Chapter 2
The Standard Format for Adaptive Logics

The purpose of this section is to introduce the reader to ALs with a special eye on the
modeling of defeasible reasoning. The standard format of ALs has been introduced
by Diderik Batens (see e.g. [1, 2] for a systematic study). As will be shown in the
following, for the standard format a rich meta-theory is available which equips ALs
with many desirable properties and at the same time provides a unifying framework
to ALs.

2.1 The Standard Format

The basic idea behind ALs is to interpret a given set of premises “as normally as
possible”. Depending on the application this may have different meanings. Let me
give some examples:

(1) In applications in which we are confronted with inconsistent information we
may want to interpret the premises as consistently as possible.

(i) Inapplicationsin which we are confronted with conflicting norms and obligations
we may want to interpret the premises as non-conflicting as possible.

There are three elements that constitute ALSs in the standard format:

1. the lower limit logic LLL,
2. the set of abnormalities 2, and
3. the adaptive strategy: reliability or minimal abnormality.

ALF denotes the AL defined by (LLL, £2, reliability) and AL™ denotes the AL
defined by (LLL, £2, minimal abnormality). By AL I will refer to either of the two.

In the following sections I will introduce each element of the standard format,
beginning with the lower limit logic.
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2.2 The Lower Limit Logic

ALs employ and strengthen a monotonic logic LLL, their so-called lower limit
logic. This logic is a reflexive, transitive, monotonic and compact logic that has a
characteristic semantics. Hence we have:

Reflexivity: I' C Cnppy (I').

Transitivity: If I'" € Cnypr, (I') then Cnppr, (I'') € Cnpen ().

Monotonicity: Cnppy, (I') € CnppLL (F U F’).

Compactness: If A € Cnypy, (I') then there is a finite I'” € I" such that A €
CnLLL (F /).

For instance in application (i) lower limit logics are of interest that are
inconsistency-tolerant. That is to say, logics that do not validate the ‘ex contradictione
quodlibet’ principle:

(AA—A)D B (ECQ)

Were we to employ a logic as the lower limit logic that validates (ECQ) then AL
would trivialize premise sets that contain A A —A.

Candidates serving as lower limit logic are for instance CLuN (see [3]), CLuNs
(see [4]) or da Costa’s Cj systems (see [5, 6]). Note though that not all ALs that model
reasoning on the basis of conflicting information are based on subclassical lower limit
logics. Indeed, by translating the input I for instance to I” O ={0A| A eTI}one
can use classical modal logics as lower limits (see e.g., [7, 8]). We offer a more simple
non-modal approach with a “dummy operator” that precedes premises in Sect.2.4
and in [9].!

For application (ii) systems of interest are deontic logics that are conflict-tolerant,
i.e. logics that do not cause deontic explosion given deontic conflicts. Where OA
indicates the obligation to bring about A, the deontic explosion principle (D-EX) is
given by

(OA A O=A) D OB (D-EX)

Examples of logics that do not validate (D-EX) are Lou Goble’s P (see e.g. [10—-12])
or his DPM systems (see e.g. [13—15]).

The lower limit logic constitutes the core of an AL in two senses. Semantically, an
AL selects from the LLLL-models of a given premise set models that are “sufficiently
normal” according to a given standard of normality. The latter is characterized by
the other two elements of ALs, the abnormalities and the adaptive strategy as will be
demonstrated below.

Syntactically, all the rules of the proof theory of LLL are applicable. As a conse-
quence, everything that is provable in LLL is also provable in the adaptive system.
As will be explicated later, ALs enhance the static proof theory of LLL by a dynamic
element, that in many cases allows for additional consequences.

! Note also that all lower limit logics used in applications in parts II-IV of this book are supraclassical.



2.2 The Lower Limit Logic 13

Where LLL is defined over a language £, we write JV for the set of well-formed
formulas in £. The consequence relation of LLL is hence a mapping p V) —
V).

For the adaptive meta-theory it is very useful to extend the language of LLL
by classical connectives, written in a “checked way”, e.g. = and V. We denote the
enriched language by £ and the corresponding set of well-formed formulas by
W+, where W is the (=, V, A, D, =)-closure of V. Note that this means that
none of the “checked connectives” occurs within the scope of the connectives of L.
For instance, where — is a connective of £, < (A — B) is a formula in W, but
(= A) — Bisnot.

Let LLL™ be the logic that is the result of superimposing the classical symbols
on LLL. Namely, LLL™ takes over the axiomatization of LLL and restricts the rules
and axioms of LLL to formulas in WW. Moreover, the classical axioms for the checked
connectives are defined for all formulas in A" .2 Semantically the internal structure
of the LLL-models may be kept. Similarly as for the axiomatization, the semantic
clauses of LLL are restricted to formulas of £, while for the checked symbols we
have M =<5 Aiff M = A, M = AV Biff M = A or M |= B, etc. Thus, it will
not be necessary to formally distinguish between LLL-models and LLLT-models.

In the adaptive meta-theory the derivability relation -+ plays an essential
role. However, it is customarily denoted by “Iy11,”. Hence, the reader should not be
surprised to find formulas in VW' \ W on the left- or right-hand-side of -t 1. In order
not to depart too much from the literature on ALs, I will adopt this convention while
providing the reader unfamiliar with ALs with this warning.® Similarly there are two
consequence relations corresponding to LLL and LLL ™. We define, where I" € WV,
Cnfyy (D) =at {A € W | T FriL A} and, where I' € W, Cnfy () =t (A €
WY | I' b+ A}. Where I skip the superscript either of the two readings may be
applied.

2.3 The Abnormalities

In Sect. 1.1, I have characterized a defeasible inference as an inference that is sup-
ported by its premises ‘ceteris normalibus’ (cf. Fig. 1.1). The inference is warranted
if and as long as there is no reason to suppose that certain abnormalities that vio-
late the ceteris normalibus condition are the case (cf. Fig. 1.2). ALs formalize this
principle.

2 Often bridge principles need to be added. E.g., where V is a classical disjunction in £, the axiom
(AY B)=(A V B) is added to ensure the equivalence between the two classical disjunctions.

3 Note that the “checked” classical connectives are added even in the case that LLL already contains
classical corresponding symbols. The reason is of a rather technical nature: it is to ensure that a
formula is derivable already at a finite stage of an adaptive proof (cf. Section 2.7 and the discussion
in Section4.9.3 of [2]).
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Abnormalities are characterized by a logical form F in the enriched language £7.
Formulas of this form are supposed to be LLL-contingent, i.e. ¥y r1, Fand ¥y, = F.
By £2 we denote the set of all formulas of the form F.

For our application (i) abnormalities may have the form of inconsistencies,
A A— A. For application (ii) abnormalities may have the form of deontic conflicts,
OA A O—-A.

To interpret the premises “as normally as possible” means to interpret the premises
in such a way that as few abnormalities as possible are validated. We will see that
semantically ALs select LLL-models of a given premise set that are “sufficiently
normal” in terms of the abnormalities they validate. Proof-theoretically the idea is
to apply certain rules conditionally, namely on the condition that certain abnormal-
ities are false. These points are realized and disambiguated by the last element, the
adaptive strategy.

2.4 The Adaptive Strategy

Adaptive strategies are the technically most involving aspect of ALs. Currently two
strategies are part of the standard format: the minimal abnormality strategy and the
reliability strategy. Together with the abnormalities they substantiate what it means
to interpret premises as “normally as possible”.

I will introduce a “toy” application in order to explicate the different intuitions
behind the two strategies.

Let us model the defeasible reasoning of a detective. Suppose a murder happened.
There are two witnesses. One states that the major suspect Mr. X entered the scene
of crime right before the lethal shot was heard throughout the whole neighborhood.
Another one states that he saw the major suspect leaving the scene of crime directly
after the shot was heard. Moreover, our detective has the information that nobody
else was at the scene of crime shortly before and shortly after the time of the killing.

We model the fact that there is evidence available for A by oA (e.g., some witness
may state A, A may be the result of forensic investigations, etc.). A o-less formula
A expresses that A is a fact, or that there is definite proof for A, or that our detective
accepts A as fact. Since we want to keep things simple we treat o as a dummy
operator and hence don’t attach any logical properties to o. As a lower limit logic we
employ classical propositional logic CL equipped with o. Let this logic be named
CL,.* The semantics of CL, is like the semantics for CL, just besides the usual
assignment function v that assigns to each propositional letter a truth value, we also
use an enhanced assignment function v, that (independently from v) associates each
well-formed formula with a truth-value. Truth in a model M is defined as usual for
the classical operators:

4 In [9] we show that CL, gives rise to very simple ALs that represent the Rescher-Manor conse-
quence relations [16].



2.4 The Adaptive Strategy 15

e M = A where A is a propositional letter iff v(A) = 1
e M=—-Aiff M £ A

e MEAVBiff MEAorM =B

e and similar for the other classical connectives.

The o operator is characterized by
o M =oAiff v,(A) =1.
The idea is that

(a) if our detective has evidence for A,— oA;
(b) and as long as there is no reason to assume that A is not the case,— — o —A,

then the detective is warranted to defeasibly infer that A is the case. Of course, CL, is
a monotonic system. We will in a moment strengthen it in a nonmonotonic adaptive
way.

But let us return to our detective. Assume he has the following evidence:

e shortly before and shortly after the time of death nobody but the victim was at the
scene of crime,— on;

e that Mr. X entered the scene of crime alone right before the shot,— oa;

e that Mr. X left the scene of crime alone right after the shot,— ob.

Moreover, we presuppose that for some reason our detective accepts that if nobody
else was at the scene of crime shortly before and shortly after the crime, but Mr. X
entered the scene of crime alone right before the shot was heard, then he must be the
murderer: (a A n) D c. Similarly, (b An) D c.

What makes the situation more complicated is that our detective has definite proof
that at least one of the witnesses has been bribed by one of Mr. X’s enemies in order
to fake a witness statement. Hence, since one of the witnesses lies, we have —a Vv —b.
What should our detective conclude?’

2.4.1 The Reliability Strategy

If she takes a cautious stance, she will not conclude that Mr. X is the murderer since
after all, both of the witnesses may be bribed. Let us elaborate a bit on this stance.

I have already mentioned that semantically ALs select from the lower limit logic
models of the given premises the ones that are “sufficiently normal” with respect to
a certain standard of normality. The latter is characterized by the abnormalities and
the adaptive strategy.

The abnormalities for our application are cases where our detective has evidence
for A but A is not the case. Hence 2, = {oA A —A}. Let henceforth CL," be the
AL defined by the triple:

3 1 do of course not claim that the modeling of the defeasible reasoning of our detective by CL,
is by any means optimal. It is however sufficiently intuitive and simple in order to serve as a toy
application for introducing the basic concepts and mechanisms of ALs.
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1. lower limit logic: CL,
2. abnormalities: §2,
3. strategy: reliability

2.4.1.1 The Semantics
Let us first take a look at the semantics. What CL,-models of the premise set
I ={on,(@aAn)dDc,(bAn)Dec,oa,ob,—aV —b}

should be selected according to the cautious rationale of our detective?
An important notion is the so-called abnormal part of a model. It consists of all
the abnormalities validated by a given model M, in symbols

ADM)={A e 2| M E A}

For our applications the abnormal part of an CL,-model M is thus, Ab(M) =
{A € 2, | M &= A}. 1 will in the remainder of this section abbreviate abnormalities
oA A —A by !A. Note that in CL, we have the following:

0A,oB,—-AV —BlcL, A VB

Hence, in every CL,-model of I at least one of the abnormalities !a and !5 is valid.
Let us focus for our discussion on the following models of I'j:®

The abnormal part imposes a strict partial order Egb on the lower limit logic
models of a given premise set I” where M E/I;b M’ iff Ab(M) C Ab(M’). Similarly,
we define the partial order Ef;b on the lower limit logic models of I by: M T M’
iff Ab(M) € Ab(M"). For our six models this is illustrated in Fig.2.1a.

Interpreting the premises “as normally as possible” first of all means that in cases
in which we have no reason to suppose that an abnormality !A occurs, we should

Fig. 2.1. a An exclgrpt of (a) (b) (©)
CL P tmodels of 11’ under Mo Mo Mo
o~ 1> u
the line are reliable models; / \ / \ / \
c under the line are minimal My Ms My Ms My Ms
abnormal models
M 3 M3 M3
M, My M, M, M M,

61 do not exhaustively characterize these models by means of what formulas they validate. However,
it is obvious that models such as M| to Mg exist.
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presume that ! A is not the case. Take for instance our premise on. Since the premises
give no reason for supposing —n (we will make this formally precise in a moment) the
semantic selection corresponding to the reasoning of our detective neglects models
My, M5 and Mg since these models validate the abnormality on A —n.

