
Chapter 2
Techniques of Decision Tree Induction

Finding optimal DT for given data is not easy (with exceptions of some trivial cases).
The hierarchical structure of DT models could suggest that the optimization process
is also nicely reduced with subsequent splits, but it is not so. It is important to realize
that optimization of a criterion for tree node is not the same as optimization of the
whole tree or even subtree. The difference has been proved formally by de Sá (2001)
for decision trees of some specific, simple form—where each class is represented
by one leaf. On this assumption, each tree node can be assigned a subset of class
labels in such a way that the root node is assigned the full set of class labels, and
subsequent splits divide the set of labels assigned to the node being split into disjoint
parts. Further assumption of independence of the features used along each path of
the tree leads to the conclusion that probability of correct classification to class ck is
given by

PC (ck) =
nk−1∏

ik=1

PC (ck |Nik ), (2.1)

where (N1, . . . , Nnk ) is the tree branch ended with the leaf assigned ck label and
PC (ck |Ni ) is the probability of correct decision at node Ni . Then, the probability of
correct classification by the whole tree is

PC (T ) =
∑

ck∈C
P(ck)

nk−1∏

ik=1

PC (ck |Nik ). (2.2)

On the other hand, the probability of correct classification at node N is a linear com-
bination of probabilities of correct classification of objects belonging to subsequent
classes:

PC (N ) =
∑

ck∈C(N ) P(k)PC (ck |N )
∑

ck∈C(N ) P(k)
, (2.3)
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12 2 Techniques of Decision Tree Induction

where C(N ) is the set of class labels assigned to node N . As a result, optimization
of this probability can not be equivalent to optimization of PC (T ), because the latter
depends nonlinearly on subsequent PC (ck |N ).

With more general definition of DTs (for example, the one presented in Sect. 1.2),
the dependencies of tree accuracy on node accuracies is yet less straightforward, so
optimization at each tree node can also be quite different from the optimization of
the whole tree. It means that to find a global optimum, one would have to examine
all possible trees, but even in simple (but not trivial) cases, it is not possible, because
the number of possible trees is usually infinite (or at least very large, as it grows
exponentially with target tree depth). Therefore, in practical DT induction, the trees
are constructed with heuristic search methods. Since classification accuracy at tree
nodes does not directly affect the accuracy of the whole tree, instead of the accuracy
criterion, other measures of split quality are used as heuristics and turn out to be
more valuable.

Practical approaches put some constraints on the domain (assume some form of
node split functions) and perform a search based optimization in such limited space of
models. Scientists working in the area have come up with large number of different
ideas of how to restrict the search and how to optimize model selection. It is not
possible to list them all even in a book, but it is possible to present the most interesting
contributions to the field, proposed in recent decades. It would not make much sense
to present many similar solutions, so this chapter reviews the most popular kinds of
decision tree algorithms and some assessed as very interesting or possibly valuable.
Of course, the selection is subjective, but it definitely can give a good grasp of the
field, even to a novice to machine learning, and good orientation in the area to people
who do not have everyday experience in this branch of computational intelligence.

2.1 Recursive Top-Down Splits

The most common approaches to decision tree induction are based on recursive
top-down splits of the training dataset. Given a method to split DT nodes, or more
precisely, to split the training data corresponding to the node, it is executed at each
tree node to find the best splits. Denoting such split method by BestSplit(), the
recursive DT construction algorithm can be formally written as Algorithm 2.1. Most
often, splits are found with an exhaustive search through the collection of all possible
splits of the node at hand. In such approaches, the BestSplit function analyzes each
candidate split with a split quality measure (SQM) provided as one of the most
significant configuration parameters of the method. Many split quality measures are
based on common idea of impurity reduction (or purity gain). Provided a measure of
data sample purity (homogeneity), split quality may be estimated as the increase of
the homogeneity between the tree nodes after the split and before the split. Impurity
measures (or criteria or indices) should satisfy some conditions to be compatible
with the idea: a node containing data objects representing one class only should get
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minimum possible value of the index (usually zero). Maximum values should be given
to maximally mixed samples (all classes represented by the same number of objects).

Algorithm 2.1 (Common DT induction approach)

Prototype: CommonDTRec(D,BestSplit)
Input: Training dataset D, node splitting procedure BestSplit.
Output: Decision tree (= the root node of the tree).
The algorithm:

1. s ← BestSplit(D)

2. if s �= ⊥ then /* a split has been returned */

a. {D1, . . . , Dn} ← s(D) (split node N)
b. for i = 1, . . . , n do

Ni ← CommonDTRec(Di , BestSplit)
c. Children← (N1, . . . , Nn)

else
Children←⊥

3. return (D, s, Children)

Denoting the purity criterion as I , we get the following formula of purity gain
(impurity reduction):

ΔI (s, D) = I (D)−
k∑

i=1

|Di |
|D| I (Di ) (2.4)

where s is the split, D is the dataset to be split and s(D) = (D1, . . . , Dk). Given the
index I , the best splits of dataset D are those maximizing ΔI (s, D).

Exhaustive search for best split guarantees local maximum, however can be costly.
To avoid the cost, the exhaustive search is sometimes replaced by statistical tests
and/or discrimination methods. Statistical tests can determine the features which
seem to maximize the probability of providing attractive data splits. Discrimination
methods can calculate split points without the necessity of checking all possible
splits. Separating feature selection from split determination may significantly reduce
computational complexity of a single split procedure, but it is important to realize
that it does not necessarily imply faster tree construction (the resulting trees may be
larger, so more splits may compose the final trees).

On the other hand, yet more complex search methods can be run, to examine split
advantages more thoroughly. For example, one can estimate split quality on the basis
of analysis of potential further splits. More details on DT search procedures can be
found in Sect. 3.1.1.

Split criteria and search methods are not all the differences between DT induction
algorithms. Some methods use only binary splits, while others accept splits into
more than two subnodes. In some trees, only univariate splits are allowed and others
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perform multivariate analyses. Many more detailed differences could be enumerated.
The following sections present many DT induction algorithms in many interesting
aspects. Some alternative collections of decision tree induction techniques can be
found for example in Murthy (1998), Rokach and Maimon (2008, 2010), Kotsiantis
(2011). More organized analysis and a unified model of DT induction methods is the
subject of Chap. 3.

2.2 Univariate Decision Trees

Numerous DT construction algorithms result in models where splits are performed
on the basis of simple conditions concerning single features. Decision borders of such
models are perpendicular to axes of the space of data object descriptions. From one
point of view, it is a serious limitation of the approaches, but from another, decisions
can be described with readable formulae making the models 1comprehensible and
thanks to that easier acceptable by experts in many fields, for example in medicine,
where a responsible clinician can accept support from an artificial decision system
only if it provides comprehensible descriptions of its suggestions.

2.2.1 ID3

Iterative Dichotomiser 3 (ID3) (Quinlan 1986; Mitchell 1997) is one of the earliest
ideas of DT induction. Its split criterion was founded on information theory. The most
serious drawback of ID3 is the requirement that the data description may include only
discrete features. When the original data table contains numeric features, they must
be first discretized. Success of data mining processes consisting of data discretiza-
tion and final model creation usually depends on the former part more than on the
latter. Therefore, estimation of the efficiency and accuracy of ID3 in application to
continuous data does not make much sense, because with one discretization method
the results may be very good and with another one—completely wrong.

The method is a typical example of top-down recursive induction presented in
Algorithm 2.1. Split qualities are estimated with the purity gain criterion (2.4) using
entropy as node impurity measure:

IE (D) = HC (D) = −
∑

c∈C
P(c|D) log2 P(c|D). (2.5)

Such combination of formulae (entropy reduction) is called information gain (IG)
criterion:

I G(s, D) = ΔIE (s, D). (2.6)
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In practice, the probabilities of classes within the node N are usually estimated
by ratios nc

n of the numbers of objects in node N data representing class c and
the numbers of all objects falling into N . When implementing the information gain
criterion for the sake of DT induction, one usually simplifies the formulae. Converting
expressions according to the equality

−
∑

c∈C

nc

n
log

nc

n
= log n − 1

n

∑

c∈C
nc log nc,

the information gain resulting from the split of N into parts N p can be written as

I G = log n + 1

n

(
−

∑

c

nc log nc −
∑

p

n p log n p +
∑

p

∑

c

n p
c log n p

c

)
. (2.7)

Because in DT induction we are interested in comparison between splits, not in
precise calculation of IG, the constant parts of the formula given above can be ignored,
and only the second and third components in the big parentheses need to be calculated.

In each step of ID3 algorithm, a node is split into as many subnodes as the number
of possible values of the feature used for the split. The exhaustive search for best
split, in this case, just estimates the quality of each feature, because only one split is
possible per feature. The feature offering maximal entropy reduction is selected, the
node split, and the feature used for the split is removed from the data passed down
to the subnodes, because it is no longer useful in the tree branch (all objects have the
same value of this feature).

An important disadvantage of such split technique is that the features with many
possible values are preferred over those with small counts of symbols, even when the
former are not too valuable—in an extreme case, if each object has a unique value
of a feature, the feature will reduce the entropy to zero, so will be treated as very
precious, while in fact, its value is overestimated due to the split into many nodes
with single data objects.

Apart from the main ID3 algorithm, Quinlan (1986) has presented some other
interesting contributions. One of them is the method for fastening DT induction, when
training dataset is very large. Quinlan proposed an iterative framework discussed
also by O’Keefe (1983). It is based on using a window—a subset of the training
dataset instead of all training objects. In such approach, ID3 may need a number of
tree induction iterations to provide final classification tree. The process starts with
building a tree to classify objects in the window with maximum accuracy. Then, the
tree classifies the objects outside the window. If all the objects are classified correctly,
the tree is the final result. Otherwise, a selection of incorrectly classified objects is
added to the window and next tree is generated. If the window is allowed to grow
to the size capable of containing all training data objects, the process is guaranteed
to end up with a maximally accurate tree (with respect to the training data). If not,
some problems with convergence may also occur.
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Quinlan (1986) has also proposed some solutions to avoid overfitting noisy data.
Stop criterion defined as zero information gain is too little to guarantee general-
ization of tree models. Nonzero information gain can very often be observed even
in completely random distributions. A threshold for information gain is not recom-
mended either, because finding proper threshold value can be difficult. Therefore
Quinlan (1986) proposed a method based on Pearson’s χ2-test for stochastic inde-
pendence, described in appendix Sect. A.2.2 For example, when an attribute has v

possible values a1, . . . , av and classification problem defines k classes c1, . . . , ck ,
then the independence between the attribute and the classes can be estimated with
the Pearson’s χ2 statistic calculated for the contingency table reflecting the joint
distribution of the two variables. The statistic may be confronted with the χ2 distrib-
ution with (v− 1)(k − 1) degrees of freedom and a given confidence level, to verify
whether the attribute is irrelevant. When the hypothesis about the independence can
not be rejected, the attribute should not define the next split in the tree—a leaf should
be generated regardless of its impurity.

Quinlan (1986) mentioned several possible ways of dealing with missing values
(mostly proposed earlier by other authors) like imputing the most probable value,
using fractional objects, predicting the value with a decision tree trained for this
purpose, and others.

2.2.2 CART

Classification and Regression Trees (CART) is one of the most popular and very suc-
cessful methods of DT induction (Breiman et al. 1984; Michie et al. 1994; Cherkassky
and Mulier 1998). The algorithm is nonparametric and creates binary trees from data
described by both continuous and discrete features. For continuous features, all pos-
sible binary splits into intervals (−∞, a] and (a,∞) are considered. For discrete
attributes, the analysis concerns all possible splits of the set of symbols into two
disjoint and complementary subsets.

Exhaustive search for the best splits estimates split qualities with the impurity
reduction criterion (2.4) with impurity defined as so called Gini (diversity) index:

IG(D) = 1−
∑

c∈C
P(c|D)2. (2.8)

In place of Gini index, it is also possible to use entropy (2.5) or any other measure
of impurity.

Breiman et al. (1984) also proposed a technique named twoing, which was cre-
ated to handle multi-class problems by two-class criteria. Twoing means grouping
the classes into two superclasses and performing two-class analysis for the groups,
instead of the original classes. Naturally, when the number of classes is large, the
number of possible groupings can cause combinatorial explosion, if one tries to
check all possibilities. Instead of analyzing all splits for all possible class groupings,
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Breiman et al. (1984) proposed an efficient procedure to determine optimal super-
classes for each possible split. The procedure is valid for two-class impurity criterion
(compatible with Gini index) defined as

I (D) = P(c1|D)P(c2|D). (2.9)

Breiman et al. (1984) proved that for given binary split s, which for a dataset D
generates subsets DL and DR , maximum decrease of impurity is obtained when one
superclass contains all the classes c for which P(c|DL) ≥ P(c|DR), and the second
superclass—the remaining classes. This result lets keep attractive computational
complexity of the twoing procedure.

In CART, each tree node is assigned the class label dominating within the node.
There is also a possibility to respect misclassification costs in the decisions.

Missing data values are handled with a technique of surrogate splits. When a data
object is not described with a value necessary for the test of a tree node, it is passed
to another test, exploiting another feature to generate a split, as similar to the one of
the original test as possible. Several surrogate splits can be found and used for data
with missing values in appropriate order.

As indicated in the name of CART, the method is designed to be applicable to
both classification and regression problems. Approximation trees are very similar to
the classification ones, but instead of class labels, the nodes are assigned some real
values. Such tree definition allows the trees to represent piecewise constant functions,
so to approximate less trivial functions with low mean squared error, the trees need
to be large.

Many improvements and extensions to CART solutions have been proposed later.
For example Strobl et al. (2005) proposed using p-values to obtain unbiased feature
selection (see Sect. 2.7) and Piccarreta (2008) extended Gini criterion to ordinal
response variables.

Cost-Complexity Optimization

Breiman et al. (1984) have also proposed an interesting method for pruning CART
after learning, as stop criteria are neither as flexible nor accurate as post-pruning
methods. Although CART offers a stop criterion in the form of minimum node size
specification (minimum number of training data falling into the node), the main tool
for adjusting tree size to given problem is the cost-complexity optimization. As sug-
gested by the name, instead of just training error minimization, which usually leads
to overfitting the training data, the optimization concerns a risk measure involving
both misclassification cost and size (complexity) of the model, defined as the num-
ber of leaves of the tree (see Eq. (2.79) and Sect. 2.4.3.2 for detailed explanation).
A parameter α controls the trade-off between training data reclassification accuracy
and size of the tree. To determine the optimal value of α, validation procedures are
proposed to estimate the performance of the candidate values and select the best
one. The validation can be performed on the basis of a separate validation dataset
or by cross-validation. In the case of CV, in each pass, a DT is built and analyzed
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to determine all the threshold αs, that is, all the values of the parameter for which a
node obtains the same combined cost as the subtree and reduced to a leaf, so that for
α less than the threshold it is advantageous to leave the subtree as it is, and for values
greater than the threshold—to replace the subtree by a leaf. Finally, a tree is built for
the whole dataset, and its threshold αs are determined. On the basis of the CV, for
each threshold, its average risk value is calculated and the one providing minimum
risk is chosen as the optimum. The final tree is pruned in the way that minimizes the
risk for the selected threshold α. For more formal presentation of the algorithm see
Sect. 2.4.3.2.

Pruning Control with Standard Error Margin

CART implementation of the validation procedure introduced a parameter to enforce
simpler trees than resulting from normal cost-complexity analysis. As a result the
cost-complexity optimization usually comes in two versions: 1SE and 0SE. The
acronym SE stands for “standard error”. 0SE denotes just the fundamental version of
the method (without standard error based correction) while 1SE signifies the modified
version, where standard error is estimated and model selection prefers simpler trees
with the reservation that the cost can not increase by more than the value of the
standard error. More information on the SE parameter and methods of its calculation
can be found in Sect. 3.2.4.1.

2.2.3 C4.5

Another very popular DT induction system (next to CART) is C4.5 by Quinlan
(1993). It has found numerous applications. The system arose from ID3 and shares
many solutions with its ancestor. Main differences introduced in C4.5 are:

• modified node impurity measure,
• support for direct handling continuous attributes (no necessity to discretize them),
• introduction of a pruning method,
• precise methods for handling data with missing values.

Impurity Measure

Modified measure of node impurity aimed at eliminating bias in split feature selec-
tion, that is, favoring features with many possible values by the information gain
criterion used in ID3. To replace the IG, Quinlan (1993) proposed information gain
ratio (IGR) defined as

ΔI (s, D) = ΔIE (s, D)

SI (s, D)
, (2.10)

where split information SI (s, D) is the entropy of the split s(D) = (D1, . . . , Dn):
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SI (s, D) = −
∑

i

pi log2 pi ,

(
pi = |Di |

|D|
)

. (2.11)

Handling Continuous Attributes

The support for continuous attributes in the data is organized similarly to CART.
All sensible binary splits, deduced from the training data, are examined and the one
with the best score (here the largest information gain ratio) chosen. Unlike symbolic
features, continuous attributes may occur at different levels of the same tree many
times (symbolic ones, when used in the tree, are no longer useful and because of that
are not considered in further splits in the branch).

DT Pruning

In ID3 a statistical test of independence served as a stop criterion to prevent oversized
trees, overfitting the training data. C4.5 offers another technique of generalization
control. It builds (almost) maximally accurate trees and then prunes them to get rid
of too detailed nodes that have not learned any general classification rule but just
adjusted to specific data objects present in the training sample. The word “almost”
added in parenthesis reflects what can be found in the source code of C4.5 about
the process of tree construction: C4.5 has a parameter MINOBJS, which controls a
pre-pruning method. If a node to be split contains too small number of objects or
the split would generate too small nodes, further splits are rejected. After the tree is
constructed, each node is tested with a statistical tool to estimate the probability that
the node split causes error reduction (assuming binomial distribution of erroneous
decisions). Each node, for which the probability is below a given threshold, is pruned
or the subtree rooted in the node is replaced by its best subtree (the technique was
named grafting). More details about C4.5 pre-pruning and post-pruning (Error-Based
Pruning) methods can be found in Sect. 2.4.2.2.

Handling Missing Values

Objects with missing values can also be used in both the process of C4.5 DT construc-
tion and in further classification with a ready tree. At the stage of tree construction, in
calculation of IGR, the objects with missing values of the feature being analyzed are
ignored—the index is computed for a reduced set of objects and the result is scaled
by the factor of probability of value accessibility (estimated by the fraction of the
number of objects with non-missing value of the feature and the number of all train-
ing objects at the node). When the training data sample is split for subnodes creation,
weights are introduced to reflect that it is not certain which path should be followed
by the training data objects with missing decision feature values. The weights may
be interpreted as the probabilities of meeting or not the condition assigned to the
node. They are calculated as the proportions reflecting the distribution of other data
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(with non-missing value) among the subnodes. When the weights are introduced,
they must be considered also in further calculations of the IGR—wherever cardinal-
ities are used (see Eqs. (2.4), (2.10) and (2.11)), sums of the weights are calculated
instead of just the numbers of elements (naturally, the default initial weight value
for each object is 1). Similarly, at classification stage, if a decision feature value is
missing for a data object, all subnodes are tested and decisions obtained from each
path are combined by adequate weighting to obtain final probabilities of the classes
for the object.

Other Interesting Solutions

Apart from the decision tree algorithm, C4.5 system offers a methodology for build-
ing classifiers based on sets of logical rules. The algorithm called “C4.5 rules” starts
with building a decision tree and converting it into compatible classification rules,
but then the rules are subject to a simplification (pruning) process, which can sig-
nificantly change the decision function of the model. Rules pruning is performed
by removing premises if without them reclassification does not get deteriorated.
Each rule is simplified separately, so the resulting rule set based classifier may be
significantly different than the original tree (in practice, usually less accurate).

A modified version of C4.5, named C5.0 or See5, is a commercial product and its
popularity is very low in comparison to the ubiquitous C4.5. Because of that, also
its results are not so commonly known as those of C4.5.

2.2.4 Cal5

Müller and Wysotzki (1994, 1997) have created a decision tree induction algorithm
Cal5 for classification of objects described in spaces of continuous features. Fun-
damental element of the method is its procedure dividing continuous features into
intervals with application of statistical tools to estimate tree node purity.

As most other DT induction algorithms, Cal5 recursively splits nodes into subn-
odes, starting with the root node containing the whole training data sample. Analysis
of each node consists of three main steps:

• selection of the best attribute for the split,
• discretization of the attribute (dividing it into intervals),
• merging adjacent intervals resulting from the discretization.

Algorithm 2.2 sketches the topmost procedure of the method. The parameters
mentioned in the input specification section control some details of the three main
steps of each node analysis:

• the selection of a measure to estimate attribute eligibility for the split (Q or IG),
• threshold s, defining minimum probability of correct classification by given node,

that makes it a leaf,
• confidence level α for statistical tests performed within the discretization process.
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Algorithm 2.2 (DT induction by Cal5)

Prototype: Cal5(D)
Input: Training dataset D, some configuration parameters.
Output: Decision tree.
The algorithm:

1. A← BestAttribute(D)

2. I ntervals ← Discreti ze(A, D)

3. I ntervals ← MergeI f Reasonable(I ntervals)
4. If |I ntervals| > 1

a. For i = 1, . . . , |I ntervals|
Ni ← Cal5(I ntervalsi )

b. Children← (N1, . . . , N|I ntervals|)
else

Children = ⊥
5. return (D, sI ntervals , Children)

Precise meaning and application of the parameters is explained below, in the descrip-
tions of each of the three steps. To make Algorithm 2.2 more readable, they are not
disclosed there.

Nodes of Cal5 trees may have different numbers of subnodes. The counts are auto-
matically determined in the process of attribute discretization and interval merging.

Best Attribute Selection

Decisions, which attribute to select for node split generation, are made in Cal5 on
the basis of a statistical approach or with entropy measure.

In the statistical method, each feature eligibility is estimated with the following
quotient:

Q = A2

A2 + D2 , (2.12)

Q criterion where D2 is the mean value of squared variance of the classes with respect
to their centroid vector, and A2 is the mean value of squared distances between the
centroids of the classes. An attribute with minimum Q value is selected as the best
one.

The method based on entropy measure requires each attribute discretized, so in
that case, the order between the steps of feature selection and discretization gets
inversed. The discretization procedure, described below, is run for each feature and
an index of weighted sum of entropies of the subsets is calculated. In fact, the index
is just the information gain defined by Eqs. (2.4) and (2.5) and used in ID3. Naturally,
the best attribute is the one with the largest information gain.
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Discretization

The process of continuous attribute discretization starts with sorting the training data
sample (assigned to the node) in the order of nondecreasing values of the attribute.
Next, the intervals starting at −∞ and ending between subsequent two adjacent
values of the feature are analyzed. The analysis of an interval x is based on testing
two hypotheses:

H1 – there exists a class c ∈ C , such that p(c|x) ≥ s,
H2 – for all classes c ∈ C , p(c|x) < s.

The tests are done by calculation of the confidence interval [d1, d2] for a specified
level α, with the following formula derived from the Chebyshev’s inequality with
the assumption of Bernoulli distribution of each class:

d1/2 = 2αnc + 1

2αn + 2
∓ 1

2αn + 2

√
4αnc

(
1− nc

n

)
+ 1, (2.13)

and check whether the whole interval lies on the adequate side of the threshold s.
There are three possibilities:

1. Hypothesis H1 is true. Then, the interval is regarded as closed and it corresponds
to a leaf assigned with the label of the class c which made H1 condition true.
The analysis starts again for intervals beginning at the end of the interval just
closed.

