equation for α is in Np/m. In dB/m it is 20 log e × α ≈ 8.686α

(Sinnema 1988). The dielectric losses represented by G increase proportional to
frequency. The phase constant β equals ω

√
LC = ω

√
μ0μrε0εr (Sinnema 1988;

Smith 1977).
At high frequencies, α may be dominated by inhomogeneities in the cable con-

struction giving much higher attenuation than that predicted by this simple equation.
For example, the loss at mobile telecommunication frequencies is about 0.2–2 dB/m,
but losses over 10 dB/m have also been reported (Flintoft 2013).

In electrically-large interconnects it is impossible to work in either voltage or
current domain, because after traveling a quarter wavelength, a voltage becomes a
current signal and vice-versa (Reitsma 2005). Since the power remains constant,
power should be the domain of the information. Therefore, the impedances of the
signal source (Zs), the interconnect, and the input of the amplifier (Zin) should match
to ensure constant power transfer. The impedance of an electrically-large interconnect
is called the characteristic impedance (Z0). When Zs = Z0 = Zin , the interconnect
is properly terminated (Smith 1977).

Ideally, the input impedances of voltage and current amplifiers are infinite and
zero, respectively. Infinite or zero impedances prevent power transfer, and therefore
the signal will be reflected, resulting in distortion.3 To prevent this, the information
channel should be terminated by adding, e.g., series or parallel resistances in the cur-
rent and voltage domain channel, respectively, or by applying a dual-loop negative-
feedback amplifier with input and output impedances matched to the impedance of
the interconnect. However, matching the (input) impedance of the amplifier to the
characteristic impedance of the interconnect has some drawbacks.

Firstly, the voltage or current source impedance ends up in the transfer of the
amplifier. An inaccurate or even nonlinear source impedance, causes the transfer to
be inaccurate. This should therefore be avoided.

Secondly, most information sources (should) operate either in the voltage or cur-
rent domain and thus require either voltage or current domain transport of the signal,
i.e., the source should be terminated either with an infinite or zero impedance in
the frequency band of the information. Note that from this discussion follows that
the signal source impedance usually does not match the characteristic impedance of
the interconnect either.

For frequencies well above the passband, both terminating impedances could be
made equal to the characteristic impedance by shunting the terminating impedance
with a capacitively-coupled resistance of the appropriate value. This may have detri-
mental effects on the noise performance of an amplifier, so this should be carefully

3 Practical amplifiers do not have either zero or infinite input impedance, but values much lower or
higher than Z0 can be expected. Therefore, reflections will still occur.
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checked. Besides, source impedances are often characterized by a capacitive behav-
ior at high frequencies. This makes it hard to accomplish a proper termination. We
therefore limit this work to voltage and current domain signal transport.

For illustration purposes, it is shown what the consequences are of employing an
electrically-large interconnect for transferring a voltage-domain signal. A compara-
ble discussion holds for the current-domain channel. The transfer of the large inter-
connect between the source to the input of the voltage amplifier, Hu , is (Smith 1977)

Hu = Z0 Zin

(Z0 Zs + Z0 Zin) cosh (γL ) + (Z2
0 + Zs Zin) sinh (γL )

, (2.3)

with γ being the propagation constant, L the length of the interconnect, and Z0
its characteristic impedance. Zs and Zin are the source impedance and the (ideally
infinite) input impedance of the voltage amplifier, respectively.

The signal integrity may be seriously hampered in case of electrically-large inter-
connects. Because impedances Zs and Zin do not match the characteristic impedance
of the transmission line, reflections occur in the interconnect. Transfer Hu now shows
resonances and anti-resonances, instead of a smooth 20 dB/dec roll-off as in case of
the short interconnect (see the dashed line in Fig. 2.4). Although not clearly visible
in a Bode diagram, the sign of the voltage reaching the amplifier may even become
opposite to the sign of the voltage at the source, causing severe errors.

The first resonance4 occurs at the frequency at which the interconnect length
equals a quarter of the wavelength of the information. The following resonance fre-
quencies occur at odd multiples of this frequency; fres = nc

4L , with n = 1, 3, 5 · · · ,
and c being the speed of light. The attenuation of the information that occurs at the
resonance frequencies depends on Z0. Lower values of Z0 cause larger attenuation
values than higher values of Z0. At the anti-resonance frequencies ( fanti−res = nc

4L ,
with n = 2, 4, 6 · · · ) the transfer from source to input voltage is about unity, when
the attenuation constant is low.

To ensure signal integrity, interconnects should never become electrically-large
with respect to the wavelength of the highest frequency of the information it has to
transfer. The maximal dimension (length) of an interconnect should be designed to
be smaller than λ/10. This limitation is not a problem for the amplifiers dealt with in
this work. These special purpose negative-feedback amplifiers are assumed to have
a moderate bandwidth, up to several tens of MHz.

2.5 Parameters of Interconnects

For small interconnects, the lumped model parameters are of importance, and for
large interconnects the characteristic impedance and the propagation constant are of

4 The same convention as in Sinnema (1988) is used. High impedance or parallel resonant com-
parable transfers are called anti-resonant, whereas low impedance or series resonant comparable
transfers are called resonant.
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(a)
(c) (d)

(d) (f)

(b)

Fig. 2.5 Some often encountered interconnects. a Two-wire line. b Wire over plane. c Coax. d
Two-wire coax structure. e Coplanar strips. f Microstrip

importance. Deriving the equations for these parameters is beyond the scope of this
work. Besides, these equations are presented in literature for several types of inter-
connects. For convenience, Fig. 2.5 shows some commonly encountered intercon-
nects, and Table 2.1 presents equations for determining their parameters. More can
be found in literature, e.g., (Leferink 2001; Leferink and van Doorn 1993; Leferink
1995; Reitsma 2005; Paul 1992; Kaden 1959).