This can be made more precise by introducing another central notion for ALs: min-
imal Dab-consequences. Where A C §2 is a finite and non-empty set of abnormali-
ties, adaptive logicians use Dab(A) as a notation for the classical disjunction of mem-
bers in A: \7A. Where A = ) the string ‘v Dab(A)’ denotes the empty string. The
minimal Dab-consequences derivable from a given premise set I are all Dab(A) for
which (i) I" Frrr, Dab(A) and (ii) there is no A’ C A such that I" Fpy, Dab(A’).
For a minimal Dab-consequence Dab(A) we know that in each LLL-model of I" at
least one of the abnormalities in A is validated. Due to the minimality of A there is
no A’ C A with the same property. Where Dab(A ), Dab(A5), ... are the minimal
Dab-consequences, the set of unreliable abnormalitiesis U(I") = A1 U A, ...

Indeed, there is no reason to assume that an abnormality is true in case it is not
unreliable. After all, in this case it is not a disjunct of any minimal Dab-consequence.
Of course, it may still be a disjunct of a non-minimal Dab-consequence. However,
just as there is no reason to believe that it rains just because we can derive “It rains
oritis windy” from “It is windy”, there is no reason to believe that an abnormality is
true just because by means of addition we can add it as a disjunct to a Dab-formula.

In our example the only minimal Dab-consequence is !a V !b. Hence, U (I) =
{la, !b}. Note that !'n ¢ U(I7). The idea is to select only lower limit models that
validate only abnormalities in U (I"), i.e. models M that satisfy Ab(M) € U(I").
We call these models the reliable models of I'. Models M1, M> and M3 satisfy this
requirement with respect to our premise set 17 (see Fig.2.1b).

As discussed above, the cautious rationale underlying the reliability strategy also
takes into account the possibility that both of our witnesses have been bribed. Hence
both abnormalities, !a and !b may be valid. Models M1, M, and M3 validate at least
one of the two abnormalities. M3 validates both of them. Note that in the model M3,
c is not validated. After all, the interpretation offered by M3 treats both a and b as
unreliable and thus in this interpretation neither (a A n) D ¢ nor (b A n) D ¢ can
be used for deriving c. Hence, our cautious detective does not (tentatively) conclude
that Mr. X is the murderer.

Generically the semantic consequence relation for the reliability strategy is defined
as follows.

Definition 2.4.1. Where M, . (I") is the set of all reliable LLL-models of I",
I lFarr Aiff forall M € My ('), M = A.
Note that we have I ¢y, r ¢ since the reliable model M3 does not validate c.

Given the definition of reliable models we immediately get the following repre-
sentational theorem (where I' "=g¢ {= A | A € I'}):



18 2 The Standard Format for Adaptive Logics

Theorem 2.4.1. Where ' C W™ : I' lFapr Aiff I' U (2 \ U(F));II—LLL A.
By the compactness of LLL this implies:

Corollary 2.4.1. Where I' € W*: T lFapr A iff thereisa A € 2 \ U(I") such
that I' F11r AV Dab(A).

2.4.1.2 The Proof Theory

Let me now show how the reliability strategy is realized by adaptive proofs. The

adaptive proof format enhances the static proofs of the lower limit logic by an addi-

tional column in which conditions are attached to proof lines. Conditions are finite

and possibly empty sets of abnormalities. A line in a proof consists of a line number, a

formula, a justification, and a condition. The central feature of adaptive proofs is that

they apply certain rules conditionally. Let me explicate this again by our example.
Note first that in CL, the following rules are not valid:

If oA, then A. (2.1)
If oAand A D B, then B. 2.2)
However, the following is valid”:
oA tcL, A V1A (2.3)
0A,AD BtcL, BV!A 2.4)

Hence, by (2.3), given oA either A or the abnormality !A is the case. Our AL enables
conditional applications of rules (2.1) and (2.2). That is to say, from o A, A is derived
“on the condition {!A}”, or from oA and A D B, B is derived “on the condition
{'A}”. Roughly the idea is to apply rules (2.1) and (2.2) on the condition that !A can
be considered not to be the case (see Fig.2.2). This is still an ambiguous phrase and
has different readings according to the two strategies.

inference

Fig. 2.2 Conditional T
:
|

defeasible

3 ﬂ(OA A—A )
assumption:

7 In order to reduce notational clutter I will often omit set brackets on the left hand side of .
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For the reliability strategy this is spelled out as follows: deriving A “on the condi-
tion A” means that A is derived on the condition that no member of A is unreliable.
Let us have a look at a proof fragment:

1 on PREM %
2(@nn)Dc PREM 7
3(bAn)Dc PREM ]
4 oa PREM 7
5 ob PREM 7
6 —a Vv —b PREM 7
107 ¢4 4; RC {!a}
8n 1; RC {'n}
109 ¢ 2,7,8;RU {la, n}
10 la Vb 4,5,6;RU ¢

The first thing to notice is that, although for our applications we are interested in
the adaptive consequence relation over the language £ that characterizes our lower
limit logic, the adaptive proofs are formulated in the enriched language L. As the
reader will see, this plays an important role in the modeling of defeasible reasoning
in adaptive proofs. The proofs are governed by three generic rules: PREM, RU, and
RC. Let us have a look at them separately.

At lines 1-6 premises are introduced. This is enabled by a generic premise intro-
duction rule:

IfAerl: Lo (PREM)
A 0

Beside the premise introduction rule there are two other generic rules characterizing
adaptive proofs: the unconditional rule RU and the conditional rule RC. Via RU the
adaptive proofs come with all of the deductive power of the lower limit logic:

A Aq
IfA;,..., A, FLLL B : : : (RU)

An Aﬂ
B A U---UA,

Note that the conditions of the used lines are carried forward.

The core and finesse of adaptive proofs comes with the conditional rule. It has
been illustrated by means of the rules (2.1) and (2.2) above. In general the rule reads
as follows?®:

8 Note that, as already mentioned earlier, I stick with the customary usage of k1, in RU and RC
as denoting the derivability relation -+ characterizing the strengthened lower limit logic that
operates on L.
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I %P ..iPREM @ ——————-

n P, ...;PREM @-——————— 1

| Ceteris
- — — — — | support

normalibus

1 Line A ‘ ) ) e
number 2. formula 3. justification 4. condition

Fig. 2.3 Schematic illustration of an adaptive proof
A1 A4
IfAy,..., A, FrLiL, BV Dab(®) : : : (RO)

An_ An
B AU---UA,UB

At lines 7 and 8 we have conditional applications of rule (2.1). Take for instance
line 7: the idea here is to derive defeasibly a from oa on the condition {oa A —a}. That
is to say, from the fact that our detective has a good reason to assume a she derives a
on the condition that not-a is not the case. The ceteris normalibus condition of this
type of defeasible inference is that whenever there is a good reason to assume some
a then, normally, —a should not hold. In Fig.2.3 our generic scheme for defeasible
inferencing from Fig. 1.1 is related to the proof format of ALs.

At line 10 in our proof from I7 the only minimal Dab-consequence is derived
on the empty condition. At this point something important happens: the conditions
of lines 7 and 9 are violated. After all, !a turned out to be unreliable at line 10. In
adaptive proofs, lines the conditions of which have been violated, are marked. The
marking indicates that the second elements of these lines are not considered to be
derived. Indeed, as long as the marking persists, the ceteris normalibus condition that
guarantees the support from the premises is violated.

Before I give a formal definition of the marking, it is important to note that
markings are dynamic. They may come and go. In order to see this, suppose for the
moment that our detective has definite proof that the second witness has been bribed
and thus has been lying. Where I, = I'1 U {—b}, we add the following lines to the
proof from I5:

11 —-b PREM ¢
121 5,11;RU ¢
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What is remarkable here is that adding —b to our premises leads to an alteration
of the unreliable abnormalities. Now !b is the only minimal Dab-consequence and
U (I») = {!b}. Hence, the conditions of lines 7 and 9 can now be considered to be
reliable. Consequently, these lines are unmarked at line 12.

At different stages of the proof the ‘minimal Dab-formulas’® that are derivable
are different. By analyzing a premise set in a proof, our insight in the premises grows
and hence what is considered as an unreliable formula at a certain stage of the proof
may change. Hence, in order to define the marking in such a way that it mirrors the
dynamics of the defeasible reasoning that is modeled, we need to define the set of
unreliable formulas such that it is relative to the stage of the current proof.

We say Dab(A) is a minimal Dab-formula at stage s of a proof iff

(i) Dab(A) has been derived on the empty condition at stage s, and
(ii) forall A" C A, Dab(A’) has not been derived on the empty condition at stage s.

Moreover, where Dab(A1), Dab(A5), ... are the minimal Dab-formulas at stage s,
the set of unreliable formulas at stage s is Us(I") = A1 U Ay U. .. The marking for
the reliability strategy is defined as follows:

Definition 2.4.2 (Marking for the Reliability Strategy). Line i is marked at
stage s iff, where A is its condition, A N U, (I") # @.

Note that, on the one hand, marked lines may be unmarked at a later stage of a
proof. On the other hand, unmarked lines may be marked at a later stage. Suppose
our detective has definite proof that also the first witness has been bribed. In this case
the conditions of line 7 and 9 are violated again.

13 —a PREM ¢
14 la 4,13; RU @

At this stage of the proof, Uj4(I3) = {la, b}, where I3 = I> U {—a}. Hence,
according to Definition 2.4.2, lines 7 and 9 are marked again at line 14.

Given a marking definition (the one for reliability introduced above or the one for
minimal abnormality that is going to be introduced in the next section), the following
definitions characterize the notion of derivation in adaptive dynamic proofs. The first
definition concerns a dynamic notion of derivation:

Definition 2.4.3. A formula A has been derived at stage s of an adaptive proof, iff,
at that stage, A is the second element of some unmarked line i.

In order to define a syntactic consequence relation we need a static, non-relative
notion of derivability. This is provided by the following definition.

Definition 2.4.4 (Final derivability). A is finally derived from I' on a finite
line i of a proof at stage s iff

(1) A has been derived at stage s at line i;

9 A precise meaning will be given to this notion in a moment.
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(ii) every extension of the proof in which line i is marked may be further extended
in such a way that line i is unmarked.

This definition can be interpreted in terms of an argumentation game where the
proponent has a winning strategy in case her argument is able to withstand criticism
(see [17]). Condition (i) says that the proponent is supposed to produce an argument
for A by means of deriving it with an assumption that is not violated at some line /
(otherwise the corresponding line would be marked). Now the opponent may respond
and offer criticism. That is, he may derive Dab-formulas such that the proponent’s
argument is retracted (i.e., marked). However, our proponent is given the chance to
reply: she repels the criticism in case she can further extend the proof such that her
assumption is safe again and hence line / is unmarked. In case she is able to repel
any possible criticism, she has a winning strategy and A is said to be finally derived.

This account fits in nicely with dialectical accounts of defeasible reasoning. For
instance, Blair argued in his [18] that the view that “a valid inference is one whose
justifying warrant can withstand criticism” (p. 116) and that “[t]he concepts of defea-
sibility and presumption are dialectical concepts” (p. 115) is common among many
prominent theorists that deal with defeasible arguments such as Toulmin (see [19]),
Wellman (see [20]), Rescher (see [21, chapter 3]), Pollock (see [22]), and Walton
(see [23]).

Definition 2.4.5. I" Fapr A iff A is finally AL -derivable from I".

Take for instance line 8 of our proof from 7. There is no possible extension of the
proof from I7 that leads to the marking of this line. Hence, 7 is finally derivable
from I'1. However, there is no way to finally derive a or b from I7.

Note that for the reliability strategy the extensions referred to in point (ii) of
Definition 2.4.4 can be restricted to the finite ones (see e.g. [2]).

The following theorem shows that A is derivable from I” iff it is derivable on a
condition A consisting of reliable formulas.

Theorem 2.4.2. Where I' C W: I barr Aiffthereisa A C 2 for which I" FrpL
AV Dab(A) and ANU(T") = 0.

I will not provide any meta-proofs for the theorems and lemmas in this chapter
for the following two reasons. On the one hand, the meta-theory for the stan-
dard format that is presented in this chapter has been proven by Diderik Batens
(e.g., in his seminal [1]). On the other hand, most of these results will follow
as corollaries of the results presented in Chap. 5: there we introduce a general-
ization of the standard format and provide all the proofs for the meta-theory.


http://dx.doi.org/10.1007/978-3-319-00792-2_5

2.4 The Adaptive Strategy 23

By making use of some basic properties of LLL we can alternatively characterize
AL as follows (where I'"=g; {2 A | A € ')

Corollary 2.4.2. Where ' CW: I bFarr A iff I'U (2 \ U(I") " FrLL A.
Finally, we have the following completeness and soundness result:
Theorem 2.4.3. Where I' C W: I" Farr A iff I' IFaLr A.