2. Hypothesis H2 is true. Then, the interval is also regarded as closed, but it corre-
sponds to a node requiring further splits, because no class sufficiently dominates
in the node.

3. Neither H1 nor H2 is true. Then, the interval is exceeded to include the next
object from the ordered sample. If no more data objects are available, a leaf
labeled with the dominating class is created.

Interval Merging

After discretization, adjacent intervals are merged if they both are leaves with the
same class label. Adjacent intervals are also merged if no class dominates in them
and they contain the same set of classes represented at least as frequently as in the
case of the uniform distribution. The set of classes is determined by elimination of
the classes for which d2 < 1

nI
, where nI is the number of class labels occurring in

the interval I .

Symbolic Features

Although Cal5 was designed to deal with data descriptions containing continuous
features only, it is not very difficult to extend it to accept also symbolic attributes.
When attribute selection is made with IG criterion, it can be applied naturally to
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symbolic features (discretization is just not necessary). Instead of division to inter-
vals, groups of data objects sharing a value of discrete features can just be examined
with hypothesis H1 and H2, to decide whether a node should become a leaf or needs
further splits. It is also possible to apply the procedure of merging (designed for inter-
vals) to the groups of data objects sharing a symbolic feature value. When rephrasing
the algorithm, one needs to be careful about computational complexity of the result-
ing method, because in symbolic attributes there is no adjacency as in the case of
intervals, and analyzing each pair of values may be costly. Sensible restrictions for
the pairs of values considered for merging can be easily introduced in such a way,
that computational complexity remains attractive. For example, relations between
fractions of groups belonging to particular classes may be used as a substitute for
intervals adjacency.

2.2.5 FACT, QUEST and CRUISE

A family of interesting DT algorithms has been created in the group of prof. Wei-Yin
Loh. The family includes such algorithms as FACT (Fast Algorithm for Classification
Trees, Loh and Vanichsetakul 1988), QUEST (Quick, Unbiased, Efficient, Statistical
Tree, Loh and Shih 1997) and CRUISE (Classification Rule with Unbiased Interac-
tion Selection and Estimation, Kim and Loh 2001, 2003). The methods are called
“statistical trees” because they strongly base on statistical tools in tree construction
and refinement. They have both univariate and multivariate forms, but the univariate
algorithms are more often used so their descriptions are included here.

Algorithm 2.3 (DT induction by separate feature selection and split)

Prototype: FeatSelThenSplit(D)
Input: Training dataset D, some configuration parameters.
Output: Node split.
The algorithm:

1. A← BestAttribute(D)

2. If A = ⊥ return ⊥
3. s ← BestAttributeSplit(A, D)

4. If s = ⊥ return ⊥
5. return s

The algorithms can be seen as classical top-down DT induction algorithms, that is,
Algorithm 2.1 with a specific approach to best split selection (BestSplit procedure
of the algorithm) divided into two parts: first the feature for split is selected and
then particular split is searched for the selected feature, as in Algorithm 2.3. Thanks
to independent feature selection and split, there is no need to perform exhaustive
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search for possible splits of a given node—only the splits of selected feature need
to be analyzed. This may fasten the algorithm, if only the feature selection part is
accurate. Otherwise the tree may become much larger and it may shatter the gains
of the restrictions in split search space.

The authors paid much attention and undertook much effort to make their methods
of feature selection unbiased. More detailed discussion of this subject is presented
in Sect. 2.7, so here it is not further explored.

2.2.5.1 FACT

FACT (Fast Algorithm for Classification Trees, Loh and Vanichsetakul 1988) is
designed to split datasets described by numeric features, but the authors provided a
solution to convert symbolic attributes to continuous ones before the fundamental
algorithm starts.

Conversion of Symbolic Features to Continuous Ones

To convert a discrete attribute X D into a continuous XC , FACT first creates a space
of n − 1 binary features, where n is the number of possible values of the symbolic
feature. Each dimension of the space is a binary indicator variable corresponding to
one feature value (informs which objects originally had this value and which had
not). Then, the largest discriminant coordinate (crimCoord, see appendix Sect. B.1,
Gnanadesikan 1977) is found in this n − 1-dimensional space. It becomes a new
continuous feature (XC ) replacing the original symbolic one (X D). After the split is
determined for the converted feature, it is easy to convert the conditions like XC > z
to more informative form of X D ∈ A.

Feature Selection

For univariate splits, FACT selects the feature by means of analysis of each attribute
(discrete ones are analyzed after the conversion to continuous variables, described
above) with the F statistic known from ANOVA (analysis of variance) methods,
which is the ratio of between to within class variance (for more details see appendix
section A.2.1 about F-test or (Tadeusiewicz et al. 1993; Brandt 1998)). The feature
with the largest F ratio is selected, if only its F statistic exceeds a threshold F0
(user-specified parameter of the method, with default value of 4). If F < F0 each
feature X is transformed to Z = |X − X | and F ratios for such transformed features
are calculated. If the largest F ratio FZ ≥ F0, than its feature Z is used for the split.
Otherwise, the original feature X maximizing F ratio is used to generate a binary
split with respect to X .

FACT also offers an option to search for polar coordinate splits, more effective if
there is an angular or radial symmetry in the data. It must be pointed out, however,
that the feature constructed in this way makes the splits multivariate. If such option
is selected anyway, the original data vectors are first converted into vectors of larger



2.2 Univariate Decision Trees 25

principal components (as presented below, in the description of the LDA-based split
procedure). The resulting new features (linear combinations of the original ones)
are subject to a similar analysis of F ratios, as in the case of original features,
described above. As a result, either a linear combination feature is used for the split
or a possibility of spherical symmetry detected. Since the symmetry may not be
present in every variable, the original features are selected on the basis of Levene’s
homogeneity test of variances (see Levene 1960, appendix Sect. A.2.3), before they
are transformed into polar coordinates.

Split Selection

FACT performs splits by means of linear discriminant analysis (LDA). The pro-
cedure is defined for multidimensional data descriptions. For univariate trees, the
calculations get very simple. To avoid nonsingular covariance matrices a principal
component analysis (PCA) is done at each node before the actual analysis. The com-
ponents with eigenvalues smaller than β times the largest eigenvalue are rejected (β
is a user-specified parameter). The remaining components take part in determination
of the linear discriminant functions:

dc(y) = μT
c �−1y− 1

2
μT

c �−1μc + ln p(c|N ), (2.14)

where y denotes a vector in the space of selected principal components μc is the
sample mean vector of class c, � is the pooled estimate of the covariance matrix at
node N and N is the node being split.

Nodes are split into as many subnodes as the number of classes represented within
the node being split. Objects are delegated to the subnodes corresponding to the class
minimizing the following formula respecting also a misclassification cost matrix
Cost :

cwin = arg min
c∈C

∑

k∈C
Cost (c|k)edk (y). (2.15)

The technique is called normal theory option.

Stop Criterion to Improve Generalization

To prevent overfitting the training sample, FACT is equipped with a stop criterion,
which is tested at each node. Further splits are not accepted if one of the following
two conditions is met:

1. The node contains no more than one class represented by at least MINDAT
objects (MINDAT is a user-specified parameter).

2. The split does not decrease predicted error rate. For a node N split into subnodes
N1, . . . , Nk , denoting by cX the class assigned to node X , the split is not accepted
if
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∑

c∈C
Cost (cN |c)p(c|N ) ≤

k∑

i=1

∑

c∈C
Cost (cNi |c)p(c|Ni ). (2.16)

FACT does not use any validation based pruning method similar to CART’s cost-
complexity minimization.

2.2.5.2 QUEST

Quick, Unbiased, Efficient, Statistical Tree (QUEST) algorithm (Loh and Shih 1997;
Lim et al. 2000) was created as a significant improvement of FACT. The general
idea and organization of the algorithm remained the same: the method realizes algo-
rithm 2.3 separating feature selection from determination of the split, converts sym-
bolic features to numeric ones in a similar way, and uses statistical tests to make
some decisions. The main changes concern how the particular goals are obtained:

• split feature is selected on the basis of another approach to estimate feature impor-
tance, aimed at unbiased selection,
• the split is made with quadratic discrimination instead of linear,
• the resulting tree is binary, classes are grouped before the split,
• generalization is obtained with cost-complexity minimization, as in the case of

CART.

Loh and Shih (1997) claim that the way they convert symbolic feature to continuous
ones is also different in QUEST than in FACT, however they mention that FACT’s
method first converts the feature symbols into binary “dummy” vectors, and then
converts them into real numbers with a method that can split the node into more than
two subnodes, which is not acceptable in QUEST. They evidently refer to another
version of FACT than the one of Loh and Vanichsetakul (1988), because as described
above, the latter uses crimCoord transformation (see appendix section B.1) to convert
symbols to numeric values, and the same is done in QUEST. Naturally, there is a
difference between the two methods in the way they split the features after the
conversion. As in FACT, after the split is determined for the continuous counterpart
of a symbolic feature, it can be easily rephrased in the language of original symbols,
so in the resulting tree, the continuous feature generated during the analysis is not at
all visible.

Feature Selection

Estimation of both continuous and symbolic features with F ratio (for symbolic ones
calculated for the derived continuous feature) is prone to more frequent selection of
symbolic features than continuous ones, also when they are all independent from the
target. The idea of QUEST to get rid of the bias (or at least to try to; see Sect. 2.7
for more discussion) is to compare p-values of independence tests most eligible for
each type of features, instead of comparing the F ratios. Continuous attributes are
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still analyzed with F statistic, but discrete features are subject to the χ2-test (no
conversion to numeric values is performed at the stage of feature selection). The
F and χ2 values are not directly comparable, but comparing their p-values makes
sense. The feature with the smallest p-value (the smallest probability of independence
with the target variable) is selected as the best one. If none of the p-values exceeds a
user-defined threshold parameter, Levene’s F-test for unequal variances is computed
for each ordered variable. The tests thresholds are Bonferroni corrected (see lines 5
and 5d of algorithm 2.4 and appendix section A.1.4). If the best result exceeds the
threshold, the corresponding feature is selected, otherwise the algorithm returns the
feature with the smallest p-value calculated in the first stage (with F-test or )χ2-
test.The method is written formally as Algorithm 2.4.

Algorithm 2.4 (QUEST split feature selection)

Prototype: QUESTFeatSel(D, α)
Input: Training dataset D described by discrete features X1, . . . , Xd and continuous features

Xd+1, . . . , X f , confidence threshold α.
Output: Feature index.
The algorithm:

1. If d > 0 (there are continuous features)

a. for i = 1, . . . , d
Fi ← the ANOVA F statistic for feature Xi

b. best1 ← arg maxi=1,...,d Fi
c. α1 ← p-value of the adequate F distribution for feature best1

2. If f > d (there are discrete features)

a. for i = d + 1, . . . , f
pi ← p-value of the χ2-test of independence between feature Xi and class labels

b. best2 ← arg mini=d+1,..., f pi
c. α2 ← pbest2

3. α12 ← min(α1, α2)

4. If α12 = α1 then best12 ← best1 else best12 ← best2
5. If α12 ≥ α

f (no feature is good enough)

a. for each i = 1, . . . , d
F ′i ← the ANOVA F statistic for feature Zi = |Xi − Xi |

b. best3 ← arg maxi=1,...,d F ′i
c. α3 ← p-value of the adequate F distribution for feature best3
d. If α3 < α

f+d then return best3
6. return best12

Split Selection

QUEST finds the best split points with quadratic discriminant analysis (QDA).
Because QUEST is assumed to be a binary tree, the splits are done between two
classes. If the problem at hand concerns classification to more than two classes,
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they are first grouped into two superclasses, with the clusteringtwo-means clustering
method (Hartigan and Wong 1979) applied to the set of mean vectors calculated
for all the classes. The two-means algorithm is initialized with two most distant
class means as the cluster centers. If all the class means are identical, then the most
populous class composes superclass A and the rest—superclass B.

In the case of continuous features, a procedure of QDA is directly performed,
and in the case of symbolic ones the crimCoord based procedure is run to obtain a
continuous substitute for the feature, which is then analyzed with QDA.

The QDA estimates the two classes (A, B) distributions with normal densities
and determines the split point as the point of intersection of the two Gaussian curves,
being a root of the equation

P(A|N )
1√

2πsA
e
− (x−x A)2

2sA = P(B|N )
1√

2πsB
e
− (x−x B )2

2sB , (2.17)

where N is the node being split, x A, x B are the means of class A and B respec-
tively and sA, sB are standard deviations observed within the classes. The normal
densities parameters (means and standard deviations) are calculated from the sam-
ples. Equation (2.17) after simple transformations gets the form of a typical quadratic
equation:

ax2 + bx + c = 0, (2.18)

where

a = s2
A − s2

B, b = 2(x As2
B − x Bs2

A), (2.19)

c = (x BsA)2 − (x AsB)2 + 2s2
As2

B log
n AsB

nBsA
.

The split point is one of the two roots that is closer to x A, provided this yields two
nonempty subsets.

2.2.5.3 CRUISE

Classification Rule with Unbiased Interaction Selection and Estimation (CRUISE,
Kim and Loh 2001, 2003) is a descendant of FACT and QUEST. It is the next
significant step towards unbiased feature selection. As its predecessors, CRUISE
also fits the general strategy of Algorithm 2.3, but differs in many detailed solutions:

• generates multi-split trees,
• introduces new method for split feature selection, named 2D because of analysis

of pairs of features (more precisely some contingency tables), but still supports
the method of QUEST (here named 1D) based on comparing p-values of proper
independence tests for each type of features (ANOVA F-test for continuous ones
and χ2-test for categorical),
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• uses Box-Cox power transformation to adjust class distributions in order to
improve the accuracy of LDA.

Similarly to FACT and QUEST, categorical features are transformed with
CrimCoord at the start of the analysis and Bonferroni corrections (see appendix
section A.1.4) are used when performing multiple statistical tests. Missing values in
the data can be ignored or imputed. As the main advantages of CRUISE its authors
mention its sensitivity to local interactions between variables (thanks to )2D analysis,
which results in more intelligent splits and shorter trees, and its speed obtained in
parallel with not statistically significant difference in mean misclassification rates,
in comparison to the best methods.

CRUISE can be configured to generate linear combination splits as well as uni-
variate splits.

Feature Selection

Two different methods of feature selection are available in CRUISE. They are named
“1D” and “2D” respectively. 1D is exactly the same method as the one used in QUEST.
The novelty is the second method based on two-dimensional contingency-tables
analysis. This method performs statistical tests for five different types of sources
(two marginal tests and three interaction tests). For each case, the space is split into
a number of regions and a contingency table with classes as rows and the regions
as columns is created. The possible sources and the ways of the contingency tables
construction are the following:

• for single numeric variable X , four regions correspond to the sample quartiles
of X ,
• for single categorical variable, the regions correspond to the values of the variable,
• for a pair of numeric variables, the regions correspond to four quadrants resulting

from splits at the sample medians,
• for a pair of categorical variables, the regions correspond to pairs of possible values

of the variables,
• for a pair of one numeric and one categorical variable, the regions correspond to

combinations of two parts of the numeric attribute (split at the median) and all
possible categories of the categorical feature.

The procedure of building the contingency table for each context is noted in Algo-
rithm 2.6 as ContTable() and its arguments clearly show which of the five versions is
called. Testing contingency tables for pairs of variables is aimed at detecting interac-
tions between features, but the possibilities are significantly limited, because splitting
numeric features arbitrarily at medians, can correspond to proper decision borders
only accidentally.

Each contingency table is analyzed with Algorithm 2.5 to get a corresponding
z-value. Maximum of the 5 z-values (with a bootstrap bias correction factor) points
the selected feature according to the rules presented in the algorithm 2.6.

The BootstrapCorrection() function used in the algorithm, finds a factor f ∈ R,
that brings proper balance between discrete and continuous features (eliminates the
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Algorithm 2.5 (z-statistic of a contingency table)

Prototype: ZStatistic(T)
Input: Contingency table T with n rows and m colums.
Output: z-statistic.
The algorithm:

1. χ2 ← the Pearson χ2 statistic with ν = (n − 1)(m − 1) degrees of freedom for T
2. W ← χ2 − ν + 1
3. if z > 1 then (Peizer-Pratt transformation)

z← 1
|W | (W − 1

3 )
√

(ν − 1) log ν−1
χ2 +W

else
z← √

χ2

4. return z

Algorithm 2.6 (CRUISE 2D feature selection)

Prototype: CRUISE2DFeatSel(D, α)
Input: Training dataset D described by discrete features X1, . . . , Xd and continuous features

Xd+1, . . . , X f and targets Y.
Output: z-statistic.
The algorithm:

1. if d = 0 then zd ←−∞
else zd ← maxi=1,...,d ZStatistic(ContTable(Y;Xi ))

2. if f = d then zc ←−∞
else zc ← maxi=d+1,..., f ZStatistic(ContTable(Y;Xi ))

3. if d = 0 then zdd ←−∞
else zdd ← maxi, j=1,...,d ZStatistic(ContTable(Y;Xi , X j ))

4. if f = d then zcc ←−∞
else zcc ← maxi, j=d+1,..., f ZStatistic(ContTable(Y;Xi , X j ))

5. if d = 0 and f = d then zdc ←−∞
else zdc ← maxi=1,...,d; j=d+1,..., f ZStatistic(ContTable(Y;Xi , X j ))

6. f ← BootstrapCorrection(D)

7. z← max{zd , f zc, zdd , f zcc, zdc}
8. if z = zd or z = f zc then return the feature maximizing z
9. if z = zdd or z = f zcc then return the feature in the interacting pair with larger marginal

z
10. return the categorical feature in the interacting pair

bias). Bootstrap data samples are generated (the data input is copied and the targets are
bootstrapped to make them independent from the input) repeatedly and the 5 z-values
are calculated for each bootstrap sample as in Algorithm 2.6. A win is scored for
continuous features if f max{zc, zcc} ≥ max{zd , zdd , zdc} and for discrete features
otherwise. Several values of f are tested and for each, the proportion between the
wins of continuous and discrete features is calculated. Eventually, if necessary, linear
interpolation is used to find the final result: such value of f that its proportion of wins
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is equal to the proportion of the counts of continuous and discrete features describing
the data.

Split Selection

When a continuous feature is selected for a split, Box-Cox power transformation (see
appendix section B.4) is run to make the feature more adequate for linear discriminant
analysis (LDA) which decides about the split in the same way as it does in FACT.

If the feature selection stage is won by a categorical variable X ∈ X n , where
X = {a1, . . . , ar }, then it is converted into r binary indicator variables, so that each
value ai is converted into a unit vector eX (ai ) = ei with 1 at position i and 0 at all
the others. Such vectors are then projected onto the largest discriminant coordinate
(CrimCoord) and the new dimension is treated in the same way as numeric attributes:
it is passed to the Box-Cox transformation and split with LDA. The final result is
translated to the language of the original, discrete feature, to make it comprehensible.

This is the procedure performed by the 2D method. In 1D, there is a difference
that the Box-Cox transformation is not run if the feature was selected by Levene’s
test. Then, instead, LDA is applied to the absolute deviations from the sample mean
at the node.

Because LDA happens to generate splits with no data within, such intervals are
divided into halves and merged with their neighbors.

2.2.6 CTree

The pursuit of unbiased feature selection in DT construction has gained many dif-
ferent solutions. One of the most interesting results is the approach of Hothorn et al.
(2004, 2006a, 2008) and Zeileis et al. (2008) to a conditional inference framework,
capable of unbiased recursive partitioning. The authors found the work of Strasser
and Weber (1999) on permutation statistics very useful in DT induction.

The main idea behind the framework of CTree is the same as in the case of the
FACT family, and as depicted by algorithm 2.3, where feature selection and split
finding are separate processes. Here, for feature eligibility estimation, and possibly
for best split determination, non-parametric permutation tests are used (in place of
the F-test and χ2-test of the FACT line).

Feature Selection and Stop Criterion

The same permutation tests used for feature selection are helpful in deciding when to
stop further splits of a node. The null hypothesis of interest is that the unconditional
distribution of the target variable Y and its conditional distributions with respect to
each covariate Y|Xi are the same. If we are not able to reject such hypothesis at a
tree node, the node should be closed into a leaf with no further splits. Otherwise,
the input variable Xi∗ providing the least independence of the two distributions (the
least p-value) is selected as the best feature for the split.
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Given a data sample D of n objects described by m features X1 ∈X n
1 , . . . , Xm ∈

X n
m and the target variable Y = (Y1, . . . , Yn) ∈ Y n , and a case weight vector

w ∈ Rn , Hothorn et al. (2006b) proposed to measure the association between Y and
X j , j = 1, . . . , m, by linear statistics of the form:

T j (D, w) = vec

(
n∑

i=1

wi g j (X ji )h(Yi , Y)T

)
∈ R p j q , (2.20)

where:

• g j : X j → R p j is a transformation of feature X j (for example, to convert
symbolic features to more reasonable form like binary vectors),
• h : Y × Y n → Rq is the influence function dependent on the responses Y in a

permutation symmetric way,
• vec operator converts the p j×q matrix it gets as the argument to a p j q-dimensional

vector by column-wise concatenation.

This is a general definition that can be used in both classification and regression tasks
with miscellaneous definitions of the feature spaces X j and Y and proper substi-
tutions for functions g j and h. For example, for the sake of univariate classification
trees:

• the features are either continuous (real numbers) or symbolic,
• the target variable space is Y = C = {c1, . . . , ck},
• the function h can be defined as

h(y, Y) = eC (y), (2.21)

that is, a k-dimensional unit vector with 1 at the position i such that y = ci (the
dimensions are binary indicator variables),
• for j = 1, . . . , m, the function g j can be defined as:

g j (x) =
{

x ifX j = R

eX j (x) ifX j = {a1, . . . , ar }, (2.22)

where eX j (x) is an r -dimensional unit vector with 1 at index i such that x = ai .

Under the null hypothesis H j
0 , that the distributions of Y and Y|X j are identical,

the distribution of T j (D, w) can be analyzed by means of permutation tests. In place
of the dependency of T j (D, w) on usually unknown joint distribution of Y and X j ,
one can fix the covariates and condition on all possible permutations of the responses.
Following Strasser and Weber (1999), the conditional expectation μ j ∈ R p j q and
covariance matrix � j ∈ R p j q×p j q of T(D, w), given all permutations σ ∈ S(D, w)

are:
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μ j = E(T j (D, w)|S(D, w)) = vec

((
n∑

i=1

wi g j (X ji )

)
E(h|S(D, w))T

)
,

(2.23)

� j = V (T j (D, w)|S(D, w))

= w�

w� − 1
V (h|S(D, w))⊗

(
n∑

i=1

wi g j (X ji )⊗ wi g j (X ji )
T

)
(2.24)

− w�

w� − 1
V (h|S(D, w))⊗

(
n∑

i=1

wi g j (X ji )

)
⊗

(
n∑

i=1

wi g j (X ji )
T

)

where w� =∑n
i=1 wi and⊗ is the Kronecker product and the conditional expecta-

tion and covariance matrix of the influence function are:

E(h|S(D, w)) = 1

w�

n∑

i=1

wi h(Yi , Y) ∈ Rq , (2.25)

V (h|S(D, w)) = 1

w�

n∑

i=1

wi (h(Yi , Y)− E(h|S(D, w))) (2.26)

(h(Yi , Y)− E(h|S(D, w)))T .

