Ricci Bounds for Euclidean and Spherical Cones

Kathrin Bacher and Karl-Theodor Sturm

Abstract We prove generalized lower Ricci bounds for Euclidean and spherical
cones over complete Riemannian manifolds. These cones are regarded as complete
metric measure spaces. In general, they will be neither manifolds nor Alexandrov
spaces. We show that the Euclidean cone over an n-dimensional Riemannian
manifold whose Ricci curvature is bounded from below by n — 1 satisfies the
curvature-dimension condition CD(0,n + 1) and that the spherical cone over
the same manifold fulfills the curvature-dimension condition CD(n,n + 1). More
generally, for each N > 1 we prove that the condition CD(N — 1, N) for a weighted
Riemannian space is equivalent to the condition CD(0, N + 1) for its N-Euclidean
cone as well as to the condition CD(N, N + 1) for its N -spherical cone.

1 Introduction

In two similar but independent approaches, the second author [14, 15] and Lott and
Villani [8, 9] presented a concept of generalized lower Ricci curvature bounds for
metric measure spaces (M, d, m). The full strength of this concept appears if the
condition Ric(M,d, m) > K is combined with a kind of upper bound N on the
dimension. This leads to the so-called curvature-dimension condition CD(K, N)
which can be formulated in terms of optimal transportation for each pair of numbers
K eRand N €1, 00).

A complete Riemannian manifold satisfies CD(K, N) if and only if its Ricci
curvature is bounded from below by K and its dimension from above by N.

A broad variety of geometric and functional analytic results can be deduced
from the curvature-dimension condition CD(K, N). Among them are the
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Brunn-Minkowski inequality and the theorems by Bishop-Gromov, Bonnet-Myers
and Lichnerowicz. Moreover, the condition CD(K, N) is stable under convergence
with respect to the L2-transportation distance d.

1.1 Statement of the Main Results

Let M be a complete n-dimensional Riemannian manifold (with Riemannian
distance d and Riemannian volume dm = dvol). The Euclidean cone Con(M) =
M, x [0, 0o) over M is defined as the quotient of the product M x [0, o0) obtained
by identifying all points in the fiber M x {0}. This point is called the origin O of the
cone. It is equipped with a metric dcon defined by the cosine formula

deon((x, ), (v, 1)) = v/s2 4+ 12 — 25t cos(d(x, y) A ),

and with a measure m, defined as the product dmy(x, s) := dm(x) ® s"ds.

Theorem 1. The Ricci curvature of M is bounded from below by n — 1 and there
holds diam(M) < = if and only if the metric measure space (Con(M), dcon, M)
satisfies the curvature-dimension condition CD(0,n + 1).

Note that in dimensions n # 1 the diameter bound diam(M) < 7 is redundant:
it follows from the Ricci bound.

The heuristic interpretation of the assertion in the theorem is that the Euclidean
cone — regarded as a metric measure space — has non-negative Ricci curvature in a
generalized sense. Note that already in 1982, Cheeger and Taylor [3, 6] observed
that the punctured Euclidean cone Con(M) \ {O} constructed over a compact
n-dimensional Riemannian manifold M with Ric > n — 1 is a (n + 1)-dimensional
Riemannian manifold with Ric > 0. Note, however, that the sectional curvature
might be unbounded from below (and above). Thus in general Con(M) will not be
an Alexandrov space. Moreover, Con(M) in general is not a manifold and, of course,
Con(M)\{O} is not complete. In particular, the Ricci curvature in the classical sense
is not defined in its singularity O.

Actually, we will prove a significantly more general result:

Theorem 2. For any real number N > 1, the CD(N — 1, N) condition for a
weighted Riemannian manifold is equivalent to the CD(0, N + 1) condition for
the associated N -Euclidean cone.

It is an open question whether analogous assertions hold true with an arbitrary
metric measure space (M, d, m) in the place of the weighted Riemannian manifold
M. A partial result towards this conjecture was derived by Ohta [11] for metric
measure spaces satisfying the so-called measure contraction property MCP(K, N),
a property being slightly weaker than the curvature-dimension condition CD(K, N).

Remark 1. 1If a complete separable metric measure space (M, d, m) satisfies the
measure contraction property MCP(N —1, N) for some N > 1 and if diam(M) < =
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(which follows from the previous condition if N # 1) then its N-Euclidean cone
(Con(M), dcon, my ) satisfies the measure contraction property MCP(0, N + 1).

As a second main result we deduce a generalized lower Ricci bound for the
spherical cone £ (M) = M gy [0, ] over the compact Riemannian manifold M.
It can be defined as the quotient of the product space M x [0, 7] obtained by
contracting all points in the fiber M x {0} to the south pole . and all points in
the fiber M x {7} to the north pole .#". It is endowed with a metric dx defined via

cos (dx(p,q)) = cosscost + sinssint cos (d(x, y) A )

for p = (x,5),9 = (v,t) € ¥(M) and with a measure dm, (x, s) := dvol(x) ®
(sin” sds).

Theorem 3. (i) The Ricci curvature of M is bounded from below by n — 1 and
diam(M) < & if and only if the metric measure space (X (M), dx, M,) satisfies
the curvature-dimension condition CD(n,n + 1).

(ii) A weighted Riemannian manifold satisfies the curvature-dimension condition
CD(N — 1, N) for a given real number N > 1 if and only if the associated
N -spherical cone satisfies the curvature-dimension condition CD(N, N + 1).

Note that the analogous results holds true for generalized lower bounds for the
sectional curvature.

Remark 2 (see e.g. [2], Theorem 4.7.1, 10.2.3). Let (M, d) be a complete length
metric space with diam(M) < =.