Although the derivability relation F4y, is defined over £, for applications we
are mainly interested in the consequence set restricted to premises and consequences
over the language L that characterizes our lower limit logic. However, for meta-
theoretical insights also the enhanced consequence relation is of interest. Hence, we
define, where I" € W, CnfL (I') =gt {A € W | I'" Far, A} and, where I" € W,
Cng: (I') =4¢ {A € W | " AL A}. T will also often omit the superscript, namely
in cases in which both readings apply.

2.4.2 The Minimal Abnormality Strategy

We proceed analogous to the discussion of the reliability strategy: we first have a look
at the semantics and then at the proof theory for the minimal abnormality strategy.

2.4.2.1 The Semantics

The minimal abnormality strategy is ‘bolder’ in comparison to the reliability strategy.
Semantically the name is nearly self-explanatory. The minimally abnormal models
are selected, i.e. the minimal elements of the partial order gb. In yet other words, all
the LLL-models of a given premise set I” that validate a minimal set of abnormalities.
An LLL-model of I" is a minimally abnormal model of I" iff for all LLL-models
M’ of ', Ab(M") ¢ Ab(M). Note that Ab(M1), Ab(M,) C Ab(M3) (see Fig.2.1c¢).
Hence, for the minimal abnormality strategy the reliable model M3 is not selected.

For the minimal abnormality strategy “interpreting the premises as normally as
possible” is read in a more rigorous way compared to the reliability strategy. The
idea is to select CL,-models that validate as few abnormalities as possible. Given
our (only) minimal Dab-consequence of I, la V !b, models are selected that validate
only one of the two unreliable abnormalities.

The semantic consequence relation for minimal abnormality is defined as follows.

19 Thereisa A € £ \ U(I") for which I'" by, A V Dab(A) iff [by the deduction theorem] there
isaAC\U I for which I" U A7 Fy 1, A iff [by the compactness and monotonicity of LLL]
ru@\Uur)) L A.
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Definition 2.4.6. Where M, ;m (I') is the set of all minimally abnormal LLL-
models of I,
I' lFapm Aiffforall M € Mym (I') , M = A.

It is important to notice that the existence of minimally abnormal models is
guaranteed.

Theorem 2.4.4. gb is smooth (alias stoppered).'!

Immediate consequences of this are:
Corollary 2.4.3.

(i) If I' has LLL-models then there are minimally abnormal models of I'". (Reas-
surance)

(ii) For every LLL-model M of I' either M is minimally abnormal or there is an
LLL-model M’ of I' that is minimally abnormal and for which Ab(M') C
Ab(M). (Strong Reassurance)

Moreover, it can be shown that every minimally abnormal model of I" is also
reliable. That is to say,

Theorem 2.4.5. M, m (I') € M,y ().

Hence, points (i) and (ii) in Corollary 2.4.3 also apply to reliable models.

Note that in our example all the minimally abnormal models of I either validate
la or b as the only abnormality. Hence, in all minimally abnormal models ¢ is
validated. This demonstrates that the minimal abnormality strategy is ‘bolder’ than
the reliability strategy since I ¢, ,m ¢ while I' Fcr, r c.

Before I introduce the proof theory for minimal abnormality let me draw the
reader’s attention to a remarkable fact. Where Dab(A;), Dab(A»), ... are the min-
imal Dab-consequences of I', let X' (I") = {A1, Aa, ...}. A choice set of X (I") is
a set that contains a member from each A;. Let @ (I") be set of the minimal choice
sets of X' (I"), i.e. all choice sets ¢ C £2 of X'(I") such that there is no choice set
¢’ C §2 of X(I') for which ¢’ C ¢.!?

The next theorem shows that each minimally abnormal model validates a minimal
choice set as its abnormal part and vice versa, for each minimal choice set ¢ there is
a minimally abnormal model that validates ¢ as its abnormal part.

Theorem 2.4.6. Where I' € W™ and My (I) is non-empty.

1A binary relation < € X x X is smooth (resp. stoppered) iff for every a € X, either a is
minimal or there is a <-minimal b € X for which b < a. The smoothness property will also play an
important role when the standard format is generalized in Chap. 5 where we will—inter alia—prove
this statement.

12 Properties of choice sets that are useful in the context of ALs are inquired in the technical
Appendix A.
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(i) MAL'“ I = U(pgd)([‘){M € MLLL (') | Ab(M) = ¢}.
(ii) ¢ € @(I') iff there isan M € M yym (I') for which Ab(M) = ¢.

This immediately implies a representational theorem:

Theorem 2.4.7. Where I' C W*: I' lkaLm A iff for each ¢ € &(I'), I' U
(£2\ ¢)" IFLLL A.

By the compactness of LLL this implies:

Corollary 2.4.4. Where ' € Wt: I' lFapm A iff for each ¢ € ®(I'") there is a
A C 2\ ¢ for which I IFy, AV Dab(A).

With the help of the minimally abnormal models we are able to give an alternative
definition for the semantic selection for the reliability strategy.

Lemma 2.4.1. Where M is a set of LLL-models, define
(M) = U{Ab(M) | M is minimally abnormal in M}.

Where I' € W™ : M is a reliable LLL-model of I iff Ab(M) C V(M (D).

This characterization is attractive from a model-theoretic perspective since it is
formulated independent of the consequence relation of the LLLL which was used in
the original definition in order to characterize the set U (I"). It is formulated only in
terms of properties of the LLL-models of I', just like the definition of the semantic
selection for the minimal abnormality strategy.

2.4.2.2 The Proof Theory

The proof theory for minimal abnormality differs from the one for reliability only
with respect to the marking definition. We again employ the generic rules PREM,
RU and RC.

As we have seen above, there is a direct link between the minimal choice sets
(of X (I")) and the minimally abnormal interpretations of I" provided by the mini-
mally abnormal models. Also in the proof theory we will make use of this link. At
any stage of the proof we are interested in the question which assumptions can be
considered justified and which not. The information that we use in order to judge
this is given by the minimal Dab-formulas that have been derived so far. While the
reliability strategy considered each disjunct of a minimal Dab-formula as “unreli-
able”, the minimal abnormality strategy is less skeptical. Let us first illustrate this
by means of a simple example, and then make things more precise by making use of
the notion of choice sets.

Suppose we have the following excerpt from a proof at some stage s (where we
denote abnormalities by preceding them with “!”):

1C 1A}
e ... (!B}
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Table 2.1 Possible

. . 1A !B IC
interpretations of
{IAV!B,!AVIC} oy 1 0 0
I 1 1 0
I3 1 0 1
Iy 1 1 1
Is 0 1 1
Fig. 2.4 Ordering of the 14
interpretations in Table 2.1 in
terms of abnormal parts /
I, I5
I Is
1" AV !B .0
" 1AV IC .9

Suppose further that !A V!B and !A V !C are the only minimal Dab-formulas
derived at stage s. The possible interpretations of these formulas are listed in
Table?2.1. The corresponding ordering in terms of abnormal parts is illustrated in
Fig.2.4.

‘We have two minimally abnormal interpretations of these formulas: one /1 accord-
ing to which !A is true, another one /5 according to which !B is true. Let us have a
look at the formula C. Since both conditions on which it is derived contain unreliable
abnormalities these lines are marked according to the reliability strategy. The situa-
tion is different for the minimal abnormality strategy. The reason is that the assump-
tion expressed by the condition {!A} is true in /5 and the assumption expressed by the
condition {!B} is true in [;. In other words, in each minimal abnormal interpretation
of our minimal Dab-formulas derived so far C is justified.

Now, how does that relate to choice sets? Where Dab(A;), Dab(A,), ... are
the minimal Dab-formulas at stage s of a proof from I", the choice sets of
X (I') = {41, A,, ...} give us exactly the possible interpretations of the minimal
Dab-formulas derived so far. Hence, the minimal of these choice sets exactly corre-
spond to the minimally abnormal interpretations of these minimal Dab-formulas.

In view of this, the marking of the minimal abnormality strategy will exactly
mirror the idea of the semantics: we only take into account the minimally abnormal
interpretations of the given premises—now contextualized to a given stage of the
proof—and only claims that are justified in each of these interpretations are taken
to be consequences at a given stage of the proof. This is realized by the following
marking definition: where @, (I") is the set of all minimal choice sets of X (") we
define
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Definition 2.4.7 (Marking for the Minimal Abnormality Strategy). Line i is
marked at stage s iff, where A is derived on the condition A at line i,

(i) thereisno ¢ € @;(I") suchthatp N A =, or
(ii) for some ¢ € @, (I"), there is no line at which A is derived on a condition ® for
whichp N ® = .

Another way to interpret the marking definition is in terms of an argumentation
game. Suppose the proponent derives aformula A on aline with condition A atstage s.
Each minimal choice set ¢ € @, (I") represents a minimally abnormal interpretation
of the Dab-formulas derived at stage s: each B € ¢ is true in this interpretation
while each B € §2 \ ¢ is false. Each minimal choice set ¢ thus represents a potential
counter-argument against the defeasible assumption used by our proponent in order
to derive A (namely that all members of A are false). ¢ is a counter-argument in case
the defeasible assumption, i.e. the condition of line /, contains elements of ¢. In this
case the assumption of line / is not valid in the interpretation offered by ¢.

In case there is no minimally abnormal interpretation ¢ in which the assumption
holds (see point (i)), the proponent cannot defend herself and her inference to A is
retracted in terms of being marked. But suppose there is a ¢ such that A N ¢ = @.
In this case there is at least one minimally abnormal interpretation in which the
assumption of our proponent holds. But what about minimally abnormal interpre-
tations in which the assumption does not hold, i.e. some ¢ € @;(I") for which
@ N A # (7 In this case the proponent has to offer for each such ¢ another argument
whose assumption is valid in ¢ (see point (ii)). If she is able to do so, i.e. if she is
able to defend herself against all counter-arguments, then her argument is justified
and hence line / is not marked at stage s.

In sum: suppose our proponent derived A on the assumption A at line /.

e [s the argument at line | defensible?
Our proponent should be able to at least pinpoint one minimal abnormal interpre-
tation of the Dab-formulas derived so far in which the assumption A holds.

e Is the claim A justifiable?
For each counter-argument of our opponent, i.e. each minimally abnormal inter-
pretation / of the Dab-formulas derived so far, she has to have an argument for A
with an assumption that is valid in /.

If both questions are answered to the positive, our proponent wins the argumentation
game at this stage. Otherwise, the opponent wins and line / is marked.'?

13 The terminological distinction between defensible and justified arguments is borrowed from
abstract argumentation. Given a set of abstract entities (arguments) and an attack relation between
them, there are various rationales according to which we can select arguments. (These rationales are
called extension types in Part I11.) If an argument is in all selections (that satisfy the criteria imposed
by the rationale) it is called justified, if it is in some selection it is called defensible, if it is in no
selection it is called overruled. See also the detailed discussion in [24]. The situation is analogous
in our case: an argument for the claim A offered at a line / with an assumption expressed by the
condition A is called justified if the assumption is valid in all minimally abnormal interpretations of
the Dab-formulas (at the present stage), it is defensible if the assumption is valid in some minimally



28 2 The Standard Format for Adaptive Logics

Let us close this discussion by having another look at a proof from I7, this time
applying the marking definition for minimal abnormality.

1 on PREM ¢

2(@aAn)Dc PREM ]

3(bAn)Dc PREM ]

4 oa PREM ¢

5 ob PREM ¢

6 —a v —b PREM ¢
107 4 4RC  {la}
108 p 5;RC  {Ib}

9n 1; RC {'n}
10 la v 1b 4,5,6;RU ¢
11c 2,4,9;RC {la, In
12¢ 3,5,9;RC {!b, In}

Note that lines 11 and 12 are not marked as they would be according to the
reliability strategy. For instance the condition of line 11 does (i) not intersect with
all minimal choice sets in @12 (I"1) = {{!a}, {!b}} and (ii) it is not the case that there
is a minimal choice set ¢ € @12(I) such that all conditions on which ¢ has been
derived intersect with ¢. The reason for (ii) is that ¢ is also derived on the condition
{!b, n} at line 12. Indeed, c is valid in all minimally abnormal models of I7.

A different situation occurs with respect to line 7. Its condition, and in fact all
conditions on which a can be derived, intersect with the minimal choice set {!a}.
Indeed, in the minimally abnormal model M; with abnormal part {la}, a is not
validated. An analogous argument applies to line 8.

Note that for our example the minimal choice sets @ (1) are {!a} and {!b}. Hence
c is finally derivable.