In all equations for R, the skin depth (represented by δ) occurs. The skin depth
is given by δ = √

2ρ/(μω) (Goedbloed 1993), with ρ being the resistivity of the
conductor material, ω the angular frequency and μ = μ0μr , with μ0 being the per-
meability of free space, and μr the relative permeability. The resistance thus increases
with (the square root of the) frequency. In most practical cases, the external induc-
tance (due to L) will be larger than the frequency dependent part5 of R, and therefore,
the latter effect may thus be disregarded. An exception may be a broad microstrip
line; its ‘ac’ resistance is not negligible to the external inductance (Leferink 1996).

Conductance G is calculated from the capacitance C and the loss tangent tan δ1
(third column of Table 2.1) (Orfanidis 2004). The latter represents the power loss of
the dielectric of the insulating medium between the conductors. It is equal to 1

ρωε0εr
,

where ρ is the usually large specific resistance of the medium and εr is the relative
permittivity of the medium. When the medium is formed by a loss free medium, e.g.,
vacuum, tan δ1 equals zero. For an impression of the order of magnitude of a good
insulator: the loss tangent tan δ1 of a typical polyethylene or teflon dielectric is of the
order of 0.0004–0.0009 up to about 3 GHz (Orfanidis 2004). Conductance G will be
much smaller than ωC in practical cases, and may therefore be disregarded during
design.

5 The low resistivity of conductors cause a low value of R at dc, which increases with
√

ω. Evaluation
of the equations given in Table 2.1 shows that even for small distances between the conductors, ωL
is found to be much larger than the frequency dependent part of the resistance.
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For the two-wire line and the wire over a (conductive) plane, holds that the distance
between the conductors is represented by d or by the height h of the wire over
the plane, and the radius of the wires by rw, see Figs. 2.5a and b. The presented
equation for the two-wire line (Table 2.1 row one) assume equal radii of the wires.
The equations are valid under the assumption that d > rw, skin depth (δ) is smaller
than rw, and height h is much higher than the skin depth (δp) of the ground plane
(Kaden 1959).

For the coax cable and two-wire coax (Figs. 2.5c and d; Table 2.1 third and fourth
row), hold that ra and rh , respectively, are the radii of the outer conductor, ri is the
radius of the inner conductor, and d1 is the distance between the two wires in the
coax. The thickness of the outer conductor is represented by d. Note the constraints
given in Table 2.1 for validity of the equations for the coax and two-wire coax.

When tracks on a printed circuit board are considered (the coplanar strips in
Fig. 2.5e and the microstrip line in Fig. 2.5f; Table 2.1 fifth and sixth row), the width
of the tracks is w, t is the thickness of the track, wg is the width of the ground
plane, and h is the height of the printed circuit board material. The relative dielectric
constant of the latter (typical glass-epoxy (Paul 1992)) is εr . Note that the equations
for calculating the inductance of the coplanar strips and the microstrip line hold when
the length (L ) of the track is much larger than d and w (Leferink 1995).

The effective permittivity εeff in the equations for C (in rows 1, 2, 5, and 6), is
determined by both the relative permittivity (εr ) of the dielectric media (e.g., printed
circuit board and wire insulation) and εr ≈ ε0 of air, because the field lines penetrate
both the air and the dielectric. Determining εe f f may be difficult, but some equations
for determining it are presented in literature, e.g. (Sinnema 1988). For example, in
case of a printed circuit board with w/h 
 1, εeff ≈ 0.5(εr +1). More accurate and
elaborate equations which are valid for other ratios of w and h are found in literature,
e.g., (Sinnema 1988; Paul 1992). Parameter εe f f may, however, also easily follow
from measurements. Note that parameter c for determining C0 (rows 5 and 6) is the
speed of light in vacuum. C0 is the capacitance without the dielectric medium.

The equations presented in Table 2.1 are relatively simple and lend themselves to
hand calculations. Moreover, they show the relation between the parameters R, G,
L , and C and the physical dimensions of the interconnect, and can therefore be used
in the first design steps. More accurate (and more elaborate) models, which can be
used in the subsequent design steps are readily available in modern simulators.

2.6 Coupling of Interference to the Interconnect

When the distance between interfering source and receptor is large, the receptor is
in the far field. The electric (

−→
E ) and magnetic (

−→
H ) fields of the electromagnetic

wave are perpendicular to each other and perpendicular to the direction of propa-
gation, which is represented by the Poynting vector

−→
S , see Figs. 2.6 and 2.7. This

electromagnetic wave is called a plane wave and has a constant ratio of the
−→
E and−→

H fields: the wave impedance Zw = E/H ≡ √
μ0/ε0 = 120π� (Paul 1992).
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Fig. 2.6 Representation of plane wave coupling to a two-wire line. Impedance of the wires are
represented by lumped components. An electromagnetic plane wave induces a signal that can be
represented by a voltage and a current source, udist and idist , respectively. a Two wire excited by an
electromagnetic plane wave. b Best lumped model representation in case Z1 < Z2. c Best lumped
model representation in case Z1 > Z2. d When the signal source supplies a signal voltage us ,
the input impedance of the amplifier should be infinite. e When the signal source supplies a signal
current is , the input impedance of the amplifier should be zero
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Fig. 2.7 em field coupling to an electrically-large interconnect. Note that the field may also have
other orientations

In any interconnect (electrically short and long), disturbing signals are induced
by interfering em fields. These signals may be separated into antenna and transmis-
sion line currents (Leferink 2001). The antenna current is, by definition, the sum of
all currents at any cross-section of a transmission line. Both differential-mode and
common-mode currents are transmission line currents.

The transmission line currents, in a (multi-conductor) transmission line, can be
found via transmission line theory (Paul 1992). A vital restriction is that the distance,
d, between the conductors of the transmission line satisfies d ≤ λ

2π
, with λ being

the wavelength of the highest interfering signal (Leferink 2001). Comparison of the
far more elaborate antenna theory and this approach to determine the currents in a
transmission line for spacings d ≤ λ

2π
(even up to λ/4) show deviations between

the two methods of less than 2 dB (Smith 1977), and therefore the transmission line
theory can be used.