On the basis of the pq-dimensional statistic T, the final test statistic c can be defined
in an arbitrary way. The most natural solution for univariate statistic, suggested by
Hothorn et al. (2006b) is:

cmax(t, μ,�) = max
i=1,...,pq

∣∣∣∣
(t − μ)i√

�i i

∣∣∣∣ . (2.27)

Another possibility is a more computationally expensive quadratic form:

cquad(t, μ,�) = (t − μ)�+(t − μ)T . (2.28)

In any case, one must be aware that the test statistics c may not be directly comparable.
In such circumstances, p-values should be calculated, because they allow for unbiased
feature selection. Naturally, the way of calculating p-values is closely bound up with
the definition of the c statistic. From theorems proved by Strasser and Weber (1999) it
can be derived that asymptotic conditional distribution of cmax is normal. Quadratic
cquad follows asymptotic χ2 distribution with degrees of freedom given by the rank
of �.

To get precise stop criterion, the overall null hypothesis being the conjunction of
all hypotheses H j

0 needs to be verified. One can construct and analyze an aggregate
statistic for this purpose, but in practice it is preferred to use simple techniques like
Bonferroni correction for multiple testing. A significance level α must be provided to
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control the pre-pruning. Hothorn et al. (2006b) suggest the default value of α = 0.05,
but the meta-parameter can also be optimized in a validation-based procedure similar
to cost-complexity optimization cost-complexity minimization of CART.

Split Selection

When the feature of split is selected, different ways of finding the best split of the
feature can be applied including those of CART, FACT, QUEST and many others.
The splits can be binary or multi-way, accordingly. After such suggestion, Hothorn
et al. (2006b) proposed another application of the permutation test framework to
determine optimal binary splits. According to their approach, given a subset A of the
sample space X j , the linear statistic TA

j is defined as

TA
j = vec

(
n∑

i=1

wi 1A(X ji )h(Yi , Y)T

)
∈ Rq , (2.29)

where 1A is the indicator function of set A. Given the conditional expectation μA
j

and its covariance �A
j calculated with Eqs. (2.23) and (2.24), the optimum split is

determined by the set A
, such that

A
 = arg max
A⊂X j

c(tA
j , μA

j , �A
j ). (2.30)

Although the optimization extends over all subsets of X j , the number of binary splits
is usually significantly limited. In the case of numeric features, only splits into two
disjoint and complementary intervals defined by points between values represented
in the data are taken into account. Symbolic features with large number of possible
values may also need some restrictions in subset analysis, because of computational
complexity.

2.2.7 SSV

Separability of Split Value (SSV, Grąbczewski and Duch 1999, 2000) criterion is
defined as a split quality measure, but is not based on the purity gain rule (2.4).
It reflects the idea that splitting pairs of vectors belonging to different classes is
advantageous, while splitting pairs of vectors of the same class should be avoided if
possible. Originally, it has got two forms:

SSV(s, D)
de f= 2 · SSV1(s, D)− SSV2(s, D), (2.31)

SSVlex (s, D)
de f=

(
SSV1(s, D),−SSV3(s, D)

)
, (2.32)
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where:

SSV1(s, D)
de f=

ns∑

i=1

ns∑

j=i+1

∑

c∈C
|Dsi ,c| · |Ds j \ Ds j ,c|, (2.33)

SSV2(s, D)
de f=

∑

c∈C
(|Dc| − max

i=1,...,ns
|Dsi ,c|), (2.34)

SSV3(s, D)
de f=

ns∑

i=1

ns∑

j=i+1

∑

c∈C
|Dsi ,c| · |Ds j ,c|. (2.35)

The SSV1 part counts the pairs of separated objects belonging to different
classes—it can be called a reward part. SSV2 and SSV3 define, in two different
ways, some penalties for splitting objects representing the same class. The SSVlex
version provides pairs of values, which are compared in lexicographic order, so the
second value is considered only in the case of equal first elements.

It is not easy to keep proper balance between the reward part and the penalty
part of the criteria like (2.31) or (2.32), because repairing some cases may easily
spoil the functionality in other cases. Some analyses of special cases, brought an
idea to weight the pairs of separated objects when counting the separability index.
Weighting can be seen as a heuristic reflecting the fact that separating pairs of objects
is more advantageous, when the objects belong to the majority classes within their
sides of the split, and less valuable if the objects are still misclassified after the split.
Therefore a parameter weight α was introduced (Grąbczewski 2011) as a factor to
diminish the contribution of the minority objects in separated pairs. The result is the
following definition:

SSVα(s, D)
de f=

ns∑

i=1

ns∑

j=i+1

∑

a∈C
b∈C
a �=b

Wα(Dsi , a) · |Dsi ,a | ·Wα(Ds j , b) · |Ds j ,b|, (2.36)

where

Wα(D, c) =
{

1 if c is the majority class within D,

α otherwise.
(2.37)

Such definition introduces three levels of contribution of the separated pairs (1, α and
α2), dependent on whether the objects represent the majorities or not. If more than
one class is represented in a sample with maximum count, one of them is arbitrarily
selected as the majority class (in practice, the one with the smallest index).

Search Methods

The basic approach to searching for SSVtrees is the classical top-down induction
method presented as Algorithm 2.1 with an almost exhaustive search for each node
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split. The term “almost exhaustive” means that all possible splits are examined if
only it is acceptable from the point of view of computational costs and does not
introduce evident bias in feature selection (favoring symbolic features with many
possible values).

In the case of continuous features, all sensible split points are examined and the one
maximizing SSVselected. Here, “sensible” means the ones with nonzero probability
that they can bring the best result. It is obvious that only the points between the feature
values occurring in the node data are worth any interest. It can be easily proved that
the points between objects belonging to the same class can be omitted, because some
other points are certainly better. So the analysis procedure of a numeric feature starts
with sorting all sample objects by the values of the feature and exploring the sorted
values one by one and calculating SSVfor the “sensible” split points.

Symbolic features are split not with points but with subsets of symbols, hence
the general term “value” in the name SSV. Exhaustive search would test all possible
subsets as the split generators. Such algorithm complexity is exponential, so it can be
dangerous to run it for larger counts of feature symbols. It would also give symbolic
features significantly greater probability of selection, in comparison to continuous
ones, when they are similarly informative. To avoid such bias and the danger of
combinatorial explosion, SSVuses a subset pair enumerator with a possibility to
limit the number of enumerated splits. The enumerator provides subsequent pairs
of complementary subsets, by generating the first one and setting the other as the
complement to the whole set of symbols. Preference is given to smaller subsets
(against their complements), so at first, the singletons are handled then pairs and so
on. The limit can be set on the size of the first subset. SSVsets the limit to make the
number of tested splits as close to the one of continuous features (and the number of
objects in the node) as possible.

Apart from the most popular method of tree construction, based on hill climbing,
the SSVapproach has been successfully tested with beam search and lookahead
search (see Sect. 2.5). Both solutions are more computationally expensive than hill
climbing, but often can find smaller trees. Different explorations of the area of search
methods (Quinlan and Cameron-Jones 1995; Segal 1996; Janssen and Fürnkranz
2009) have shown that these approaches can be successful, but also can lead to so
called “oversearching”, so one must use these methods with caution.

2.2.8 ROC-Based Trees

Receiver Operator Characteristic (ROC, Green and Swets 1966) is an idea that has
found especially much interest in domains close to medicine, where it is very impor-
tant to differentiate between false positive and false negative answers (statistical Type
I errortype Itype I and type II error). When the null hypothesis is the diagnosis of
“healthy”, erroneous rejecting the hypothesis means a false alarm (False positive
answer), while failed rejection of the hypothesis, when it is not true (type II error)
means ignoring the illness and no medical treatment, when it should be undertaken,
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which can be much more serious. One of the solution of dealing with such differ-
ences in errors importance is considering misclassification costs (available in many
classification learning machines). Clinicians are usually interested in the informa-
tion about how many errors of each kind are made by the decision support system,
they use. Therefore, they find ROC curves very useful, because they are plots visu-
alizing numbers of erroneous answers of both kinds, given by classifiers. In binary
classification, the decisions can be divided into four groups:

Predicted class Original class
Positive Negative

Positive True positive (TP) False positive (FP)
Negative False negative (FN) True negative (TN)

On the basis of the four groups we can define many important performance indices,
for example:

accuracy
de f= T P + T N

T P + F P + F N + T N
, sensitivity

de f= T P

T P + F N
,

error
de f= F P + F N

T P + F P + F N + T N
, specificity

de f= T N

F P + T N
.

(2.38)

All the values are real in the range [0, 1]. Intuitions about the terms of accuracy and
error are common and obvious. Sensitivity (Se, also called true positive rate) shows
which part of the “positive” class is correctly detected (in medicine: how big part
of patients with the disease is correctly diagnosed). Specificity (Sp, also called true
negative rate) tells, how accurately the negative cases are recognized. In medicine,
even more important is the value of “1-specificity” (false positive rate, or fall-out),
which represents the amount of negative cases classified as positive.

It is easy to increase the sensitivity of a predictor paying the price of lower speci-
ficity, and inversely. In utter cases, classification of all objects as positive results in
100 % sensitivity but 0 % specificity, while constant “negative” answers are 100 %
specific but 0 % sensitive. The art of learning is to maximize both sensitivity and
specificity.

ROC curve is a line plot depicting transition from one extremity to the other
through the most valuable solutions. The axes of the plot are: 1-specificityspecificity
and sensitivity. Assuming two-element set of classes C = {positive, negative}, each
classifier is a function φ : O → {positive, negative} and can be visualized as a single
point in the ROC plot.

For a probabilistic classifier φ : O → R2, we can easily generate a series of crisp
classifiers by shifting the decision threshold θ :

φ(θ) : O → C , φ(θ)(o) =
{

positive if φ(o)1 ≥ θ,

negative otherwise.
(2.39)
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Fig. 2.1 Two example ROC
curves: one for crisp and one
for probabilistic classifier
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Each crisp classifier can be easily converted into a trivial probabilistic classifier
(with probabilities 0 or 1 only). Such models can be visualized by an ROC curve
based on three points: (0,0), (Se, 1-Sp), (1,1). Each ROC curve starts at point (0,0)
and ends at (1,1).

Two example ROC curves are presented in Fig. 2.1. One corresponds to a crisp
classifier and one to a probabilistic classifier with several levels of predicted proba-
bilities. The curves are nondecreasing (here, also concave, though not strictly, as they
are piecewise linear), because in such families of classifiers, increasing sensitivity is
closely bound up with nonincreasing specificity.

In many applications the area under the ROC curve (AUC) has been found very
attractive index of classifier (family) quality. The larger the AUC, the better the
classifier.

AUC Split Criterion

Measuring the area under ROC curve has found applications also in DT construction.
Ferri et al. (2002) started their road to AUCsplit criterion with an analysis of decision
tree models in a similar manner as the transition from crisp to probabilistic classifier
described above. They discuss possibilities of different labeling of DT leaves and
prove formally an intuitive property that the number of optimal labelings is linearly,
not exponentially dependent on the number of leaves. They order the leaves by local
positive accuracy defined as pN

pN+nN
, where pN and nN are the counts of objects in

the node N with labels “positive” and “negative” respectively, and show that optimal
labelings are those that give label “positive” to a number of beginning nodes in the
sequence and label “negative” to the rest of the nodes. In this way, they obtain a
collection of points P0, . . . , Pk , such that
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∀
i=1,...,k

Pi = Pi−1 +
(

ni

n
,

pi

p

)
=

(∑i
j=1 n j

n
,

∑i
j=1 p j

p

)
, (2.40)

where k is the number of leaves in the tree, pi and ni are the numbers of objects
with labels “positive” and “negative” respectively in i ′th DT leaf of the ordered
collection, while p and n are the respective sums for all leaves. The points define the
ROC curve, which is a piecewise linear function.

The area under such curve can be easily calculated as the sum of the areas of
subsequent trapezia.

AUC(P0, . . . , Pk) =
k∑

i=1

yi + yi−1

2
(xi − xi−1), (2.41)

where Pi = (xi , yi ).
This idea is a foundation of the AUCsplit criterion (Ferri et al. 2002). Each split s of

a node N yields a number of subnodes: N s
1 , . . . , N s

ns
. When the subnodes are sorted

by local positive accuracy, they determine ROC points Ps
0 , . . . , Ps

ns
. The AUCspli t

criterion is defined as

AUCspli t (s) = AUC(Ps
0 , . . . , Ps

ns
). (2.42)

It can be used to estimate quality of candidate splits and select the best split of given
tree node in the classical top-down DT induction procedure (Algorithm 2.1).

In the case of a crisp classifier, the ROC is determined by three points (0, 0), (1−
Sp, Se), (1, 1), where Sp and Se are the classifier’s specificity and sensitivity. The
AUC of such ROC is equal to 1

2 (Se + Sp) which is the same as balanced accuracy
(in two-class problems). It gives some specific view of the AUCspli t optimization.

Ferri et al. (2002) have tested DTs based on their criterion in combination with
the Pessimistic Error Pruning, described in more detail in Sect. 2.4.2.1, but any other
pruning method can also be used to increase generalization abilities of the trees.

One of the most serious drawbacks of the AUCsplit criterion is that it can be
used only for two-class problems. Although it is not difficult to generalize the ideas
to arbitrary number of classes, the authors have not proposed such generalizations.
Instead they combined the method with the 1-vs-1 strategy (Hand and Till 2001; Ferri
et al. 2003) and proposed some improvements to provide more attractive probability
estimates from the trees. Doetsch et al. (2009) used the criterion with maximization
of the criterion over all class pairs in their Logistic Model Trees.

2.3 Multivariate Decision Trees

Splitting decision tree nodes on the basis of univariate functions is very attractive
because of models comprehensibility. A price to pay for the comprehensibility is not
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too flexible shape of decision borders. Univariate conditions correspond to separation
hyperplanes perpendicular to the axes of the selected features. When the splits are
allowed to base on hyperplanes without restrictions, the node conditions may contain
linear combinations in place of single features. Resulting trees are usually simpler in
the sense of the number of nodes or leaves, but it is important to realize that the nodes
are more complex so the overall tree complexity is not necessarily lower. At the same
time, it gets much more difficult to interpret the resulting classification functions.

Many DT induction algorithms facilitate building both kinds of DTs by proper
parameter settings. For example, some of the algorithms described above as the
univariate methods (CART, FACT, QUEST and CRUISE) can also determine linear
combinations of original features as new variables to be split. Many others have been
especially designed to perform multivariate splits. In subsections below, a subjective
selection of algorithms has been presented in more detail, however it must be pointed
out that many other interesting approaches can also be found in the literature. It should
certainly be recommended to also read the original publications about such methods
like SADT (Heath et al. 1993), SPRINT (Shafer et al. 1996), CLOUDS (Alsabti
et al. 1998), CMP (Wang and Zaniolo 2000), SODI (Lee and Olafsson 2006), Cline
(Amasyali and Ersoy 2008) and many others.

2.3.1 LMDT

One of the first, very popular approaches to building DTs with splits based on linear
combinations of features is the LMDT algorithm (Utgoff and Brodley 1991; Brod-
ley and Utgoff 1992a,b). Similarly to the univariate trees described above, the main
engine of LMDT is Algorithm 2.1. The main difference is inside the BestSplit proce-
dure used in the approaches. LMDT does not select a feature for the split or analyze
the dataset feature by feature to find the best split, but builds a linear machine for
each node to split it. Each linear machine is a set of k linear discriminant functions
combined in a single machine to classify data objects to one of the k classes of
the problem being solved (C = {c1, . . . , ck}). Let O ⊆ Rm be the domain of the
classification task. The discriminant functions of the machine are

gi : O × {1} → R, gi (y) = wT
i y i = 1, . . . , k. (2.43)

The input vectors are extended by one dimension with constant value of 1 to facilitate
versatility of hyperplanes definition. The linear machine classification function is

φg : O → C , φg(x) = ci ⇔ ∀
j �=i

g j (x, 1) < gi (x, 1). (2.44)

In theory, when no unique maximum value of gi (x, 1) exists, the value of the linear
machine is undefined. Practical implementations usually select arbitrarily one of the
joint winning classes if there is a draw, because it is more advantageous in usual
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classification tests to select one of the classes and have some chance to guess the
result, than to give up because of equal probabilities of two classes.

The training process of an LMDT linear machine, tests randomly selected training
vectors, and if the class assigned to the vector by the machine is incorrect (say c j

instead of ci ), then the weight vectors wi and w j are adjusted appropriately, to correct
the classification of the vector. The detailed procedure is presented as Algorithm 2.7.

Algorithm 2.7 (Thermal linear machine training process)

Prototype: LMTraining(D,a,b)
Input: Training dataset D ⊆ O × C (O ⊆ Rm), thermal parameter adjustment values a and b

(default a = 0.995, b = 0.0005).
Output: Linear machine φg.
The algorithm:

1. β ← 2
2. for i = 1, . . . , m do

wi ← 0
3. while β ≥ 0.001 and Accuracy(φg, D) ≤ 0.99 do

a. Select an instance (x, ci ) ∈ D at random
b. if φg(x) = c j and j �= i then

i. y← [x1, . . . , xm , 1]T
ii. k ← (w j−wi )

T y
2yT y

iii. if k < β then

A. c← β2

β+k
B. wi ← wi + cy
C. w j ← w j − cy
D. if the magnitude of φg decreased but increased in previous adjustment

then
β ← aβ − b

4. return φg

The term magnitude of φg, referred to in item 3(b)iiiD of the algorithm, means
the sum of magnitudes of the weights wi , i = 1, . . . , m.

If the problem is linearly separable, then the procedure will find a solution in a
finite time (Duda et al 2001). Otherwise, error corrections would not end. Hence the
parameter β has been introduced to realize the idea of thermal perceptron (Frean
1990). It is reduced from time to time to simulate the annealing phenomenon, which
guarantees convergence of the process also in the case of linearly non-separable data.

Variable k is set to the absolute error correction needed to correctly classify
the misclassified object. But it is not used directly in weight change formulae. To
eliminate deterioration in the convergence process caused by error correction for the
cases of misclassified instances located very far or very close to the decision border,

the c parameter controlling weight changes is set to β2

β+k , which guarantees process
stability.
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To help the thermal linear machine separate the classes, the training data objects
should be appropriately prepared. Utgoff and Brodley (1991) proposed to standardize
numeric features before the process and convert symbolic features to a number of
binary features. If the feature has just two possible symbols, they can be encoded as
+1 and−1 respectively. Otherwise, the symbolic attribute is encoded by a number of
binary features equal to the number of possible symbols. For a given data object, one
of the new features (the one corresponding to the symbol assigned to the object) gets
the value of +1 and all the remaining features get −1. Missing values are replaced
by 0s, which correspond to the means of the values observed in the training sample.

It may happen that a linear machine does not in fact split the node—all training
data objects belong to the same part of the feature space split. In such cases the node
gets closed as a leaf, regardless of the fact that it is not pure.

Minimization of arbitrary misclassification cost functions was introduced to the
LMDT approach by Draper et al. (1994). They assigned proportions to the classes
(all equal to 1 at start) to reflect the misclassification costs and respect them in the
thermal learning of the linear machine.

Variable Elimination

To make the models of LMDT as simple as possible, and sometimes more accurate,
Utgoff and Brodley (1991) also described a technique to eliminate variables during
the learning processes. They proposed to repeat training after elimination of the
feature that contributes least to the discrimination. The best solutions, found so far,
must be recorded and new ones compared to them so as to estimate if the results
do not deteriorate. The comparisons performed by Utgoff and Brodley (1991) used
t-test with α = 0.01 to estimate if the new results are not significantly worse than
the saved result. Moreover, they used an additional threshold parameter defining the
size of acceptable decline in accuracy when the feature is eliminated.

After a number of train and eliminate cycles, the best result, saved in appropriate
time, is returned as the final linear machine. The scenario described here is the
strategy of sequential backward elimination (one of the fundamental approaches to
feature selection). Brodley and Utgoff (1992a) have also proposed an approach of
sequential forward selection, where the best single feature is selected first, and then
subsequent features are added one by one, so as to maximize the increase of a merit
criterion.

Moreover, they have suggested a combination of the two strategies, referred to
as heuristic sequential search. Its idea is to run the first stages of both approaches
(Forward selection and Backward elimination) and select the better of the two. Such
initial test may detect, whether there are many noise features that spoil the result or
most of the features are important, and select the method accordingly.
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2.3.2 OC1

Oblique Classifier 1 (OC1, Murthy et al. 1993; Murthy et al 1994; Murthy 1997) is a
method for DT construction by means of a search for optimal hyperplane separating
classes of objects. The search uses a heuristics to find local minima and ideas of non-
deterministic approaches to get out of the minima in the pursuit of better solutions.

At each DT node a single hyperplane is determined, so the resulting trees are
binary. Similarly to the LMDT approach, the hyperplanes are defined by m + 1-
dimensional vectors, where m is the dimensionality of the object space. The key
procedure of OC1 is its, so called, perturbation method, adjusting one selected coef-
ficient in the hyperplane to maximize a measure of impurity of the hyperplane split.

Algorithm 2.8 (OC1 hyperplane perturbation algorithm)

Prototype: OC1Perturb(w,d,D,Impurity)
Input: Initial hyperplane parameters w = (w1, . . . , wm+1), index of the dimension to be per-

turbed d, training dataset D ⊆ O×C (O ⊆ Rm), D = {(xi , ci ) , i = 1, . . . , n}, hyperplane
split impurity measure Impurity.

Output: Modified hyperplane parameters w.
The algorithm:

1. for i = 1, . . . , n do
a. Vi ←∑m

j=1 w j x j + wm+1

b. Ui ← wd xid − Vi

xid
2. Sort U1, . . . , Un in nondecreasing order
3. w′ ← w
4. w′d ← the best 1-D split of the sorted U1, . . . , Un
5. if Impurity(w, D) < Impurity(w′, D) then

a. wd ← w′d
b. stagnant ← 0

else if Impurity(w, D) = Impurity(w′, D) then
a. wd ← w′d with probability e−stagnant

b. stagnant ← stagnant + 1
6. return w

The procedure is presented as Algorithm 2.8. It calculates Ui values for each data
object, sorts the objects by nondecreasing values of Ui and performs linear search to
find the best 1-D split of the data.

Murthy et al. (1993) performed the hyperplane perturbations in three different
ways:

Seq: The coefficients were perturbed one by one in sequence, many times, until
none of the coefficient values were modified:
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Repeat
1. v← w
2. for i = 1, . . . , m + 1 do

w← OC1Perturb(w,i,D,Impurity)

until v = w

Best: Each coefficient was perturbed independently, to get the one providing maxi-
mum impurity reduction. The optimization was run until the same coefficient
was returned twice in sequence:

Repeat
1. j ← the coefficient providing maximum impurity reduction when perturbed
2. OC1Perturb(w,j,D,Impurity)

until j is the same as in the previous iteration

R-50: The coefficient to be perturbed was selected randomly 50 times:

for i = 1, . . . , 50 do
1. j ← random integer between 1 and m + 1
2. OC1Perturb(w,j,D,Impurity)

Escaping from Local Minima

The procedures, described above, optimize hyperplanes in such a way that when a
local minimum is reached, no further perturbation reduces the impurity. To increase
the probability of finding global minimum, two techniques were applied by Murthy
et al. (1993): perturbing coefficients in a random direction and choosing mul-
tiple initial hyperplanes. In the first technique, they selected randomly a vector
r = (r1, . . . , rm+1) and analyzed hyperplanes determined by vectors of the form
w+ αr. In a perturbation procedure analogous to the algorithm 2.8, they calculated
the best value of α from the point of view of hyperplane impurity. If the new hyper-
plane impurity was lower than that of w, the perturbation procedure was continued
for the new coefficients. Otherwise, the hyperplane of w was returned as the final
result.