The following theorem makes the link between the minimal choice sets and the
adaptive consequences.

Theorem 2.4.8. Where I' € W: I" FaLm A iff for every ¢ € ®(I') there is a
A C 2 for which AN @ =@ and I' Frpr, AV Dab(A).

Finally, we have the following completeness and soundness result:

Theorem 2.4.9. Where I' C W: I' Fapm Aiff I’ IFarm A.

(Footnote 13 continued)

abnormal interpretation of the Dab-formulas. The line is marked in case its argument is not justified.
In Sect. 2.8 we present an alternative approach where the marking takes place in case an argument is
not defensible and relate the two approaches to what is often called the skeptical and the credulous
approach to defeasible reasoning.
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2.4.3 A Special Case: The Simple Strategy

Sometimes we deal with cases in which both standard strategies, reliability and min-
imal abnormality, coincide. These are cases in which all minimal Dab-consequences
of the lower limit logic LLL are abnormalities. That is to say, every minimal Dab-
consequence Dab(A) is such that A is a singleton. Let us call a premise set I” for
which all Dab-consequences are abnormalities, a simple premise set.

Where I” is a simple premise set, it is straightforward to check that in this case
@ (') = {U(I")} and, moreover, that in this case both strategies lead to the same
consequence set.

Simple premise sets allow for a simplification of the adaptive strategy: the so-
called simple strategy.

2.4.3.1 The Semantics

Let us first take a look at the semantics. Given a simple premise set I it is easy
to see that all the minimally abnormal LLL-models M of I" are such that A €
Ab(M) iff A is verified by every LLL-model of I". This is equivalent to: Ab(M) =
{Ae 2| T L A} resp. Ab(M) = {A € 2 | I" L A} resp. Ab(M) =
Nure My (D) Ab(M’). The same holds for all the reliable LLL-models of I". This
motivates the following definition:

Definition 2.4.8. An LLL-model M of I' is simple iff Ab(M) = {A € 2 |
I oL Al

Theorem 2.4.10. Where I is a simple premise set, the following points are equiv-
alent:

(i) A is verified by all simple models of I’
(ii) A is verified by all reliable models of I
(iii) A is verified by all minimally abnormal models of I’

Definition 2.4.9. I" IFaors A iff A is verified by all simple models of I".

2.4.3.2 The Proof Theory

Derivations are again governed by the generic rules PREM, RU, and RC. What
changes and is simplified is the marking definition.

Definition 2.4.10 (Marking for the Simple Strategy). Line i is marked at stage s
iff, where A is its condition, stage s contains a line on which an A € A has been
derived on the empty condition.
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Final derivability is defined as for reliability and minimal abnormality. Hence,
I' Fars A iff A is finally derivable from I” (with respect to the marking for the
simple strategy).

Theorem 2.4.11. Where I' C W is a simple premise set, I’ Farr Aiff I Fapm A
iff I’ FaLs A.

Theorem 2.4.12. Where I' C VW is a simple premise set, I' |Fars A iff I’ Faps A.

2.5 Modeling Defeasibility in Adaptive Proofs

In this section we enhance our understanding of how ALs model defeasible reasoning.
We start off with taking another look at dynamics in Sect.2.5.1. Then, in Sect.2.5.2,
we compare the derivative power of the two strategies in view of so-called floating
conclusions. Finally, in Sect.2.5.3 we relate ALs to so-called plausible reasoning
and a related problem concerning contraposition.

2.5.1 Internal and External Dynamics

As has been demonstrated above, formulas are derived conditionally in adaptive
proofs. An unmarked line may be marked at a later stage of the proof and a marked line
may be unmarked.'# This is analogous to the tentative way of arriving at conclusions
in defeasible reasoning, where we infer some A from some premises presuming that
the circumstances satisfy some ceteris normalibus condition in order for the inference
to be warranted. In ALs this is made explicit, on the one hand, by specifying what
counts as an abnormality and, on the other hand, by specifying the exact nature of
the normality condition by the adaptive strategy. In the adaptive proofs formulas are
derived on conditions that are sets of abnormalities and the adaptive strategy specifies
when the condition is met or violated. The marking definition that is characterized
by the adaptive strategy determines when a formula counts as derived and when not.

We have distinguished between two types of dynamics. On the one hand, there is
the internal dynamics according to which we may have to retract inferences in view
of new insights gained by means of analyzing the given premises. On the other hand,
there is the external dynamics according to which we may have to retract inferences
in view of new information given by means of new premises.

The internal dynamics is modeled by the marking dynamics of AL proofs. We start
off with a specific set of premises and analyze and reason on the basis of them with
the help of the three generic rules PREM, RU, and RC. As we have seen, informed

14 Note that when I speak of lines “being/getting marked” this should in no way be misunderstood
as being an activity that is up to a decision by a user of the logic. The marking is characterized by
the marking definition in a perfectly deterministic way.
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by the minimal Dab-formulas derived at a specific stage, some inferences may be
retracted by means of marking the corresponding line, while some inferences which
were previously marked may be reinstated since the marking is removed. Since the
retraction mechanism is fully determined by the analysis of the given premise set
this is clearly an instance of the internal dynamics of defeasible reasoning.

As pointed out already, the external dynamics is mirrored by the nonmonotonicity
of the consequence relation: sometimes new information may lead to the situation
in which some formula that was previously a consequence is not anymore a conse-
quence as soon as the new information is considered. I already discussed that the
primary focus in the research on defeasible reasoning is on the external rather than
the internal dynamics. ALs are nonmonotonic, so they obviously reflect the external
dynamics as well. However, the question arises whether ALs add anything interesting
when explicating the external dynamics which distinguishes them from other formal
models. Here it is useful to distinguish between two ways in which a formal model
L exhibits an external dynamics:

1. L is nonmonotonic: some previous output may not anymore be output given
additional input. Hence, L can be said to be externally dynamic.

2. L models the rationale underlying the external dynamics by means of a pro-
cedural explication of the reasoning process that causes some previous conse-
quences to cease to be consequences given new input.

My claim is that it is point 2 where ALs offer an essential contribution. Suppose
our detective starts reasoning with the premise set I7 = {on,(a An) D ¢, (b A
n) D c, oa, ob}. The following proof P; explicates her reasoning on the basis of the
reliability strategy and I7:

1 on PREM @
2(a@An)Dc PREM ¢
3(bAn)Dc PREM ¢
4 oa PREM ¢
5 ob PREM ¢
6¢c 1,2,4; RC {la, In}
7c 1,3,5; RC {!b, 'n}

Suppose at some point she gets new information which contains the definite proof
that one of the witnesses was bribed and thus lied, she just doesn’t know which one:
—a or —b. Instead of starting her reasoning process again from scratch from the
enriched premise set I> = I} U {—a Vv —b}, she can continue her reasoning process
P1 as follows in a proof P, from I7:

% ¢ 1,2,4; RC {la, n}

7 ¢ 1,3,5; RC {!b, 'n}
8 —a Vv —b PREM @

9lav!b 4,5,8; RU ¢
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The new information causes the marking of lines 6 and 7: while ¢ was a conse-
quence from 17 it ceases to be a consequence given the new information —a Vv —b.
Reusing and extending the proof P; resulting in PP, explicates the reasoning process
that leads to the retraction of the previous inferences resulting in c¢: hence it provides
an understanding as to why our detective previously inferred c (given only I7) and
then she gave up on it (given 13).

Moreover, ALs are also able to explicate cases of reinstatements: i.e., cases in
which ¢ is a consequence of I, ceases to be a consequence of I3, and then is
a consequence of I3 again (where Iy C I» C [I3). Let us demonstrate this by
extending our example further.

Suppose that some informant provides our detective with the information that
indeed the second witness has been bribed: —b. Hence, our premise set is now I3 =
I» U {—b}. Again, our detective can base her reasoning on the previous reasoning
process and thus reuse P, and extend it in the following way leading to a proof 3
from I's:

6¢c 1,2,4; RC {la, 'n}

17 1,3,5; RC {!b, n}
8 —a v —b PREM ¢
9lav b 4,5,8;RU

10 —b PREM ¢

111 5,10; RU ¢

Note that c at line 6 is reinstated in view of the new evidence. The reason is that
la v b is not anymore a minimal Dab-formula in view of !b atline 11. Again, looking
at the sequence P1, P>, P3 we see a detailed explication of the dynamics of her
reasoning process: in P; we see the rationale behind accepting the inference at line 6
as finally derived since the condition was reliable (meaning it only contained reliable
abnormalities), in P, the inference was retracted since the condition contained an
unreliable abnormality, finally in P53 the inference is safe again since the condition
is reliable again.

Note that where I" C I'’: an AL-proof from I is also an AL-proof from I"’. This
is the technical reason why our detective may reuse a previous proof (fragment) from
I" when reasoning on the basis of an enriched premise set '/, as happened in the
transition from P to P, and from P, to P3 in our example.

Note finally that, according to the given presentation, the way ALs explicate the
external dynamics of defeasible reasoning is analogous to the way they explicate the
internal dynamics: namely by a retraction mechanism that is implemented by means
of (un-)marking lines. The difference is that in the case of the external dynamics
we make a transition from a proof P from I" to a proof P’ from I'’ by reusing
‘P, while the internal dynamics occurs in one and the same proof. The analogous
treatment is in no way surprising: after all, both dynamics are based on the fact that
new insights may cause previous defeasible inferences to be retracted and the only
difference concerns the source of the new insights. In the case of internal dynamics it
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is based on a better understanding of the given premises, while in the case of external
dynamics it is based on new input. In practice both dynamics occur often as part of
the same reasoning activities: think for instance of learning processes. Hence, the fact
that there is a clear link between the nonmonotonicity of the consequence relation
of ALs and the internal dynamics is an argument in favor of the unifying power of
ALs as a formal model for defeasible reasoning.

2.5.2 Comparing the Strategies

We have seen that the standard format offers two strategies: the reliability and the
minimal abnormality strategy. The latter offers for many examples a ‘bolder type’ of
reasoning. That s to say, it offers a consequence relation that, in many examples, gives
rise to more consequences compared to the one for reliability. This was illustrated
by our example: while the reliability strategy corresponds to a rationale that refrains
from drawing the conclusion that Mr. X is the murderer, according to the minimal
abnormality strategy our detective concludes that Mr. X is the murderer.

We have distinguished the two strategies by means of their different handling of
minimal Dab-consequences. For the reliability strategy it was sufficient that (a part
of) the condition of a conditional application of a rule was unreliable, i.e. part of a
minimal Dab-consequence, in order to invalidate the application. In contrast, for the
bolder minimal abnormality strategy there are cases in which some A is derived on
a condition A that involves unreliable abnormalities but is nevertheless not marked.
Recall that by the minimal abnormality strategy our detective derives that Mr. X is
the murderer. We have seen that in each minimally abnormal model she can rely on
one of the two witnesses which is due to the fact that a v b is valid in all minimally
abnormal models. In contrast, the fact that !la V !b is a minimal Dab-consequence
of I'I makes all the conditions on which c is derived unreliable and hence it is not
derivable that Mr. X is the murderer according the the reliability strategy.

Scholars in defeasible reasoning sometimes distinguish between two basic types
of conflicts:

1. a conflict between a defeasible inference and a “hard fact” (i.e., a premise) or
any formula that can be inferred from the premises by means of non-defeasible
rules;

2. a conflict between two defeasible inferences.

The first type of conflict is to be resolved by retracting the defeasible inference.
Recall that in our proof from ] we derived n at line 8 by a defeasible inference on
the basis of rule (2.1) on the condition {!n}:

8n 1; RC {!n}

Now suppose we introduce —n as a hard fact by anew premise andlet [y = I'1U{—n}:
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11 —=n PREM ¢
12 ln 1,11;RU @

In this case line 8 gets marked. It is easy to see that this generalizes for all ALs in
standard format. Say A has been derived conditionally at line i and some B has been
derived on the empty condition. Suppose moreover that B -y, — A. Then line i is
marked. This follows directly with the following derivable rule:

A A
%A A (RD)
Dab(AU A") @

It is easy to see that, where A is the condition of a line /, and Dab(A) is derived on
the condition ¥ then / is marked according to both adaptive strategies.
RD is a consequence of the following lemma:

Lemma 2.5.1 (Conditions Lemma). An AL-proof from I' contains a line at
which A is derived on the condition A iff I' Frrr, AV Dab(A).1
The lemma gives immediately rise to the following rule:

A A

. (RA)
A v Dab(A) ¢

We now discuss the second conflict type: conflicts between defeasible inferences.
Again, a look at the derived rule RD helps us to understand how ALs handle such
a conflict. It expresses that whenever we have a conflict between two claims, one
derived on the condition A on line / and another one derived on the condition A’ on
line I/, then we can derive (unconditionally) that one of the abnormalities in A U A’
is true. If there are no other minimal disjunctions of abnormalities in the proof and
if there are no alternative arguments for our two claims, this means that according to
both strategies both lines / and I’ are retracted. However, the handling of such conflicts
is not fully analogous with respect to the two strategies. This will be demonstrated
in the following example.