When the conductor is d > λ
2π

far from a ground plane, the conductor has to be
regarded as a monopole antenna (Leferink 2002). The antenna current at its terminal
has to be determined with antenna theory. For determining the antenna current and
antenna impedance as a function of frequency, the reader is referred to literature, e.g.,
(King 1956; King and Harrison 1969; Leferink 2001, 2002; Orfanidis 2004). In this
work it is further assumed that all signal paths satisfy the earlier mentioned condition
since most signal paths are not isolated. They are parallel, or approximately parallel,
to a conducting (ground) plane (Smith 1977).

2.6.1 Plane Wave Coupling to Electrically-Short Interconnects

Figure 2.6a shows an two-wire interconnect subjected to a plane wave.6 It is ter-
minated on one side by impedance Z1 and on the other side by impedance Z2. The
electrical behavior of the two-wire line may be described by means of lumped-circuit
models, i.e., an inductance (Ld ) and capacitance (Cd ), as is shown in Fig. 2.6b and c.
Parameters Ld and Cd can be determined using the equations presented in Table 2.1.

The electric field component of the plane wave generates a current in the loop,
while the magnetic field component induces a voltage in the loop Paul 1992. The
generated current and voltage can be modelled by a current source in parallel with

6 Plane wave coupling to other types of interconnects can be analyzed in the same way.
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the impedances and a voltage source in series with the impedances (Paul 1992),
respectively, as Fig. 2.6 shows.

Figure 2.6b shows the lumped element model for an electrically-short voltage
domain channel that is subjected to a plane wave and Fig. 2.6c shows the current
domain variant.

The magnitude of the disturbing signal sources generated by the electromagnetic
field depends on the orientation of the two-wire line in the field. Depending on the
angle between the two-wire line and the field, the induced signals may vary between
some maximum and minimum value. In emc engineering it is customary to assume
the worse case: maximal magnitude of the induced signal. This also makes sense
from a design point of view, so in this work maximal coupling is assumed.

The magnitude of the disturbing voltage at the input of the voltage processing
amplifiers can easily be determined by assuming Zin to be infinite (see Fig. 2.6d),
and the magnitude of the disturbing current at the input of the current processing
amplifier by assuming Zin to be zero (see Fig. 2.6e). The intended signal sources
(is and us , respectively) and the source impedance Zs are also depicted in Fig. 2.6d
and e. The signal source impedance will usually be composed of a resistance, Rs ,
shunted by a capacitance, Cs .

The practical negative-feedback amplifier will not have an infinite or zero input
impedance. To simplify the design process, ideal amplifiers can be considered never-
theless. Deviations in the calculated disturbing signal due to deviations of Zin from
the ideal value presented to the input of the amplifier can be evaluated later. If the
practical negative-feedback amplifier is designed properly, the constraints Zs 
 Zin

in case of voltage processing amplifiers and Zs � Zin in case of current process-
ing amplifiers, respectively, hold. The deviations between the ‘ideal’ and ‘practical’
values of the disturbing signal are therefore expected to be small.

When a current processing amplifier is considered, the input impedance approac-
hes zero. Therefore, Fig. 2.6e should be used to determine the total disturbing signal.
The total disturbing signal is the current flowing into the amplifier due to both dis-
turbing sources. On the other hand, voltage processing amplifiers have a high input
impedance, approaching infinity. The total disturbing voltage at the input terminals
of the amplifier can now be determined using Fig. 2.6d.

The magnitude of the voltage source udist and the current source idist are given
by (Paul 1992)

udist = jωμ0 A
−→
H (2.4)

and
idist = − jωC A

−→
E , (2.5)

respectively. Parameter A is the loop area given by the product of the length (L )
of the two-wire line and the distance between the conductors d.

−→
H and

−→
E are the

magnetic and electric field components of the plane wave, respectively. The angular
frequency of the plane wave is represented by jω ( j = √−1) and C is the capacitance
per meter and follows from Table 2.1.
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The orientation of the current source, idist , is as depicted in Fig. 2.6. The orienta-
tion of the voltage source, udist , should be chosen such that the current resulting from
this source generates a magnetic field that opposes the incident magnetic field (Paul
1992). The orientation of udist in Fig. 2.6b–d thus complies with an electromagnetic
field orientation as shown in Fig. 2.6a.

From the electric field the magnetic field can be calculated, by dividing it by the
wave impedance (Zw)

H = E

Zw

. (2.6)

Using Fig. 2.6d and e and Eqs. (2.4) and (2.5), the total disturbing signal due to
an interfering plane wave can be determined.

udist,tot = idist
Rs + jωLd (1 + jωRsCs)

1 + jωRsCs + jωCd (Rs + jωLd (1 + jωRsCs))

+ udist
1 + jωRsCs

1 + jωRsCs + jωCd (Rs + jωLd (1 + jωRsCs))

(2.7)

and

idist,tot = idist
Rs

Rs + jωLd [1 + jωRs (Cs + Cd)]

+ udist
1 + jωRs (Cd + Cs)

Rs + jωLd [1 + jωRs (Cs + Cd)]
.

(2.8)

The signal-to-disturbance ratio follows from 20 log (us/udist,tot ) and
20 log(is/ idist,tot ), respectively.

Equation (2.7) for the voltage processing amplifier is dominated by the udist term,
at least at lower frequencies. At higher frequencies, typically at the edge of validity
of the model, idist can not be neglected anymore. However, for the major part of the
frequency range it holds that udist determines udist,tot . Since udist is determined by
the magnetic field, it can be concluded that voltage processing amplifiers are more
susceptible to the magnetic field rather than the electric field component of the plane
wave.

For the current processing amplifier, the dual case is found. Current source idist

dominates Eq. (2.8) which depends on the electric field. Therefore, it can be con-
cluded that current processing amplifiers are more susceptible to the electric field
rather than to the magnetic field component of the plane wave.

