Chapter 2
Hardware Trojan Detection: Untrusted

Third-Party IP Cores

In general, third-party IP (3PIP) cores fall into one of three categories: soft, firm, and
hard, depending on their format when they are supplied. Soft IP cores are described
using VHDL or Verilog and are the most flexible and popular cores in practice.
Firm cores are described and synthesized for specific libraries, while hard IP cores
are described at the physical level and are supplied as layout or GDSII file. Since
soft IP cores are the most widely used, detecting hardware Trojans in 3PIP, defined
as IP trust, has gained significant attention in the recent years.

Hardware Trojans can be inserted into 3PIPs by IP vendors during IP design
to steal security information/data from other IPs in the system. Detection of such
Trojans is extremely difficult since there is no known golden model for 3PIPs as IP
vendors usually provide specification and source code, both of which may contain
Trojans. The conventional side-channel techniques for IC trust are not applicable to
IP trust. When a Trojan exists in an IP core, all the fabricated ICs will contain
Trojans. The only trusted component would be the specification from the SOC
designer which defines the function, primary input and output, and other information
about the 3PIP that they intend to use in their systems. A Trojan can be very
well hidden during the normal functional operation of the 3PIP supplied as register
transfer level (RTL) code. A large industrial-strength IP core can include thousands
of lines of code. Identifying the few lines of RTL code in a soft IP core that represent
a Trojan is an extremely challenging task.

A case study that tries to address the IP trust problem is presented in [1]. This
chapter will present this case study in details. Several concepts such as formal
verification, code coverage analysis, and ATPG methods are employed in this case
study to achieve high confidence, whether the circuit is Trojan-free or Trojan-
inserted. It is important to note that a 3PIP source code is largely Trojan free; only
a few parts may be suspicious. The challenge is to identify the suspicious parts
that are most likely to be part of a Trojan. Suspicious signals are identified first by
coverage analysis. Removing redundant circuit and equivalence theorems reduces
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the number of suspicious signals. Sequential ATPG is used to generate patterns to
activate these suspicious signals. This method considers both the characteristics of
dormant Trojans and the redundant circuit.

2.1 A Case Study for Hardware Trojan Detection
in Third-Party Digital IP Cores

2.1.1 Formal Verification and Coverage Analysis

One of the important concepts in this case study is formal verification, an
algorithmic-based approach to logic verification that exhaustively proves the
functional properties of a design [2]. It contains three types of verification methods
that are not commonly used in the traditional verification, namely model checking,
equivalence checking, and property checking. All functions in the specification are
defined as properties. The specific corner cases in the test suite as they monitor
particular objects in a 3PIP could also be represented by properties, such as
worry cases, inter-block interfaces, and complex RTL structures. They can be
represented as properties wherever the protocols may be misused, assumptions
violated, or design intent incorrectly implemented. Formal verification uses property
checking to check whether the IP satisfies those properties. With property checking,
every corner of the design can be explored. For example, in benchmark RS232,
there are two main functionalities in the specification: (1) transmitter, and (2)
receiver. Figure 2.1 shows the waveform of the transmitter. Take the start bit as
an example; with Rst ==1"b1, clk positive edge, and xmitH == 1’b1, the output
signal Uart_xmit will start to transmit start bit “0”. This functionality is described
using the SystemVerilog property shown in Fig. 2.2, and the corresponding assertion
is defined simultaneously. The remaining items in the specification are also
translated to properties during formal verification. Once all the functionalities
in the specification are translated to properties, coverage metrics can help identify
suspicious parts in the 3PIP under authentication. Those suspicious parts may be
Trojans (or part of Trojans).
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Fig. 2.1 Transmitter property in the specification stage
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01:  property el;

02: @(posedge uart_clk) disable iff (Rst)

03: $rose(xmitH) |— > ##1 (vart. XMIT_dataH==0);
04: endproperty

06: al: assert property( el );

Fig. 2.2 One of the properties and assertions definitions for RS232

01: Line No Coverage Block Type
02: 69 1 ALWAYS
03: 70 1 CASEITEM
04: 71 | CASEITEM
05: 72 0 CASEITEM
06: 73 | CASEITEM
07: 74 0 CASEITEM
08: 82 | ALWAYS
09: 82.1 1 IF

Fig. 2.3 Part of the line coverage report

Coverage metrics include code coverage and functional coverage. Code coverage
analysis is a metric that evaluates the effectiveness of a test bench in exercising the
design [3,4]. There are many different types of code coverage analysis, but only
a few of them are helpful for IP trust, namely line, statement, toggle, and finite
state machine (FSM) coverage. Toggle coverage reports whether signals switch in
the gate-level netlist while the other three coverage metrics show which line(s)
and statement(s) are executed, and whether states in FSM are reached in RTL
code during verification. Figure 2.3 shows parts of line coverage report during the
simulation with RS232. This report shows that lines 72 and 74 are not executed,
which helps improve the test bench by checking the source code. If the RTL code
is easily readable, special patterns that can activate those lines will be added to the
test bench. Otherwise, random patterns will be added to verify the 3PIP.