(i) Then (M, d) has curvature bounded from below by 1 in the sense of Alexandrov
if and only if the Euclidean cone (Con(M), dgon) has nonnegative curvature in
the sense of Alexandrov.

(i) Moreover, (M, d) has curvature bounded from below by 1 in the sense of
Alexandrov if and only if the spherical cone (Con(M), dcon) has curvature
bounded from below by 1 in the sense of Alexandrov.

Note that the diameter bound is redundant if M is not one-dimensional.

Metric cones play an important role in the study of limits of Riemannian
manifolds. Assume for instance that (M, d) is the Gromov-Hausdorff limit of a
sequence of complete n-dimensional Riemannian manifolds whose Ricci curvature
is uniformly bounded from below. Then in the non-collapsed case, every tangent
cone T,M is a metric cone Con(S;M) with diam(SyM) < 7 [4,5]. The latter we
would expect from the diameter estimate by Bonnet-Myers if Ric > n — 2 on SyM
which in turn is consistent with the formal assertion ‘Ric > 0 on T,M’.

1.2 Basic Definitions and Notations

Throughout this paper, (M, d) always will denote a complete separable metric space
(M, d) and m a locally finite measure on (M, Z(M)) with full support. That is, for
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all x € M and all sufficiently small » > 0 the volume m(B;(x)) of balls centered
at x is positive and finite. To avoid pathologies, we assume that M has more than
one point. Such a triple (M, d, m) will henceforth called metric measure space.

The metric space (M, d) is called a length space iff d(x, y) = inf Length(y) for
all x, y € M, where the infimum runs over all curves y in M connecting x and y.
(M, d) is called a geodesic space if and only if every two points x,y € M are
connected by a curve y with d(x, y) = Length(y). Distance minimizing curves of
constant speed are called geodesics. The space of all geodesics y : [0, 1] — M will
be denoted by I"(M).

(M, d) is called non-branching if for every tuple (z, x¢, X1, x2) of points in M
for which z is a midpoint of xop and x; as well as of x¢ and x;, it follows that
x1 = x2. Z,(M, d) denotes the L>-Wasserstein space of probability measures j on
(M, (M)) with finite second moments which means that fM d?(xo, x)dp(x) < 0o
for some (hence all) xg € M. The L2-Wasserstein distance dy (o, 1) between two
probability measures po, 41 € P2(M, d) is defined as

1/2
dw(jto. 1) = inf{ ( / & (x, y) da(x, y)) . q coupling of 10 and j1;
MxM

Here the infimum ranges over all couplings of o and pq, i.e. over all probability
measures on M x M with marginals (¢ and p1. Equipped with this metric, £2,(M, d)
is a complete separable metric space. The subspace of m-absolutely continuous
measures is denoted by &2, (M, d, m).

Definition 1. (i) A subset & C M x M is called d>-cyclically monotone if and
only if for any k € N and for any family (x1, y1),. .., (xk, yx) of points in 5
the inequality

k k
Zdz(xi, yi) < Zdz(xi, Yi+1)

i=1 i=1

holds with the convention yx4+1 = 1.
(i1) Given probability measures fio, 1 on M, a probability measure q on M x M is
called optimal coupling of them iff ¢ has marginals ¢ and p; and

o) = [ d(xy)date.).

MxM

(iii) A probability measure v on I' (M) is called optimal path measure (or dynamical
optimal transference plan) iff the probability measure (eg, e1)«v on M x M is
an optimal coupling of the probability measures (eg)«v and (e1)«v on M.

Here and in the sequel ¢; : I'(M) — M for ¢ € [0, 1] denotes the evaluation map
¥ + y:. Moreover, for each measurable map f : M — M’ and each measure j on
M the push forward (or image measure) of y under f will be denoted by fx .
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From [14, Lemma 2.11], [16, Theorem 5.10] we quote:

Lemma 1. (i) For each pair po,pn1 € >(M,d) there exists an optimal
coupling Q.

(ii) The support of any optimal coupling q is a dz-cyclically monotone set.

(iii) If M is geodesic then for each pair jug, 41 € P2(M, d) there exists an optimal
path measure with given initial and terminal distribution: (eg)xv = Lo and

(e1)xv = pr.
(iv) Given any optimal path measure v as above, a geodesic ({is)ie[0,1] in
P> (M, d) connecting (o and [y is given by

We = (er)xv.

(v) If (M, d) is a non-branching space, then for each pair of geodesics y, y ' in the
support of an optimal path measure we have:

!

Vi2=Vin = v=v

1.3 The Curvature-Dimension Condition

Definition 2. Given K € R and N € [1, 00), the condition CD(K, N) states that
for each pair 1o, 1 € Z2(M, d, m) there exist an optimal coupling q of ;1o = pom
and ;1 = pim and a geodesic y; = py m in F»(M, d, m) connecting them such
that

/ oY am > (1)
M
/MXM [rgjvt?(d(xo, xl))Pal/N/(xo) + fg,)N/(d(xo, xl))pfl/N/(xl):I dq(xo,x1)

forallz € (0,1)andall N’ > N.

In the case K > 0, the volume distortion coefficients ‘C}?N (-) fort € (0,1) are

defined by
sin (,/ %19)
sin ( %9)

1-1/N

(@) =1V
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if0 <6 < ,/ e nandbyr(t) 0) = xif 6 > ,/Tn In the case K < 0 an

analogous definition applies with sin ( % ) replaced by sinh (,/ v Kl )
In the case K = 0 simply

() =1.

Therefore, the condition CD(0, N) just asserts that for each N’ > N the Rényi
entropy

Sw(vifm) i= — [ pI7Vdm
M

is convex int € [0, 1].
Replacing the volume distortion coefficients tg)N(') by slightly smaller

coefficients og’)N (+) in the definition of CD(K, N) leads to the reduced curvature-
dimension condition CD* (K, N), a condition introduced and studied in [1,7].