Figure 2.8 shows the transfer (Hpw) of a plane wave to udist,tot (dotted line).
The interconnect is a two-wire ribbon cable with d =1.27 mm, rw =190.5 μm and
Lcon = 20 cm. Source resistance is Rs = 10� and Cs = 1 pF. Up to approximately
150 MHz the interconnect can be regarded as electrically small. At 150 MHz the
deviation of transfer H with the transfer obtained with the transmission line theory
(Sect. 2.6.2) is about 2 dB. For lower frequencies, transmission line theory and the
method presented in this section give the same results. The method presented in this
subsection is, however, simpler.
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Fig. 2.8 Transfer Hpw of a plane wave to a disturbing voltage at the input of a voltage processing
amplifier. The orientation of the plane wave is depicted in Fig. 2.7. The interconnect is a two-wire
ribbon cable with d =1.27 mm, rw =190.5 μm and Lcon = 20 cm. Source resistance is Rs = 10�

and Cs = 1 pF. The solid line is obtained with transmission line theory, the dashed line with the
lumped model

2.6.2 Plane Wave Coupling to Large Interconnects

An interfering plane wave generates a disturbing current and voltage at the input
terminals of the amplifier, see Fig. 2.7. Under the condition that d ≤ λ

2π
holds,

current iin and voltage uin can be calculated with (Smith 1977; Flintoft 2013):

iin(ω) = 1

D

∫ L

0
K (l, ω)[Z0 cosh γ l + Zs sinh γ l]dl + Z0

D

∫ d

0
Ei

x (x, 0, ω)dx

− 1

D
[Z0 cosh γL + Zs sinh γL ]

∫ d

0
Ei

x (x, l, ω)dx (2.9)

D = (Z0 Zs + Z0 Zin) cosh γL +
(

Z2
0 + Zs Zin

)
sinh γL

uin(ω) = iin(ω)Zin,

where Z0 is the characteristic impedance of the interconnect, Zs is the source
impedance, Zin is the input impedance of the amplifier, Ei

x (x, 0, ω) is the electric
field in the x direction (directed from the lower conductor to the upper conductor)
incident on the source terminals, Ei

x (x, l, ω) the field in the x direction incident on
the Zin terminals, L is the length of the conductors, ω is the radial frequency of the
field, and γ is the propagation constant of the line. K (l, ω) is the difference between
the incident fields: K (l, ω) = Ei

l (d, l, ω)− Ei
l (0, l, ω), where Ei

l (d, l, ω) is the field
incident in the length direction on the upper conductor and Ei

l (0, l, ω) is the field in
the length direction incident on the lower conductor. Note that for the orientation of
the plane wave in Fig. 2.7, K is zero since El is zero.

Solving the integrals for the field orientation depicted in Fig 2.7, results in:
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iin(ω) =Ei
x d

Z0

D

{
1 − e− jk0L sin �

(
cosh γL + Zs

Z0
sinh γL

)}

− 2
Ei

l

γ

Z0

D
sinh

(
j
k0d

2
sin 


) (
sinh γL + Zs

Z0
(cosh γL − 1)

)
(2.10)

D = (Z0 Zs + Z0 Zin) cosh γL +
(

Z2
0 + Zs Zin

)
sinh γL ,

with k0 = 2π
λ

being the wave number of the plane wave, and � and 
 are the angles

that
−→
S makes with the interconnect.

Typically, disturbances at the termination on the amplifier side will show a 20
dB/dec increase with frequency. Anti-resonance points (i.e., maxima in the distur-
bance) and resonance points (minima) may occur. The first anti-resonance point
typically gives the largest value of the disturbance and can be found at f p = v

4L
in case of resistive line termination, with v being the velocity of propagation on the
line. The other anti-resonance and resonance points are found at far = n f p and
fr = (n − 1) f p, respectively, with n = 3, 5, 7 · · · . The exact resonance and anti-
resonance frequencies may be shifted by a few percent when the terminations are
formed by complex impedances instead of resistances.

Attenuation factor α increases with frequency, thus increasing γ , and causes the
depths of the anti-resonance points and the heights of the resonance points to be
diminished (Smith 1977). For this reason it may be expected that in practical cases
f p will indeed give the frequency at which maximal disturbance will occur.

Figure 2.8 shows with the solid line the transfer Hpw = uin/E for the intercon-
nect presented in Sect. 2.6.1. Another example of the application of the presented
equations can be found in (Flintoft 1999a,b), in which the disturbance induced in
two-wire lines, twisted pairs, etc., by GSM phones is investigated using (among
others) the method presented in this subsection.

2.6.3 Design for Low Plane Wave Coupling

The simplest and most straightforward measure that can be taken is to keep dimen-
sions of the interconnect small. As long as the interconnect is electrically-small, the
disturbance is inversely proportional to L , i.e., a reduction of L of a factor two will
also reduce the disturbance by a factor two. Moreover, a small distance (d) between
the conductors causes lower values of udist and idist . The inductance of the inter-
connect decreases and the capacitance increases with decreasing distance. Designing
(electrically-large) interconnects with a low value of Z0 = √

L/C is thus beneficial.
Electrically-large interconnects may be designed such that the attenuation factor

α, which forms the real part of γ , is large. This may be accomplished by designing
for a relatively high conductor resistance, by selecting material with a high specific
resistance, and a high value of the conductance G of the insulation between the
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conductors.7 Since α increases with frequency, the beneficial effect on the transfer
of interfering plane waves increases with frequency.

Higher values of the interconnect resistance and capacitance may, however,
decrease the bandwidth of the interconnect too much, causing a distorted intended
signal. Moreover, a higher value of R may decrease the signal to error ratio. A trade-
off between the beneficial and detrimental effects of decreasing d and increasing R
should be made in that case.

Another measure that can be taken is to prevent plane waves reaching the intercon-
nect using shielding, e.g., by using a single conductive (ground) plane or a complete
conductive enclosure. Shielding is discussed in Sect. 2.8. More about the positive
effect of a conductive plane near an interconnect can be found in (Smith 1977;
Reitsma 2005).

2.7 Differential and Common-Mode Disturbances

When disturbing signals are induced in an interconnect formed by, e.g., a wire over
a conductive plane or a microstrip line, the disturbance is a differential signal and
processed by the signal path comparable to the intended signal. When, however, an
interconnect is placed over a conductive plane (which often occurs), a disturbance
is generated in the path formed by the conductive plane and the interconnect aside
from the differential signal. This disturbance is called a common-mode disturbance,
because it causes signals that are equal in magnitude and have the same direction
(Paul 1992) in both conductors of the interconnect. Common mode and differential-
mode disturbances are elucidated in Fig. 2.9a.