The other method was just to start with different initial hyperplane vectors w and
select the best of the local minima found with the OC1 optimization procedure.

Hyperplane Impurity Measures

Algorithm 2.8 is parameterized by the method to calculate impurity of a hyperplane
in the context of particular dataset. Murthy et al. (1993) have proposed three methods
to measure such impurity:

max minority : M M(s, D) = max(min(|Ds1,c1 |, |Ds1,c2 |), min(|Ds2,c1 |, |Ds2,c2 |)),
sum minority : SM(s, D) =∑2

i=1 min(|Dsi ,c1 |, |Dsi ,c2 |),
sum of impurity : SI (s, D) =∑2

i=1
∑

(x,c)∈Dsi
(Bin(c)−avgi )

2,where Bin(c) ∈
{0, 1} is a binary coding of the classes and avgi = 1

|Dsi |
∑

(x,c)∈Dsi

Bin(c).
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Although the measures are defined for split s in general, while Algorithm 2.8 calls
the Impurity method with vectors determining hyperplanes, it is easy to make them
compatible also formally, as the hyperplane splits the space into halves. Also, it is not
difficult to extend the definitions given by Murthy et al. (1993) to arbitrary numbers
of classes.

Other Solutions

Murthy et al (1994) have listed additional measures like information gain, Gini index
or twoing criterion. In fact, any measure of split quality may be used here.

Similarly, any pruning method is suitable for OC1 trees, but Murthy et al (1994)
have used the cost-complexity optimization cost-complexity pruning of Breiman
et al. (1984).

In the original definition, missing values in the data were replaced by mean values
of the attribute, before training or testing OC1.

2.3.3 LTree, QTree and LgTree

Probabilistic linear trees LTree Gama(1997) result from a combination of three ideas:
divide and conquer methodology of decision trees, linear discriminant analysis and
constructive induction.

According to the paradigm of constructive induction, each split of an LTree node
(the corresponding training data sample) is performed in two independent steps:

• new attributes construction (linear combinations of existing features),
• best split determination by a technique for univariate DT construction.

Such scheme and other ideas introduced to LTree induction caused important differ-
ences between the approach and other methods, introduced earlier:

• the number of features describing data can differ between the nodes of the same
classification tree,
• new attributes, once created, are propagated downwards, so that other splits in the

branch can also use them,
• the trees estimate probabilities by an analysis of data distributions in the whole

path followed when classifying an object: from the root to appropriate leaf.

Attribute Construction

When new features are generated for the sake of a tree node split, it is important that
it brings as much information about class discrimination as possible. To determine
the class of a given object x, it is sufficient to determine conditional probabilities
P(c|x) for each possible class c. The most probable class should be indicated as the
class of x. Given the Bayes theorem:
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P(c|x) = P(c)P(x|c)
P(x)

. (2.45)

To determine the winner class, the denominator (common for all the classes) can be
ignored leaving P(c)P(x|c) as the value to be estimated for each class c ∈ C .

Linear discriminant analysis assumes that each class is normally distributed
and that all classes share the covariance matrix �. In such case, maximization of
P(c)P(x|c) is equivalent to maximization of P(c) fc(x), where fc(x) is the proba-
bility density function for class c. Multidimensional normal density function of mean
μ and covariance � is given by:

fμ,�(x) = 1√
(2π)n|�|e

− 1
2 (x−μ)T �−1(x−μ). (2.46)

After some more simplifications (like comparing logarithms instead of exponential
expressions and throwing out the constant components for all classes) one can easily
get:

P(c|x) ∝ log(P(c))+ xT �−1μc − 1

2
μT

c �−1μc. (2.47)

Therefore, Gama(1997) defined the linear discriminant hyperplane as:

Hc = αc + xT βc, (2.48)

where αc = log(P(c))− 1
2μT �−1x and βc = �−1μc. The mean μc and covariance

matrix � are calculated as the training sample mean and pooled covariance matrix.
Because in some circumstances the polled covariance matrix may be singular, Gama
(1999) suggested using SVD (see appendix section B.2) to reduce the features that
cause the singularity.

The hyperplane formula (2.48) defines new features added at the tree node. New
features are constructed for kN − 1 classes of the kN represented in the node N by
the number of objects greater than the number of attributes (Gama (1999) suggested
twice the number of attributes).

When adding the attributes, the αc is constant for all the objects and could be
omitted. In fact, the fragments ignored when deriving (2.47) as not important from
the point of view of winner-class selection for an object are not meaningless when
comparing different objects and could play significant role here.

Gama (1999) also proposed two other discriminant approaches to be used in
analogous ways as the linear one: quadratic and logistic discriminants, yielding
algorithms named QTree and LgTree respectively. Quadratic discriminants can be
inferred similarly to the linear ones from the assumption of normal distributions
but without the constraint of equal covariance matrices for all the classes. Similar
reasoning as for linear discriminants brings the conclusion that

P(c|x) ∝ log(P(c))− 1

2
log(|�c|)− 1

2
(x − μc)

T �−1
c (x − μc), (2.49)
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where �c is the covariance matrix for class c. Again, possible problems with covari-
ance matrix singularity can be solved by SVD analysis and feature elimination.

In the LgTree algorithm, generation of new features starts with selecting one of
the classes (c1, . . . , ck) as so called reference class (say the last one ck) and k − 1
vectors β1, . . . ,βk−1 to estimate the conditional class probabilities:

P(ck |x) = 1
∑k−1

j=1 eβ j x
, P(ci |x) = eβi x

∑k−1
j=1 eβ j x

, i = 1, . . . , k − 1. (2.50)

Then the Newton-Raphson iterative procedure is used to find such βs that maximize
the likelihood:

L(β1, . . . ,βk−1) =
k∏

i=1

∏

x∈Dci

P(ci |x). (2.51)

As in the case of linear discriminants, the subsequent βs can be used as the projection
vectors to create new features discriminating the classes.

Split Criteria

The constructive approach can be combined with any method of univariate DT induc-
tion. By default Gama (1997, 1999) used a method very similar to C4.5: the Informa-
tion gain criterion was used for split quality estimation. Continuous features splits
were binary, while using categorical features for splits resulted in multi-way branch-
ing (as many subnodes as symbols of the feature).

Decision Making

As mentioned above, the LTree family methods have implemented a special way
of class probability estimation, based on data distribution in the whole path from
the root to the leaf of interest, instead of the most common solution to base just on
the distribution in the leaf. Gama (1997) suggested weighting class proportions in a
given node N with its parents probabilities:

P(c|N ) = P(c|Parent (N ))+ w
nN ,c
nN

1+ w
. (2.52)

Only for the root node, class probabilities were based directly on class frequencies
in the training data sample. The parameter w was set to 1 by default, but its value
was up to the user. Such definition of class probabilities may cause that the winner
class is not the majority class of the leaf.
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Pruning

To obtain well generalizing trees, Gama (1997) suggested using one of two methods:
the Error-Based Pruning of C4.5 (but without the option of grafting the best subtree
in the place of its parent, when the subtree seems to be better) and another one,
strongly related to the way of calculating probabilities, described above. When the
sum of errors made by subbranches of a given node, was not less than the error of
the (parent) node acting as a leaf, then the node was turned into a leaf. In the most
common approach of estimating probabilities by leaves frequencies, it cannot happen
that the children nodes make, in total, more errors than their parent, but it is possible
with so untypical probability estimation, as described above.

Algorithm 2.9 (Iterative refiltering)

Prototype: IterativeRefiltering(D,LM)
Input: Training dataset D, a learning machine L M.
Output: A model.
The algorithm:

1. repeat
a. M ← T rain(L M, D) /* model M is the result of training L M on D */
b. D′ ← Classi f y(M, D) /* D′ is D with classes predicted by the ones provided by

M */
c. D← D ∩ D′

while D′ �= D do
2. return M

2.3.4 DT-SE, DT-SEP and DT-SEPIR

John (1995b, 1996) has contributed to the field of multivariate DT induction by
presenting the ideas of using soft criteria for split quality estimation and iterative
refiltering in DT regularization. Soft miltidimensional criteria are not compatible with
symbolic features, so the family of DT-SE methods needs some data preprocessing
to get rid of the symbols which have no sensible order. In the experiments of John
(1996), all unordered categorical attributes were converted into corresponding 0-1
indicator variables (see p.6) to prevent introduction of accidental information or
hiding existing information by arbitrary symbols ordering. Therefore, binary splits
are most natural in this family of trees, although one could easily apply the same
optimization methods for analyzing multi-way splits.
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Soft Split Criteria and Soft Entropy

In general, the proposition of John (1996) was softening different criteria evaluating
split quality, so that they can be optimized with methods like gradient descent. To
make it easier, he described the problem of finding an optimal split of a dataset D as
the problem of finding parameters θ
 ∈ 
 of a split function gθ that minimize some
split quality measure I :

θ
 = arg min
θ∈
 I (D|gθ ). (2.53)

The domain 
 can be arbitrarily defined for particular problems: it may contain
simple, single-value parameters like split thresholds, but also more sophisticated
objects consisting of more important values parameterizing the split function gθ .

The objective function I may be any split criterion including information gain,
Gini index and so on. Although most of the criteria are defined on the basis of
cardinalities of datasets D ∈ O , they can be easily softened by using fuzzy mem-
bership functions and fuzzy cardinalities: |D|w = ∑

x∈O w(x). An example of a
fuzzy membership function is the sigmoid function performing linear discriminant
splitting:

gθ (x) = 1

1+ e−θT x
. (2.54)

The composition of the objective function from a split function like (2.54) and
split quality measure I helps in using gradient methods for minimization. By the
chain rule δ I

δθ
= δ I

δgθ

δgθ

δθ
, so if the quality measure function is differentiable with

respect to gθ and gθ with respect to θ , performing gradient descent minimization is
very easy.

The experiments of John (1996) were performed with the information gain func-
tion as the split quality measure and the split function gθ defined by (2.54). More
precisely, the negated sum of entropies (2.5) of the datasets resulting from the split
needs to be calculated, as the entropy of the whole dataset is constant for all splits.
The result got the name of soft entropy (SE) which gave rise to the name DT-SE.
A simple steepest descent procedure was used for objective function minimization.
After the θ
 was found, the dataset was crisply split into two parts corresponding to
the conditions gθ
(x) ≥ 1

2 and gθ
(x) < 1
2 which are equivalent to a typical linear

discriminant solution: θ
T x ≥ 0 or θ
T x < 0.

Pruning

Tree regularization process prepared by John (1996) for his DT-SE trees used two
kinds of methods: pre-pruning and retraining. The former is very simple: tree nodes
are not further split if one of the classes has less than 5 representatives. Naturally,
the 5 is the value of a parameter, but in John’s experiments it was set just to 5. The
technique of retraining got the name of iterative refiltering and was borrowed from
the field of regression methods, where it had been used under the names of robust
(Huber 1977) or resistant (Hastie and Tibshirani 1990) fitting. A general definition of
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iterative refiltering is presented as algorithm 2.9. It could be made even more general
by replacing the call of Classify() method by a more general one and generalizing
the stop condition of the loop. The idea behind the algorithm is that if an object is
classified incorrectly by the model, then it probably spoils not only the leaves of the
tree but also the nodes along the whole path from the root, so it should be advantageous
to get rid of such object during learning. The procedure just repeats learning, testing
the resulting model and removing the data objects incorrectly classified by the model,
until the subsequent model classifies correctly all the objects that remain in the
training dataset. The algorithm was presented first by (John 1995a) in application
to C4.5 creating the method named Robust C4.5. The training procedure called
within iterative refiltering must be equipped with some generalization mechanisms.
Therefore, in application to DT-SE, the simple stop criterion was used. C4.5 has its
own pruning strategy, so it was used for tree regularization.

The DT-SE method augmented by the simple stop-criterion for the purpose of
pruning was named DT-SEP and the version using also Iterative refiltering is called
DT-SEPIR.

2.3.5 LDT

Yildiz and Alpaydin (2000, 2005a) performed an analysis of six aspects of DT induc-
tion algorithms and proposed their own algorithm named Linear Decision Trees
(LDT). The six aspects are:

• node type: univariate or multivariate,
• branching factor: splitting to two or more subnodes,
• grouping classes into two superclasses for binary trees,
• split quality measures,
• minimization methods for finding best splits.

The resulting LDT algorithm creates binary trees, performing Discriminant analy-
sis at each node (with options of univariate or multivariate splits and Linear discrim-
inant analysis linear or )Quadratic discriminant analysis after the classes with repre-
sentatives in the node, are grouped into two superclasses with one of two algorithms.

The Discriminant Analysis

LDT follows the idea of Fisher’s linear discriminant analysis (FDA). The goal of
FDA is finding the hyperplane providing the best separation of two groups of objects.
In other words, the direction w
 that maximizes the distances between different class
centers while minimizing the average variance within classes:

w
 = arg max
w∈Rk

wT SBw

wT SW w
, (2.55)
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where SB is the between-class covariance matrix and SW is the within-class covari-
ance matrix:

SB = (xc1 − xc2)(xc1 − xc2)
T , (2.56)

SW =
∑

c∈{c1,c2}

∑

x∈c

(x − xc)(x − xc)
T . (2.57)

The solution of the maximization problem is

w
 = S−1
W (xc1 − xc2), (2.58)

so the projection w
T x provides optimal class discrimination. Assuming normal
distributions of the separated groups, the optimal threshold in the new dimension is

w0 = −1

2
(xc1 + xc2)

T S−1
W (xc1 − xc2)− log

nc1

nc2

. (2.59)

Alternatively, one can analyze all possible split positions and select the best one
according to a given quality measure like classification accuracy, entropy, Gini index
and so on.

The new dimension created as a linear combination of the original variables
describing the data can be handled in the same way as the original features in uni-
variate DTs. The split point w0 of (2.59) is the optimal split point, on the assumption
of equal variances of the new feature in the two groups. When resigning from the
assumption about the parameters of normal distributions, the QDA analysis can be
done to determine the split point in the same way as in QUEST (see Eqs. (2.17),
(2.18), and (2.19)). In the case of equal variances the quadratic equation has one root
equivalent to w0 of (2.59). Otherwise, there can be two roots. If so, the one between
the means of the groups (if exists) is selected. If not, or both roots are outside the
interval designated by the means, then the middle point between the means is used
as the split point.

Symbolic features are transformed to the appropriate number of Indicator vari-
ables, and the split is found in such space. As described in the case of QUEST,
such splits can be easily decoded back to the original feature and verbalized in the
language of the symbolic input feature.

Avoiding Problems of Covariance Matrix Singularity

When a linear dependency exists between two variables describing the data, the
matrix SW is singular and S−1

W does not exist. Similarly to the approach of FACT,
Yildiz and Alpaydin (2000) propose using principal component analysis (PCA) to
get rid of the undesirable features. The difference between the two is the way the
limitation is introduced. Here, provided the Eigenvalues λ1, . . . , λr in nonincreasing
order, and the associated Eigenvectors c1, . . . , cr , minimum d is determined, such
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that d initial eigenvectors explain more than ε of the variance:

λ1 + · · · + λd

λ1 + · · · + λd + · · · + λr
> ε. (2.60)

Then, each data vector x is transformed into the space of selected eigenvectors to

z = (cT
1 x, . . . , cT

d x)T , (2.61)

and the LDA is performed in the new space, where the inverse of corresponding SW

certainly exists. The solution is then transformed back to the original space.

Grouping into Superclasses

When the number k of classes is greater than 2, the LDA procedure described above
is preceded by the stage of grouping the classes into two superclasses. Yildiz and
Alpaydin (2000) proposed two algorithms for this purpose: one based on selection
and the other on exchange. Unlike the method of QUEST (ClusteringTwo-means
clustering), the methods of LDT are supervised. The selection method is presented
as Algorithm 2.10. Different random selection at start of the process may generate
different superclasses. Yildiz and Alpaydin (2000) suggested to select two most
distant classes in place of the random selection.

Algorithm 2.10 (LDT superclasses by selection)

Prototype: SuperclassesBySelection(D, SQM)
Input: Training dataset D with classes C = {c1, . . . , ck}, a Split quality measure SQM.
Output: Superclasses A and B.
The algorithm:

1. Select two classes ca and cb from C at random
2. A← ca
3. B ← cb
4. C ← C \{ca, cb}
5. while C �= ∅ do

a. s ← the split provided by the FDA for data D and classes A and B.
b. Select the class c ∈ C that added to A or B results in the best result returned by

SQM
c. if c maximized SQM when added to A then

A← A ∪ c
else

B ← B ∪ c
d. C ← C \{c}

6. return A and B
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The second solution offered by LDT is Algorithm 2.11 constructing Superclasses
by exchange, proposed by Guo and Gelfand (1992). It divides the classes into two
superclasses and then moves the classes from one superclass to the other so as to
maximize Information gain of LDA splits. Yildiz and Alpaydin (2000) also suggested
a heuristic to replace random initialization: they started with two most distant classes
and added remaining ones to appropriate parts, according to the rule of minimum
inter-mean distance.

Algorithm 2.11 (LDT superclasses by exchange)

Prototype: SuperclassesByExchange(D)
Input: Training dataset D with classes C = {c1, . . . , ck}.
Output: Superclasses A and B.
The algorithm:

1. A←⋃
i≤ k

2
ci , B ←⋃

i> k
2

ci

2. repeat
a. s ← the split provided by the FDA for data D and classes A and B
b. I G0 ← I G(s, D) /* information gain – see equation (2.6) */
c. for i = 1, . . . , k do

i. Construct Ai and Bi by moving ci from its superclass to the other
ii. si ← the split provided by the FDA for data D and classes Ai and Bi

iii. I Gi ← I G(si , D)

d. i
 ← arg maxi=1,...,k I Gi
e. if I Gi
 > I G0 then

A← Ai
 , B ← Bi


until I G
 ≤ I G0 /* no improvement */
3. return A and B

Both superclass generation methods require multiple runs of LDA, so they may
be a significant additional cost, as they are run for each DT node, generated during
the induction process.

2.3.6 Dipolar Criteria for DT Induction

Decision trees based on dipolar criteria, offered by Bobrowski and Krętowski (2000),
are based on the same fundamental idea as the SSV criterion (see Sect. 2.2.7): to
find splits that separate possibly many pairs of objects belonging to different classes.
Bobrowski and Krętowski (2000) defined dipoles as pairs of objects and distinguished
between pure dipoles (containing objects belonging to the same class) and mixed
dipoles (containing objects from different classes).

To define the objective, dipolar criterion function, two penalty functions need to
be defined first, for each input vector v, to control whether it stays on the positive or
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negative side of the candidate hyperplane:

ϕ+v (w) =
{

δ − wT v if wT v < δ,

0 if wT v ≥ δ,
(2.62)

ϕ−v (w) =
{

δ + wT v if wT v > −δ,

0 if wT v ≤ −δ,
(2.63)

where δ is a margin parameter (usually set to 1 by the authors).
Then, for each dipole, the functions can be combined to measure the cost related

to dividing the dipole or not. For pure dipoles, the cost can be calculated as

ϕ
p
u,v(w) = ϕ+u (w)+ ϕ+v (w) or ϕ

p
u,v(w) = ϕ−u (w)+ ϕ−v (w), (2.64)

while for mixed dipoles as:

ϕm
u,v(w) = ϕ+u (w)+ ϕ−v (w) or ϕm

u,v(w) = ϕ−u (w)+ ϕ+v (w). (2.65)

Eventually, appropriately weighted costs of the dipoles compose the dipolar cri-
terion to be optimized:

�(w) =
∑

(u,v)∈Ip

αu,vϕ
p
u,v(w)+

∑

(u,v)∈Im

αu,vϕ
m
u,v(w). (2.66)

Optimization of this kind of objective functions, can be performed with a Basis
exchange algorithm (Bobrowski 1991, 2005) similar to the standard methods of
Linear programming. An additional difficulty is the orientation of the dipoles, which
makes only one of the two alternative forms of each penalty function (2.64) and
(2.65) adequate in particular circumstances. For this purpose, the basis exchange
algorithm has been equipped with proper search for adequate orientations of the
dipoles (Bobrowski 1999, 2005).

Oblique decision trees stand a chance to preserve some comprehensibility if the
linear combinations do not include large numbers of features. Therefore, the DT
induction algorithm based on the dipolar criterion, implements some Feature selec-
tion functionality. In this aspect, the authors followed Brodley and Utgoff (1992a) and
used their Heuristic sequential search of the LMDT (see Sect. 2.3.1). The procedure
is the most time consuming part of the overall DT induction process.

A step toward cost decline may be early stopping of the splits. Bobrowski and
Krętowski (2000) used a simple rule of stopping the splits, when the count of training
data objects falling into the node was less than 5. Apart from that, they pruned the
trees after construction, according to the principle of Reduced Error Pruning (see
Sect. 2.4.3.1). They used 70 % of the training dataset for tree construction and after-
wards, decided which nodes to prune by validating the tree on the dataset containing
the remaining 30 % of data.
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2.4 Generalization Capabilities of Decision Trees

There are many reasons, for which, decision trees generated on the basis of a training
data sample are not perfect classifiers for the whole population of data objects. One
of them is imperfectness of the training data sample. It often happens that the data
objects descriptions are noisy. The noise may come from imprecise measurements,
errors made during data collection, loosing some data and so on. On the other side,
very often, the data sample is not representative of the problem and does not contain
full information about the relations being learned. Sometimes, the information is
contained in the data, but it is too difficult to discover it with the learning processes,
because there are many local minima, which “conceal” the global minimum or the
decision functions of the learning machines are not capable of describing the hidden
dependencies. In all these cases and many others, the model resulting from DT
induction may overfit the training data in the sense that it perfectly describes the
sample, but not exactly the relations of interest.

When Overfitting occurs close to the root node, then the tree model is completely
inaccurate and often, nothing can be done to fix it, but when it is due to splits close to
the leaves, Pruning some tree branches can be a successful solution. Pruning makes
the models simpler, so it is compliant with the idea of the Occam’s razor. Fortunately,
the root node and other nodes close to it, are usually created on the basis of large
data samples, and because of that, generalize well. They should not be affected by
pruning techniques, which ought to delete relatively small nodes, responsible for
distinction between single data items or very small groups, existent in the training
sample but being exceptions rather than representative objects of the population.

Another kind of problems can be observed when the number of features describing
data objects is large in relation to the number of objects. Then, it is probable that the
data contains features accidentally correlated with the output variable. Such features
may be selected by the DT induction algorithms as the most informative ones and may
significantly distort the model. In such cases, pruning is less helpful—a better way is
to create many models and combine their decisions. In the Ensemble, the influence
of accidentally correlated features is likely to be dominated by really informative
ones. The price to pay for that is often model comprehensibility, but one can still
search for some explanations by exploration of the ensemble members with respect
to their compatibility with the ensemble decisions, and so on.