The definitions of the condition CD(K, N) in [15] and [8] slightly differ. We
follow the notation of [15]. For non-branching spaces, both concepts coincide. In
this case, it suffices to verify (1) for N’ = N since this already implies (1) for all
N’ > N.Even more, the condition (1) can be formulated as a pointwise inequality.

Lemma 2 ([8,15,16]). A nonbranching metric measure space (M, d, m) satisfies
the curvature dimension condition CD(K, N) for given numbers K and N if and
only if for each pair |, 1 € P2(M,d, m) there exist an optimal path measure v
with initial and terminal distributions (eo)« = Lo, (€1)x = W1 such that for v-a.e.
yelI'(M)andallt € (0,1)

o N ) = ) 0 N o) + TN ) o () )

where y = d(yo, y1) and p; denotes the Radon-Nikodym density of (e;)«v with
respect to m.

Lemma 3. Assume that a metric measure space (M, d, m) satisfies the curvature
dimension condition CD(N — 1, N) for some number N > 1.

(i) Then the diameter of M is bounded by .
(ii) Moreover; for every x € M the set My := {x’ € M : d(x, x") = 7} of antipodes
of x consists of at most one point.

Assertion (i), the ‘generalized Bonnet-Myers theorem’ was proven in [15].
Assertion (ii) is due to Ohta [10, Theorem 4.5].

Now let us have closer look on the curvature-dimension condition in the
case of weighted Riemannian spaces. Let be given a complete n-dimensional
manifold M equipped with its Riemannian distance d and with a weighted measure
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dm(x) = e V®dvoly(x) for some function ¥V : M — R. Then for each real
number N > n the N-Ricci tensor is defined as

1
RiciV,V(v, v) := Ricy(v,v) + [HeSS VvV — N—VV ® VV] (v, v).
—n .

For N = n we define

Ricy (v, v) + HessV,(v,v), if VV(v) =0

—00 else.

RiciV’V(v, V) = {

For 1 < N < n we define RiCiV’V(v, v) := —oo forall v # 0.
Lemma 4 ([8,15]). The weighted Riemannian space (M, d, m) satisfies the condi-
tion CD(K, N) if and only ifRiCN’V > K on M in the sense that

RicY"" (v,v) = K - ]2,

forall x e Mand all v e TyM.

2 Euclidean Cones over Metric Measure Spaces

Definition 3 (N -Euclidean cone). For a metric measure space (M, d, m) and any
N € [1,00), the N-Euclidean cone (Con(M), dcon, My ') is a metric measure space
defined as follows:

(i) Con(M) := M x [0, 00) / M x {0}
(ii) For (x,s), (x’,1) € M x [0, 00)

deon((x,5), (X", 1)) := /52 + 12 — 25t cos (d(x, X') A 1)

(iii) dmpy(x,s) :==dm(x) ® sVds.
The point O := M x {0} € Con(M) is called origin of the cone.

The most prominent example in this setting is the unit sphere S C R"*1,
endowed with its intrinsic Riemannian distance and with the Riemannian volume
measure on it. In other words, d(x, y) is the Euclidean angle between the rays
from the origin 0 € R"*1 to the points x and y on the unit sphere of R"*!. Each
£ € R*T1\ {0} can be uniquely written as § = (x, ) with r € (0,00) and x € S",
namely, 7 = |§| and x = %

The definition of the metric dcon and the measure m, ensures that the
n-Euclidean cone over S” is the Euclidean space R" ™! equipped with the Euclidean
metric and the Lebesgue measure expressed in spherical coordinates.
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Ho H1

N

Fig. 1 Mass transport through O

Conjecture 1. A metric measure space (M, d, m) satisfies the curvature-dimension
condition CD(N — 1, N) for some real number N > 1 and diam(M) < s (which
follows from the previous condition if N # 1) if and only if the N -Euclidean cone
(Con(M), dcon, My ) satisfies the curvature-dimension condition CD(0, N + 1).

Conjecture 1 is true for every weighted Riemannian space. The proof is based on
two ingredients:

(a) Optimal transports on the cone never transport mass through the origin —
provided the base space M satisfies an appropriate CD condition.

(b) Optimal transports on the punctured cone Cong(M) satisfy the CD condition
implied by the Ricci bound for the incomplete, weighted Riemannian manifold
Cong(M). The latter in turn is equivalent to a Ricci bound for the complete
weighted Riemannian manifold M.

Property (a) will be proven as a result of independent interest for general metric
measure spaces (Fig. 1).

Theorem 4. Assume that the metric measure space (M,d,m) satisfies the
curvature-dimension condition CD(N — 1, N) for some N > 1 and that
diam(M) < m (which follows from the previous condition if N # 1). Let v be
any optimal path measure on the Euclidean cone (Con(M), dcon).

(i) Foreveryt € (0, 1) there exists at most one geodesic y € supp[v] with y; = O.
(ii) For every r > 0 there exists at most one x € M such that yo = (x,r) is the
initial point of some geodesic y € supp[v] N I'o where

I'o:={y € '(Con(M)) : y; = Oforsomet € (0,1)}.
(iii) If (eo)xv < my then v gives no mass to geodesics through O:
v (Io) =0.
Proof. (i) Fixt € (0, 1) and assume that two geodesics y, y ' € supp[v] have the

origin as common ?-intermediate point, i.e. y; = ¥, = O. Then yo = (xo,7),
y1 = (x1,(1 —t)r) for some xo,x; € M and with r = y = deon(yo, y1)-
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(i)

Similarly, y { = (xg.t7"), v = (x], (1 — t)r’) for some x;, x; € M and with
r’ =y’ . If r > 0 then xo and x; are antipodes of each other (i.e. d(x¢, x1) =
). Similarly, for x; and x}. (See e.g. Lemma 6 for a detailed proof in the more
sophisticated case of spherical cones.)