The common-mode disturbances can be found by using the same principles as
discussed in Sect. 2.6, but now it is assumed that the conductor spacing in the intercon-
nect is negligible compared with the distance between the interconnect and ground
plane. All conductors in the interconnect are treated as a single wire with a diame-
ter equal to the overall diameter of the interconnect. The disturbances found in this
loop form the common-mode disturbances in the interconnect, which are assumed
to divide equally among the conductors in the interconnect (Smith 1977). This is
modelled in Fig. 2.9b.

Although Figs. 2.9a and b present a representation valid for small interconnects,
the discussion also holds for long interconnects. In the latter case, the common-mode
currents at the terminals of Zin are of concern.

Note that the effective disturbing signal sources driving the common-mode dis-
turbances are determined for a distance, d1, to the ground plane that is much
larger than the distance, d2, between the conductors in the interconnect. Hence,
the common-mode disturbances induced on the interconnect are much greater than

7 Note that these recommendations are the opposite of the general case in which the intended signal
has to be transferred and hence α should be as low as possible.
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Fig. 2.9 An interconnect is placed over a conductive plane. Differential-mode disturbances are
generated in the path formed by both conductors of the interconnect, Zs , and Zin . Common-mode
disturbances are generated in the path formed by the conductive plane, impedances Z1 and Z2 and
the interconnect. a The interconnect between Zs and Zin is connected via Z1 and Z2 to a conductive
plane. Both common mode and differential-mode disturbance are induced in the interconnect. Note
that usually holds d1 � d2. b common-mode signals on interconnect

the differential-mode disturbances Flintoft 2013; Smith 1977. The total disturbance
at the terminals of the amplifier, i.e., at Zin can now be evaluated.

The impedances Z1 and Z2 determine the total disturbance. Their effect is consid-
ered for the extremes of zero and infinite impedance. Four combinations are possible
and they are evaluated for each of these four cases for both voltage and current
processing amplifiers in Table 2.2. The disturbance voltage in the case of a voltage
processing amplifier and the disturbing current in the case of a current process-
ing amplifier are denoted udistC M−DM and idistC M−DM , respectively. Just like in the
previous cases, Zs represents the source impedance and Zin represents the input
impedance of the amplifier.8

When both Z1 and Z2 are infinite, the common-mode signals cancel in Zin (and
Zs) and no disturbing signal occurs (Smith 1977). This is equivalent to a balanced
input.

When either Z1 or Z2 is zero, and the other infinite, only the common-mode
currents will generate a disturbance. This is because making either Z1 or Z2 zero,
short circuits the icm/2 current source of the conductor that is short circuited. Both

8 The model with the common-mode sources divided equally over both connectors as shown in
Fig. 2.9b can also be used to determine common-mode to differential-mode conversion for other
cases of imbalance, e.g., when Zin is also loaded by an impedance at its top terminal.
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Table 2.2 Common-mode to differential-mode conversion due to impedances Z1 and Z2

Z1 Z2 udistC M−DM idistC M−DM

∞ ∞ 0 0

∞ 0 icm
2

Zin Zs
Zs+Zin

≈ icm
2 Zs

icm
2

Zs
Zs+Zin

≈ icm
2

0 ∞ icm
2

Zin Zs
Zs+Zin

≈ icm
2 Zs

icm
2

Zs
Zs+Zin

≈ icm
2

0 0
ucm

2

Zin

Zs + Zin
+ icm

2

Zs Zin

Zs + Zin

ucm

2

1

Zs + Zin
+ icm

2

Zs

Zs + Zin

≈ ucm

2
+ icm

2
Zs ≈ ucm

2

1

Zs
+ icm

2

common-mode voltages ucm/2 are unaffected by the short circuit and cancel each
other because they have the same sign.

When both Z1 and Z2 equal zero, both common-mode current and common-mode
voltage determine the disturbing input quantities. Because the conductor is short
circuited at both sides, both the lower common-mode current source and the lower
common-mode voltage source are short circuited. It should be noted that ucm/2 may
be significantly larger than icm/2 (see, e.g., Eqs. (2.4) and (2.5)). Both udistC M−DM

and idistC M−DM are typically dominated by ucm/2.
Of course in practical situations neither Z1 nor Z2 will be zero or infinite. Using

the models, the effect of different values of Z1 and Z2 between these extremes can
readily be analyzed.

2.7.1 Decreasing the Common-Mode Disturbance

The common-mode signals that are transferred to a differential total disturbance
signal can be significantly decreased. Minimizing height d1 is a simple and effective
method.

Using a shielded cable as interconnect, e.g., a shielded two-wire, also decreases the
common-mode signals. The common-mode signals are, ideally, confined within the
shield and no conversion to a differential-mode disturbance signal at the input of the
amplifier occurs. Shielded cables are, however, not ideal and some coupling to the
amplifier input may still occur. See for instance, Sect. 2.8.2 and (Goedbloed 1993;
Ott 1998, 2009). At the boundary of the interconnect and the amplifier, the shield
should be connected to a highly conductive plate or enclosure. This shielding plate
or enclosure forms a boundary between the common-mode signals and the amplifier.
Sometimes a shield is called a current boundary for this reason (Buesink 1996).
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Common-mode chokes are often recommended (Ott 1998, 2009; Reitsma 2005;
Goedbloed 1993) because they effectively suppress a common-mode signal, while
not affecting differential (i.e., the intended) signals (Ott 1998). A common mode
choke may result in considerable reduction of the disturbance in the frequency range
where it is effective, which may be limited up to, e.g., 30 MHz (Ott 1998).

When the effect of a common-mode choke is evaluated for the situation depicted
in Fig. 2.9b (and with the earlier presented combination of values of Z1 and Z2) it
is found that it is only effective when both Z1 and Z2 are zero. It nullifies the ucm/2
disturbance, but it does not affect the disturbance caused by icm/2.