Some researchers, for example Bohanec and Bratko (1994) and Almuallim (1996),
have used pruning techniques for tree simplification, which they describe as slightly
different task than increasing generalization capabilities. They assume that the full
tree is maximally accurate and search for simpler descriptions of the data, consciously
accepting some loss in accuracy. So the task is to minimize the loss in accuracy for
a given size constraint for the tree.

Most of the commonly used pruning techniques belong to one of two groups:

• pre-pruning: the methods acting within the process of DT construction, which can
block splitting particular nodes,
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• post-pruning: the methods that act after complete trees are built and prune them
afterwards by removing the nodes estimated as not generalizing well.

Some other techniques, aimed at tree generalization, do not fit either of the groups.
An interesting example is the strategy of Iterative refiltering used in DT-SE family of
methods (see Sect. 2.3.4), where the final trees are results of multi-stage DT induc-
tion with adequate adjustment of the training data sample. Yet another (completely
different) approach is the optimization of decision rules, but in fact, they are not
proper DT pruning methods, as their final results may not have the form of DTs,
even when started with the classification rule sets exactly corresponding to DTs.

Pre-pruning methods are also called stop criteria. The most natural condition to
stop splitting is when no sensible further splits can be found or when the node is clean
(pure), that is, contains objects belonging to only one class. Some generalizations of
these ideas are the criteria of stopping when the node is small enough or contains
small number of erroneously classified objects (reaching some purity threshold).
They also stop further splitting, so are recognized as pre-pruning techniques.

Usually, it is very hard to estimate whether further splitting the node at hand may
bring significant information or not, so apart from the simplest conditions like the
ones mentioned above, pre-pruning techniques are not commonly used.

Post-pruning methods simplify trees by replacing subtrees by leaves in a previ-
ously constructed DT. Again, the group can be divided into two subgroups:

• direct pruning methods, that decide which nodes to prune just on the basis of the
tree structure and information about training set distribution throughout the tree,
• validation methods, that use additional data sample (separate from the one used for

training) in a validation process to determine which nodes do not seem to perform
well on data unseen during learning.

Among the latter group, there are methods using single validation dataset (like
Reduced Error Pruning) and others, performing multiple tests in a process like Cross-
validation (for example, Cost-complexity optimization cost-complexity pruning of
CART) to estimate optimal values of some parameters to be used in final tree pruning.

2.4.1 Stop Criteria

Like all recursive algorithms, DT induction methods must define a condition to stop
further recursion, to avoid infinite loops.

One of the most natural criteria breaking the recursive splitting process is the
condition of nodes purity. A clean node, that is, containing objects of one class only,
does not need further splits, as it is 100 % correct (as far as the training data is
concerned). Some softened purity conditions may also be defined. It is a popular
approach to define the maximum allowable number of errors to be made by a tree
node. When a node contains objects from one class and n objects from other classes
it is not split when n < θ , where θ is a pre-defined threshold. Another variant of
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this idea is to define the threshold as the proportion of objects from classes other
than the majority one, and calculate not just the number of errors, but the percentage
of errors yielding different allowable error count for nodes of different sizes. Yet
another similar methods put size constraints on each node and do not accept splits
that generate a subnode smaller than a given threshold.

Another situation, when the recursive process is stopped in a natural way, is when
the split criterion being used does not return any splits for the node. For example,
when all the object descriptions are the same, but some data objects belong to one
class and some to others. Such circumstances may occur when the dataset is noisy
or when the features describing data are not sufficient to distinguish the classes.

Some split criteria can return no splits not only when all the data vectors are the
same, but because of the setting of their parameters. It is common in the split methods
based on statistical tests, that a split is acceptable only if a statistical test rejects the
hypothesis of concern, with a specified level of confidence. For example, algorithms
like Cal5 or CTree test some hypothesis to determine the split feature and the split
of the node. On the basis of the tests they make decisions whether to make further
splits or not. They may decide to not split the node even if it is not pure. Naturally,
such statistical stop conditions could also be used with algorithms, where the split
points are searched with exhaustive methods, but it is not common to do so. It is
more popular to use statistical methods to prune the tree after it is fully grown, but
such approaches perform post-pruning (the direct part) not pre-pruning.

The authors of DT algorithms usually prefer to build oversized trees and then
prune them instead of using advanced stop criteria, because their wrong decisions may
significantly affect the quality of the resulting trees. Comparative tests of pre-pruning
and post-pruning algorithms (for example, the ones made by Mingers (1989a)) prove
that the latter are more efficient, so most often, DT induction algorithms use only
the most natural stop criteria. Sometimes, to avoid loosing time for building too big
trees, small impurity thresholds are accepted. For example, when a node contains a
single object of another class than that of all the others, it is not very reasonable to
expect that further splits can generalize well, so ignoring such impurities, in most
cases, just saves some time with no negative impact on resulting tree quality.

2.4.2 Direct Pruning Methods

Direct pruning is very time-efficient because it just examines the decision tree and
training data distribution throughout the tree. On the other hand, they are provided
with information about training data distribution, so they get less information than
Validation methods, which are given also the results for some Unseen data. Hence,
the task of direct pruning may be regarded as more difficult than the task of validation.

Methods for direct pruning usually estimate misclassification risk of each node
and the whole subtree suspended at the node. If the predicted error rate for the node
acting as a leaf is not greater than corresponding error for the subtree, than the subtree
is replaced by a leaf. The differences between methods of this group are mainly in
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the way of the misclassification rate estimation, as the natural estimation on the basis
of the training data is overoptimistic and leads to oversized trees.

The following subsections describe some direct pruning methods. To provide a
valuable review of this family of algorithms, several methods of diverse nature have
been selected (including the most popular ones):

• PEP: Pessimistic Error Pruning (Quinlan 1987; Mingers 1989a; Esposito et al.
1997),
• EBP: Error-Based Pruning (Quinlan 1987; Esposito et al. 1997),
• MEP and MEP2: Minimum Error Pruning (Niblett and Bratko 1986; Mingers

1989a; Cestnik and Bratko 1991),
• MDLP– Minimum Description Length Pruning – different approaches have been

proposed by Quinlan and Rivest (1989), Wallace and Patrick (1993), Mehta et al.
(1995), Oliveira et al. (1996), Kononenko (1998); here only the approach of
Kononenko (1998) is presented in detail.

2.4.2.1 Pessimistic Error Pruning

PEP Sometimes it is advantageous to approximate binomial distribution with normal
distribution. To avoid some unfavorable consequences of the transfer from discrete
values to continuous functions, an idea of continuity correction has been successfully
used (Snedecor and Cochran 1989). Quinlan (1987) proposed to apply it to estimation
of the real misclassification rates of DTs. Given a node N with the information
about the number nN of training data objects falling into it and the number eN of
errors (training data items belonging to classes different than the one with majority
representation in N ), Quinlan estimated the misclassification risk as

eN + 1
2

nN
. (2.67)

The rate for the subtree TN rooted at N can be defined as the weighted sum of the
rates for all leaves in TN (T̃N ) with weights proportional to leaves sizes, which can
be simplified to: ∑

L∈T̃N
eL + 1

2 |T̃N |
nN

. (2.68)

Because the continuity correction is often not satisfactory to eliminate overopti-
mistic estimates, the approach of Pessimistic Error Pruning uses it with the margin of
one standard deviation of the error (SE for standard error) (Quinlan 1987; Mingers
1989a; Esposito et al. 1997). Denoting the corrected error of the subtree TN , that is,
the numerator of (2.68), by ETN , the estimation of the standard error can be noted
as:

SE(ETN ) =
√

ETN × (nN − ETN )

nN
. (2.69)
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The algorithm of PEP replaces a subtree by a leave when the error estimated for
the node (2.67) is not greater than the corrected error counted for the subtree (2.68)
minus its standard error (2.69).

The procedure is applied in top-down manner, which usually eliminates a part of
calculations, because if a node at high level is pruned, all the nodes of its subtree
need not be examined.

2.4.2.2 Error-Based Pruning

Another way of pessimistic error evaluation gave rise to the Error-Based Pruning
algorithm (Quinlan 1987) used in the popular C4.5 algorithm. Although it is often
described as PEP augmented with possibility of grafting maximum child in place of
the parent node, the difference is much larger—estimation of the pessimistic error is
done in completely different way. Here, confidence intervals are calculated for given
probability of misclassification and the upper limits of the error rates are compared
(for given node as a leaf and the subtree).

From the source code of C4.5r8 it can be discovered that the Wilson’s approach
to confidence intervals (Wilson 1927) was applied. Probably, the reason for such
a choice was that the Wilson’s intervals offer good approximation even for small
samples, which are very common in DT induction. Actually, pruning is required
almost only for nodes with small data samples. Nodes with large samples usually
allow for reliable splits and are not pruned.

Wilson defined the confidence interval at level α for a sample of size n, drawn
from binomial distribution with probability p as:

p + z2

2n ± z
√

p(1−p)
n + z2

4n2

1+ z2

n

, (2.70)

where z = z1− α
2

is the critical value of the Normal distribution for confidence level α.
To determine whether to prune a node N or to keep the subtree, or to graft maxi-

mum child node in place of N , one needs to calculate the upper limit of the confidence
interval for misclassification rate of N as a leaf, the subtree TN and for the maximum
child of N . The decision depends on the fact, which of the three limits is the smallest.

To avoid comparing the quality of the node at hand with all possible results of
pruning its subtree, one can compare just to the best possible shape of the subtree.
However, to obtain the best pruning of the subtree before its root node pruning is
considered, the process must be run from bottom to the root of the tree (as opposed
to PEP, which is a top-down approach).

EBP has been commented as more pessimistic than PEP. Esposito et al. (1997)
argument that although the estimation is more pessimistic, it is so for both the subtree
and its root acting as a leave, which makes the method prune less than the PEP. As can
be seen in the experiments described in Chap. 5, on average, EBP generates smaller

http://dx.doi.org/10.1007/978-3-319-00960-5_5
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trees than PEP. The discussion there gives some explanation about the most probable
reasons of so different conclusions.

The code of C4.5 contains additional tests, controlling the size of result trees. For
example, it checks whether the node to be split contains at least 4 known values (more
precisely 2·MINOBJS, where MINOBJS is a parameter with default value of 2) and
whether the split would not introduce too small nodes (of size less than MINOBJS).
When any of the tests reports the danger of too small DT nodes, the node is not split
(gets closed, converted into a leaf).

Existence of missing values in the data is reflected in the method by weights
assigned to each training data object. Initially each object gets the weight of 1 and in
the case of uncertain splits (splits using feature values not available for the object)
the object is passed down to all the subnodes, but with properly decreased weights
(equal to the proportions of the training data without missing values, passed down
to the subnodes). The numbers of objects in each node are calculated as the sums of
weights assigned to objects instead of the crisp counts.

2.4.2.3 Minimum Error Pruning

MEPAs noticed by Niblett and Bratko (1986), misclassification probability estimates
of DT leaves can be calculated according to the Laplace’s law of succession (also
called Laplace correction). In the case of a classification problem with k classes
c1, . . . , ck , the class probability distribution may be estimated by:

p(ci ) = nN ,ci + 1

nN + k
. (2.71)

Cestnik and Bratko (1991) proposed using a more general Bayesian method for
estimating probabilities (Good 1965; Berger 1985). According to this method, called
m-probability-estimation, the estimates (called m-estimates) are:

p(ci ) = nN ,ci + pa(ci ) · m
nN + m

, (2.72)

where pa(ci ) is a priori probability of class ci and m is a parameter of the method.
It is easy to see that the Laplace correction is a special case of m-estimates,

where m = k and prior probabilities are all equal to 1
k . The m parameter serves

as a coefficient determining how much the raw training data estimations should be
pushed towards a priori probabilities — with m = 0 the raw proportions are effective
and with m →∞ the probabilities become the priors.

Given the probability estimation scheme (2.71) or (2.72), the decisions about
pruning a node are made according to the results of comparison between the proba-
bility of misclassification by the node acting as a leaf, and by the subtree rooted in
the node. Such pruning methods are referred to as MEP (Minimum Error Pruning)
and MEP2 respectively.
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To sum up the differences between MEP and MEP2, it must be mentioned that:

• MEP assumes uniform initial distribution of classes, while MEP2 incorporates
prior probabilities in error estimation.
• MEP is parameterless and the degree of MEP2 pruning can be controlled with m

parameter.
• the m parameter of MEP2 can reduce the influence of the number of classes to the

degree of pruning.

It is not obvious what value of m should be used in particular application. Cestnik
and Bratko (1991) suggested using domain expert knowledge to define m on the basis
of the level of noise in the domain data (the more noise the larger m) or performing
validation on a single separate dataset or in the form similar to the one proposed by
Breiman et al. (1984) and presented in more detail in Sect. 2.4.3.2. More discussion
on validation of the m parameter is given in Sect. 3.2.4.3.

2.4.2.4 Minimum Description Length Pruning

Many different approaches to DT pruning based on the Minimum Description Length
(MDL) principle have been proposed (Quinlan and Rivest 1989; Wallace and Patrick
1993; Mehta et al. 1995; Oliveira et al. 1996; Kononenko 1998). All of them share
the idea that the best classification tree built for a given dataset is the one that offers
minimum length of the description of class label assignment for training data objects.
Such approaches deal with a trade-off between the size of the tree and the number
of exceptions from tree decisions. A nice illustration of the problem is the analogy
presented by Kononenko (1995) of the need to transmit data labels from a sender to a
receiver with as short message as possible. Naturally, the smaller tree the shorter its
encoding, but also the larger part of the training data is misclassified with the tree, so
the exceptions require additional bits of code. In other words, if a tree leaf contains
objects from one class, it can be very shortly described by the code of the class, and
if there are objects from many classes in the leaf, than the class assignment for all
the objects must be encoded, resulting in significantly longer description.

The MDL-based DT pruning algorithm implemented and tested in Chap. 5 is the
one presented by Kononenko (1998), based on the ideas of using MDL for attribute
selection, assuming that the best attribute is the most compressive one (Kononenko
1995).

Given a decision tree node N containing nN training data objects (belonging to
classes c1, . . . , ck), the encoding length of the classification of all instances of N can
be calculated as:

PriorMDL(N ) = log

(
nN

nN ,c1 , . . . , nN ,ck

)
+ log

(
nN + k − 1

k − 1

)
. (2.73)

The first term represents the encoding length of classes of the nN instances and the
second term represents the encoding length of the class frequency distribution.

http://dx.doi.org/10.1007/978-3-319-00960-5_3
http://dx.doi.org/10.1007/978-3-319-00960-5_5
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The value of PriorMDL(N ) suffices for the estimation of the description length
of the classification in node N treated as a leaf. The description of the subtree TN

must include the description of the structure of the subtree and classification in all
its leaves. After some simplifications, Kononenko (1998) proposed:

PostMDL(TN ) =
⎧
⎨

⎩

PriorMDL(N ) if N is a leaf

1+
∑

M∈Children(N)

PostMDL(M) if N has children nodes,

(2.74)
where Children(N ) is the set of children nodes of N .

Eventually, to decide whether to prune at node N or not, it suffices to compare
the description lengths of the leaf N and the subtree TN and prune when

PriorMDL(N ) < PostMDL(TN ). (2.75)

The condition must be tested in bottom-up manner for all nodes of the tree,
similarly to EBP and MEP methods.

2.4.2.5 Depth Impurity Pruning

Another interesting approach to decision tree pruning was presented by Fournier and
Crémilleux (2002). They defined a measure of DT quality to reflect both purity of
DT leaves and DT structure.

An important part of the quality index is Impurity Quality of a node N in a tree T :

IQNT (N ) = (1− ϕ(N ))βdepthT (N )−1, (2.76)

where ϕ is an impurity measure normalized to [0, 1]. Since the node quality (2.76)
reflects how deep the node occurs in the tree, Depth Impurity of the tree can be
defined just as the weighted average of the quality values of all its leaves:

DI(T ) =
∑

N∈T̃

nN

nN0

IQNT (N ), (2.77)

where N0 is the root node of T .
The definition (2.77) refers to the whole final tree—the depth in the tree must

always be calculated for the whole tree, which is often impractical, because when
pruning a subtree, it is usually more reasonable to focus just on the subtree vs its root
node. Hence, the DI index can be redefined in a recursive form as:

DI(TN ) =
⎧
⎨

⎩

1− ϕ(N ) if depth of TN is 1,

β
∑

M∈Children(N )

nM

nN
DI(TM ) otherwise. (2.78)
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The method of Depth Impurity Pruning compares DI(TN ) regarding the full subtree
TN and reduced to a single leaf N . It prunes the node if the DI index for the leaf N
is lower than the one for the subtree rooted at N .

As usual, proper selection of the β parameter is a nontrivial task. There is no
justification for regarding a single value as the best one, so it needs to be determined
in special processes, for example in CV based analysis, as described in Sect. 3.2.4.3.

2.4.3 Validation Based Pruning

Validation is a stage of learning, where models being already results of some initial
learning processes are adjusted with respect to the results obtained for a data sample
different than the one used for the initial learning. It seems a very attractive way of
improving DT generalization capabilities, so it has been applied by many authors.

Among numerous DT validation methods, we can distinguish the group of algo-
rithms that perform only a single initial learning followed by a single validation pass
and the group of those optimizing parameters in multistage processes.

A typical algorithm belonging to the former group is Reduced Error Pruning
(REP), which adjusts the tree to provide minimum classification error for given vali-
dation data. The methods based on single training and validation have a disadvantage
that the resulting DT model is built on a part of the whole training data (another part
is used for validation, so can not be included in tree construction). Therefore, the
methods from the latter group have more possibilities in providing accurate trees.
Naturally, the methods capable of multi-pass validation are also eligible for single
pass validation, but not inversely.

Several validation based pruning methods are presented in the following subsec-
tions. Apart from REP, all other methods presented below use Cross-validation to
learn how to prune the final tree built on the whole training data.

2.4.3.1 Reduced Error Pruning

The most natural use of a validation dataset to adjust the tree trained on another set is
to prune each node, if only it does not increase the classification error calculated for
the validation data. Although the method is called Reduced Error Pruning (REP),
it is advisable to prune nodes also when the error after pruning does not change.
According to Occam’s razor, a simpler model should be preferred, if it provides the
same accuracy as a more complex one. The algorithm passes the validation dataset
through the tree to determine numbers of errors made by each node, and analyzes
all the splits in the tree, starting from those with leaves as subnodes, up to the root
node, by comparing the numbers of errors of the node and the subtree rooted at the
node. When the error count of the subtree is not lower than that of its root node, then
it is replaced by a leaf.

http://dx.doi.org/10.1007/978-3-319-00960-5_3
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A theoretical analysis of why the algorithm often fails to prune the tree, although
large trees are not significantly more accurate than small ones, was conducted by
Oates and Jensen (1999). As a result, they proposed to decide about pruning a node
and its subnodes on the basis of different validation samples. It is easy to do so for
artificial data, if a new sample can always be generated, but not often feasible in
real applications, where data samples are limited, and sometimes so small that even
extracting a single validation sample can significantly reduce learning gains.

2.4.3.2 Cost-Complexity Minimization

Accepting Occam’s razor in the realm of DT induction implies care for as small
trees as possible without decline of models accuracy. This leads to a typical trade-
off condition, because pruning branches of trees built for given training data causes
deterioration of reclassification scores. Breiman et al. (1984) proposed to control the
trade-off with α parameter in a measure of DT misclassification cost involving tree
size defined as the number |T̃ | of leaves of the tree T :

Rα(T ) = R(T )+ α|T̃ |, (2.79)

where R(T ) is a standard misclassification cost.
To determine the optimal value of α, Breiman et al. (1984) defined validation

procedures which estimate performance of the candidate α values and select the best
one. They have proven some important properties of the formula, which revealed
that the pursuit of the optimal value of α can be efficient. First of all, they noticed
the following property:

Property 2.1 For each value of α there is a unique smallest subtree Tα ≺ T mini-
mizing Rα .

It means that if any other subtree T ′ ≺ T also minimizes Rα , then Tα ≺ T ′.
Further reasoning proved a theorem rephrased as the following property, which

laid foundation for Cost-complexity optimizationcost-complexity validation method-
ology.

Property 2.2 There exist: a unique increasing sequence α1, . . . , αn and a decreasing
sequence of trees T1 � · · · � Tn , such that α1 = 0, |T̃n| = 1 and for all i = 1, . . . , n,
Ti minimizes Rα for each α ∈ [αi , αi+1) (to be precise, we need to define additional
αn+1 = ∞).

Less formally: there exists a unique decreasing sequence of αs that explores all
possible trees optimizing Rα , and the trees are also precisely ordered. A natural result
is that to determine all the αs, one can act sequentially, starting with the whole tree
and determining nodes to be pruned, one by one (when it happens that pruning two
or more nodes is conditioned by the same value of α, they must be pruned together).
Formally, algorithm 2.12 presents the method. It is important from the point of view
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of algorithm complexity, that after pruning a node only the nodes on the path to
the root need an update of their αs—recalculating all of them would be a serious
workload.

Provided the algorithm to determine the sequence of αs and corresponding small-
est trees, the optimal α and the optimally pruned tree can be selected, for example,
according to Algorithm 2.13.

Algorithm 2.12 (Determining αs and their optimal trees for cost-complexity minimization)

Prototype: CCAlphasAndTrees(D,Learner)
Input: Training data D, DT induction method Learner.
Output: Sequences of αs and trees as in property 2.2.
The algorithm:

1. T ← Learner.LearnFrom(D)—induce full DT to be analyzed
2. Determine threshold αN for each node N of T
3. i ← 1
4. α← 0
5. repeat

a. Prune all nodes N of T with αN = α (modifies T )
b. Update all αN for nodes N on the path from the root to just pruned node(s)
c. Ti ← T
d. αi ← α

e. α← minN∈T αN
f. i ← i + 1

until |T̃ | = 1
6. return α1, . . . , αi−1 and T1, . . . , Ti−1

The method assumes that two separate datasets are input: one for tree construc-
tion and one for validation. After a tree is built, its all sensible (according to cost-
complexity minimization rule) pruned trees are determined and their accuracy esti-
mated by classification of the validation data. The smallest tree with minimum clas-
sification error is selected as the validated pruned tree.

The situation is slightly more complex, when multiple validation is performed
(for example Cross-validation). In each pass of the CV, a DT is built and analyzed
to determine all the threshold αs and their smallest trees. Similarly, in the final
pass, a DT is trained on the whole dataset and the two sequences are determined.
Unfortunately, the series of αs in each pass of CV and in the final pass may be all
different. To select a winner α all values of the final pass must be examined and
average accuracy estimated for them. Since the sequence contains threshold αs, it is
not the most sensible to check how they would behave in CV. In place of the border
values αi , Breiman et al. (1984) proposed using geometrical averages

α′i =
√

αi · αi+1. (2.80)
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Algorithm 2.13 (Cost-complexity minimization with external validation data)

Prototype: CCTrnVal(Dtrn ,Dval ,Learner)
Input: Training data Dtrn , validation data Dval , DT induction method Learner.
Output: Optimally pruned DT, optimal α.
The algorithm:

1. ((αi ), (Ti ))← CC Alphas AndT rees(Dtrn, Learner)

2. for i = 1, . . . , n do
Rval(αi )← misclassification error of Ti measured for Dval

3. opt ← arg mini=1,...,n Rval(αi )

4. return Topt and αopt

For each α′i proper validation errors are extracted from CV and averaged. The largest
α′ with minimum average is the winner. Formal notation of the algorithm is presented
as Algorithm 2.14. In line 4 of the algorithm, it should be specified what is meant by
α j+1 for maximum j . Breiman et al. (1984) do not propose a solution, but since it is
the matter of the largest α in the sequence, it is reasonable to assume α j+1 = ∞, as
further increasing α to infinity does not change the corresponding optimal tree—for
all values of α in the range [α j ,∞), the optimal tree is a stub with no split, classifying
to the class with maximum prior probability. Such definition is advantageous, because
in all the series, always the last α = ∞ corresponds to maximally pruned tree, where
the root acts as a leaf (sort of baseline, majority classifier).