Cyclic monotonicity implies

0 = d%vn(yo’ 4 /1) + d%on(y 6’ )’1) - d%vn(yo’ yl) - d%on(y 6’ yll)

On the other hand, a simple application of the triangle inequality yields
Beon (0.7 D) + Gon (v 0. ¥1) = 20 (Y0. Y1) = B0, (¥ 5.7 D)

[tr+ (=0 + [tr' + (A = 0)r]? =% =17

—2t(1 —1)(r — "2

IA

Hence, r =r’.
With this at hand, a more precise calculation yields

0 <d2, (o, v}) + 92, 6 v1) — A2, (o, v1) — 20, (v 5. 7))

=2r2[1* + (1 —1)> —1(1 — t) cosd(xo, x7) — (1 — 1) cos d(xg, x1) | — 2r?
= —2r%1(1 — 1) [2 + cos d(xg. x]) + cos d(xg, x1)] .

Thus d(xo, x]) = d(xg, x1) = 7. That is, xo and x| are antipodes (as well as
xg and x1). Since antipodes in M are unique (Lemma 3(ii)) we conclude that
xo =xpand x; = x]. Thus yp = yyand y; = /.

In most cases of interest, geodesics are uniquely determined by their initial

and terminal points. In these case, we are done. The general case, requires an
additional argument. An optimal path measure v not only induces an optimal
coupling (e, e1)«V between its initial and terminal distribution (eg)«v and
(e1)«v. More generally, the measure (e4, ¢;)«V will be an optimal coupling of
(es)xv and (e;)«v foreach 0 < 0 < t < 1. For each 0 € (0,¢) one can
choose t € (¢, 1) (and vice versa) such that (e;)«v is a ¢-intermediate point
of (eq)xv and (e;)«v. Hence, the previous argument will imply that yo = y ,,
and y; = y .. This finishes the proof.
Assume y,y’ € supp[v] N Io with yo = (xo.r) and y, = (xg.7). The
fact that y passes through the origin implies that y; = (x1,r;) with x; € M
being an antipode of xo, i.e. d(xo,x1) = m. Similarly, y| = (x].r}])
with d(xgy, x]) = . The radii ry, r| are arbitrary positive numbers. Cyclic
monotonicity implies
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0 < dZ,,(Yo.v5) + 950, (¥ 5. ¥1) — 92, (V0. ¥1) — 92, (¥ 5.7 1)
=r% +r —2rr;cosd(xo, x}) + r* + ri — 2rry cosd(x(, x1)
—(r +r1)? = (r +r}))?

—=2rry [1 + cosd(xo, x)] = 2rry [1 + cosd(xg, x1)] .

Hence, d(xo,x]) = . That is, xo and x| are antipodes (as well as x;, and
X1, which has been observed before). Uniqueness of antipodes in M implies
Xo = Xg.

(iii) Let us assume that v(Ip) > 0. Then without restriction we even may assume
that v is supported by I'o. (Otherwise, replace v by its restriction onto the set
I'o.) Since my (O) = 0 we may also assume that y9 # O and y; # O for
v-a.e. y.

The previous part (ii) asserts that for each r > 0 there exists at most one
point xo = f(r) € M such that (f(r),r) is the initial point Yy of some
geodesic y € supp[v] N I'o. Thus the measure (o := (eg)«V is concentrated
onthe set Cr := {(f(r),r) € Con(M) : r > 0}.

The curvature-dimension condition for the base space M implies that m has
no atoms. Hence,

mN(Cf) =0
and therefore g &< my. O

According to the previous result, we know that — under the given curvature-
dimension assumptions — optimal path measures on an Euclidean cone never will
transport mass through the origin. It therefore suffices to study optimal transports
on the punctured cone

Co := Con(M) \ {O}.

To analyze such transports, we restrict ourselves to base spaces M which are
(weighted) Riemannian manifolds. Our results crucially will rely on the fact that
in this case the punctured cone Cy is a incomplete(!) Riemannian manifold and that
the Ricci curvature of it can be calculated explicitly. More precisely, the punctured
n-Euclidean cone is a Riemannian manifold whereas the punctured N -Euclidean
cone is a weighted Riemannian manifold.

Lemma 5. (i) The punctured Euclidean cone Cy is an (n + 1)-dimensional
Riemannian manifold. For (x,r) € Co withx € Mandr > 0 the tangent space
T(x,»Co can be parametrized as TYM@®R with || (v, t)||%(x . = r2 v ||:‘}x +12.
Moreover, for (v,t) € T(x,»Co withv € TyMandt € R we have the identity

Ric(.n ((v.1), (v,1)) = Ricx(v,v) — (n — D[|v|}, .

In particular, Ric > 0 on Cq if and only if Ric > n — 1 on M.
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(ii) The punctured N -Euclidean cone Cy is a weighted (n + 1)-dimensional Rie-
mannian manifold with measure dmy (x,r) = r drdvoly(x) =e="® dm,
(x,r) where W(r) = —(N —n)logr and dm, (x,r) = dvolc,(x,r) = r" dr
dvoly(x) denotes the Riemannian volume measure on Cy. For each N > n,
the (N + 1)-Ricci tensor satisfies

Ric(, " (v.1), (v.1)) = Rice (v, v) = (N = Dv]7,.

In particular, RicV W > 0.0n Cy if and only if Ric > N — 1 on M.