Suppose a reliable although not infallible witness reports that

e Mr. X wore a long black coat in the bar in which he was seen half an hour before
the murder. — o/

Another reliable although not infallible source however witnesses that
e Mr. X wore a short dark blue jacket and black trousers at the same time. — oj
Obviously —(I A j), since both cannot be the case. Moreover, we have

e If Mr. X was dressed in a long black coat, then he wore dark clothes. — 1 D m

15 This is proven under the same name in [2, Chap. 4].
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e If Mr. X was dressed in a short dark blue jacket and black trousers, then he wore
dark clothes. — j D m

Let us have a look at a proof segment with the minimal abnormality strategy from
Ite ={ol,0j,=(UNj),IDm,jDm}

1ol PREM ¢
20j PREM ¢
3= A PREM ¢
41>m PREM ¢
5jom PREM ¢

126 1 1I;RC {1}
7m 4,6;RU {1}
128 j 2;RC {1/}
9m 5.8 RU {!j}

2101 6,8;RU {11}

115 A J) 33RU ¢
1211V 10, 11; RD ¢
131V 6:RU {1}
141v j 8; RU {1j}

Note that lines 7, 9, 13 and 14 are marked according to the reliability strategy,
however they are unmarked according to the minimal abnormality strategy. Indeed,
IV j as well as m are finally derivable according to the minimal abnormality strategy.
Note that for each choice set ¢ € P14a(It) = {{!/},{!j}}, [ Vv j is derived on a
condition that has an empty intersection with ¢. It is easy to see that there is no
extension of the proof in which lines 13 and 14 are marked.

Conclusions such as m are often referred to as floating conclusions. Although
no sequence of defeasible inferences leading to the conclusion m is valid in every
selected model, in each of them at least one of these sequences is such that all
the conditions of the rules constituting the sequence are valid. Note that there are
two types of minimally abnormal models, one with abnormal part {!/} and one with
abnormal part {!j}. In the latter models none of the conditions of the sequence of
inferences leading to the derivation of m explicated at lines 1, 4, 6 and 7 are violated.
Similarly, in the former type of models none of the conditions of the sequence of
inferences leading to the derivation of m explicated at lines 2, 5, 8 and 9 are violated.

In sum, according to the minimal abnormality strategy we get floating conclusions,
while reliability blocks them.

2.5.3 Adaptive Logics and Plausible Reasoning

In this section we will demonstrate in which sense ALs model plausible reasoning
and discuss a related problem that has to do with contraposition.
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2.5.3.1 ALs Model Plausible Reasoning

As has become clear, ALs formally model defeasible reasoning by means of
inferences based on assumptions. In the literature we can see two approaches to
assumption-based reasoning:

(a) In the first approach the concrete assumption made in a defeasible inference is
left unspecified or implicit. What is used is a defeasible inference rule. One way
to realize this is for instance with a connective A — B to which a defeasible
Modus Ponens rule is applicable so that B is defeasibly derived given A.

(b) Inthe other approach the assumptions that are associated with a defeasible infer-
ence are made explicit. Often this is expressed in the object language, e.g.,
A A —ab; D B. Given A and —ab; we can apply Modus Ponens to derive B.

Moreover, various scholars (see [25-27]) make a difference between two types
of reasoning:

(1) Defeasible Reasoning “as unsound (but still rational) reasoning on a solid basis”
[27, p. 262]; and

(2) Plausible Reasoning “as sound (i.e., deductive) reasoning on an uncertain basis”
[27, p. 262].

Hereby, (a) is often associated with (1), while (b) is associated with (2). The
reason for the latter is that once we have explicit abnormality assumptions we can
use the material implication as a conditional and Modus Ponens as an inference rule,
whereas the (uncertain) abnormality assumptions are added as additional premises
to the premise set. In the former case defeasible rules are applied to the premise set
which is taken for granted (i.e., certain).

By now it is obvious that ALs belong to category (b): after all, normality assump-
tions are made explicit in the fourth column of adaptive proofs. The assumptions
are generated by applications of the RC rule and stated in the fourth column of the
proof. We have seen that the minimal Dab-consequences together with a rationale
provided by the adaptive strategy determine which assumptions are considered safe
and which not.

Let us now take a closer look at where ALs fall according to the second distinction.

Recall that the consequence relation of ALs is reflexive and yet (most frequently)
nonmonotonic. This seems to indicate that we have a case of (1) where the reflexivity
mirrors the “solid basis” and the nonmonotonicity mirrors the “unsound (but still
rational)” reasoning.

But we should be more careful with our analysis. After all, the conditional infer-
ences by means of the RC rule can be thought of as having the form of a classi-
cal deduction, i.e., of disjunctive syllogism: from A v Dab(A) and the assumption
= Dab(A) derive by means of disjunctive syllogism A. Under this perspective ALs
implement plausible reasoning in the following way. We have two premise sets, I” and
e provides a solid basis, while £27 is an uncertain basis consisting of normality

16 Recall that 27 = {SA | A € 2).
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assumptions.!” Whereas PREM only allows for the introduction of premises from
the solid base, RC is a way of introducing premises from the uncertain base in such
a way that (i) a record is held of the used uncertain premises in the fourth column
of the proof, and (ii) the introduced normality assumptions are immediately applied
in an instance of disjunctive syllogism (as described above). Viewed in this way, we
only have a ‘deductive’ logic in which we formally distinguish between two types of
premises. The adaptive marking then handles which parts of the uncertain basis may
be considered safe in specific inferences and retracts inferences that are based on
unsafe assumptions. Let us demonstrate this with a familiar example. On the left side
we have a usual AL proof, on the right side a reconstruction that is more explicitly
in the style of plausible reasoning and in which RC is replaced by an argument that
makes use of disjunctive syllogism (DS) (where !A =4t cA A —A):

1 on PREM [ on PREMI1 [

2 oa PREM [%] oa PREM1 (%)

3 ob PREM [ ob PREMI1 [

4 (@ann) Dc PREM (%) (aAn) D PREM1 [%)

5 (bAn) Dc PREM [ (bAn)Dc PREMI1 [

6 nvn 1;RU [

6” “1n| PREM2 {(=1n)

6 n 1;RC {!n} n 6°,6”;DS {=!n}

7 cVlavin 1,2,4;RU 7

v T =la| PREM2 {la}

7 c 2,4,6; RC {la, n}|| ¢ 6”,7°,7;DS  {=la,=!n}
8’ avla 2; RU [}

v 8 a 2; RC {la} a 77,8’;DS {=la}

9’ c VbV 1,3,5; RU ]

v 97 =1 PREM2 {=1b}

9 c 1,3,5; RC {16, In}|| ¢ 67,9,9";DS {=!b, <!n}
10 —a Vv —b PREM [ —a Vv —b PREM1 [4]

11 la v !b 2,3,10;RU ¢ lav b 2,3,10;RU [%)

On the right side we use two premise introduction rules: PREM1 for the premises
in the solid base I" and PREM?2 for the premises in the uncertain premise set o
We use an additional “boxed” column to introduce these premises for the sake of
transparency. In the last column we keep a record of the used “uncertain” premises.
RU is a generic rule for all the non-defeasible (i.e., deductive) inferences that stem
from the lower limit logic. DS is disjunctive syllogism (we could have also just written
RU since DS is valid in the lower limit logic enriched by the “checked connectives”).
The question which parts of the uncertain premise set can be considered safe for
a given inference is analogous to the determination of the marking of lines. For
instance, according to the minimal abnormality strategy a line / with formula A and
arecord A C £2is marked at stage s iff, (i) there is no ¢ € @ (I") for which

17 A similar distinction can be found for instance in the ASPIC T -framework [27, 28] where we find
an ‘ordinary’ knowledge base K, that is uncertain and an ‘axiomatic’ solid knowledge base KC,,.
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(p;'ﬂ A = @, or (ii) for some ¢ € &, (I') there is no line I’ with formula A and a
record @ such that 9~ N & = ¢.

Altogether we now have a proof with only deductive inference steps and premise
introduction where the marking retracts inferences based on unsafe premises in the
uncertain premise set £27. Given this perspective ALs explicate plausible reasoning.

2.5.3.2 A Problem with Contraposition?

Formal models that explicate plausible reasoning have come under some criticism
due to the fact that for the deductive rules which are used also their contraposition
is available (most recently in Prakken [27] and Caminada in [29]). For instance,
Prakken gives the following example (illustrated in Fig.2.5a):

. Birds normally fly: b A —ab; D f

. Penguins normally don’t fly: p A —aby D = f

All penguins are birds: p D b

. Penguins are abnormal birds with respect to flying: p D ab;

. Tweety is observed as a penguin: o

. Animals that are observed as penguins are normally penguins: o A —abz D p

Now Prakken observes that we can construct an argument against applying 5 and
6 to infer p by means of applying contraposition to 4 and 6:

4. —ab; D —p
6. o A—p D abs

Were contraposition not available this move would be blocked. Also Caminada states
that given contraposition is available for the defeasible inference rules the principle
“to keep the effects of possible conflicts as local as possible” [29, p. 113] (see also
Hage [30, p. 109]) is violated. Note that besides the obvious conflict between f and
—f, 4 also introduces a conflict between p and —p. While Caminada argues that
contraposition should only be blocked in what he calls constitutive reasoning while
it is “perfectly reasonable” in epistemic reasoning,'® The example seems to indicate
that Prakken would go further. He argues in [27] that contraposition is “a property
which is too strong for default statements”.!”

Given the above analysis of ALs as a formal model for plausible reasoning we
should expect a similar scenario. And indeed, contraposition is available for con-
ditional inferences in ALs in the following sense. Suppose we can derive B from
A defeasibly on the condition A by RC. That means: A Fpp BV Dab(A). But

18 Caminada calls upon the distinction between epistemic and constitutive reasons in Hage [30,
p. 60]: “Epistemic reasons are reasons for believing in facts that obtain independent of the reasons
that plead for or against believing them. Constitutive reasons, on the contrary, influence the very
existence of their conclusions.”

19 In [27] Prakken also argues against ad hoc solutions such as to strictly prioritize perceptual
evidence since “the strength of perceptive inferences is highly context-dependent.” (see his footnote
10) or to model perceptual inferences in a non-defeasible way.
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Fig. 2.5 Tllustrations of the (a) (b)
examples
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then we also have < B b1, = A vV Dab(A) and we can thus derive < A from = B
on the same condition A.

An obstacle in reconstructing examples as the one above by Prakken in an AL is
that there is not one unique way to express it in ALs. Both, defaults and a defeasible
Modus Ponens mechanism that models default inferencing, may be represented in
various ways: for instance, in Part I we use a conditional that satisfies the so-called
KLM properties. Alternatively we could use material implication A D B preceded
by a dummy operator o(A D B) and adaptively activate them as much as possible
by making use of the abnormality o(A D B) A —(A D B).?’ Let us thus stay on
a more schematic level: suppose we have the following proof fragment from some
premise set I (illustrated in Fig.2.5b)

lop>b PREM ¢

lio PREM @
L p ..., 11; RC {ab5}
I3 b lo, 12; RU {ab}
Iy ~f ..., 123 RC {abf, ab,’}
Is f ..., 133 RC {ab?, ab] }
It is easy to see that in view of the lines /4 and /5 we can derive
ls abl 7 ab, ! 7 ab] l4,15; RD
In view of line /g all our conditional derivations on lines />, ..., /5 are marked.

Moreover, in view of the proof fragment: I Frrr, p D (i- v ab;f ) and I' FLLL

b (f\v/abg). Since p D>be ', T b pD (f\v/abf;). By simple manipula-

tions, I' b= p Vv ab;f v ab',f . Hence, we can produce the line

I35 p ... {ab,’, ab]}

In sum, the conflict between f and — f is not isolated. Note that in view of line /g
all the conditional inferences, including line /; with p, are marked. This shows that

20 Both, Joke Meheus and Erik Weber independently suggested this in a conversation.
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Fig. 2.6 Prakken’s problem: ai b aj b
abstract representation
b
l ab Z% J ab b?
ar by ar by
an-1 bm—l an-1 bm—l
n bm
[ a'bgn—] J abbm—l
anp— 1 —bm anp — 1 —bm

the conflict between f and — f spreads by effecting the defeasible inferences at lines
I> and I3 as well, since the corresponding abnormalities are involved in the minimal
Dab-formula. Moreover, other conflicts are derivable such as the one between p and
= p (however, the corresponding lines are marked).