2.8 Shield Design

The disturbance from interfering sources can usually be reduced significantly when
shielding with good conductive material is applied. Shield design is therefore dealt
with briefly in this section. Appendix A presents a more in depth discussion.

The equations used to design the shield are taken from the work of Kaden 1959. In
this work elaborate equations are presented for calculating shielding factors, S , of
conducting structures. These structures are: two (infinite) parallel plates, the cylin-
der, and the sphere. The cylinder can be used to calculate the shielding factor of,
e.g., a solid coax cable. The sphere is regarded as a good approximation for other
three dimensional structures (enclosures) of the same volume. Shielding factor S is
determined by both the shielding factor for magnetic, SH , and for electric fields, SE .

Shield design can in principle be straightforward. The shielding factor depends
on the radius of the cylinder or the sphere (r0), with respect to the wavelength of the
interfering field, and the skin effect. In the region where λ � r0, the shielding is
determined by the conductor properties. When r0 is of the same order of magnitude
as (or larger than) λ, ‘shielding breakdown’ due to resonances occur. Shielding
breakdown occurs at different frequencies for SH and SE . Material that absorbs
the em energy can be used in this region to decrease the adverse effect of shielding
breakdown. We will not elaborate on this. In this work the maximal frequency or
maximal dimensions where the shield is effective will be determined.

Here, the following design strategy is proposed:

1. determine the conductor thickness for adequate S at the lowest interfering fre-
quency

2. determine the maximum r0 to prevent ‘shielding breakdown’ at the highest inter-
fering frequency, or determine this frequency for a given r0

Since SH can be expected to determine S in case of r0 
 λ (SH 
 SE ,
see Fig. A.1 P. 276, up to approximately 3 MHz), it suffices to design the shield for
a certain minimal value of SH at the lowest interfering frequency to be expected.
Since SH is determined by the attenuation of the magnetic field (as) in this frequency
region (see appendix A), SH increases with frequency, resulting in an even greater
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shielding factor for frequencies higher than designed for. SE will automatically be
sufficient also.

The required shield thickness, d, for a specified amount of as (e.g., 20 log |as |
= 40 dB) and at a given frequency depends on the skin depth (δ = √

2ρ/(μω)),
and can be approximated by

d ≈

⎧⎪⎨
⎪⎩

a μr δ
2

2r0

√
10( as

10 ) − 1 d < δ (‘low frequencies’)

δ
[
ln

(
a
√

2δμr
r0

· 10( as
20 )

)]
d > δ (‘high frequencies’),

(2.11)

which is derived from Eq. (A.2), see P. 275. The constant a equals 2 in the case of a
cylinder and 3 in the case of a sphere.

Resonances in shielding (breakdown) are modelled by a correction factor (am).
The shielding factor for magnetic fields is given by SH = 20 log |as | + 20 log |am |.
The shielding factor for electric fields is SE = 20 log |as | + 20 log |aE |. Correction
factor aE models both low and high-frequency electric field attenuation. Equations
for both aE and am are presented in appendix A.

The maximal dimensions of the shield should be smaller than the wavelength
corresponding to the first resonance frequency, to prevent ‘shielding breakdown’
due to resonances. An unacceptable decrease of S due to the frequency dependency
of aE or am , can be prevented by taking a slightly larger wavelength as lower limit. For
cylindrical conductors, it is recommended to have a maximal radius of r0 = 0.25λ,
while for a spherical conductor a maximal radius of r0 = 0.4λ is recommended, and
for a cube the maximal a = 0.797λ is found (Kaden 1959).

For example, Eq. (2.11) results in a thickness of 0.11 mm for a required SH of
85 dB at 1 MHz for a copper sphere with r0 =1 m. Proper shielding can be expected
up to 120 MHz. When we have a copper cylinder with a radius of 6 cm and want to
achieve a SH of 40 dB at 30 kHz, a thickness d of 0.24 mm is found (Kaden 1959).
Up to 1.25 GHz there is proper shielding.

2.8.1 Shield Design Considerations

Factor 20 log |as | gives rise to extremely large attenuation values for frequencies
higher than, e.g., 10 MHz. In practice, these large attenuation values are not reached,
since the necessary openings for interconnect feed through limit the reachable atten-
uation. Kaden proposes to use an upper limit of 12 Np (i.e., 104 dB) (Kaden, 1959)
since larger attenuations are hardly verifiable by measurements (van der Laan 2002).
This upper limit is used when calculating SH and SE in Fig. A.1 (Kaden 1959).

Apertures in the enclosure are inevitable, so the practical upper limit makes sense.
In order to maintain a high practical upper limit, one has to take care that currents
can flow as unaffected by the apertures as possible. Large round apertures and slits
do affect the current flow in the shield and therefore the shielding factor is reduced.
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It is better to use many small round holes instead of one big one for, e.g., cooling
purposes (Paul 1992). A slit reduces the homogeneity of the current flow and a
voltage is induced over the slit. Therefore electric and magnetic fields can enter the
enclosure. In case of round holes, this also occurs, but now the current flow is much
more homogeneous and therefore much less electric and magnetic energy enters the
enclosure (Goedbloed 1993). Apertures that are inevitable should therefore be round.

Holes in the enclosure should preferably be realized as cylinders perpendicu-
lar to the enclosure (Kaden 1959). The attenuation (‘Kamindämpfung’; ‘Kamin’ or
‘chimney’ damping) of these cylinders is akE = 20.85 l

r0
[dB] for electric fields and

akH = 15.98 l
r0

[dB] for magnetic fields, with l being the length of the cylinder and

r0 the radius of the cylinder.9 Cylinders with an l
r0

ratio of 6–8 will thus provide
enough attenuation (van der Laan 2002). The diameter of the cylinder should remain
several times smaller than the wavelength of the interfering fields, in order to remain
a waveguide beyond cut-off (van der Laan 2002). The corner wavelength for a cylin-
drical waveguide beyond cut-off is λc = 2πr0

1.841 (Goedbloed 1993); the equations for
the ‘Kamindämpfung’ are thus valid as long as λ � λc.