(iii) More generally, let N > 1 and let the n-dimensional Riemannian manifold M
be equipped with the weighted measure dm(x) = ¢~V® dvoly(x) for some
V : M — R and let the punctured cone Cq be equipped with the measure

dmy(x,r) = r¥drdm(x) = e VOO gvolg, (x,r)

with (as before) W(r) = —(N —n)logr and dvolc,(x,r) = r" dr dvolu(x).
Then

Ric "™ (.0). (v.0) = Riey" (0.0) = (N = Dlvl7,. )

In particular, RicV TV > 00 Cy if and only if RicVY > N —1on M.

Proof. Assertion (i) is a classical result due to Cheeger and Taylor [3, 6]. Assertion
(i1) is the particular case of (iii) with V' =0and N > n.

(iii): For arbitrary V(x,r) = V(x) and W(x,r) = W(r) depending only on the
radial coordinate r € R or on the basic coordinate x € M, respectively, we have

VWan(v.t) =H(0),  [Hess W, ((v.1), (v.1)) = h"(0)

for all (x,r) € GCp and all (v,t) € T,r)Co where h(s) =
w (\/(r +51)2 + s2r2||v||2Tx). Moreover,

[VV @ VW], (v.1), (v.1)) = VVi(v)- W (r) -t
for all (x,r) € Cg and all (v, t) € T(x,)Co as well as
[Hess V] ((v.1). (v,1)) = f"(0) = [Hess V], (v.v) —=2VV (v) - ;

Here the expressions on the LHS always have to be interpreted as quantities on
the (n + 1)-dimensional manifold Cy whereas the expressions on the RHS are the
original data on the basic n-dimensional manifold M and
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v VSIIUIITY))
s) =V |ex - arctan . .
ror=v( px(uvurx st

For the particular choice of W(x,r) = —(N — n) logr, explicit calculations yield

VW ® VW} ((v.1), (v.1)) = —=(N —n) ||v|F,.

—-n (x,r)

1
Hess W —
[Hess W —

Hence, in the case when N > n, together with the identity from (i)

Ricgj;)l’V”LW((v,t), (v,1))

= Ric(x ) ((v.1). (v.1))

+ [Hess V+w)-— ﬁV(V + W) V(V + W)] ((v,1), (v,1))

(x,7r)

1
= Ricx(v,v) — (n — I)HUH%X + [Hess V- EVV ® VV] (v,v) — (N —n) ||v||%~x

X

= Ricy"" (v.v) = (V = D||v||3. .

The case N = n follows from an analogous computation and our definition of
N-Ricci tensor. In the case N < n, by definition Ric™" as well as RicV 1.V W
are —oQ. O

Theorem 5. Let be given a complete n-dimensional manifold M equipped with its
Riemannian distance d and with a weighted measure dm(x) = e~V ® dvoly(x)
for some function V : M — R. Then for each real number N > 1 the following
statements are equivalent:

(i) The weighted Riemannian space (M,d, m) satisfies the condition CD(N —
1,N).

(ii) The N-Euclidean cone (Con(M),dcon, My) satisfies the condition CD(0,
N +1).

Proof. Each of the CD-conditions under consideration will imply that dimys < N.
Hence, without restriction N > n.

(ii) = (i): The condition CD(0, N + 1) for the N-Euclidean cone (Con(M),
dcon, My ) implies that this condition holds locally on the punctured cone. For
this (incomplete) weighted Riemannian manifold, however, the local curvature-
dimension condition CD,,.(0, N + 1) is equivalent to nonnegativity of the (N + 1)-
Ricci tensor RicM 1Y +W on Co, see Lemma 4. Due to the previous Lemma 5(iii),
this implies Ricﬁ’v > N — 1. For the (complete) weighted Riemannian space
(M, d, m), the latter in turn is equivalent to CD(N — 1, N).

(i) = (ii): Let probability measures pt¢ and p; on Con(M) be given, absolutely
continuous with respect to my. According to Theorem 4, any optimal path



Ricci Bounds for Euclidean and Spherical Cones 15

measure v with marginal distributions (eg)«v = o and (e1)«v = p; will give
no mass to geodesics through the origin. In other words, v-almost every geodesic
will stay within the punctured cone Cy.

According to Lemma 5(iii), assertion (i) implies that the (N + 1)-Ricci tensor
RicV VW on the weighted Riemannian space Cy is nonnegative. Hence,
classical arguments based on Jacobi field calculus — exactly the same as used to
deduce Lemma 4 — will imply that (2) holds true with K = 0 for v-a.e. geodesic y

which remains within Cy. That is, CD(0, N + 1) holds true on Con(M). O

Corollary 1. Given a complete n-dimensional manifold M (equipped with its
Riemannian distance d and its Riemannian volume dm = dvoly) and a real
number N > 1. Then the following statements are equivalent:

(i) Ric> N —10onM, dimy; < N and diam(M) < 7 (the latter follows from the
Ricci and dimension bounds if N # 1);
(ii) The space (M, d, m) satisfies the curvature-dimension condition CD(N —1, N)
and diam(M) < m (which follows from the CD condition if N # 1);
(iii) The N -Euclidean cone (Con(M), dcon, My ) satisfies CD(0, N + 1).

Proof. The equivalence (i) < (ii) is well-known. Moreover, it is well-known that
foreach N > 1 the condition CD(N — 1, N) implies diam(M) < n. See Lemmas 3
and 4.

In the case N # 1, the equivalence (ii)) < (iii) for Riemannian spaces follows
from the more general assertion of Theorem 5 for weighted Riemannian spaces.
Indeed, the arguments there also apply to the case N = 1. It only remains to prove
that (iii) in the case N = 1 implies diam(M) < x.

Assume the contrary: i.e. M is a circle or an interval of diam(M) > . Then
there exist non-empty intervals I, J C M of length R > 0 such that d(x,y) > =«
forall x € I,y € J. Thusforall x € I,y € J and r € (0, 00) the origin O
will be the unique midpoint of (x, r) and (y, r) in Con(M). Moreover, for each pair
(x,5) € I x[l —¢, 1] and (y,t) € J x [l —¢, 1] in Con(M) the midpoint will lie in
the domain B, := (({ U J) x (0,¢]) U {O}.