Let us conclude this discussion with various remarks.

1. In a more abstract phrasing the problem Prakken points out for plausible rea-
soning (that makes use of rules for which contraposition is available) is as follows.
Suppose we have two sequences of rules aj — a» — -+ — a, and by — by —
-+« — by, such that (i) - —(a, A by,) and (ii) we have both a| and b; (see Fig.2.6a).
Due to the availability of contraposition we can construct an argument against any of
thea; (wherel <i <n):by > by — --- — by, —»> —a, = —dy_| — ... — —aq;.
Hence, instead of the obvious conflict in a, resp. b, we suddenly end up with a
conflict in each a;. Since the same holds for all b; (where 1 < i < m) and since we
are interested in a consistent consequence set we cannot—in view of symmetry—
conclude any a; nor any b; (given a; and bp).

We have shown by means of an example that whenever we have analogous
sequences of conditional inferences in ALs (see Fig.2.6b) we can (i) construct con-
ditional arguments for each = a; and (ii) derive a Dab-formula which contains all
the abnormalities in the conditions in the sequences:

Dab (fabgs, ...abgr . aby?, ..., ab_ }) 2.5)
In case this Dab-formula is minimal and there are no alternative ways to obtain an
inference for a;, the conditional inference for a; is marked and hence g; is not a
consequence. In this sense, Prakken’s scenario is reproduced in ALs.

2. However, in many concrete ALs the problem is nevertheless avoided. Take for
instance the ALs for default inferencing in Chap. 6. A default rule is represented by
a ~» b where ~ is axiomatized by means of the KLM-properties. Moreover, the logic
models a defeasible Modus Ponens as follows: from A and A ~~» B infer B unless
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we have e A. The latter, e A, expresses that the given circumstances are unusual for
the proposition A which may be witnessed by the truth of some C that is less normal
than A (this can be expressed by (A v C) ~» —C in view of the KLM-properties).”!
A proof for Prakken’s example may look as follows:

lo~p PREM 0
2pOb PREM
3pas—f PREM 0
4b~ f PREM 0
50 PREM 0

126 p 1,5; RC {e0}

127 p 2,6; RU {e0}

128 — f 3,6; RC {e0, op}

129 ¢ 4,7, RC {e0, ob}
10 o0V op V @b 8,9;RD ¢/

So far it seems as if the problem is reproduced since in view of the minimal
Dab-formula at line 12 our conditional inferences at lines 6-9 are marked.

The way the problem is avoided in this system is that e is ‘inherited’ along ~--
sequences: if A ~» B and eA then eB. Indeed, according to the KLM-properties,
if A ~~ B then B is at least as normal as A. Hence, if A is excepted (i.e., we have
an abnormal situation relative to A) then B is excepted as well (see Fig.2.5c for an
illustration: the dotted line indicates the ‘inheritance’). Thus, the Dab-formula at line
12 is not minimal, but can be shortened to e p V eb (and if we accept that p ~ b we
can further shorten it to eb). In any case this will lead to the unmarking of lines 6
and 7 (resp. also to the unmarking of line 8).

We can conclude from this that although—in principle—the fact that contrapo-
sition is available for the conditional inferences in adaptive logics can cause the
problem pointed out by Prakken, in concrete ALs it may nevertheless be avoided due
to specific properties of the lower limit logic that may lead to the shortening of the
Dab-formula (2.5).

3. Although we do get the “right” consequences in the example above (such
as p), some may still argue that some of the inferences for which the logic allows
(irrespective whether the corresponding lines are marked) are based on contrapositing
default inferencing. E.g., the logic allows for the following inference:

13 =p 2-4; RU {ep, ob}

Of course, given our discussion above, this line gets marked. However, the mere
fact that the logic allows for the inference may for some already be counter-intuitive.
In view of this it is a research challenge to see whether the standard format for
ALs can be adjusted in a way that allows for defeasible inferences that cannot be
contraposed.

21 For a detailed technical definition of the system see Chap. 6. An intuitive demonstration is enough
for the purpose of the current section.
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4. More research needs to be done on the question in which application con-
texts contraposition is a desired property of defeasible inferences. Caminada did an
important step in clarifying this issue in [29]: it seems very plausible that in many
contexts of epistemic reasoning contraposition is applicable while in many contexts
of constitutive reasoning it is not. Nevertheless, examples such as the one by Prakken
discussed above may indicate that the demarcation is not that smooth (see also [31]).

2.6 Some Properties of ALs in Standard Format

One of the merits of the standard format for ALs is that it comes along with many
nice properties. For any concrete logic formulated in this format, these properties do
not have to be proven since they have been shown generically to hold for any AL in
standard format. Let me introduce some of these properties in this section. Later, in
Chap. 4, I will point out some more specific properties related to premise sets. Most
of the properties that are presented in this section will be shown to hold for a more
general setting in Chap. 5. There and in the respective Appendix the reader can find
meta-proofs.

2.6.1 Properties of the Adaptive Consequence Relations

The first result shows that the semantic and the syntactic consequence relations
define identical relations. Indeed, by Theorem 2.4.3 and Theorem 2.4.9 we have the
following soundness and completeness result for both adaptive strategies:

Theorem 2.6.1. (Soundness and Completeness of AL). Where I’ C W: T L, A
iff I kAL A.

Soundness even holds for premise sets with “checked connectives”??:

Theorem 2.6.2. Where I’ CWT: I" Far, A implies I' IFaL, A.

The completeness doesn’t hold for premise sets with “checked connectives”, as
is shown in Sect.2.7.

By Definition 2.4.4, final derivability concerns finite stages of an adaptive proof.
However, it is important to notice that it is essential for the minimal abnormality
strategy that the extensions of the proof referred to in Definition 2.4.4ii may be
infinite. Indeed, as demonstrated in [1, p. 229], there are premise sets for which it is
true that for every way to finally derive some A at some line i there is an extension of
the proof that leads to the marking of line i such that only an infinite further extension
leads to the unmarking of line i.

22 We prove the corresponding theorem for the generalized standard format in Chap. 5 (see Corollary
5.4.3).
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Although final derivability does not ensure the stability of a line i at which some
A is finally derived with respect to its marking, for infinite proofs it is guaranteed
that there is a stage from which on line i is unmarked and remains so.

Theorem 2.6.3. Where I’ C W: I' FaL, A iff A is derivable at an unmarked line
of an AL-proof from I' that is stable with respect to that line.>

The next theorem states certain properties concerning the strength of the adaptive
consequence relation. It shows that AL is a reflexive and supraclassical (with respect
to the enriched language) strengthening of LLL. Moreover, the ‘bolder’ minimal
abnormality strategy leads indeed always to at least as many consequences (w.r.t. C)
as the reliability strategy.

Theorem 2.6.4. Where ' € W

(i) I' € Cnayr, (I') (Reflexivity)
(ii) Cnélf (I C Cnﬁ: (I") (Supraclassicality)
(iii) CnpLL (I') € Cnapr (I') € Caapm (1)

The next theorem states some closure properties of the adaptive consequence set.
The central result is that the adaptive consequences are a fixed point. If the AL is
again applied to its own consequence set of some premise set I”, nothing new will
be derived. This is a desirable property. Suppose the idealized case that our detective
at the end of the day reached all the final conclusions "’ based on some premises
I". Tt would be rather strange if next morning the same reasoning applied to I" U I’
would lead her to new conclusions since she did not gather any new evidence. If the
fixed point property would not hold she might never reach a final set of conclusions
for her case.

Theorem 2.6.5. Where I’ C W:

(i) CnpLL (Cnay (I')) = Cnaty, (I') (Redundancy of LLL with respect to AL)
(ii) CnaL (CnLL (I7)) = CnaL (I).
(iii) My (I') = My, (CnaL (IN) and hence Cnar, (I') = Cnarp (CnaL (IN)).
(Fixed Point/Idempotence)

Beside LLL that defines the monotonic core and the lower limit of the adaptive
strengthening, there is also an upper limit logic ULL. The upper limit logic explicates
the standard of normality of an AL. An AL can be seen as interpreting a premise
set in terms of its upper limit logic “as much as possible”. For premise sets that do
not give rise to abnormalities, i.e. premise sets I" for which no Dab-formulas are
in the LLL-consequence set of I", the AL-consequences are identical to the ULL-
consequences. Such premise sets are called normal. This can be defined for instance
in the following way: I" is normal iff U (I") = (. Evidently, given a normal premise

23 A proof from I” is stable with respect to a line [ iff the status of the marking (marked vs. unmarked)
of line / remains the same for every possible extension of the proof. This is shown in Appendix B
for the more generic setting in which n ALs are sequentially combined (see Corollary B.2.3 ): ALs
in standard format are a border case in whichn = 1.



44 2 The Standard Format for Adaptive Logics

interprets the interprets the
given information as given information
“normally as possible” rigorously as normal
lower limit adaptive upper limit
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. approximates
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Fig. 2.7 The relationship between LLL, AL, and ULL

set, we expect an AL to realize its standard of normality. The upper limit logic is
defined as follows:

Definition 2.6.1. Where 27 =4 { <A | A € 2}, ULL is characterized by the
following consequence relation:

Cryn (1) =ar Cnfiy, (U 27)

Cnbyyp = WO Cnfyy (r U 9*)

Moreover, My (I') =at ML (F U .Q;).
The following results show that ULL is indeed an upper limit to AL.
Theorem 2.6.6. Where I’ € W :

(i) CnarL (I') € Cnypr ().
(i)) Mypy, (I € My (1),
(iii) If I' is normal, then Cnar, (I") = CnyLL (I') and My (I') = My, (I).

Altogether we have (see also the illustration in Fig.2.7),
Corollary 2.6.1. Where I’ € W:

(i) CnpLLr (I") € Cnapr (I7) € Cnpapm (IN) € Cnyrr, (1)
(ii) My (5N S Mupm (5N S My (5) S My (D)

The properties featured in the next theorem are “cautious” weakenings of prop-
erties that often characterize monotonic logics.
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Theorem 2.6.7. Where I', "' C W:

(i) If I'" C Cnay (I') then Cnyy, (F U F/) C Cnay (I'). (Cautious Cut / Cumu-
lative Transitivity)
(ii) If " € Cnar, (I') then Cnay, (I') € Cnar, (I" U I'’). (Cautious Monotonicity
/ Cumulative Monotonicity)
(iii) If I'" C Cnay (I'), then Cnay, (F U F/) = Cnar, (I'). (Cumulative Indiffer-
ence / Cumulativity)

Cumulative indifference is a strengthening of the Fixed-Point property since it
entails the latter (given the reflexivity of AL).%* Moreover, it is a very desirable
property itself. Suppose the case on which our detective is working is of a very
complicated nature. Let the given evidence be I". Suppose further that in the evening
she arrives at some—but due to the complicated nature of the case not all—final
conclusions I'’. That is to say, for every A € I'' she is able to guarantee that no
further analysis of I" will lead to a withdrawal of A. For the adaptive proof this
means A is finally derivable. Cumulative indifference guarantees that in the next
morning she can reason on, on the basis of I" U I'/, i.e. she can rely on the insights
she won the day before. This has the advantage that, technically speaking, once she
established that some A is finally derivable, she doesn’t have to keep track of the
maybe very complicated conditions that enabled her to arrive at A, but rather she
may introduce A as a premise in an adaptive proof from I" U I,

The nonmonotonicity of ALs can easily be demonstrated by the case of our detec-
tive that was introduced in Sect.2.4. Let in the following x € {r, m}. Note that

Fl U {—'b} l_CLox C.
However, enhancing our premise set by {—a}, we have
It U {=b} U {—a} Fcrx c.

Also Cut/Transitivity is a property that does not hold for ALs in general. For instance
we have la cp, x ¢ V!a and ¢ V la -¢r, x ¢. However, la ¢ x c.
More generally the following can be proven.

Theorem 2.6.8. 2> Where I' € W: If Cnirr, (I') C Cnar (I'), then

(i) AL is nonmonotonic, and
(ii) AL is non-transitive.

There are other properties that are often discussed in the context of defeasible rea-
soning and nonmonotonic logics: Rational Monotonicity and Rational Distributivity.
The next section will demonstrate that these properties are not generically validated
in ALs. At the same time it will demonstrate that this is rather an advantage of ALs
since these properties are not without critical counter-examples.

24 The proof is trivial and left to the reader.
25 This is shown in [2].
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2.6.2 Some Remarks on Computational Complexity

In this section I offer only some brief remarks on the computational complexity
of ALs rather than providing a detailed survey of the given results. It would take
significant space to spell out the technical preliminaries of complexity studies in
the realm of the arithmetic hierarchy and hence lead us too far off the main course
of the present study. I will instead provide pointers to the relevant literature for the
interested reader.