Algorithm 2.14 (Cost-complexity minimization with CV-based validation)

Prototype: CCCV(D,Learner,n)
Input: Training data D, DT induction method Learner, number of CV folds n.
Output: Optimally pruned DT, optimal α.
The algorithm:

1. Prepare training-validation data splits:
(
Dt

1, Dv
1

)
, …,

(
Dt

n, Dv
n

)

2. for i = 1, . . . , n do(
(αi

j ), (T i
j )

)
← CC Alphas AndT rees(Dt

i , Learner)

3.
(
(α j ), (Tj )

)← CC Alphas AndT rees(D, Learner)

4. for each α j do
RCV (α j )← 1

n

∑n
i=1 Rval

(√
α j · α j+1

)

5. opt ← arg min j RCV (α j )

6. return Topt and αopt
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2.4.3.3 Degree-Based Tree Validation

The idea of the degree of pruning applied in SSV DT (Grąbczewski and Duch 1999,
2000) is based on counting differences between reclassification errors of a node
and its descendants. Pruning with given degree (which is an integer) means pruning
the splits, for which the difference is not greater than the degree. The rationale
behind the definition is that the degree defines the level of details in DT and that
for decision trees trained on similar data (in CV, large parts of training data are the
same), optimal pruning should require similar level of details. The level of details
can be described by the number of leaves in the tree, but then, an additional method
is needed for deciding which nodes should be pruned and which should be left.
The definition of degree of pruning clearly determines the order in which nodes are
pruned. Properties analogous to 1 and 2 are in this case trivial, so are not reformulated
here. To analyze all possible degrees of pruning, tree nodes are pruned one by one
in the order of increasing differences between node reclassification error and the
sum of errors of node children. Such value is immutable for each node, so once
determined it does not need recalculation. Therefore the algorithm collecting pairs
of degrees and optimal trees is slightly simpler than the corresponding algorithm for
Cost-complexity optimizationcost-complexity minimization.

Algorithm 2.15 (Determining degrees of pruning and trees pruned to degrees)

Prototype: DegreesAndTrees(D,Learner)
Input: Training data D, DT induction method Learner.
Output: Sequences of degrees and pruned trees.
The algorithm:

1. T ← Learner.LearnFrom(D)—induce full DT to be analyzed
2. Determine the degrees of pruning dN for each node N of T
3. i ← 1
4. for each degree d determined above, in increasing order do

a. for each node N of T , with all subnodes being leaves do
if dN <= d then prune node N (change into a leaf)

b. di ← d
c. Ti ← T
d. i ← i + 1

5. return (d1, . . . , di−1) and (T1, . . . , Ti−1)

Also the main algorithms performing validation and selecting the best pruned trees
get simpler. To save space only the one based on CV is presented (Algorithm 2.16).
In the case of degrees, no geometrical averages are applied. Average risk is calculated
directly from CV tests, where the errors for particular pruning degrees can be easily
read out.

Instead of direct optimization of the pruning degree, one can optimize tree size
(defined as the number of leaves) and use the concept of pruning degrees, just to
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Algorithm 2.16 (Degree-based DT validation based on CV)

Prototype: DegCV(D,Learner,n)
Input: Training data D, DT induction method Learner, number of CV folds n.
Output: Optimally pruned DT, optimal degree d.
The algorithm:

1. Prepare training-validation data splits:
(
Dt

1, Dv
1

)
, …,

(
Dt

n, Dv
n

)

2. for i = 1, . . . , n do(
(di

j ), (T i
j )

)
← Degrees AndT rees(Dt

i , Learner)

3.
(
(d j ), (Tj )

)← Degrees AndT rees(D, Learner)

4. For each d j :
RCV (d j )← 1

n

∑n
i=1 Rval(d j )

5. opt ← arg min j RCV (d j )

6. return Topt and dopt

determine the order in which the nodes are pruned. To obtain such methods, it suffices
to modify Algorithms 2.15 and 2.16 to handle sequences of leaves counts in place
of the sequences of degrees.

This method is much simpler, easier to implement and a bit faster than the cost-
complexity optimization of Breiman et al. (1984).

2.4.3.4 Optimal DT Pruning

Bohanec and Bratko (1994) proposed the OPT algorithm for construction of the
optimal pruning sequence for given DT. By means of Dynamic programming they
determined an optimal subtree (maximizing training data reclassification accuracy)
for each potential tree size. Then, depending on which final accuracy they were
interested in, they pruned the tree to the appropriate size. Algorithm 2.17 presents the
main procedure of the method. It generates sequences of error counts (for the training
data) and pruned nodes collections for integer arguments denoting the decrease in
the number of leaves, corresponding to subsequent sequence positions. The main
procedure recursively gets the sequences for each child of the node being examined,
and combines the results with the Combine() method presented as Algorithm 2.18,
in a way compatible with the paradigm of Dynamic programming.

To be precise, there is a little difference between this formulation of the OPT
algorithm and the original one: Bohanec and Bratko (1994) did not record the error
counts in one of the result sequences (here named E), but the difference in error
count between the node acting as a leaf and the whole subtree rooted at the node. The
difference is null when the full tree is 100 % accurate. It does not matter either, when
only one tree is analyzed. Some differences in decisions can appear when multiple
validation is performed (for example Cross-validation) to average the scores and draw
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Algorithm 2.17 (OPTimal DT pruning sequence)

Prototype: OPT(N )

Input: Tree node N (let n = |T̃ N |).
Output: Sequences of reclassification errors E = (E[i]) and collections of nodes to be pruned

P = (P[i]) (for each sensible leaves reduction i = 0, . . . , n − 1).
The algorithm:

1. P[0] ← ∅
2. E[0] ← 0
3. for i = 1, . . . , n − 1 do

E[i] ← −1
4. for each subnode M of N do

a. (EM , PM )← O PT (M)

b. (E, P)← Combine(E, P, EM , PM )

5. if N has subnodes then
P[n − 1] ← {N }

6. E[n − 1] ← eN /* eN is the number of errors made by N for the training data */
7. return E and P

Algorithm 2.18 (Combining OPT sequences)

Prototype: Combine(E1, P1, E2, P2)
Input: Sequences of error counts and collections of nodes to be pruned (E1, P1, E2, P2, indexed by

0, . . . , n1 and 0, . . . , n2 respectively).
Output: Combined sequence of reclassification errors E and collections of nodes to be pruned P.
The algorithm:

1. P[0] ← ∅
2. E[0] ← 0
3. for i = 1, . . . , n − 1 do

E[i] ← −1
4. for i = 0, . . . , n1 do if E1[i] ≥ 0 then

for i = 0, . . . , n2 do if E2[i] ≥ 0 then
a. k ← i + j
b. e← E1[i] + E2[ j]
c. if E[k] < 0 or e < E[k] then

i. P[k] ← P1[i] ∪ P2[ j]
ii. E[k] = e

5. return E and P
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some conclusions from the means, but the probability of differences in decisions is
not high.

For binary trees, the sequences are full (no −1 value is left in the E sequence,
because it is possible to get any tree size with pruning. When the pruned tree contains
multi-way splits, it may be impossible to get some sizes, so in the final E sequence,
some elements may stay equal to −1 after the optimization.

The original algorithm was justified from another point of view than improv-
ing classification of unseen data (generalization). Instead, the authors assumed that
the full tree was maximally accurate and searched for the smallest tree preserving
given level of accuracy. Although the motivation for DT validation is different, the
same Dynamic programming scheme can be used to determine expected accuracy of
trees of each size, inside a Cross-validation. The size maximizing expected accuracy
becomes the size of the target tree obtained with optimal pruning of the tree generated
for the whole training data.

The idea is quite similar to that of the degree-based pruning, however it is much
more detailed, in the sense that it analyzes all possible tree sizes, while in the former
algorithm only those resulting from pruning to a given degree (two subsequent trees
may have sizes differing by quite large number, because increasing the pruning
degree from 1 to 2 may prune many nodes in the tree). Naturally, the cost paid
for the increased level of details is an increase of computational complexity of the
method—the dynamic programming optimizations cost much more, so in the case of
large trees the time of learning may get significantly larger. Almuallim (1996) offered
some improvements in the calculations, which under some assumptions reduces the
computational costs, but they are not always helpful. They can be applied when
we are interested in a particular tree size, but for example, in the tests described in
Chap. 5 where many different tree sizes are examined, the simplifications proposed
by Almuallim (1996) are not applicable.

2.5 Search Methods for Decision Tree Induction

Search methods and tree structures are inextricably linked with each other. Traces of
search procedures have the form of trees, and inversely: tree construction is naturally
obtained with search methods. Therefore, also in the area of decision trees, search
methods serve as fundamental tools of induction. The simplest and usually the fastest
search technique is the greedy one, which at each stage preforms a local minimization
to determine the next state and never returns to the previous stages in order to try
alternative solutions. Apart from the term greedy search such technique can be called
many other names. Because of no returns and the goal of class separation (each split
may improve the separation and never deteriorate it), the techniques of depth first
search, best first search, hill climbing and some others are all equivalent in the sense
that they end up with the same tree (just the order of nodes creation may be different,
but it does not cause differences in the final models). As a result, they all can be seen
as the top-down greedy DT induction method formalized as Algorithm 2.1. Such

http://dx.doi.org/10.1007/978-3-319-00960-5_5
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technique is used in vast majority of DT induction approaches, but is not the only
one applicable to the problem. Some applications of Beam search and Lookahead
search, described below, have also been examined.

General Search Aspects

Regardless of the search method used for DT induction it is always important to avoid
unnecessary calculations. When a node split is regarded, a set of split candidates must
be analyzed and the best one selected. The list of candidates must be determined
reasonably, because many of the seeming candidates can be judged in advance as
certainly worse than some others and ignored with no change to the final tree.

When the optimal (with respect to a given criterion) binary split of a continuous
feature is to be found, it is natural that the sensible split points are only those lying
between the values observed in the training data. All split points lying between
the same two adjacent values observed in the training data bring the same split
result, so in practice, only the points in the middle of the interval are taken into
account. Moreover, split quality measures usually have a form of Concave functions
or have other properties that justify ignoring the split points lying between objects
belonging to the same class, because separating them gives lower scores than putting
the neighbors together to one or the other side of the split. Proofs of such properties,
with special attention paid to particular methods, have been published for example
by Breiman et al. (1984, Gini index), Fayyad and Irani (1992b, Information gain)
Grąbczewski (2003, SSV criterion).

In the case of unordered features, the splits are not determined by a point (a real
value) but by division of the sets of symbols into disjoint and complementary subsets.
A subnode is created for each subset, and the training data objects are distributed
to the subnodes, according to the symbols describing them. Some algorithms (for
example C4.5) consider only singletons and split into as many subnodes as the
number of possible symbols of the split feature. In such approach there is just one
way to split on the basis of a symbolic feature. The most serious drawbacks of such
solutions are that they can split the training data into many small datasets without
significant reason, and that split quality measures may give overoptimistic estimates
of the symbolic splits, because of accidental correlation between the (numerous)
symbols and assigned classes. Therefore, often, binary splits are preferred also for
symbolic features. But the number of possible splits may get huge if the number of
possible symbols is large. To check all possible splits one needs to examine 2s−1−1
candidates, where s is the number of possible symbols of the feature. The number
comes from the count of all subsets of an s-element set (2s) and the fact that neither
the empty set nor full set of symbols can be accepted to determine a subnode, and
that a subset and its complement determine the same split, so only one of them
should be used: (2s − 2)/2 = 2s−1− 1. When the number s is large, analyzing each
possible split may be unfeasible and additional restrictions must be applied to reduce
the amount of calculations. A solution based on a subset generator was described in
Sect. 2.2.7 on the SSV algorithm.
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Another aspect of splitting on the basis of single features is bias in feature
selection. When two features are equally informative, they should have the same
probability of being selected as the split feature. If the number of analyzed splits is
significantly different for ordered and unordered features, then a bias can be observed
in favor of one of the types. More thorough discussion of the bias in feature selection
for DT induction is presented in Sect. 2.7.

Lookahead Search

One of the possibilities of more thorough search is to use the methods called looka-
head search. As suggested by the name, such algorithms grow subsequent DT
branches not on the basis of direct split quality measurements, but with some forward
insight to the potential gains of using particular splits. After hypothetical acceptance
of a split, the resulting subnodes are further split, in order to check the quality of
the best possible depth-restricted subtree rooted at the node (the depth is given by a
parameter). The search with depth n is also called an n-ply lookahead search. The
algorithms resemble mini-max search used in game playing, but here, the decisions
at subsequent levels are made by cooperating parties, not by adversaries (with the
same, not competitive, quality measures).

Algorithm 2.19 (Lookahead split selection)

Prototype: LookaheadBestSplit(depth,D)
Input: Lookahead depth, training dataset D.
Output: The split estimated as the best.
The algorithm:

1. for each s ∈ CandidateSplits(D) do
Ns ← Spli t Ahead(depth, D, s)

2. best ← arg maxs Quali t y(T Ns )

3. return best

Formally, we can see the lookahead search algorithms as ordinary top-down DT
induction methods (Algorithm 2.1) with the procedure of best split selection based
on some forward insight. So in fact, it is not a new search method, but a special
split selection method, although its intuitive perception may be different. A natural
instance of such lookahead split selection is presented as Algorithm 2.19. It builds a
branch of a pre-defined depth for each candidate split (with the SplitAhead() method
presented as Algorithm 2.20) and estimates the quality of the split hierarchy. The
split providing the highest quality of the generated branch is returned as the result of
the lookahead split selection. It is important to realize that the quality measure used
in such procedure must be ready for assessment of tree structures, not just single
splits. However, each Split quality measure designed to estimate multipart splits is
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Algorithm 2.20 (Depth-limited splits)

Prototype: SplitAhead(depth, D, s)
Input: Lookahead depth, training dataset D, initial split s.
Output: The root node of the created tree.
The algorithm:

1. if s �= ⊥ and depth > 0 then
a. {D1, . . . , Dn} ← s(D) /* split the node data */
b. for i = 1, . . . , n do

i. best ← Best Spli t (Di )

ii. Ni ← Spli t Ahead(depth − 1, Di , best)
c. Children← (N1, . . . , Nn)

else
Children←⊥

2. return (D, s, Children)

naturally applicable, because each tree can be treated as a single split into the parts
corresponding to its leaves.

The lookahead split selection can be called a meta-level split procedure, as it uses
external method of node split selection (BestSplit()) to build small trees and estimate
their quality. Also the methods CandidateSplits() and Quality() can be arbitrarily
chosen to obtain different effects. In fact, the three functions mentioned above are
the parameters of LookaheadBestSplit(), but are not listed explicitly in the parameter
list to keep the code clearer.

The number of splits to be made in a lookahead estimation, grows exponentially
with the depth parameter, so to avoid large computational overhead, it is not recom-
mended to look deeper than just one level (depth=1).

Beam Search

Greedy selection of the best split at each node would be the only sensible technique,
if the split quality estimation were perfect. As discussed in the beginning of Chap. 2,
optimization of a quality measure at a single node is not the same as optimization
of the overall tree, so sometimes it may be more adequate to select a split of lower
local quality, but providing better data environment for further branch splits, and in
effect, bringing shorter or more accurate trees.

A tool facilitating a number of top-ranked partial solutions to take part in further
pursuit of maximum overall quality is the beam search—the process conducted in
almost the same way as the breadth-first search, but with a limit on the number
of states that can be explored at each level, to prevent combinatorial explosion. In
decision tree induction, the beam is a container for a number of top-ranked partial
trees, which are developed in parallel. So the main difference from the standard
greedy approach is that at each stage of the search, the focus is not only on a single

http://dx.doi.org/10.1007/978-3-319-00960-5_2
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tree but on all models contained within the beam. The size of the beam container
(beam width) is a parameter of the method.

In general, the algorithm operates on so called states (here a state is a tree developed
so far) and iteratively generates new states from the current ones, with the restriction
that only the best ones are placed in the beam and further explored. Algorithm 2.21
presents the scheme formally. It is a general, abstract procedure capable of handling
any kind of states, not just decision trees. At the beginning there is a single initial
state in the beam. In each iteration, all possible children states of the trees contained
in the beam are generated, and the best w of them (the beam width parameter) are
placed in the beam. Since the goal is a single final tree, the search is stopped when
a final state (a complete tree) is found.

Algorithm 2.21 (Beam search)

Prototype: BeamSearch(S, w)
Input: Initial search state S, beam width w.
Output: Final search state.
The algorithm:

1. beam ← {S}
2. while NoFinalState(beam) do

a. children← ∅
b. for each state ∈ beam do

children← children ∪ ChildrenStates(state)
c. beam ← BestStates(w, children)

3. return the final state in beam

Apart from the explicit parameters of the code, the functions called within the main
procedure also significantly influence the process and its results. The most important
of the subroutines is BestStates() which selects the best trees to be put into the beam
of width w. It may compare the children states (here the trees) according to many
different criteria like model accuracy, purity of decision tree leaves, information
measures, MDL criteria and so on. The fundamental difference between application
of these measures and of those used for single split quality assessment is that they
need to compare the whole trees, not single splits. In particular, similarly to the
measures used in the lookahead approach, they have to be applicable to multi-way
splits, because nontrivial trees may split the space into large number of parts. The
other subroutines (NoFinalState() and ChildrenStates()) can also be implemented in
various ways, but their goals are rather straightforward, when the aim of the main
search strategy is precisely defined.

The practice of filling the beam with the best states shows that trivial selection of
the models maximizing criteria like accuracy, amount of information and others is not
the most successful choice. When many children states are generated for each state
in the beam, it often happens that after two or three iterations, all trees in the beam
are very similar. For example, after the first iteration, the beam contains w single split
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trees with different features used for the split, but after the second iteration, the beam
contains w children of the same single split tree. As a result, the time consumption
is significantly larger, but the time is wasted for exploration of almost the same areas
of the model space. A remedy for this is nontrivial beam selection equipped with
tools protecting from appropriation of the whole beam by a close family of trees.
The tools may be some measures of diversity, for example, the ones proposed in the
field of data clustering (Hubert and Arabie 1985; Vinh et al. 2010), as the feature
space partition given by a tree ideally fits the assumption of clustering and similarity
between trees may be determined by means of similarity between the space partitions
they determine.

Broader search means larger complexity of the procedure, so in comparison to
simple top-down greedy DT induction, beam search is naturally more expensive.
The complexity grows by the factor of w (beam width), because in each iteration,
w trees are examined in place of a single one of the greedy approach. Obviously,
one can give examples, where beam search ends in a shorter time than the greedy
search and inversely, where the relative cost factor of beam search is much greater
than w. The former situation may occur when the most attractive split at the root of
the tree requires complicated splits in subsequent levels, while some less attractive
single split perfectly matches some other splits and yields small and accurate tree.
The opposite relation can be observed when beam search rejects the direct solution
of the greedy search, because of finding other seemingly more attractive solutions,
which turn out to be a blind alley.

Beam search has been found attractive not only in searching for single DTs.
Grąbczewski and Duch (2002a, 2002b) have found it useful for generation of a
number of trees to act in ensembles (Decision forests). Small modifications of Algo-
rithm 2.21 to stop the search after a specified number of final states (not just the
first one) is found, gives an opportunity to build forests without much additional
computational effort.

Restrictions on the beam width can be helpful, when combined with the lookahead
search described above (Buntine 1993). It can reduce the increase of computation
time requirements when the lookahead depth is greater than 1.

The Danger of Oversearching

Some authors have reported that using more thorough search procedures (than the
most common, simple hill climbing) is often assisted by a decline in models accu-
racy (Murthy and Salzberg 1995; Quinlan and Cameron-Jones 1995; Segal 1996;
Janssen and Fürnkranz 2009). Their observations mostly concerned classification
rules induction, not decision tree algorithms, however the tasks are so similar, that
they should be subject to the same effects, if the conclusions are derived from general,
reliably prepared experiments.

Murthy and Salzberg (1995) compared greedy DT induction algorithm with a
lookahead approach and concluded that both methods are similarly accurate on aver-
age and pointed out the pathology, that the lookahead approach can generate larger
and less accurate trees than the greedy strategy. On average, the trees obtained with
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lookahead turned out to be shallower, although in many cases it was just the mat-
ter of balance, lacking in the results of the greedy search. The authors proposed a
procedure of balancing the trees based on rotations (without changes to the decision
function). Another conclusion was that pruning can provide better results than looka-
head, because the trees pruned with the cost-complexity optimizationcost-complexity
minimization method (see Sect. 2.4.3.2) to prune the trees on the basis of a validation
dataset consisting of 10 % of the training data excluded before tree construction. The
observation is reasonable, but should not be treated as an argument against more
thorough search procedures, as search and pruning should be perceived rather as
two complementary, not alternative techniques. It seems that larger test errors of the
lookahead method were not a consequence of oversearching, but the effect of pruning
the trees coming from the competing algorithm.

Quinlan and Cameron-Jones (1995) performed some test of beam search applied to
a classification-rules-induction method, where model generalization was controlled
by Laplace error correction (see Eq. (2.71). They presented some experiments where
the rules minimizing the Laplace error estimates turned out to be the less accurate
the larger beam width was used (in the range 1–512 with exponential growth). As a
proposed solution they introduced the layered search method which can be seen as
beam search with changing beam width. They started the search with beam width
equal to 1 (corresponding to hill climbing) and then, in each iteration doubled it.
Such strategy gave more attractive results than both hill climbing and beam search.

The experiments of Quinlan and Cameron-Jones (1995) were repeated and ana-
lyzed by Segal (1996), who noticed that the Laplace error estimation of single rule is
not much correlated with the true error rate calculated on external test dataset. The
“oversearching effect” was a result of poor match between the evaluation function
used for training and the test performance measure. Low accuracies were the result
of ordinary overfitting. Segal (1996) noticed that Laplace error estimation trades off
accuracy for coverage, which is detected by accuracy tests on external data. They
suggested a modification of the Laplace correction, named LaplaceDepth, calculated
for each rule R, and defined as

LaplaceDepth(R) = 1− nc + d · pa(c)

n + d
(2.81)

where c is the decision class of the rule R, pa(c) is the prior probability of class c,
n is the number of examples covered by R, nc is the number of objects from class c
satisfying the rule and d is a parameter. Such evaluation criterion is compatible with
the m-probability-estimation (see Eq. (2.72)). Here the m parameter is named d and,
in the proposed strategy, should be equal to the length of the rule. The modification
of the rule evaluation criterion practically removed the effect of “oversearching”.
Segal (1996) suggested that other measures of rule quality may do even better than
the improved Laplace error.