Functional coverage is the determination of how much functionality of the design
has been exercised by the verification environment. The functional requirements are
imposed on both the design inputs and outputs and on their interrelationships by
the design specifications from SOC designer (i.e. IP buyers). All the functional
requirements can be translated as different types of assertion, as in Fig.2.2.
Functional coverage checks those assertions to see whether they are successful or
not. Table 2.1 shows part of the assertions coverage report (Assertion al is defined
in Fig. 2.2). The number of Attempts in the table means there are 500, 003 positive
edge clocks during the simulation time when the tool tries to check the assertion.
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Table 2.1 Part of the assertion report with RS232

Assertion Attempts Real Success Failure Incomplete
test.uartl.uart_checker.al 500,003 1,953 0 0
test.uart].uart_checker.a2 1,953 1,952 0 1

The Real Success represents the assertion success rate while Failure/Incomplete
denote the frequency of assertion failure/incomplete. When there are zero Failures,
this property is always satisfied.

If all the assertions generated from the specification of the 3PIP are successful
and all the coverage metrics such as line, statement, and FSM are 100 %, then it
can be assumed with high confidence that the 3PIP is Trojan-free. Otherwise, the
uncovered lines, statements, states in FSM, and signals are considered suspicious.
All the suspicious parts constitute the suspicious list.

2.1.2 Techniques for Suspicious Signals Reduction

Based on the formal verification and coverage metric, a flow is proposed to verify the
trustworthiness of 3PIP in [1]. The basic idea of the proposed solution is that without
redundant circuit and Trojans in a 3PIP, all the signals/ components are expected to
change their states during verification and 3PIP should function perfectly. Thus, the
signals/components that stay stable during toggle coverage analysis are considered
suspicious, as Trojan circuits do not change their states frequently. Each suspicious
signal is then considered as the TriggercEnablex. Figure 2.4 shows the flow
to identify and minimize the suspicious parts, including test pattern generation,
suspicious signal identification, and suspicious signal analysis. Each step in the
figure will be discussed in detail in the following.

2.1.2.1 Phase 1: Test Bench Generation and Suspicious
Signal Identification

In order to verify the trustworthiness of 3PIPs, 100 % coverage of the test bench
is best. However, it is very difficult to achieve 100 % coverage for every 3PIP,
especially those with tens of thousands of lines of code. In the flow, the first step
is to improve the test bench to obtain a higher code coverage with an acceptable
simulation run time. With each property in the specification and basic functional
test vectors, formal verification reports line, statement, and FSM coverage for the
RTL code. If one of the assertions fails even once during verification, the 3PIP
is considered untrustworthy, containing Trojans or bugs. If all the assertions are
successful and the code coverage is 100 %, the 3PIP can be trusted. If at least one
assertion fails or the code coverage is less than 100 %, more test vectors need to
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Fig. 2.4 The proposed flow for identifying and minimizing suspicious signals

be added to the test bench. The basic purpose of adding new vectors is to activate
the uncovered parts as much as possible. But the verification time will increase
as the number of test vectors increases. With the acceptable verification time and
certain coverage percentage, both defined by the IP buyer, the final test bench will
be generated and the RTL source code will be synthesized for further analysis.

2.1.2.2 Phase 2: Suspicious Signals Analysis

Redundant Circuit Removal (RCR): Redundant circuits must be removed from
the suspicious list since they also tend to stay at the same logic value during
verification, and input patterns cannot activate them. Removing a redundant circuit
involves sequential reasoning, SAT-sweeping, conflict analysis, and data mining.
The SAT method integrated in the Synopsys Design Compiler (DC) is used in
this flow.