While for most well-known formal accounts for nonmonotonic and defeasible
reasoning there are thorough studies investigating complexity-related issues, such
studies are sparse for ALs. Only rather recently some key results have been published.
There is the critical study by Horsten and Welch [32] which caused two replies by
adaptive logicians: [33] and [34]. Horsten and Welsh demonstrate that for some
premise sets the consequence relation of the inconsistency-adaptive logic CLuN"®
is Z‘g-hard in the arithmetic hierarchy. They argue that in view of this result the
usefulness of ALs as a tool that explicates defeasible reasoning is put into question.
In the technical study [33] Verdée proves that the minimal abnormality variant of the
same inconsistency-adaptive logic CLuN™ falls into an even higher complexity class
within the analytic hierarchy (he proves IT 11 -completeness). Nevertheless, in a reply
to the philosophical worries of Horsten and Welsh in [34] Batens et. al argue that such
a high complexity class is to be expected from any serious formal attempt to capture
the complexity of actual defeasible reasoning. It is not surprising then that many
formal systems for defeasible reasoning fall in similar complexity classes (see e.g.,
[35, 36] for circumscription, [37, 38] for (generalized) closed world assumption).

Recently, Odintsov and Speranski contributed one paper [39] studying the com-
plexity of some inconsistency-adaptive logics where they reaffirm and generalize
some of the previous results. Finally, there is a forthcoming study [40] by them
where these complexity results for the CLuN-based ALs are shown to hold gener-
ally for ALs in the standard format. For instance, the complexity upper bound 22 -
for the reliability strategy and I7 11 -for the minimal abnormality strategy are general-
ized for ALs in the standard format. The authors also investigate several interesting
special cases (such as the case where @ (I") is finite which is relevant for instance
for our study of sequential combinations of ALs in Sect.3.2.2).

2.6.3 Excursus on the Rational Properties

2.6.3.1 Rational Monotonicity

Besides cautious monotonicity there is another, in comparison stronger, weakening
of monotonicity: rational monotonicity.

If A€ Cny,(I') and A ¢ Cnr, (I" U {B}), then =~ B € Cnr, (I") (RM)
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The idea behind Rational Monotonicity is that, if adding B to the premise set " leads
to nonmonotonicity, then = B should be a consequence of I".

Rational Monotonicity is not a generic property of the consequence relation of
ALs in standard format. Counter-examples are easily found. Rational Monotonicity,
although an intuitive property in many cases, has also been criticized. In order to
demonstrate the criticism and the fact that ALs do not in general validate Rational
Monotonicity we “translate” an example by Stalnaker (see [41]) into the language
of CL,. Suppose some reliable though not infallible source S; tells us that

e Bizet is a French composer,— o f;
e Satie is a French composer,— o fs
e Verdi is an Italian composer,— oiy .

Another reliable though not infallible source S tells us that

e Verdi and Bizet are compatriots,— ocy p.

According to yet another reliable though not infallible source Sz,

e Verdi and Satie are compatriots,— ocys.

Obviously the following is valid: cy p D (—iy V = fp) and cy s D (—iy V — fs).
Let our premise set Ijy comprise sources S7 and S, and thus be

Tam = {ofB. o fs, oiv,ocy,p, cy,g D (—iv V = fp), cv,s D (miy V = fs)}.

The following proof fragment demonstrates how fs can be derived from I'jy.

Lofp PREM ¢
2ofs PREM 0
3 oiy PREM @
4 ocy PREM @
Scy.p D (miy V= fB) PREM ¢
6 cy,s D (—iv V—fs) PREM Y
7Tcy,g D (liv V!fp) 1,3,5;RU ¥
8 !CV,BV!iV\V/!fB 4, 7; RU [}
9 fs 2;RC {1fs}

The minimal choice sets for I'au are @ (I'am) = {{!cv,5}. {liv}. {!f5}} and the
set of unreliable abnormalities is U (Iam) = {!cv. 5. liv, ! f5}. Hence,

I'’m Fcr,m fs, and (2.6)
Iam et fs- 2.7)

Note further that there is a minimal abnormal CL,-model M of I'rm such that
Ab(M) = {liy} and M = ocy s. Hence
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TI'em FeL,m — ocys (2.8)
T'_m FeL,r = ocys (2.9)

Suppose now we take into account our source S3 and add ocy s to our premise
set I'rm. In this case we add the following lines to a proof from I'rm U {ocy, s}:

10 ocy.§ PREM ]
11 cys D (liv v ! fs) 2,3,6;RU ¢
12!6\/’50!1'\/\7!]05 10, 11; RU &

Note that at line 12 we have the following minimal choice sets of TRy U {ocy, s},

@12 (IFrm U {ocy s}) = {{lev.s. lev.s) {levs. U fsh liv) {lev.s, | B

Moreover, the set of unreliable abnormalities is

Ui2(Iam U {ocy s}) = {lev.s. lev.s, ! fs. liv, LB}

Hence, at this stage of the proof line 9 is marked according to both strategies. It is
easy to see that there is no extension of the proof that leads to the unmarking of
line 9. Since there is no other way to derive fs we have

TI'em U {ocy s} ¥cL.m fs, and (2.10)
I'mm U {ocy s} FoL.r fs- 2.11)

Altogether this shows that Rational Monotonicity is not valid in ALs. For reliabil-
ity this is demonstrated by (2.7), (2.9) and (2.11), for minimal abnormality strategy
it is demonstrated by (2.6), (2.8) and (2.10). As has been argued by Stalnaker, this is
also the intuitive behavior.

2.6.3.2 Rational Distributivity
Similarly, ALs do not in general validate Rational Distributivity:

IfA¢ Cn, ("' U{B}) and A ¢ Cny, (I" U{C}), then A ¢ Cny, (I' U{BV C})
(RD)
Consider the following example. A usually reliable, though not infallible source
Sy tells us that

e Peter had 6 points at the exam,— o pg;
e Sue had 5 points at the exam,— oss;
e Anne had 4 points at the exam,— oay.

Another also reliable but not infallible source S; informs us that

e Peter was the worst in the exam,— opy,.
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Now suppose that yet another reliable but not infallible source S3 states that
e Anne was the best in the exam,— oay.

Obviously we have p,, D (=ps V (—ss A —as)) and ap D (—as V (—=pe A =s5)).
Let I'rp comprise only source S7. Hence,

Trp = {opé, 085, 044, Pw O (ﬂpﬁ V (—ss A ﬁa4)), ap O (ﬁa4 \% (_‘P6 A _‘55))}

The following proof fragment demonstrates that s5 is not derivable from I'rp U
{opw}:

1 opg PREM ]

2 oS5 PREM ]

3 oay PREM ]

4 opy PREM 0

5 pw D (—pe V (—s5 A —ay)) PREM ]

6 !pw Vips Vv (Is5 Alag) 1,2,3,4,5;RU @

7 'pw V 1pg V Iss 6; RU Y

8 1pw V!pe Vlay 6; RU Y
79 55 2;RC {1ss}

Note that the minimal choice sets at this stage of the proof are @9(IrpU{opy}) =
{!pw}, {!ps}, {!ss, laa}}. It is easy to see that @ (I'rp U {opy}) = @9(IRp U {opy}).
Since the only way to derive ss is on the condition {!ss}, s5 is not derivable. Thus,

T'rp U {opw} ¥cLm 55 (2.12)
Similarly as above, U (I'gp U {opw}) = {!pw, !ps, laa, ls5} and hence
T'rp U {opw} FcL,r 5 (2.13)

Analogously it can be shown that

I'rp U {oap} ¥cL,m 5 (2.14)
I'rp U {oap} ¥cL,r 55 (2.15)

The following proof fragment demonstrates that ss is derivable from I'rp U
{opw V oayp} for both adaptive strategies and hence that Rational Distributivity does
not in general hold for ALs.

1 opg PREM ]
2 oss PREM ]
3 oay PREM ]
4 oap V opy, PREM ]
5ap D (—ag Vv (—pg A —s5)) PREM ]
6 puw D (—pe Vv (—s5 A —ay)) PREM ]
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Tlap Vlas Vv (Ips Alss) Vipy VvV 1,2,3,4,5,6;RU @
!P6 V (Is5 A lag)

8 lay Vlay Vv py V1 pe 7; RU )

9 55 2; RC {!ss}

Note that ®9(Irp U {opy Voap}) = {{lap}, {las}, {!pw}, {!pe}}. Again, it is
easy to show that ®(I'kp U {opy V oap}) = Po(IRp U {opy V oap}). Moreover
U(IRp U {opy Voap}) = {lap,!puw,as,pe}. Hence, line 9 is finally derived.
Thus,

I'rp U {opy V oap) FcL,m 85 (2.16)
I'rp U {opy V oap} FcL,r 85 2.17)

Note that (2.12), (2.14) and (2.16) show that Rational Distributivity does not
hold for CL™ and hence that it does not in general hold for ALs with minimal
abnormality strategy. Moreover, (2.13), (2.15) and (2.17) show that it also does not
hold for CL™. Hence Rational Distributivity does not in general hold for ALs that
employ the reliability strategy. The example shows that in some cases this is as
desired. Although Rational Distributivity holds for a great variety of examples, there
are some where it fails. In order for ALs to be a generic framework for defeasible
reasoning it is desirable that ALs provide means to handle the latter cases in an
intuitive way.

The fact that properties such as Rational Monotonicity and Rational Distributivity
do no in general hold for ALs does not mean that ALs may not be used in order to
characterize reasoning forms that explicate such properties. It only means that the
characterization has to be realized under a translation (see Sect.4.4).

2.7 The Necessity of Superimposing Classical Connectives

The reader may have the impression that, given a supraclassical lower limit logic
LLL, the superimposing of the classical “checked” connectives is redundant.?® Since
all the ALs introduced in the following parts of this book are based on supraclassical
lower limit logics it is important to avoid this confusion. For instance, some may think
that Dab-formulas Dab(A) = A1 V...V A, canbe simply expressed by A V... VA,
where V is the classical disjunction that is expressible in LLL (due to it being
supraclassical). This impression may be further strengthened by the fact that in many
papers that feature supraclassical lower limit logics checked symbols do not occur.
I was convinced of the redundancy of the checked connectives in cases in which
LLL is supraclassical until I encountered the following example. It can be presented
in a schematic and abstract form. We only need to presuppose that LLL is supraclassi-
cal and that abnormalities are denoted by ! A and formulated in L. Let {!A{, !As, ...}

26 See Sect.2.2.
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be the set of all abnormalities in £2. Let our premise setbe I = I'1 U I, where

Flz{!A,'\/!Aj|l§i<j}

=1 N (AVA)DAVIA_)|1l<n

I<i<j<n

Note that @ (I") = {¢; | i € N} where ¢; = 2\ {!A;}. Moreover I" k1, AV!A;
forevery i € N. Let M be a minimal abnormal model of I". By Theorem 2.4.6, there
is a ¢; such that Ab(M) = ¢;. Hence M = —!A;. Since M = AV !A;, M E A.
Hence I' IFaopm A.

In the following I will show that if formulas such as A Vv ! A, are treated as Dab-
formulas then the consequence set is not complete with respect to the semantics.

The reader is warned: In the following discussion I will incorrectly(!) treat
formulas of the type !A; Vv ...V !A, as Dab-formulas.

The problem is the following: (1) A cannot be produced as the second element
of a finite line i such that at some finite stage s line i is unmarked. In other words,
at every finite stage s all conditional derivations of A are marked. Definition 2.4.4
requires (a) that A is the second element of a line i and (b) that there is a finite stage s
at which line i is unmarked. Hence, A is not finally derived in any AL™-proof from
I' and thus I #apm A. Thus, AL™ is not complete for premise sets that contain
checked connectives.

To illustrate (1) let me go a bit through a sample proof from I"%’:

11A] V14, PREM 7

2 (1A VIA2) D (A VIAY) PREM 9
3AVIA LZRU ¢
144 3;RC {1A1}
51A; Vv 1A3 PREM 7
6142 v 1A3 PREM 7

7 Ni<i<j<3(Ai VIAj) D (A V!A;) PREM 7

8 AVIA; 1,5,6,7;RU ¢
%9 A 8; RC {142}

Note that at line 4 the minimal choice sets are {{!A}, {!A3}}. Since there is a
minimal choice set that intersects with all conditions on which A has been derived
so far, namely {!A1} line 4 is marked.