More recently, Janssen and Fürnkranz (2008, 2009) revisited the problem and,
also seeking the causes of the conclusions about oversearching in Laplace error
estimation, examined nine different heuristics (including Laplace corrected error) in
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experiments with three search strategies applied to the task of decision rule induction.
The search methods they examined were: hill climbing, beam search and ordered
exhaustive search. The latter is an implementation of exhaustive search, optimized to
avoid repeated generation of the same rules. Significant simplification was possible
because of the specificity of the definition of the rule induction problem, where the
form of rules was limited, for example, in such a way that two premises could not
use the same feature, so the features could be analyzed in a strictly defined order.
From illustrations in the article, one can infer that the beam search also had a specific
form. One of the figures and some text suggest that each new beam is created in a
way supporting one child of each state from the previous beam. This is compatible
with the heuristics aimed at beam diversity, described above in the description of the
beam search approaches.

The experiments of Janssen and Fürnkranz (2009) also show that when the error
estimation with Laplace correction is used, the test accuracy tends to deteriorate with
increasing beam width. Nevertheless, for other measures, the results are completely
different. Evaluating the rules by their precision gives stable accuracy plots, almost
constant in the whole range of beam width, while the rules get simpler with larger
beam widths. An example utterly opposite to Laplace error is the odds ratio for which
a significant increase of accuracy was observed with increasing beam width.

To sum up, the conclusions from all the experiments performed to research
the aspects of oversearching in DT and rule induction are not consistent. Some-
times, more exhaustive search improves the results and sometimes deteriorates them.
Dependence on rule quality measures has been reported, but the notifications require
more evidence. The only certain conclusion is that more advanced search procedures
should be used with special care, but should not be forgotten. Future meta-learning
algorithms will certainly help make decisions also about search method selection.

2.6 Decision Making with Tree Structures

Regardless of the strategy of decision tree induction, a method for final decision
making must be selected. The most common approaches are based on the distribution
of data objects of different classes falling into proper DT leaves. When a new data
object is to be classified with a DT, it traverses the tree to discover the most adequate
leaf. Most often, the object is assigned the label of the class dominating within the
leaf. If the classification decision is to be presented in the form of probabilities of
belonging to particular classes, they are usually estimated on the basis of that leaf
(more precisely the training data falling into the leaf), and sometimes on the basis of
all the nodes on the path to the leaf.

Probabilities as Proportions

The simplest method to obtain probability estimates is to calculate the proportions
of objects within the leaf belonging to particular class and all the objects in the leaf:
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P(c|x) = nL(x),c

nL(x)

, (2.82)

where L(x) is the leaf adequate for x . The same notation is used in subsequent
formulae.

Laplace Correction

When the counts of objects within the leaf are small, the proportions do not estimate
real probabilities accurately. For example, when just three or four objects (all of
the same class) fall into a leaf, proportion-based probabilities are binary, claiming
that the probability of finding a representative of any other class in the area is zero.
Usually, such extreme claims are not true. Therefore, some corrections have been
proposed and successfully used in many applications. One of the methods, called
Laplace correction (or Laplace’s law of succession), has already been introduced in
the context of Minimum Error Pruning (see Sect. 2.4.2.3) and is calculated as:

P(c|x) = nL(x),c + 1

nL(x) + k
, (2.83)

where k in the number of classes in the classification problem.

m-Probability-Estimation

Another way of probability correction was proposed by Cestnik and Bratko (1991)
and called m-probability-estimation. It has also been introduced in the section on
Minimum Error Pruning. The corrected probabilities, referred to as m-estimates, are
defined by:

P(c|x) = nL(x),c + m · pa(c)

nL(x) + m
, (2.84)

where pa(c) is the a priori probability of class c and m is the method parameter.
When the a priori probabilities of all the classes are equal, by setting m to the
number of classes, we obtain the formula equivalent to the Laplace correction. In
general, the parameter m defines the “strength of pushing” the proportions towards
a priori probabilities. In a couple of applications, the authors of the idea proposed
using m = 2. It is important to realize that this method may result in different winner
class than the one resulting from pure proportions or those with Laplace correction—
when m → ∞, the probabilities converge to the priors, so the winning class may
be different than the one dominating the data sample of the leaf. Laplace version
of the estimation is compatible with pure proportions when just the winner is to be
determined, but of course, the probabilities have different values, so for example,
combined with others in an ensemble, may also bring significantly different results.
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Path Combined Majority

In LTree family of algorithms Gama (Gama 1997), it is proposed that the decision
making strategy respects class distributions in the nodes of the whole path of the
tree, followed by the data item to be classified. Gama (1997) suggested to calculate
probabilities for each tree node, starting with the root node, down to the leaves, in
such a way that only the root node probabilities are estimated as proportions and for
each non-root node N , its proportions and the probabilities calculated for the parent
node contribute to the final probability estimates:

P(c|N ) = P(c|Parent (N ))+ w nc
nN

1+ w
, (2.85)

where w is a method parameter. With w = 1 (suggested by the author), if the path
from the root node to the leaf NL = L(x) is N0, . . . , NL , then the probability

P(c|x) = P(c|NL) =
L∑

i=0

1

2L−i

nNi ,c

nNi

. (2.86)

Similarly to the m-probability-estimation approach, including class proportions of
parent nodes may significantly change the decisions in relation to the ones calculated
on the basis of the leaf only. Unlike the m-estimates, in this approach, the probabilities
are not pushed towards the prior probabilities, but towards probability distributions
in larger groups of objects (parent nodes). Although the contribution of the root node
plays similar role as m-estimates, because the proportions in the root (that is, in
the whole training data sample) are exactly the same as the estimates of priors in
m-probability-estimation, the influence of the root node on the final values is very
small for longer paths, as its factor is 1

2L .
More sophisticated combinations of path nodes proportions were proposed by

Buntine (1993) and Kohavi and Kunz (1997) as part of their Option Decision Trees
approach. In a Bayesian analysis, they define weights for ensembles of classifiers
extracted from trees. The weights can combine decisions, not only of the options
(different trees), but also of the nodes of a single path. Indeed, the nodes on a path
from the root to a leaf can be treated as separate classifiers combined into an ensemble.
Some more information about the approach can be found in Sect. 2.8.1.

2.7 Unbiased Feature Selection

One of the aspects of decision trees interpretation is feature relevance. When splits
are performed on the basis of single features, it is reasonable to expect that the feature
occurring in a tree node is, in some sense, the most informative one in the context
of class discrimination among the data sample of the node. However, the term “the
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most informative” is not precise, so there is not a unique measure of such feature
relevance. Otherwise, there would exist a single, the most appropriate way to split
DT nodes, and one method would be sufficient for all purposes. Therefore, so many
different approaches to DT induction have been undertaken, and still none has been
announced to outperform all the others.

Despite the fact, that no universal measure exists to estimate feature relevance,
many researchers have been struggling for solutions of the problem of unbiased fea-
ture selection for DT splits. The goal of their research has been to provide methods of
DT induction, that would not favor features because of their accidental relationships
with the target variable.

So fair selection of split variable would provide very valuable information about
the most discriminative features of the data table at hand in the context of particular
task. DT techniques have been successfully used to extract information about feature
importance for the purpose of feature ranking and selection (Duch et al. 2002, 2003;
Grąbczewski 2004; Grąbczewski and Jankowski 2005), but still, conclusions about
feature significance on the basis of feature selection made by a DT induction algo-
rithm should be drawn with special care, especially when strong interaction between
features can be observed.

The problem of variable selection bias has been observed from the early stages of
research on DT induction. In AID (see Sect. 2.9 and Morgan and Sonquist 1963a,b),
performing binary splits by means of dividing the set of possible feature symbols
into two disjoint subsets, more categories of a feature means more split possibilities,
resulting in a bias in favor of the features with many symbols. Kass (1980) proposed
CHAID as a modification of the method to perform significance testing, so as to
nullify the bias.

Similarly, in the efforts of DT induction based on miscellaneous heuristics instead
of statistical tests, such as the one of the pioneer method, ID3, symbolic features with
many possible values are favored, because the more symbols, the larger probability
of coincidental correlation between the feature and the target variable. An extreme
case is a feature with so many values that no value is repeated in the training data.
Then, a perfect split can always be done, but it can be fully accidental, providing
no sensible information, so that a tree using the split is very unlikely to generalize
well the knowledge behind the training data. Probably the most popular enterprise
to reduce the bias was introduction of information gain ratio in place of information
gain in C4.5 algorithm (see Sect. 2.2.3 and Quinlan 1993).

The problem of bias is not specific only to selecting among unordered features with
various counts of possible symbols. It also concerns comparisons between symbolic
and numeric variables. Moreover, in different methods the bias may be in favor
of different groups of features, for example, some methods are biased in favor of
multi-valued symbolic features and some others against them.
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Statistical Methods

One of the most popular idea in the approaches to unbiased variable selection for
DT splits is separation of the procedures of feature selection and final split definition
(feature selection and split-point selection).

In so called statistical trees, it has been often realized by application of statistical
tests to estimate feature importance as an opposite of independence between the
feature and the target variable.

A turn to such statistical approach was made by White and Liu (1994), who pro-
posed using χ2 distribution for the purpose of attribute selection instead of measures
like information gain, information gain ratio and Mántaras distance (de Mántaras
1991), which are biased in favor of attributes with large numbers of symbols. The
approaches utilizing χ2 distribution are preferable, because they facilitate sensible
comparisons of results calculated for different attributes. Compensation of the depen-
dence on the number of cells in the contingency tables being analyzed, was obtained
by using χ2 probability instead of the test statistic, as the probabilities are compara-
ble also in the case of different distribution parameters (degrees of freedom), while
the values of test statistics are not. White and Liu (1994) also proposed using G
statistic, defined in the language of information theory for the same purpose.

The idea of using statistical test p-values instead of test statistics directly has been
applied by many more authors in their approaches to unbiased comparisons. In fact,
it is the most commonly used tool of bias elimination efforts.

White and Liu (1994) illustrated their conclusions with simulation results on
datasets with three different class distributions, but all with the assumption of inde-
pendence between the class variable and the predictors.

Because the probabilities coming from theχ2 and G statistics can be approximated
with large error when the expected frequencies are small, White and Liu (1994)
suggested using Fisher’s exact probability test (see Appendix section A.2.4) instead,
in the case of two-class problems. For multi-class tasks, similar approaches can be
developed.

Both ideas of separating feature selection from split selection and making deci-
sions on the basis of p-values of statistical tests have been extensively explored and
applied to several interesting DT induction algorithms proposed by the group of
prof. Loh: FACT, QUEST, CRUISE, GUIDE and others (see Sect. 2.2.5 and Loh and
Vanichsetakul 1988; Loh and Shih 1997; Kim and Loh 2001; Loh 2002).

In FACT, symbolic features are converted into numeric ones, and then, for both
types of features, F statistic is calculated for each variable to estimate its eligibility
for the split. It favors symbolic features, especially those with many possible values.

The solution of QUEST (Loh and Shih 1997) was to reduce the bias by using dif-
ferent statistics (F statisticF and χ2 statisticχ2) to estimate continuous and discrete
features respectively. Final comparisons were performed for the p-values obtained
from adequate distributions. Comparative bias analysis was performed for many pairs
of variables of various distributions by drawing samples according to the distribu-
tions with class labels generated independently from the predictors. The scores of
QUEST were quite close to the value of 0.5, expected in the case of unbiased method.
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The results obtained with FACT and exhaustive search were significantly different
than 0.5 in many of the tests, confirming their bias.

The feature selection strategy of QUEST was so successful that the CRUISE
method of Kim and Loh (2001), published several years later, borrowed this part of
the algorithm for its 1D option. Moreover, it introduced the option 2D, capable of
detecting some interactions between features with negligible bias in variable selec-
tion, similarly to the univariate split analysis (1D). The 2D method, analyzing pairs
of features from the point of view of contingency tables of their joint distributions,
is presented in detail in Sect. 2.2.5.3.

Apart from the null case of bias analysis (assuming no discriminatory power
of the predictors), Kim and Loh (2001) have also examined the problem of bias
created by missing values. One of the predictors was deprived of a part of values
(20, 40, 60, 80 %) to examine how it affected the split feature selection process
(still assuming independence of the target from the predictors). The experiments
confirmed the values of CRUISE solutions, in the sense that they selected each of
the uninformative features with the same probability.

Another study of attribute selection bias was made by Shih (2004), who focused
on the Pearson χ2 statistic used in many approaches to statistical DTs like CHAID,
FIRM (Hawkins 1999) and QUEST family (Loh and Shih 1997; Shih 1999; Kim and
Loh 2001). The simulations performed and analyzed by Shih (2004) were composed
to test two aspect of bias: the null case of class variable independent of five predic-
tors drawn from different distributions (with some missing observations in one of
the variables), and the power studies, testing the abilities to detect an informative
predictor among uninformative ones. In the latter tests, different counts of predic-
tors independent from the target were drawn as Gaussian noise. With the total of 5,
10, 15, 20 input variables, the influence of sample size on feature selection has been
examined. Conclusions are compatible with those from all other similar experiments,
that is, the p-values are more adequate for feature selection than χ2 statisticχ2 and
φ2 statisticφ2 (χ2 divided by the number of cases) statistics.

Bias in feature selection has also been analyzed in the context of problems with
multivariate responses. Some aspects of multi-label classification (where each object
can belong to many classes) have been explored by Noh et al (2004), resulting in a DT
induction algorithm (M2) splitting nodes with a statistic of Nettleton and Banerjee
(2001) for testing equality of distributions of categorical random vectors. In M2,
feature selection is also separated from split determination. Similar experiments as
in other approaches (null case and power tests) are performed to confirm that the
algorithm is unbiased.

An approach to learning multivariate responses by DT models has also been
undertaken by Lee and Shih (2006), who generalized the variable selection method
of QUEST and CRUISE for multivariate responses. They proposed CT algorithm
based on conditional independence tests. The feature selection of CT constructs
3-way contingency tables (with dimensions corresponding to feature values, class
variables, and response layers respectively) and use χ2-test extension to estimate
features with corresponding p-values. Continuous features are split into quartiles
before the 3-way contingency tables are created. Lee and Shih (2006) compared their
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new method with an approach of Siciliano and Mola (2000), where weighted sums of
Gini index reduction for each response component were used to select variables, and
to the M2 algorithm of Noh et al (2004), mentioned above. Both CT and M2 are free
of selection bias (in the null case), but CT is shown as providing higher estimated
probability of selecting the correct covariate when the response vector depends on
that covariate.

Dramiński et al. (2008, 2011) proposed a feature selection method based on a
costly Monte Carlo procedure and thousands of DTs generated for different feature
sets and training data objects. Feature selection based on relative importance of the
features, calculated on the basis of their role in large number of trees, also shows a
negligible bias.

When statistical tests are performed to select split features in DTs, there is also a
simple possibility of bias reduction by means of Bonferroni corrections, respecting
the numbers of possible split candidates available for particular features.

Permutation Tests

Most of the statistical approaches to feature selection for DT splits, discussed above,
share the idea of preparing contingency tables and assessing independence between
each feature and the target, by means of test statistics like χ2 statisticχ2 of G
statisticG. They are statistically correct and successful, if the data samples, for which
they are calculated, are sufficiently large. Then, both χ2 and G are distributed with
chi-squared distribution. Otherwise, the assessment accuracy may be low (Agresti
1990). Unfortunately, in DT induction, dealing with small samples is inevitable,
because the data samples are getting smaller and smaller with subsequent splits.

A robust family of methods has been proposed as a result of applying permutation
tests to the goal of variable assessment. The fundamental advantage of permutation
tests in the context of DT learning is their eligibility for small data samples. Their p-
values can be calculated directly, without passing through χ2 or any other “transient”
statistic. By analysis of all possible permutations of the series of values defining
targets of the training data, one can estimate the probability of observing such input-
target association as in the training data, on the assumption that the input and the
target variables are independent.

Frank and Witten (1998) proposed application of approximate permutation tests
presented by Good (1994). The tests are based on the multiple hypergeometric dis-
tribution. In the approach, appropriate p-values are determined and used for attribute
selection and pre-pruning of decision trees.

The permutation tests framework of Strasser and Weber (1999) has been found
very useful by Hothorn et al. (2004) and Zeileis et al. (2008) for another successful
DT induction approach. The CTree algorithm is described in detail in section 2.2.6.

Bias in Heuristic-Based Methods

Naturally, bias in feature selection has also been a concern of the authors of heuris-
tic based DT induction algorithms. For example, favoring discrete features with
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many possible values became the foundation of information gain ratio of C4.5. Also
Breiman et al. (1984) noted that, when Gini gain is used as splitting criterion, “vari-
able selection is biased in favor of those variables having more values and thus
offering more splits”. The analysis of Quinlan and Cameron-Jones (1995) addressed
the problem of “Fluke theories” that can be selected by DT algorithms, because
they seem accurate, but then, turn out to have low predictive accuracy. Analysis of
multi-valued symbolic variable, means testing many theories, among which such
“fluke theories” may be selected with the higher probability, the more symbols are
possible in the variable. In exhaustive search, the number of tested theories grows
exponentially with the number of symbols.

Kononenko (1995) analyzed a number of DT split measures in the context of
multi-valued attributes, and concluded that for some of the measures, the probability
of selecting a feature increases, and for some other decreases with growing number of
possible feature symbols. Using p-values of statistical tests can bring almost unbiased
decisions, but suffers from the problem of discriminating more and less informative
attributes. When the target is certainly dependent on an attribute, the corresponding
p-value gets the value of 1. Two such informative attributes get the same value,
although one can still be significantly more informative than the other. When both
estimates come from distributions of the same parameters (for example χ2 with the
same degrees of freedom), raw statistic values can be compared to determine which
feature is better, but if the distributions are different, no tool to discriminate the
two variables is available. As an alternative solution, Kononenko (1995) proposed a
criterion based on the MDL principle, which is slightly biased against multi-valued
attributes.

An analysis of bias of the Gini criterion used in CART has interested Dobra and
Gehrke (2001), who proposed a general method to remove bias of such criteria and
showed its application to Gini index. The general method of bias removal consists
of two steps: first the value of split criterion is calculated and then its p-value under
null hypothesis is determined. Dobra and Gehrke (2001) proposed four ways of com-
puting the p-values for split criteria: exact computation (very expensive), bootstrap
estimation (also costly), asymptotic approximations (inaccurate for small samples)
and tight approximations (may be hard to find). The authors presented a tight approx-
imation of the Gini gain.

Another p-value based measure derived from Gini index has been proposed by
Strobl et al. (2005). Their selection criterion based on the Gini gain was inspired by
the theory of maximally selected statistics. To calculate the criterion score, they esti-
mated the distribution function of the maximally selected Gini gain, and calculated
appropriate p-value under the null-hypothesis of no association between the target
and predictor variables. To derive the exact distribution function of the maximally
selected Gini gain, Strobl et al. (2005) used a combinatorial method following the
ideas of Koziol (1991) to determine the distribution of the maximally selected χ2

statistic.
Similarly to other authors studying bias of different DT criteria, Strobl et al. (2005)

performed a null case experiment, where five predictors contained no information
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about the response variable, and power case studies, assuming that one feature was
informative and contained some percentage of missing values.

Concluding Remarks

The pursuit of unbiased feature selection methods for DT induction has brought
several very interesting algorithms, but they still are just some among many possible
approaches and do not guarantee more accurate models, when solving particular
tasks.

It might seem that provided an unbiased method for split-feature selection and
equally valuable split selection algorithm, one can create a perfect algorithm, gener-
ating optimal DT models for all learning problems. The truth is different because of
two reasons:

1. As discussed at the very beginning of the chapter, optimization at node level is
not the same as optimization of tree models.

2. The term “unbiased” sounds almost like “perfect”, but its definition is not as
general as its common sense meaning, and as a result, unbiased methods are not
as robust as they might seem from general statements.

To make the efforts viable, unbiased attribute selection is usually defined as preserv-
ing equal probability of selection of each feature, independent from the response
variable. Theoretical proofs of unbiasedness have nice statistical foundations and
are mathematically correct, but do not have so much practical value as might be
expected, because good behavior for uninformative (statistically independent) fea-
tures does not guarantee fair selection between informative features. Models useful
in practice make decisions on the basis of informative features, so do not fit the the-
oretical frameworks. Experiments, confirming that unrelated features are selected
equally often, are also correct, but do not explore the actual areas of interest.

As it has been pointed out above, p-values of independence tests run for informa-
tive features often are equal to 1, which makes just comparison impossible. When
uninformative features are analyzed, their expected p-values are close to 0.5, and the
analysis is focused on the area of the most changeable part of cumulative distribution
functions, where comparisons may be accurate. When the p-values are equal to 1
and the values of statistics for different attributes are incomparable to each other, fair
feature selection can not be done with such tools.

There is no single, commonly accepted definition of a measure of information
about response variable, contained within an attribute. That’s why so many split
criteria have been proposed and no one seems definitely better than all the others.
Again, the conclusion about the most reasonable strategy of the search for the best
models, directs attention towards meta-learning techniques, capable of

• gathering and drawing conclusions from meta-knowledge about advantages of
various algorithms in various applications,
• making predictions of potential gains resulting from running various learning

machines for particular learning data,
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• making algorithm-selection decisions after validation of models estimated as the
most adequate.

Successful model selection is possible only with a bunch of powerful base-level
learning algorithms, some meta-knowledge and robust, efficient meta-learner.

2.8 Ensembles of Decision Trees

Many researchers have been attracted by the idea of constructing complex models on
the basis of collections of other models. Scientists working in the area of decision tree
induction have been especially prolific in this context. The ideas of bagging, boosting
and other approaches to combining decisions of sets of models are regarded by some
experts as the most significant achievements of computational intelligence research
of the 1990s.

Averaging decisions of multiple models can be justified in many theories. One
of the most sensible way is the analysis on the ground of Bayesian learning theory.
When many models (hypotheses) exist for given training data D, the optimal choice
of the class c ∈ C for a data object x is defined by the Bayes Optimal Classifier:

B OC(x |D) = arg max
c∈C

P(c|x, D) = arg max
c∈C

∑

M∈M
P(c|x, M)P(M |D). (2.87)

Although it is usually not possible to explore the whole space M of possible models,
approximations by some families of probable models are very sensible. Often, a single
model is selected on the basis of a criterion like MAP (maximum a posteriori) or ML
(maximum likelihood):

MM AP = arg max
M∈M

P(M |D) = arg max
M∈M

P(D|M)P(M), (2.88)

MM L = arg max
M∈M

P(D|M). (2.89)

They can be seen as extreme approximations of the M family by one-element sets.
Informally, one can claim that such approximations make more sense than using
random collections of models, because the MAP and ML models are models of
confirmed quality.

More detailed analysis and more information on Bayesian learning theory can be
found, for example, in the (very good) chapter on the subject by Mitchell (1997).