Another method to remove redundant circuits is developed in [1]. Scan chains are
inserted into the gate-level netlist after synthesis for design testability, and ATPG
generates patterns for all the stuck-at faults. The untestable stuck-at faults during
ATPG are likely to be redundant logic. The reason is that if the stuck-at fault is
untestable, the output responses of the faulty circuit will be identical to the output
of the fault-free circuit for all possible input patterns. Thus, when ATPG identifies
a stuck-at- 1/0 fault as untestable, the faulty net can be replaced by logic 1/0 in the
gate-level netlist without scan-chain. All the circuits driving the faulty net will be
removed as well. Figure 2.5a shows the circuit before redundant circuit removal.
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Fig. 2.5 (a) Before removing the redundant circuit with untestable F stuck-at-0 fault and (b) After
removing the redundant circuit

The Stuck-at-0 fault of net F is untestable when generating patterns. Net F will be
replaced by 0 and the gate G driving it will be removed from the original circuit, as
shown in Fig. 2.5b.

After redundant circuit removal, toggle coverage analysis for the gate-level netlist
without scan chain will identify which signals do not toggle (also called quiet
signal) during verification with the test bench generated in Phase 1. These signals
will be considered suspicious and added to the suspicious list. By monitoring these
suspicious signals during verification, the authors obtain the logic value those signal
are stuck at.

Equivalence Analysis: Fault equivalence theorems are known to reduce the
number of faults during ATPG [5]. Similarly, the authors develop suspicious signal
equivalence theorems to reduce the number of suspicious signals in [1].

Theorem 1. If signal A is the D pin of a flip-flop (FF) while signal B is the Q pin
of the same FF;, the quiet signal A makes signal B quiet. Thus signal A is considered
equal to B, which means if the pattern that can activate A is found, it will activate
B as well. Then signal B will be removed from the suspicious signal list.

As the QN port of a FF is the inversion of the Q port, they will stay quiet or
switch at the same time. Thus the suspicious signal B would be considered equal to
A and should be removed from the suspicious list.

Theorem 2. If signal A is the output pin of an inverter while signal B is its input,
they will stay quiet or switch at the same time. Thus the suspicious signal B would
be considered equal to A and should be removed from the suspicious list.

Theorem 3. One of the input of AND gate A stuck-at-0 will cause the output B to
stay quiet and one of the input of OR gate C stuck-at-1 will make the output D high
all along. Thus, for AND gate, B stuck-at-0 is identical to A stuck-at-0, while for
OR gate, D is identical to C stuck-at-1.

Sequential ATPG: After reducing the number of suspicious signals by applying
the above equivalence theorems, the authors use sequential ATPG to generate
special patterns to change the value of certain signals during simulation in [1].
Stuck-at faults are targeted by the sequential ATPG to generate a sequential pattern



2.1 A Case Study for Hardware Trojan Detection in Third-Party Digital IP Cores 25

to activate the suspicious signals when applied to the 3PIP. If the 3PIP functions
perfectly with this pattern, the activated suspicious signals are considered part of
the original circuit. Otherwise, there must be malicious inclusion in the 3PIP.

2.1.3 Simulation Results

The flow is applied to the RS232 circuit. 9 Trojans from the original design and 10
Trojans from [6] are inserted into the 3PIP. In total, there are 19 RS232 benchmarks
with one Trojan in each IP. The following presents the simulation setup and test
bench analysis for the 19 Trojan-inserted benchmarks. Next, the results of redundant
circuit removal and the reduction of suspicious signals will be presented. Finally,
Trojan coverage analysis will be discussed.

2.1.3.1 Benchmark Setup

Currently, there are over 80 benchmarks with different Trojans in the Trust-Hub [6],
from which 51 benchmarks are at the RT Level. Readers can visit [6] for more details
about the specification, structure, and functionality of these Trojans in the 10 RTL
benchmarks. However, the other 9 Trojans are briefly described in the following:

Trojanl: The trigger of Trojan 1 is a special input sequence 8'ha6 — 8'h75 —
8'hc0 — 8'hf f. The payload changes the FSM in the transmitter of RS232 from
state Start to Stop, which means that once the Trojan is triggered, RS232 will
stop transmitting data (outputdata = 8'h0). Since the trigger of the Trojan is
a sequence of four special inputs, the probability of detecting the Trojan during
verification is 1/ 232 1f the baud rate is 2,400 and RS232 transmits 240 words
in one second, it will take 207.2 days to activate the Trojan and detect the error.
In other words, it would be practically impossible to detect it by conventional
verification. When this Trojan is inserted into RS232, an FSM is used to describe
the Trojan input sequence. A three-bit variable state represents the FSM.