27 This example is formulated for the minimal abnormality strategy. A similar example was presented
by Frederik Van De Putte in [42].
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An analogous argument applies to line 9. The minimal choice sets are now
{{!A1, 1A%}, {1A1, !A3}, {!A2, 1A3}}. Again, the choice set {!A, !A>} intersects with
all the conditions of lines at which A has been derived, namely {!A;} and {!A»}.

The problem is: it is only possible to derive A on the condition {!A,} at some stage
sifall!A;V!A; € I where 1 < i, j < n+ 1 have been introduced in the proof. But
then some ¢, D {!A1,...,!A,} is a minimal choice set in @;(I") and hence all the
conditions of lines at which A has been introduced are marked since they intersect
with @,,.

This shows that at every finite stage of the proof every line that features A as
second element is marked. By Definition 2.4.4, A is not finally derived and hence
I Farm A.

When I confronted Diderik Batens with this “problem” and the proof fragment
above, he reminded me of the role of the superimposed “checked” classical con-
nectives.2® Recall that (a) premises are supposed to be formulated in £, and (b)
Dab-formulas Dab(A) are defined by \V/A. As a consequence, lines 4 and 9 are
unmarked in the proof above since for any stage s in the proof fragment above,
@, (I") = {#}. Indeed, A is finally derived at line 4. In order to see this suppose line
4 is marked in an extension of the proof above. We extend the proof further in such
a way that all formulas in Iy are derived by PREM and that A is derived on any
condition !A; where i € N. It is easy to see that (i) there is such an extension, (ii)
that line 4 is unmarked at this stage, and (iii) that the marking remains stable from
this stage on.

Of course, given a supraclassical LLL, whenever \/ A is produced at line / on
the empty condition in an AL-proof from some premise set I’ then also Dab(A) is
derivable on the empty condition, say on the next line /’. Hence, adaptive logicians
often conventionally formulate object-level proofs in such a way that the marking is
“shortcut”: the marking is as if at line / the Dab-formula Dab(A) has been derived and
the derivation of the actual Dab-formula Dab(A) is omitted in the presented proof.
By treating formulas of the type \/ A as Dab-formulas, no V connectives occur in the
proofs which simplifies the presentation. In most cases, unlike the example above,
this procedure is harmless in the sense that it produces the correct consequences.
Obviously such proofs can be translated in a straightforward way into formally
correct object-level proofs (by just adding a line I’ featuring Dab(A) on the empty
condition, whenever at a line /, \/ A has been derived on the empty condition).

I will follow this convention throughout most of the following parts of this book.

Finally, it should be mentioned that AL is always sound and complete for any
premise set I” C W if we first close I" under LLL™:

Theorem 2.7.1. Where I' = Cnfy (I): T lFaL A iff I FaL A.
Proof. “<": this follows by Theorem 2.6.2.

28 Tndeed, he had already written a draft for a section for his forthcoming book (see [2, Part 4]) that
discusses this problem with a similar example.
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“=": Let I' I-aLr A. Hence, for all M € M, (I"), M |= A. Hence, for all
M € My (I') forwhich Ab(M) C U(I"), M |= A.Thus, ru@\U@)) ko
A. By the compactness of LLL there is a finite A € £ \ U(I") such that
I'U A” lbpor A. Thus, I' b AV Dab(A). By the completeness of LLL,
AV Dab(A) e CnfEL(F) and thus also = ADDab(A) € CanL(F).Wenowprove
A in an AL"-proof from I" = Cnf;:L(F ) as follows: We introduce = ASDab(A)
on line 1 by PREM. Then we derive A on the condition A by RC on line 2. Since
no Dab-formulas are derived at this stage, line 2 is unmarked. Suppose line 2 is
marked in an extension of the proof at some stage s. For each minimal Dab-formula
O at stage s for which AN © # @ there is a ® C O such that Dab(®’) is
a minimal Dab-consequence of Cnf]tL(F) and ® N A = ¢J. This holds since
A C \NUT) = 2\ U(CantL(I’)). We extend the proof by introducing
Dab(®’) for all these ®’s. Let the resulting stage be s’. Obviously, by the con-
struction, Uy (I") N A = (.

The proof for minimal abnormality is similar and left to the reader. (]

By Theorem 2.6.1 and Theorem 2.7.1 we immediately get:
Corollary 2.7.1. Where I' CW or I' = Cnfyy (I): T IFarL Aiff T Far A.

2.8 Normal Selections: A ‘Credulous’ Strategy that is not in the
Standard Format

The difference between the two standard strategies manifests itself in the fact that
one, reliability, models a more ‘cautious’ and the other one, minimal abnormality,
a ‘bolder’ style of defeasible reasoning. That is to say, the consequence relation for
minimal abnormality is in many cases stronger than the one for reliability. However,
there is also a more rigorous way of distinguishing between credulous and skeptical
reasoning in the context of logics that model defeasible reasoning which can be found
(under different names) in various well-known systems such as default logic, inheri-
tance networks, abstract argumentation, Input/Output logic, the maximal consistent
subset approach, etc.

Join Approach A is a skeptical consequence of I iff A is valid in/implied by/etc.
all models/extensions/maximal consistent subsets/etc. of I”

Meet Approach A is a credulous consequence of I iff A is valid in/implied by/etc.
some interpretation/extension/maximal consistent subset/etc. of I".

Obviously, what is modeled by ALs in standard format (such as it is currently defined)
is the former, skeptical notion. However, there is also an adaptive strategy that is in
the spirit of the second, credulous notion.

According to the normal selections strategy A is a semantic consequence of I”
iff it is valid in a specific set of selected models of I". The latter sets are equiva-
lence classes of LLL-models that have the same abnormal part. Where M ~ M’
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Fig. 2.8 The quotient
structure M yym (I") /~

MLLL (F)

Mapgm (IN) [~ | 1)~ [ (M3)~ | (M13]~

Table 2.2 Equivalence class [M]~ € M ym (I') /~ represents a set of models

M1 M2 M3 M4 MS M6
M = —a, b, a, —b, —a, —b, —-a, b, a, —b, —a, —b,
c,n c,n —=c,n c,—n c,—n —c, —n
Ab(M) = {la} {'b} {la, b} {la, 'n} {!b, In} {la, b, \n}

iff Ab(M) = Ab(M'), M,y m (I") /~ is the quotient structure defined by the
equivalence relation ~ on the set of all AL™-models of I",%° (see Fig.2.8) and
M]~ ={M" € Myym (") | M ~ M’} we can define

Definition 2.8.1. I" IFapn A iff there is a [M]~ € M ym (I') /~ such that for all
M € [M]., M = A.

Alternatively this can be expressed by: I" IFapn A iff thereisa M € M m (I')
such that for all M’ € My () for which Ab(M') = Ab(M), M' = A (Fig.2.8).

Each equivalence class [M]. € M, m (I") /~ represents a set of models that
interpret the premise set I” “as normally as possible”. In each equivalence class this
is realized in a different way. In our example M| and M, (see Table2.2) belong to
different equivalence classes. For instance a model M7 for which Ab(M7) = {la}
belongs to the same equivalence class as M. We have for instance I I, n a since
forall M € [M3]~, M = a.

Each equivalence class offers a specific minimally abnormal interpretation of
the given Dab-consequences. If we find one interpretation such that A is validated
by all models that share this interpretation, A is considered a consequence. This
distinguishes the normal selections strategy from both the reliability and the mini-
mal abnormality strategy where A had to be valid in all models that offer sufficiently
normal interpretations (so, the reliable resp. the minimally abnormal models). Thus,
this makes the normal selections strategy more similar to the ‘meet’-approach that is
characteristic for credulous consequence relations, while the strategies of the stan-

29 The fact that ~ is a equivalence relation on M arLm (I") can be easily shown and is left to the
reader.
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dard format are more similar to the ‘join’-approach behind skeptical consequence
relations. For instance a is valid in all models that have the (minimally) abnormal
part {!b} and hence it is a consequence according to the normal selections strategy.
Note also that I [cr, m A, i.e. a is not a consequence according to the mini-
mal abnormality strategy. For instance the minimally abnormal model M; does not
verify a.

With Theorem 2.4.6 we immediately get:

Theorem 2.8.1. I" IFarn A iff there is a ¢ € ®(I') such that for all M € {M' €
Mygy (I | Ab(M') = ), M = A.

Similarly, in the proof theory the idea is, that if A is derivable on an assumption that
is not violated in some minimal abnormal interpretation of the Dab-consequences
then A can be considered a consequence. This is realized by means of the following
marking definition:

Definition 2.8.2 (Marking for normal selections, variant 1). A line [ with
condition A is marked at stage s, iff forall ¢ € &;(I"), AN # @.

In other words, a line with the condition A is unmarked in case thereisa ¢ € @ (I")
such that A N ¢ = . In the terminology of Sect.2.4.2.2 a line / is unmarked in case
the argument at line / is defensible.”

Otherwise the proof theory is the same as in the standard format: we again have
the three generic rules PREM, RU, and RC.

The good news is that this marking condition can be simplified in a way that no
reference need to be made to minimal choice sets:

Definition 2.8.3 (Marking for Normal Selections, variant 2). Line / is marked
at stage s iff, where A is the condition of line /, Dab(A’) has been derived on the
empty condition at stage s for some A’ C A. 3!

In Appendix A we show (merely on the basis of set-theoretic insights into choice
sets) that

Corollary 2.8.1. Where A C 2 is finite and I’ € WT:

(i) thereisa ¢ € @s(I") such that A N ¢ = @ iff there is no minimal Dab-formula
Dab(®) at stage s such that ® C A;

(ii) thereisap € @ (I") suchthat ANg = @ iff there is no minimal Dab-consequence
Dab(®) such that ® C A.

Note that (i) immediately implies the equivalence of the marking definitions.

30 The distinction between the skeptical and the credulous approach has been discussed in relation
to the distinction between justified and defensible arguments in [24, Sect. 4.3].

31 Yet another way of phrasing the marking definition in such a way that it leads to the same adaptive
consequences is by: Line / with condition A is marked at stage s iff Dab(A) is derived on the empty
condition at stage s. Obviously, if we can derive Dab(A’) for some A" C A at stage s on the
empty condition we can also derive Dab(A) on the empty condition and so eventually mark line /
according to the marking definition, variant 2.
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Considering the second marking definition it is evident that once a line is marked,
it will never be unmarked in a proof. Recall that this is unlike the marking in the
standard format where a line may be marked at some point of the proof but get
unmarked again at a later stage.

Let us have a simple demonstration by means of our detective case:

1 on PREM ¢
2(ann)Dc PREM ¢
3(bAan)Dc PREM ¢
4 oa PREM ¢
5 ob PREM ¢
6 —a Vv —b PREM ¢
7a 4; RC !a}
8b 5;RC Ib}
9n 1; RC !n}

10 la v 1b 4,5,6;RU ¢

11c 2,4,9;RC {la, In}
012anb 7,8;RU  {la, b}

13 —b 6,7:RU  {la}
014 b A =b 8,13;RU {la, b}

The first difference to the strategies of the standard format concerns lines 7 and 8:
both are marked according to reliability and minimal abnormality but not according to
normal selections. Similar as in the standard format lines 12 and 14 get marked: after
all, the disjunction of the members of the condition of these lines has been derived
at line 10 (cf. marking variant 2). What is most remarkable is that by means of
normal selections we can derive both b (line 8) and —b (line 13): for each respective
condition A there is a minimal choice set (note that @14(I") = {{!a}, {!b}}) that
has an empty intersection with A. However, line 14 with the formula b A —b gets
marked. Obviously, there is no minimally abnormal interpretation which validates
both abnormalities in the conditions: !a and !b.

Final derivability is defined as usual (see Definition 2.4.4). Hence, we define
I' Farn A iff A is finally derivable in a AL™ proof from I".

Given the equivalence of our two marking definitions, it is not surprising that
we get two corresponding representational theorems for the syntactic consequence
relation.

Theorem 2.8.2. Where I’ C W or I' = Cnf;:L (I'): ' Farn A iff there is a
A C 2 such that I’ b, AV Dab(A) and T ¥pL1, Dab(A).

Theorem 2.8.3. Where I' € W or I' = CnfEL (I'): T' Farn A iff there is a
A C 2 such that (a) I’ oL AV Dab(A), and (b) for some ¢ € @ ('), p N A = §.

Finally, this gives us soundness and completeness>:

32 The proof is straight-forward in view of Theorem 2.8.1 and Theorem 2.8.3. In Chap. 5 we prove
a generalized version of Theorem 2.8.4.
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Theorem 2.8.4. Where I' €W or I' = Cnfyy (I): T Farn Aiff I IFaLs A.

As a concluding remark it should be mentioned that the normal selections strategy
can be represented by means of the simple strategy under a translation. This will be
demonstrated in a future paper together with Joke Meheus.
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