Let o and g be the ‘uniform distributions’ on /¢ := I x [1 — ¢, 1] and let
Je :=J x [l —¢, 1], resp., i.e. duo = Celyp.dmpy, duy = Cely dmpy with

suitable C, > é. Then respectively their Renyi entropy satisfies

1

o o
—SN+1(olmMy) = =Sy+1(u1lmy) = Ce VFT < (Re)NFT = c e NFT,

On the other hand, the midpoint (/5 of o and pu; is supported on Be. Hence,
its Renyi entropy is bounded from below by the Renyi entropy of the uniform
distribution on Be:

1
Sn+1(12lmy) = Sy41(C.1p. my|my) = —C/ VFT = —¢'e.

Note that /™' = my(Be) = 2R - [§ rVdr = 2B N+

0 Nl . Thus, choosing €
sufficiently small we obtain
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1
Sn+1(p1y2lmy) > E(SN+1(Mo|mN) + Sn+1(p1lmy))

which contradicts the CD(0, N + 1) condition. O
Example 1. Let M = (\%Sz) X (%Sz).

(i) Then the Euclidean cone over M — more precisely, the metric measure space
(Con(M), dcon, my4) — satisfies the curvature-dimension condition CD(0, 5).

(ii) On the other hand, the Euclidean cone over M — more precisely, the metric
space (Con(M), dcon) — is not an Alexandrov space: the sectional curvature on
the punctured cone Cy is unbounded from below (and above) in any punctured
neighborhood of the origin 0.

Proof. (i) Given x,y € %SZ, let uy, u; be an orthonormal basis of 7 (%82)
and vy, v be an orthonormal basis of Ty(%Sz). Then an orthonormal basis
of Tix )M = TX(JLESZ) ® Ty(%gz) is given by {ity, itz, U1, U2} with ii; =
(ui,0) and v; = (0, v;). In this basis

Sec(x,y)(ﬁl, ﬁz) = 3, Sec(x,y)(ﬁl, l~)1) = 0, SeC(x,y)(ljll, 172) =0

and analogously for any other basis vector in the place of #;. Hence, in
particular,

RiC(x,y)(E, E) =3

for each § € {it1, it2, U1, U2} and thus for each § € T, ,)M.

(ii) Thus according to Theorem 5 the Euclidean cone satisfies the CD(0, 5)
condition.

(iii) Givenr > 0an orthonormal basis of T(x,,.»)Co = Tx(%Sz)@Ty(%SZ)GBR
is given by {ity. fi2, D1, D2, W} with il = 1(1;,0,0), 9; = 1(0,v;,0) and & =
(0,0, 1). In this basis

A 2 o 1
SeC(x,y,r)(I/ll,Mz) = -, SeC(x,y’,)(ul, U1) = -,
r r
1 4)
SeC(x,yr) (i1, B2) = T SeCx,y,r (i1, W) =0

and analogously for i, U1 or ¥, in the place of i;. Of course, this in particular
implies RiC(x,y,r)(£,&) = 0 foreach & € Ty, )Co, see Lemma 5. |
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3 Spherical Cones over Metric Measure Spaces

There are further objects with famous Euclidean ancestors — among them is the
spherical cone or suspension over a topological space M. We begin with a familiar
example: In order to construct the Euclidean sphere S"*! out of its equator S” we
add two poles . and ./ and connect them via semicircles, the meridians, through
every point in S”.

In the general case of abstract spaces M, we consider the product M x [0, 7] and
contract each of the fibers . := M x {0} and . := M x {7} to a point, the south
and the north pole, respectively. The resulting space is denoted by X' (M) and is
called the spherical cone over M.

Definition 4 (N -spherical cone). The N -spherical cone (X(M),ds, My) over a
metric measure space (M, d, m) is the metric measure space defined as follows:

(i) (M) :=M x [0, 7] / M x {0}, M x {x}
(i1) For (x,s), (x',1) € M x [0, 7]

cos (dx((x,s), (x',1))) 1= coss cost + sins sin7 cos (d(x, x") A 7)

(i) dmy(x,s) :=dm(x) ® (sin" sds).

For a nice introduction and detailed information about Euclidean and spherical
cones over metric spaces we refer to [2].

Lemma 6. Assume that diam(M) < n. Let y : [0,1] — X (M) be a non-constant
geodesic with endpoints yo = (xo,70) and y1 = (x1,r1) in X(M). If yy = & for
somet € (0, 1), then xo and x are antipodes in M.

Proof. Due to the definition of dy, it holds that ro = dx(yo,y:) = tdx(y0,y1)
as well as 1 = dx(yr,¥1) = (1 — 1)dx(yo.y1) and consequently, ry = %ro.
Inserting this equality into the expression for cos (rt_o) we obtain

cos (?) = cos (dx(yo, y1)) = cos ry cos (?ro) + sinrg sin (?ro) cos (d(xg, x1)) .

Since diam(M) < & by assumption, this leads to

cosag. ) = “LE =i ()
sin rg Sin (T”O)
_ cos () = 5 [eos (27 ro) + cos ()]

3 [cos (¥ r0) —cos ()]

_ 3 [cos (%) = cos (*7ro)]
3 [cos (27ro) — cos ()]

That is, d(xg, x1) = 7. O

=1
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Theorem 6. Assume that the metric measure space (M,d,m) satisfies the
curvature-dimension condition CD(N — 1,N) for some N > 1 and that
diam(M) < & (which follows from the previous condition if N # 1). Let v be any
optimal path measure on the spherical cone (X (M), dyx) satisfying (eg)«v < my.
Then v gives no mass to geodesics through the poles:

v(ly) =v(Iy) =0

where 'y :={y € '(X(M)) : y; € & forsome ¢t € (0, 1)} and analogously I
with A in the place of .