For additional practical guidelines in realizing and building shielding enclosures,
the reader is referred to readily available emc textbooks, e.g., (Goedbloed 1993; Ott
1998, 2009).

2.8.2 Surface Transimpedance

When the signal paths (interconnects) and source and load are completely shielded,
ideally no undesired em coupling from external signal paths exists. This would be
true when the shield is ideal, i.e., it would be a perfect conductor. Since the shield
is not a perfect conductor (because, e.g., holes are present) currents induced by em
fields will penetrate the shield and produce a voltage distribution along the inside
length of the shield. This voltage distribution in turn produces a current in the interior
source and load impedances (Smith 1977).

A typical way of calculating the em coupling through a shield is to first calculate
the current induced on the shield exterior by the incident field, assuming that the
shield is a perfect conductor and completely encloses the internal signal path (Paul
1992). This shield current, ish diffuses through the shield wall to give a voltage drop
on the interior surface of the shield, dudist = ish Zt dx . Zt is the called the transfer
impedance in emc literature, e.g., (Goedbloed 1993; Paul 1992; Williams 1996).
Electronics engineers are more familiar with the name transimpedance to describe
a current to voltage transfer (udist = ish Zt ). In this work the name transimpedance
will therefore be used. Equivalently, a disturbing current inside a shield due to a
voltage across the shield and the reference, may be calculated by using the concept
of transadmittance (Yt ); transfer admittance in emc literature. The current is given

9 Kaden points out that the equations for the Kamindämpfung are accurate when l is larger than or
of the same magnitude as r0.



54 2 Decreasing the Disturbance Coupled to Amplifiers

by idist = usgYt , where usg is the voltage between the shield and the reference
conductive plane.

The approach of calculating a disturbing voltage inside a shield by using the
concept of Zt is equally valid for any shield, e.g., coax, triax, shielded pair, shielded
multi-conductor, shielded multicoax, etc. (Smith 1977), but it may, for instance, also
be used in pcb design and grounding (van Horck 1998; van Helvoort 1995).

Solid coaxial shields usually show a low Zt . For a solid cylindrical shield around
an interconnect, Zt in [�/m] is (Kaden 1959; Paul 1992)

Zt = 1

σπ Dmd

d 1+ j
δ

sinh d 1+ j
δ

, (2.12)

with Dm = 2r0 being the inner diameter of the shield, d the shield thickness, and
σ = 1/ρ the conductance of the material. For shield thicknesses less than a skin
depth, d 
 δ, the transimpedance reduces to the resistance Rt = 1

πσ Dm d since the
shield current can completely diffuse to the interior of the shield. For wall thicknesses
greater than a skin depth, the current on the exterior of the shield only partly diffuses
through the shield wall, and Zt decreases with increasing frequency. The interior and
exterior of the shield are becoming isolated due to the skin effect. For a completely
closed cylinder (e.g., a copper cylinder), Zt will soon become negligibly small for
frequencies at which the skin depth is effective.

When we have a braided shield, holes are present in the shield through which
em fields may leak. This causes Zt to become inductive.10 For instance, Zt may
be approximated by Zt ≈ jωμ0

2
3π2

pro
0.5Dm

(Kaden 1959) in case of circular holes,

with ro being the radius of the holes and p = νr2
o

Dm
. Parameter ν is the number of

holes across the length L of the braid. Equations for calculating the effects of the
properties of the braid on Zt for practical coax cables, can be found in (Kley 1993).
The equation for Zt presented here is, however, simple and general design rules
follow from it. It shows that Zt for a given p increases with increasing ro. Moreover,
a large number of small holes is better than a small number of large holes, under the
assumption that the total area remains equal (Kaden 1959).

2.8.3 Shielded Electrically-Small Systems

Sometimes it is impossible to reduce the dimensions of an interconnect enough to
obtain acceptable levels of disturbance. This may be the case when, e.g., another
design requirement demands the interconnect to have some minimum dimensions

10 Typically at approximately 1 MHz, Zt will become dominated by the inductances according to
graphs of Zt for various types of coax cables and shielded cables in (Goedbloed 1993) and (Ott
1998).
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that are too large from an emi point of view. Reduction of the disturbance can now
be obtained by shielding the system.

The disturbing signal source at the input of amplifiers can be determined by
calculating the shield current (ish) and multiplying it with Zt . An equation for ish

is derived for a plane wave oriented as depicted in Fig. 2.7 from the transmission
line equations presented in (Smith 1977). For other field directions the reader is
referred to (Smith 1977), but similar results can be expected. The shield current
can be calculated from the average voltage that is induced across the shield by the
em-field. The average voltage that is induced is given by (Smith 1977)

usha = Ex
h

2
(1 − e− jk0L )L , (2.13)

with h being the height of the shielded interconnect above a conductive plane, and
k0 = 2π/λ being the wave number.11 Since the shield is electrically short, k0L < 1,
it was found (using the method described in (Paul 1992) that this equation can be
very well approximated by12

usha ≈ jωμ0 HL h, (2.14)

which is similar to Eq. 2.4.
The shield current can now be determined with ish = ushaYt . Transadmittance Yt

can be determined from Fig. 2.3c, when low termination impedances Z1 and Z2 are
assumed, which is the recommended case (Goedbloed 1993). For Yt is found

Yt = 1

Z2 + jω Lsh
2 + Z1+ jω

Lsh
2

1+ jωCsh(Z1+ jω
Lsh

2 )

. (2.15)

Shield parameters Lsh and Csh can be calculated using the equations presented in
Table 2.1 (second row).

The disturbance voltage source (udist,sh) that appears at the input of the amplifier
(see Figs. 2.6d and e) can now be determined. This voltage source equals udist,sh =
ushaYshield Zt . The total disturbing signal (either current or voltage) at the input of
a current processing and voltage processing amplifier can now be determined using
Eqs. (2.7) and (2.8). The lumped parameters Ld and Cd are those of, e.g., coax.