Trojan2: This Trojan only adds four lines to the original RTL code. If the
transmitting word is odd and the receiving word is 8'haa, RS232 will stop
receiving words. This Trojan is less complex compared to Trojan 1, however,
it provides opportunities to demonstrate the effectiveness of each step of the
proposed flow.

Trojan3: The trigger of Trojan 3 is the same as that of Trojan 1, but the payload
is different. Trojan 1 changes the state machine while Trojan 3 changes the shift
process. The eighth bit of the transmitting word will be replaced by a Trojan
bit during transmission. The Trojan bit could be authentication information, the
special key to enable the system, or other important information.

Trojan4: Trojan 4 is designed to act like a time bomb. A counter is inserted into
RS232 to count the number of words that have been sent out. After sending
10’'h3ff words, the Trojan will be activated. The sixth bit of the transmitting
word will be replaced by a Trojan bit.
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Table 2.2 Analyzing the impact of the test bench on coverage metrics (a benchmark with Trojan 1
is used)

Test Bench # Test Bench 1 Test Bench 2 Test Bench 3 Test Bench 4 Test Bench 5

Test patterns # 2,000 10,000 20,000 100,000 1,000,000

Verification time 1 min 6 min 11 min 56 min 10h

Line coverage (%) 89.5 95.2 98.0 98.7 100

FSM state coverage (%) 87.5 87.5 93.75 93.75 100

FSM transition 86.2 89.65 93.1 96.5 100
coverage (%)

Path coverage (%) 77.94 80.8 87.93 97.34 100

Assertion Successful Successful Successful Successful ~ Failure

Trojan5:  After 24'hf fffff positive edge clock, this Trojan’s enable signal will
become high. The sixth bit of the transmitting word will be replaced by a Trojan
bit.

Trojan6: If RS232 receives “0” when the system is reset, the Trojan will be
activated. The eighth bit of the transmitting word will be replaced by a Trojan
bit.

Trojan7: When the transmitter sends a word 8’401 and the receiver receives a
word 8'hef at the same time, the Trojan will be activated. A Trojan bit will
replace the first bit of the transmitting word.

Trojan8 & 9:  These Trojans do not tamper the original function of RS232 but add
extra one stage (Trojan 8) and three stage (Trojan 9) ring oscillator to the RTL,
which will increase the temperature of the chip quickly if they get activated.

2.1.3.2 Impact of Test Bench on Coverage Analysis

All the items in the specification are translated into properties and defined as
assertions in the test bench. Assertion checkers will verify the correctness of
assertions by SystemVerilog. Another important feature of a test bench is the input
patterns. Some test corners need special input patterns. The more input patterns in
the test bench, the more, for example, lines will be covered during verification.
Table 2.2 shows five test benches with different test patterns and verification
times for various coverage metric reports for the RS232 benchmark with Trojan 1.
Generally, the verification time will increase with more test patterns and the code
coverage will be higher as well. For Test Bench 1 to Test Bench 4, all the coverage
reports are less than 100 % and all the assertions are successful, which indicates
that the Trojan is dormant during the entire verification. The special test patterns
added in Test Bench 5 increase the pattern count significantly and can activate the
Trojans inserted in the benchmark. 100 % code coverage could be achieved with
these additional test patterns. If one of the assertion experiences a failure, it signifies
Trojan activation and the RS232 will give an erroneous output. One can conclude
that the IP is Trojan-inserted. However, it is not easy to generate a test bench with
100 % code coverage for large IPs, and the verification time will be extremely long.
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This phase of the flow can help improve the quality of the test bench. Given the
time-coverage trade off, Test Bench 4 is selected for further analysis.

2.1.3.3 Reducing the Suspicious Signals

All the 19 benchmarks with different Trojans are synthesized to generate the gate-
level netlist. The removal of redundant circuits is done during the synthesis process
with special constrains using the Design Compiler. The simulation results are shown
in Table 2.3. The second column in the table shows the area overhead of each
Trojan after generating the final layout. As the table shows, Trojans are composed
of different sizes, gates, and Structures, as well as different triggers and payloads
as previously mentioned. The smallest Trojan has only 1.15% area overhead.
The percentage of Trojan area covered by suspicious signals SS-Overlap-Trojan
is obtained by SS-Overlap-Trojan:x—ig where Ngg is the number of suspicious
signals and Nrg is the number of Trojan signals. The results in Table 2.3 show
that SS-Overlap-Trojan is between 67.7 % and 100 %, as shown in seventh column.
If all the suspicious signals are part of the Trojan, the SS-Overlap-Trojan would be
100 %. This indicates that the number of signals in the final suspicious list fully
overlapped with those from Trojan. This is an indicator of how successful the flow
is at identifying Trojan signals. In addition, if the Trojan is removed or detected by
sequential ATPG, the SS-Overlap-Trojan would also be 100 %.