Proof. We follow the argumentation in the proof of assertion (iii) of Theorem 4.
Assume that v(I's») > 0. Then without restriction we even may assume that
v(I»») = 1. According to Lemma 7 below, for each r € (0, ) there exists at
most one point f(r) € M such that (f(r),r) € X(M) is the initial point g
of some geodesic y € supp[v]. Hence, po := (eg)«V is concentrated on the set
Cr:={(f(r),r) e XM): r € (0,m)}.

The curvature-dimension condition for (M, d, m) implies that m has no atoms
and thus

Mx(Cr) =0

which contradicts the assumption 1o < My. Hence, v(I'sr) = 0. Analogously, we
deduce v(I" 4) = 0. O

Lemma 7. Under the assumptions of the previous theorem, for every r € (0, 1)
there exists at most one x € M such that yy = (x,r) € X (M) is the initial point of
some geodesic y € supp[v] N .

Proof. Assume y,y’ € supp[v] N 'y with yo = (xo,r) and yy = (xg.7).
According to Lemma 6, the fact that y passes through the south pole implies
that y; = (x1,r1) with x; € M being an antipode of xg, i.e. d(xp,x1) = 7.
Similarly, y | = (x},r]) withd(xg, x]) = 7. The radii ry, r| are arbitrary numbers
in (0, 7).

By the very definition of dy, taking into account that the diameter of M is
bounded by 7,

2 2
dx(vo. v +dx(vo. 71
= arccos> [cos r-cosr| + sinr -sinr| - cos d(xo, x{)]
+ arccos’ [cos r-cosr; + sinr - sinry - Cos d(x(/), xl)]

) . . . .
< arccos” [cos r - cos r{ — sinr - sinr| | + arccos® [cos r - cos i — sin7 - sin 7]

=+ + 0 +n)’ =dhy) +dh0. )
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with equality in (x) if and only if d(xo,x]) = d(xg,x1) = 7, that is, if and only
if xo and x] are antipodes and x; and x; are antipodes. Therefore, dzz-cyclical
monotonicity implies xo = x;. O

From now on, let us again focus on weighted Riemannian spaces, that is, M is
a complete, n-dimensional manifold equipped with its Riemannian distance d and
with a measure dm(x) = e~ ™ dvolys(x). A crucial fact for our argumentation
is that the punctured cone Xy := X (M) \ {, 4} is given as a warped product
M incr)x (0, ) for which the Ricci curvature can be calculated explicitly.

Lemma 8. (i) The punctured spherical cone Xy is an incomplete (n + 1)-dimen-
sional Riemannian manifold whose tangent space T(x »y X at (x,r) € Xo with
x € Mand 0 < r < 7 can be parametrized as T(x 2o = TxM @ R and
whose metric tensor is given by | (v, t)||%~(x o = sin? r - ||v||%wr + 2 for (v,1) €
T(x,r) 0. Furthermore, we have the equalz:ty

Ric(, (v, 1), (v,1)) = Ricx(v,v) + (1 —ncos’r)- ||v||:‘}x +nt?.

In particular, Ric > n on Xy if and only if Ric > n — 1 on M.

(ii) Now let us consider the punctured N -spherical cone over the weighted
Riemannian manifold M. That is, given any real N > 1 put W(x,r) =
—(N —n)logsinr and V(x,r) = V(x). Then

Ric( " VY (. 1), (0.0)=N .0}, , = RicY” v.v)—(N-1)|v||7,.
)

In particular, RicV LV > N oon Xy if and only ifRiCN’V >N—-1onM

Proof. The formula for the Ricci tensor in (i) is well-known, see [12],
Corollary 7.43, or e.g. [13]. Note that

RiC(x,((v. 1), (v.1)) — Ricx (v, v) = (1 —ncos®r) - [v]|F, +nt?
=n .0l ,, — @1 vl
The proof of assertion (ii) follows the lines of argumentation in the previous case
of Euclidean cones — with appropriate modifications. For arbitrary V(x,r) = V(x)

and W(x,r) = W(r) as above (depending only on the radial coordinate r € R or
on the basic coordinate x € M, respectively) we have as before

[VV ® VWi (0.0). (0.0)) = VV2(0) - W'(r) -1
forall (x,r) € Yo and all (v,?) € T(x,) X0 and

VWeer(@.0) = H(0),  [Hess W],y (v,1). (v.6) = 1"(0)
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where now
h(s) := W (arccos [cos(r + st) - cos(s - sinr - |v]|T,)]) .
Moreover,

[Hess V], (v,2), (v,2)) = f"(0) = [Hess V], (v, v) —2VVx(v) - cot(r) - ¢

where
tan(sin(r) - s||v||T,)
=V . > .
16 = (o (o Sin(r + 1)
For the particular choice of W(x,r) = —(N — n)logsin(r), some lengthy

calculation yields

[Hess W — ﬁVW ® VW] ((v,1), (v,1)) = (N —n) [t* = cos*(r) ||v||2TV]
- (.r) :

= W =n[le.ol,, - IvE].