11 For an electrically-small system holds L ≤ 0.1λ, resulting in a maximal wave number of
2π/(10L ).
12 Comparison of both equations showed a deviation of less than 2 % for short shields.
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Since usha has a zero in the origin, ish increases at a rate of 20 dB/dec up to the
pole in Yshield , after which it remains constant.13 Disturbance voltage source udist,sh

equals ushaYshield Zt .
Compared to an unshielded interconnect with the same dimensions and height

as a shielded one, udist,sh appears to be a factor (the shielding factor) lower. This
shielding factor may be approximated by

S = udist

udist,sh
≈ Z1 + Z2 + jωLsh

Zt
. (2.16)

For a high S , the transimpedance Zt should be as small as possible. The inductive
part of Zt should at least be much (e.g., 100 times) smaller than Lsh .

Although high values of the terminating impedances Z1 and Z2 seem beneficial
(Z1 and Z2 in Fig. 2.3c), effort has to be made to keep them as low as possible, since
high terminating impedances may cause capacitive coupling of a disturbance. This
means that, e.g., pigtails to terminate the shield have to be avoided since they cause
Z1 and Z2 to become inductive and hence deteriorate S with increasing frequency.
Apart from that, direct inductive and capacitive coupling to the interior shielded wire
over the length of the pigtail section occurs (Paul 1992).

2.8.4 Shielded Electrically-Large Systems

The design recommendations given in the section about shielded electrically-small
systems also hold for large systems. The main difference encountered is that reflec-
tions in the shield may occur that degrade the shielding.

In case of a lossless shield, the current and voltage at the input of the amplifier is
calculated with (Smith 1977)

iin = Ex h
ZtL

P D

∫ L

0

[{
(Z0 − Z1) sin k0L sin k0l + j (Z0 + Z2) sin k0L cos k0l

− j (Z1 + Z2) cos k0L sin k0l

}
· {Zc cos k0i l + j Zs sin k0i l}

]
dl (2.17)

P = (Zc Zs + Zc Zin) cos k0iL + j (Z2
c + Zs Zin) sin k0iL

D = (Z0 Z1 + Z0 Z2) cos k0L + j (Z2
0 + Z1 Z2) sin k0L

uin = iin Zin,

13 At frequencies lower than the pole, the results of this equation are the same as will result from
the transmission line approach (Smith 1977) that will be presented in Sect. 2.8.4. For frequencies
where ish remains constant, it is overestimated with an amount dependent on h. It was found that up
to an h = 50 cm the overestimation is about 6 dB. Smaller heights result in smaller overestimations.
This is acceptable.
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under assumption of a plane wave exiting the shield as depicted in Fig. 2.7. With h
being the height of the shield over the conductive plane, Z0 being the characteristic
impedance of the shield treated as a single wire over a conductive plane, Z1 and Z2
being the termination impedances of the cable shields (also treated as a single wire
over a conductive plane). L is the length, and k0 = 2π/λ is the wave number. Zc is
the characteristic impedance of the interconnect inside the shield, and k0i is the wave
number of the interconnect inside the shield. Zs is the source impedance and Zin is
the load impedance of the interconnect, i.e., the input impedance of the amplifier.
Ex is the electric field component parallel to the terminations of the shielded signal
path. For other directions of the em field the interested reader is referred to (Smith
1977).

At low frequencies, the equation given here gives the same result as the method
presented in Sect. 2.8.3. Current iin at the input terminals of the amplifier, shows a 20
dB/dec increase, which is consistent with the increase in Zt with frequency. At higher
frequencies, the resonance and anti-resonance points due to reflections are damped
out when Z1 = Z2 = 0 and Zs = Zin = Zc. When either Z1 or Z2 is infinite, i.e., an
open end occurs, resonances start to occur that decrease the effectivity of the shield
(Smith 1977). The shield should thus be connected at both sides to the reference via
low impedances.

To simplify the design of shielded long interconnects, the equations given in Sect.
2.8.3 can be used. After all, up to the frequency that the interconnect becomes long,
both the method for small interconnects and the one for long interconnects give the
same result. An electrically-small shield with an appropriate S , may be expected to
have an appropriate S also when it becomes electrically-large as long as termination
impedances Z1 and Z2 are low (zero). When the source impedance and the (input)
impedance of the system (amplifier) are not matched to the characteristic impedance
of the internal interconnect, reflections may occur that may increase the disturbance,
as is the case for the unshielded long interconnect.

Better shielding behavior may be expected when the electrically-long shield is
made electrically small by connecting it to the reference (ground) at multiple points
spaced ≤λ/10 from each other (Paul 1992). The shielding factor S may than be
estimated by using approximations valid for electrically-small systems.

2.9 Conclusions

The fidelity of the transfer of an amplifier is hampered by noise generated in the
amplifier and by disturbances that may be in-band or out-of-band. This chapter deals
with the interconnect properties. The interconnect properties may influence (low-
pass filter) the transfer of the intended signal (e.g., from source to the amplifier)
and determine the amount of disturbance coupled to the amplifier. These properties
depend on the dimensions of the interconnect.

Equations that enable the designer to estimate the amount of disturbance cou-
pled to the interconnect, and to determine the maximal dimensions of the intercon-
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nect for both the intended signal and the disturbance are presented. The presented
equations are valid for plane-wave (far-field) coupling to both electrically-short and
electrically-large interconnects, under assumption that the distance between the con-
ductors remains smaller than λ/(2π). Cross-talk (near-field) coupling is not consid-
ered.

Both common-mode and differential-mode disturbance can occur. Since common-
mode loops are usually larger than differentia-mode loops, common-mode distur-
bance is usually larger also. Balancing the impedances that terminate the intercon-
nects cancels the common -mode disturbance. Imbalances in these impedances causes
common-mode to differential-mode conversion, thus increasing the total disturbance.
A model and equations that can be used to analyze this effect are presented.

In general, it may be concluded that the smaller the dimensions of the interconnect,
the smaller the disturbance coupled to it. Sometimes, other design requirements
demand interconnect dimensions larger than allowed from a disturbance point of
view. In that case, shielding may be applied. Equations to facilitate the design of
shields (for both interconnects and enclosures) are also presented.
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