Test Bench 4 is used to verify using the gate-level netlist and toggle coverage
analysis reports which signals in each Trojan-inserted circuit are not covered by
the simulation with all the successful assertions. Those quiet signals are identified
as suspicious. The number of suspicious signals of each benchmark is shown in
the third column of Table 2.3. Different benchmarks have a different number of
suspicious signals based on the size of its Trojans. The larger the Trojan is, the
more suspicious signals it has. On the other hand, the suspicious signals’ stuck-
at values are monitored by verification. All stuck-at-faults are simulated by the
ATPG tool with scan chain in the netlist. If the fault is untestable, the suspicious
circuit is a redundant circuit and will be removed from the original gate level netlist,
in addition to the gates that drive the net. The number of suspicious nets after
redundant circuit removal is shown in the fourth column of Table 2.3. As can be
seen in the table, the suspicious nets of benchmarks with Trojan 8 and Trojan 9 are
zero, which means that if the redundant circuits are removed in the two benchmarks,
the benchmarks will be Trojan-free. The reason that redundant circuit removal can
distinguish Trojans is that some Trojans are designed without payload and have no
impact on circuit functionality. Thus it can be concluded that such Trojans can be
removed by redundant circuit removal.

The remaining suspicious nets of each benchmark are needed to be processed
by equivalence analysis and sequential ATPG. The fifth and sixth columns in
Table 2.3 show the number of suspicious signals after the first two steps. It can
be concluded that equivalence analysis can reduce a large number of suspicious
signals, and sequential ATPG can be effective as well. For benchmarks with Trojan 2
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Fig. 2.6 Average Trojan I T 1
signals/Suspicious signals in
19 benchmarks

e

o

W
L

e
o

0.85 }

e

=

W
L

Trojan Signals/Suspicious Signals
o o
~ -]

L L

2 3 4

o
o
n

Step (1 & 2:Redundant Circuit Removal;
3:Equivalence Analysis; 4: Sequential ATPG)

and Trojan 6, the sequential ATPG can generate sequential patterns for the stuck-at
faults in the suspicious signal. The sequential test patterns improve the test bench
and increase its coverage percentage. Even though the coverage percentage is not
100 %, some assertions experience failure during simulation. Thus, the benchmarks
with Trojan 2 and Trojan 6 are identified as Trojan-inserted.

The flow is implemented on 10 trust benchmarks from the Trust-Hub [6] and
the results reported in rows 11-20 in Table 2.3 show that the presented flow can
effectively reduce the total number of suspicious signals. In addition, as shown
in seventh column, there is a good overlap between the number of suspicious
signals and the actual Trojan signals inserted into each benchmark. However, some
benchmarks experience low SS-Overlap-Trojan, such as RS232-TROCS02PIO0, since
only part of this Trojan was activated during simulation.

2.1.3.4 Trojan Coverage Analysis

In the suspicious list, not all of signals are a result of Trojans. However, the
TriggerEnable signal must be in the suspicious list if the IP contains a Trojan.
Once one net is identified as part a Trojan, it can be concluded that the 3PIP is
Trojan-inserted. All the gates driving this net are considered to be Trojan gates.
Figure 2.6 shows that the percentage of Trojan signals in the suspicious list increases
significantly with the flow. As the authors apply different steps (step 1-4) to the
benchmarks, 72 %, on average, of the suspicious signals are of the result of Trojans
after redundant circuit removal with synthesis and ATPG in the 19 benchmarks.
However, the percentage increases to 85.2 % when equivalence analysis is done and
93.6 % of signals in the suspicious signal list come from Trojans after sequential
ATPG is applied to these benchmarks.
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2.2 Summary

In this chapter, a case study is presented to verify the trustworthiness of 3PIPs,
involving formal verification, coverage analysis, redundant circuit removal, sequen-
tial ATPG, and equivalence theorems. The code coverage generates the suspicious
signals list. Redundant circuit are removed to reduce the number of suspicious
signals. Equivalence theorems are developed for the same purpose. Sequential
ATPG is used to activate these suspicious signals and some Trojans will be detected.
However, more work is needed to get 100 % hardware Trojan detection rates
in 3PIPs.
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