Hence, together with the identity from (i)

RicY T (v,1), (v,1))

(x,r)

= Ric(x,r) ((U, t)v (U, t))

+ [Hess(V +W)— ﬁV(V +W)QV(V + W)} ((v.1), (v,1))
- (x,r)

= Ric,(v,v) +n[|(v, )7, — (= DIz,

1 2 2
n [HessV -V vv] (v,v) + (N —n) [||(v,t)||T(m _ ||u||,x]

X

= Ric)" (v.v) = (N = Do}, + N [@.D]F,,,- O

Theorem 7. Let be given a complete n-dimensional manifold M equipped with its
Riemannian distance d and with a weighted measure dm(x) = e~V ® dvoly(x)
for some function V. : M — R. Then for each real number N > 1 the following
statements are equivalent:

(i) The weighted Riemannian space (M, d, m) has diam(M) < & and satisfies the

condition CD(N — 1, N).
(ii) The N -spherical cone (X (M), dx, my) satisfies the condition CD(N, N + 1).
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Proof. This is essentially the same argumentation as in the proof of Theorem 5, now
with Lemma 8 instead of Lemma 5. Again we may assume without restriction that
N >n.

(i) = (ii): Let probability measures po and @1 on X'(M) be given, absolutely
continuous with respect to My. According to Theorem 6, any optimal path
measure v with marginal distributions (eg)«v = o and (e1)«v = p; will give
no mass to geodesics through the poles. In other words, v-almost every geodesic
will stay within the punctured cone X.

Accordinug/ to Lemma 8, assertion (i) implies that the (N + 1)-Ricci tensor
RicY LYW on the weighted Riemannian space X is bounded from below by N.
Hence, classical arguments based on Jacobi field calculus — exactly the same as
used to deduce Lemma 4 — will imply that (2) holds true with K = N for v-a.e.
geodesic y which remains within Xy. That is, CD(N, N + 1) holds true on X'(M).

(iiy = (i): First the curvature-dimension condition CD(N, N + 1) for the
N -spherical cone (X(M),dy, My) implies that this condition holds locally on the
punctured cone ¥y. For this (incomplete) weighted Riemannian manifold, however,
the local curvature-dimension condition CD,,.(N, N + 1) is equivalent to the bound
RicVt1LV+W > N for the ‘SN + 1)-Ricci tensor on Xy, see Lemma 4. Due to
Lemma 8, this implies Ricf\X’ > N — 1. For the (complete) weighted Riemannian
space (M, d, m), the latter in turn is equivalent to CD(N — 1, N).

Finally, in the case N = 1 it remains to prove that (ii) implies the diameter bound
diam(M) < . This can be achieved by means of a straightforward adaptation of
the argument from the proof of Corollary 1. O

Corollary 2. The n-spherical cone (X (M), dx, v) over a complete n-dimensional
Riemannian manifold (M, d, vol) satisfies CD(n,n + 1) if and only if Ric > n — 1
on M and diam(M) < .

Theorem 7 allows to apply the Lichnerowicz theorem [8] in order to obtain a
lower bound on the spectral gap of the Laplacian on the spherical cone:

Corollary 3 (Lichnerowicz estimate, Poincaré inequality). Let (X(M),dx,m,)
be the n-spherical cone of a compact n-dimensional Riemannian manifold
(M, d, vol) with Ric > n — 1 and diam(M) < n. Then for every f € Lip(X'(M))
Sulfilling fE(M) f dmy, = 0 the following inequality holds true:

s < e [ (v rpam,.
(M) Z(M)
The Lichnerowicz estimate implies that the Laplacian A on the spherical cone

(X (M),dx, m,) defined by the identity

f'Agdrﬁn:—/ Vf-Vgdm,

Z(M) Z(M)

admits a spectral gap A1 of size at least n + 1,
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A >n+1.

An analogous statement — with N in the place of n — holds true for the Laplacian
on the N-spherical cone over a weighted n-dimensional Riemannian manifold
satisfying RicV'V > N — 1.

Extension to (x, N)-Cones

Let us finally mention that there is a canonical extension of the concept of cones
which covers both, the Euclidean cones and the spherical cones.

Definition 5. Given a metric measure space (M, d, m) and numbers k e R, N €
(0, 00) we define the (k, N)-cone over (M, d, m) to be the metric measure space

(M, d, m) with

i) M:=Mx[0,00)if & < 0and M := M x [0, 7/ /x] if k > 0 where all the
points (x,0), x € M, have to be identified as well as — in the case k > 0 — all

the points (x, 7//x).
(ii) For (x,s),(y,t) e M

d((x,5), (,0)) 1= 6" (6e(5) - Get) + K - Fe(5) - Fie(1) - cos (d(x, y) A 7))

(6)
where
Ge(r) = cos(vkr), Se(r) = 1 sin(v/k r)ifk >0 and
NG
(r) = cosh(v/—«kr), F(r) = \/l__K sinh(v/—« r) if k < 0.

In the case k = 0, the metric d will be defined as in Definition 3. Indeed, the
formula (6) leads in the limit ¥ — 0 to the definition of dggn.
(iii) dm(x,s) 1= dm(x) ® (L (s)Nds).

The metric space (M, d) obtained as such a cone over a metric space (M, d)
is discussed in detail in [2]. In the case k = O it is simply the Euclidean cone
and in the case k = 1 it is the spherical cone. In the case k = —1, the cone is
also called hyperbolic cone based on (M, d). Without too much effort, our previous
results extend to the general case of («, N )-cones over weighted Riemannian spaces
(M, d, m). Indeed, the case ¥ > 0 is just a rescaling of the case x = 1. Replacing
all sin and cos by sinh and cosh (e.g. in Lemma 8) allows to switch from the case
k > 0to the case k < 0.
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Theorem 8. Given a complete n-dimensional manifold M equipped with its
Riemannian distance d and with a weighted measure dm(x) = e~V ® dvoly(x)
for some function V. : M — R. Then for all k € R and N > 1 the following
statements are equivalent:

(i) The weighted Riemannian space (M, d, m) has diam(M) < & and satisfies the
condition CD(N — 1, N).
(ii) The (k, N)-cone (M, d, m) satisfies the condition CD(x - N, N + 1).
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