Approximating Bayes Optimal Classifier by a restriction of usually infinite model
space M to a finite set of models M ′ = {M1, . . . , Ms} ⊆ M and estimation of
P(M |D) by some weights wM leads to a classifier estimating class probabilities for
given object x as:

P(c|x) =
∑

M∈M ′
wM · P(c|x, M). (2.90)
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Estimation of the conditional probabilities P(c|x, M) of class c given DT models is
quite easy (although not unanimous, so many authors have proposed their solutions).
More difficult part of the task is finding proper weights wm . Some researchers try
to go further in Bayesian analysis and determine wm = P(M |D) as P(D|M)P(M)

(Buntine 1993), but here also the definition of priors P(M) is not self-evident. In
other approaches, the weights are assumed to be equal (like in bagging and other
unweighted voting scenarios) or are determined by miscellaneous algorithms to
reflect model competence and the strength of its influence on final ensemble deci-
sions.

By averaging decisions of many models, one can also generalize to new varia-
tions, not observed in the training data sample (Bengio et al. 2010). This feature is
unavailable to single DT learners, because the splits are determined on the basis of
the evidence available in the training data.

Building complex models can bring improvement in approximation error, but a
price must be paid for that. Computational costs are the most obvious, but not the only
ones. In the realm of decision tree models, the most significant loss accompanying
the ensemble gains in modeling accuracy is the loss of model comprehensibility. This
cost is especially oppressive, because readable and understandable form is one of the
most important reasons of DT induction popularity and appreciation. Interpretation
of complex models is much more difficult, so different forms of visualization and
explanation of the decision functions are created as some recompense.

Ensembles owe the improvement in accuracy to diversity of their component mod-
els. Only a set of committee members specializing in different subareas of the domain
of learning can introduce new value, when properly combined. Model diversity may
come from different sources (Zenobi and Cunningham 2001; Melville and Mooney
2003; Brown et al. 2005). Two groups of the sources seem the most important:

• different learning algorithms (methods of completely different domains or just
changes in parameters of a single learning strategy),
• different training datasets (sampling, transformations and so on).

Analyzing similarity between algorithms does not seem to make much sense, as
no dissimilarity guarantees diversity of resulting models. Quite often, completely
different DT induction algorithms create very similar (or even exactly the same)
decision trees. From formal point of view, it is not justified to distinguish between
“completely different algorithms” and “small differences in parameters of the same
algorithm”, because even the smallest change in parameter settings results in a dif-
ferent algorithm. It is also quite common that a small change in a single parameter
results in completely different DT model.

Decision tree induction methods are known to be unstable, which means that small
changes of the input data may cause significant changes in the results of learning.
Because of that, in the realm of DTs, manipulating the training sample seems much
more interesting source of model diversity, and has been explored by many scientists.

In construction of ensembles, two techniques can be distinguished with respect
to the fundamental organization of the member learning processes:
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• independent model generation, also called perturb and combine (P&C) approach,
• dependent subsequent models, also referred to as adaptive resample and combine

methods.

The former group facilitates easy parallelization of computations, because each mem-
ber model is generated independently. In the latter approach, ensemble members must
be generated sequentially, one by one, because each next model is constructed on
the basis of the results of all the previous models.

Practical learning problems are usually defined by a restricted set of data object
descriptions that can be used for learning, so that it is not possible to generate arbitrary
many datasets of arbitrary size. Therefore, generation of different training datasets
is not a trivial task. The most popular approaches belong to one of two groups:
resampling and reweighting. Resampling methods generate new sets by selection of
objects from the original dataset (possibly with repetitions). Reweighting techniques
assign weights to each data object from the original dataset and pass the weights to the
learning algorithm together with the dataset. Obviously, such operation makes sense
only when the learning algorithm accepts and can take advantage of such weights in
its learning process.

The most popular approach to independent model generation is bagging (Breiman
1996; Quinlan 1996) described in Sect. 2.8.2. Its original definition was a resampling
method, but a modification to accept weights (called wagging) has also been exam-
ined (Bauer and Kohavi 1999).

The family of algorithms generating dependent models is usually referred to as
boosting and is described in Sect. 2.8.3. The methods are so general that can be used
in the manner of both resampling and reweighting.

Breiman (2001) presented a general view of DT ensembles and presented some
particular algorithms for random forests generation. More on these methods can be
found in a successive subsection.

Many other algorithms have also been proposed to construct ensemble mod-
els. Some authors noticed that partitioning methods like cross-validation can be
successful in building diverse committees (Parmanto et al. 1995; Domingos 1996;
Grąbczewski and Jankowski 2006a; Grąbczewski 2012).

Another idea to collect diverse DT models for ensemble construction is to perform
more thorough search in the space of DT models and collect a number of attractive
trees instead of just a single tree classifier. Beam search is a perfect tool for such
purposes and has been used to induce DT forests based on SSV criterion, also het-
erogeneous ones, that is, using premises concerning distances from prototypes apart
from standard single feature splits (Grąbczewski and Duch 2002a, 2002b).

2.8.1 Option Decision Trees

Option Decision Trees (ODT, Buntine 1993; Kohavi and Kunz 1997) are classification
models comprising many DTs in a single complex structure. Actually, ODT structures
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are equivalent to a number of separate DTs, but thanks to keeping them together, no
common branches are represented in multiple copies. During DT induction process, at
each node, several alternative splits are recorded if possible, and the whole alternative
branches are constructed.

Nevertheless, not the memory saving is the main focus of ODTs. Thanks to col-
lecting alternative splits at each node of the tree, alternative paths are available and
each data object can be classified with respect to many paths, by proper decision
averaging. Buntine (1993) has proposed a framework for Bayesian averaging of
collections of possible decision paths in trees. The framework is applicable also to
single trees, because a set of trees resulting from all possible ways of pruning the
tree can be seen as an approximation M ′ of the space of models of Eq. (2.90). With
the procedure named tree smoothing, Buntine (1993) assigned probabilities to tree
leaves that are reported to estimate class probabilities more accurately.

The most serious drawback of the approach is significant increase of the com-
putation time in comparison to single DT induction techniques. Buntine tested his
algorithms also with more thorough search techniques like n-ply lookahead searchn-
ply lookahead with beam width restriction, but naturally, it additionally increased
the time of computations.

2.8.2 Bagging and Wagging

The term bagging comes from the expression bootstrapbootstrap aggregating (Breiman
1996; Quinlan 1996). Diverse learning machines are created by means of preparing
bootstrap samples for each subsequent learning process. A bootstrap sample drawn
from a given dataset D is a collection of items drawn from D at random, indepen-
dently, with replacement. This shows the inadequacy of the term “dataset”, as in
the bootstrap sample, an object can occur several times. It has been confirmed that
bootstrap samples are successful sources of model diversity.

The technique of bagging is presented by Algorithm 2.22. A predefined number
of bootstrap samples of the same size as the original training data is created and a
model learned from each. Eventually, the decisions of all the models are combined
by ordinary majority voting.

If the learning algorithm applied to generate the ensemble member models can
learn with respect to weights assigned to training data objects, instead of drawing
bootstrap samples, one can just draw weights and pass them to the learning machine.
Such methodology has been named wagging (for weight aggregation, Bauer and
Kohavi 1999) and is presented as Algorithm 2.23.

The definition of the algorithm is very general, as it refers to arbitrary weighting
distribution given as a parameter. Bauer and Kohavi (1999) added Gaussian noise
to each weight with mean zero and a given standard deviation. Because negative
weights do not make sense, each weight value falling below 0 is treated as 0 and
the object assigned such weight has no influence on the learning process (the object
is treated as nonexistent). Increasing the standard deviation of the noise reduces the
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Algorithm 2.22 (Bagging)

Prototype: Bagging(D, s, L)
Input: Training data D containing n objects, ensemble size s, learner (machine) L.
Output: Voting committee.
The algorithm:

1. for i=1,…,s do
a. Di ← bootstrap sample of size n generated from D
b. Mi ← L(Di ) /* train a machine */

2. return the committee {M1, . . . , Ms}

Algorithm 2.23 (Wagging)

Prototype: Wagging(D, s, L , d)
Input: Training data D, ensemble size n, learner (machine) L, weighting distribution d.
Output: Voting committee.
The algorithm:

1. for i = 1, . . . , s do
a. w = (w1, . . . , wn)← weights drawn randomly from d for each data object in D
b. Mi ← L(D, w) /* train a machine */

2. return the committee {M1, . . . , Ms}

training dataset, so increases the bias and reduces the variance of learning, facilitating
some control on the bias-variance trade-off.

When comparing the algorithms of bagging and wagging, it can be noticed that
the learning process is called in different ways. This reflects the difference between
resampling and reweighting that bore the wagging algorithm.

Although the original definition of bagging assumed ordinary majority voting as
the final decision function of the ensemble, the decision module can be modified
in several ways. For example, the combination may reflect probabilities estimation
(of belonging to particular classes) returned by probabilistic classifiers as in the
experiments presented in Chap. 5.

Another interesting technique to improve bagging and wagging results is back-
fitting proposed by Bauer and Kohavi (1999). Because the training data samples
generated for bagging purposes, contain significantly less objects than the origi-
nal data (around 63.2 %, see the explanation below), it is advantageous to feed the
whole original dataset to the tree and estimate class probabilities at the leaves more
accurately. Combined probabilities, estimated in this way, provide better results than
simple voting and then probabilities estimated on the bootstrap samples. Similarly,
in wagging, the training dataset can be passed through the trees with equal weights
for all the objects to obtain better estimation of class probabilities.

http://dx.doi.org/10.1007/978-3-319-00960-5_5
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Error Estimation with .632 Bootstrap

An analysis of bootstrapping in the context of bagging (Efron 1983; Efron and Tibshi-
rani 1997) brings interesting conclusions about learning possibilities. The probability
that a given data object occurs in the bootstrap sample of size n drawn from an input
dataset of size n is equal to

1−
(

1− 1

n

)n

. (2.91)

With n → ∞ it converges to 1 − 1
e ≈ 0.632. Already for n = 24 the value is less

than 0.64. The larger n the closer to the limit. Hence it is justified to approximate
the part of original dataset occurring in the bootstrap sample as 63.2 %.

Because bootstrap samples contain on average just 63.2 % of objects from the
training set, the error estimates are pessimistic. On the other hand, it is obvious that
the error estimate calculated for the data used for training can be too optimistic.
Therefore, Efron (1983) proposed the .632 estimator:

êrr (.632) = .368 · err + .632 · êrr (1), (2.92)

where err is the error estimate calculated from training data (biased downwards) and
êrr (1) is the bootstrap estimate (prediction from classification error calculated for
points not occurring in the bootstrap sample; biased upwards). Efron and Tibshirani
(1997) suggested further improvement of the estimate and proposed a êrr (.632+)

estimate shifting the balance between err and êrr (1) towards the latter, on the basis
of a factor named relative overfitting rate.

Recent studies by Kim (2009), aimed at fair comparison of three approaches
to estimating error rates of classifiers (repeated cross-validation, repeated hold-out
and .632 bootstrap), have brought conclusions that different methods provide the
best estimations for different tasks, depending on the learning sample size and the
classification learner being tested. In particular, repeated CV turned out to be more
adequate for “highly adaptive” classifiers, that is, methods like boosting, capable of
gaining resubstitution error close to 0.

2.8.3 Boosting

The idea of boosting classifiers has been introduced by (Freund and Schapire 1995,
1996, 1997). They have proven some important properties justifying the solutions. In
general, boosting is a method of converting “weak” learning algorithm to a “strong”
algorithm with arbitrarily high accuracy. Because the main means of the method is
adaptive resampling (or reweighting) and combining, Breiman has used the name
arcing for this technique.

Boosting classifiers is a technique of repeated training of a given learning machine
on data samples (or weighted data) generated with respect to probability distributions
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adjusted to the results of previous learning processes. After a number of models is
learnt, they form a committee with properly weighted decisions.

AdaBoost Algorithm

One of the first boosting procedures proposed by Freund and Schapire (1995) was
AdaBoost (for adaptive boosting). The algorithm is still the most popular one of this
kind. It is presented formally as Algorithm 2.24. The method builds a collection of
models on the basis of the training dataset and probabilities px assigned to each object
x of the training set. The learning stage (item 2a of the algorithm) can be realized
in different ways, depending on the preferred (or at all possible) strategy: weighting
or sampling. If the learning process accepts weights assigned to each training data
object, then the training dataset and the weights may be passed to it. Otherwise, a data
sample is derived from the training set with respect to the probability distribution p
and passed to the learning machine.

Algorithm 2.24 (AdaBoost)

Prototype: AdaBoost(D, s, L)
Input: Training data D = {(x1, c1), . . . , (xn, cn)}, ensemble size s, “weak” learner L.
Output: Weighted committee.
The algorithm:

1. for each (x, c) ∈ D do /* initialize the probability distribution as uniform */
px ← 1

n
2. for i=1,…,s do

a. Mi ← Learning(L , Di , p·) /* train a machine with respect to p· */
b. εi ←

∑

{(x,c)∈D:Mi (x) �=c}
px

c. if εi > 1
2 then

i. s ← i − 1
ii. break the loop

d. βi ← εi

1− εi
e. for each (x, c) ∈ D do /* modify the probability distribution */

px ← px · 1

2εi
· β1{c}(Mi (x))

i

3. return the weighted committee M =
(
{M1, . . . , Ms}, {log 1

β1
, . . . , log 1

βs
}
)

:

M(x) = arg max
c∈C

∑

i :Mi (x)=c

log
1

βi

The initial distribution is uniform, so D1 is a bootstrap sample generated in the
same way as in the bagging approach. Then, after each subsequent model Mi is
created, its error εi is calculated and the probability distribution is modified (see
item 2e of the algorithm) to focus the subsequent learning processes more on the
misclassified data objects than on the ones classified correctly. The idea of distribution
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changes is to multiply by βi < 1 (diminish) the probabilities of correctly classified
objects in such a way that the sum of probabilities of incorrectly classified objects
becomes equal to 1

2 (the other half is the sum of probabilities of correctly classified
objects). Hence the factor βi ← εi

1−εi
, because the sum of px for all correctly

classified xs, before the modification is 1− εi , so after multiplication by βi becomes
εi which by definition is the sum for incorrectly classified objects. Therefore, the
factor 1

2εi
restores the properties of probability distribution.

The final decision of the ensemble is made on the basis of combined decisions of
the members with larger weights for more accurate models and smaller for the poorer
classifiers. The goal is reached by the weights specified in AdaBoost as log 1

βi
.

Such formulation of the AdaBoost algorithm has originally been named
AdaBoost.M1 as a modification of the first formulation devoted to two-class prob-
lems. In multi-class classification, one of the most significant weak points of
AdaBoost is the requirement that the errors of weak learners εi < 1

2 . Otherwise,
the factors βi would get larger than 1 and the goal of boosting would get inverted:
the probabilities for erroneously classified objects would be decreased instead of
increased. To remedy this, Freund and Schapire (1995) proposed an algorithm named
AdaBoost.M2, which uses another shape of the models (fuzzy classification by
assigning a value in the interval [0, 1] to each class instead of crisp class assignment),
another scheme of handling the probability distribution and modified ensemble deci-
sion function. The algorithm is less popular, so it is not presented here in detail. It
can be found in the articles by Freund and Schapire (1995, 1996, 1997).

When the error of subsequent model gets larger than 1
2 , the AdaBoost algorithm is

stopped and the ensemble is composed of the models, found so far, without the last one
of too large error (see item 2(c)ii of Algorithm 2.24). Other authors suggest restarting
the probabilities (going back to the uniform distribution) in such circumstances,
instead of breaking the process or preforming the normal scheme of probability
adjustment. After the reset of the probability distribution, the next sample is again
a bootstrap sample. If each model results in error greater than 1

2 , then each sample
is a bootstrap sample, and the member models are the same as in bagging. The only
difference with bagging, in such case, is the weighted decision function of the final
model instead of the majority voting used in bagging.

When a model at some stage perfectly classifies the training data (εi = 0), the
next stage of AdaBoost is not feasible, because the distribution gets degenerate. In
such cases, it is also suggested by some authors to reset the probability distribution
and build next model on another bootstrap sample.

AdaBoost Modifications

Many different variants of AdaBoost can be found in the literature. Three of them have
been used in the experiments described in Chap. 5: conservative boosting (Kuncheva
and Whitaker 2002), averaged boosting (Oza 2003) and averaged conservative boost-
ing (Torres-Sospedra et al 2007).

Conservative boosting (Kuncheva and Whitaker 2002), as suggested by its name,
uses a more conservative method of distribution adjustment. The conservativeness

http://dx.doi.org/10.1007/978-3-319-00960-5_5
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is realized by changing the step 2d of Algorithm 2.24 to

βi ←
√

εi

1− εi
, (2.93)

and replacing the denominator 2εi of the renormalization factor used in step 2e to∑
(x,c)∈D px · β1{c}(Mi (x))

i . The introduction of the square root makes the factor βi

larger, so the decrease of the probabilities assigned to correctly classified objects is
slower and more correctly classified objects are kept in the next training data. The
change of normalization factor is a natural consequence of the modified βi .

Kuncheva and Whitaker (2002) have also tried a version of boosting called

inversed, because by changing the factor from β
1{c}(Mi (x))

i to β
1−1{c}(Mi (x))

i , the prob-
abilities assigned to correctly classified vectors are increased in this approach, while
the incorrectly classified objects get less probable in the next sample. The inversion
is a technique similar in idea, to iterative refiltering, used in the DT-SE family of DT
induction methods (see section 2.3.4).

The algorithm of averaged boosting (Oza 2003) also differs from AdaBoost in
the way it modifies the probability distribution after each step. It also slows down
the changes in comparison to the standard AdaBoost, as instead of the new value
calculated in the AdaBoost manner, it sets new values as the average of all AdaBoost
corrected values from the first stage of the process:

px ←
i · px + px · 1

2εi
· β1{c}(Mi (x))

i

i + 1
. (2.94)

Averaged conservative boosting (Torres-Sospedra et al 2007) is the method com-
bining the ideas of averaged boosting and conservative boosting. The βi factor of
the algorithm is defined by Eq. (2.93), and the probability distribution is corrected
according to the formula

px ← 1

Zi
· i · px + px · β1{c}(Mi (x))

i

i + 1
, (2.95)

where Zi is the renormalization value that guarantees the probability distribution
properties of p. This definition may seem slightly inconsequent, because the average

is calculated from normalized px and not normalized new part px · β1{c}(Mi (x))

i . It
seems more adequate to normalize the new part first and then calculate the weighted
mean, which would not need further normalization as is averaged boosting.

Arc-x4 Algorithm

Breiman (1998) has also undertaken the analysis of adaptive resampling and com-
bining (hence the term arcing). He has examined the original approach of Freund
and Schapire (1995, 1996, 1997) to boosting in application to creating DT ensembles
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and introduced his own ad-hoc algorithm of similar idea. In this work, the original
boosting approach was referred to as arc-fs and the Breiman’s ad-hoc version as
arc-x4. Arc-fs was modified to reset the uniform distribution in the case of εi > 1

2
or εi = 0.

Algorithm 2.25 presents the Breiman’s algorithm formally. The fourth power of
mi,x was chosen as the best of three tested values (1, 2 and 4), so it does not come
from a significant optimality analysis. Even so simple boosting approach turned out
to be quite successful.

Algorithm 2.25 (Arc-x4)

Prototype: Arc-x4(D, s, L)
Input: Training data D = {(x1, c1), . . . , (xn, cn)}, ensemble size s, “weak” learner L.
Output: Voting committee.
The algorithm:

1. for each (x, c) ∈ D do /* initialize the probability distribution as uniform */
px ← 1

n
2. for i = 1, . . . , s do

a. Mi ← Learning(L , Di , p·) /* train a machine with respect to p· */
b. for each (x, c) ∈ D do /* modify the probability distribution */

px ←
1+ m4

i,x∑

(x ′,c′)∈D

1+ m4
i,x ′

,

where mi,x is the number of models in {M1, . . . , Mi } that misclassify x

3. return the voting committee M = (M1, . . . , Ms)

Breiman used resampling to generate each training dataset Di on the bases of the
probability distribution p. Apart from the training set, he used another set generated
in the same way, from the same probabilities p, as a validation set for DT pruning.
It was significantly more efficient than pruning on the basis of cross-validation.

TreeNet

Another boosting approach worth mentioning is a commercial product named
TreeNet. It arose from the Multiple Additive Regression Tree (MART) system dated
back to 1999. The fundamental idea of the approaches is the stochastic gradient
boosting technology of Friedman (1999a,b). Similarly to the boosting approaches
described above, also here, the ensembles are additive models combining a set of
base models:

M(x) =
s∑

i=1

βi Mi (x). (2.96)
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Each subsequent model Mi is selected to minimize the value of a loss function,
determined on the basis of a training dataset. This technique is a very similar to
cascade correlation used for training neural networks, where neurons are added in
sequence to improve the performance of the network on the training set.

The main difference between the methods of MART (or TreeNet) and AdaBoost
is that the gradient boosting methods are devoted to regression, not classification
problems. Naturally, classification tasks can be solved by means of regression tools
with binomial log-likelihood loss function.

The power of the algorithms is in large numbers of DT models combined. Each
single tree learns very little from the data. It can be claimed that high quality of single
DTs is not desired in these approaches. Because of that, the trees are never trained
on the whole training dataset—usually a random half of the data is used for learning
a single tree.

Single trees are not very adequate models for regression goals, because they rep-
resent coarse step functions (piecewise constant). Thanks to combining large num-
bers of trees, quite “smooth” curves can be obtained. Because of large numbers of
combined models, the final models do not share the advantages of single tree compre-
hensibility. Instead, special reports are designed to extract the meaning of the model
in the form of feature importance rankings or graphs illustrating the relationship
between inputs and outputs.

Alternating Decision Trees

Induction of a generalized decision trees called alternating DTs (ADTrees) has been
proposed by Freund and Mason (1999).

As a generalization of DTs, ADTrees can represent standard DTs but also signif-
icantly more complex structures. They have a form very similar to the one of Option
Decision Trees. Similarly to ODT, they can encode many trees in a single structure.
Thus, they can also easily represent voting stumps.

ADTrees consist of two types of nodes (prediction nodes and decision nodes)
that occur interchangeably on tree paths. Each prediction node is assigned a real
value used in decision making on the basis of the structure: all the real values on
the multi-path traversed by an object to be classified are summed and the sign of
the sum decides about classification into one of two classes. An object can follow a
multi-path, not a single standard path, because in a general alternating tree, at each
prediction node, all children are tested and point different further paths.

Decision (splitting) nodes of ADTrees are described with a special form of rules,
where precondition corresponds to the path from the root to the decision node and
condition represents the test of the node.

To learn ADTree models, the authors decided to use a modification of Adaboost
algorithm proposed by Schapire and Singer (1999), because it is suitable for dealing
with real valued predictions of ADTrees.

Freund and Mason (1999) declared that their approach showed results competitive
with boosted C5.0 trees, but usually with smaller and easier to interpret trees. As
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another important advantage, they pointed out that alternating trees give a natural
measure of classification confidence.

2.8.4 Random Forests

Breiman (2001) proposed a general definition of decision tree forests as a collection of
tree classifiers built with respect to random vectors. In the framework, given a random
vector 
i for each i = 1, . . . , s, a tree is grown for the training data and 
i . Denoting
i’th DT classification model as M
i : O → C , a random forest is defined as the
majority voting classifier based on the collection of DT models {M
i : i = 1, . . . , s}.
Additionally, Breiman (2001) assumed that the random vectors 
i were independent
and identically distributed.

Such definition of random forests encircles many different schemes of DT ensem-
bles, for example bagging, where the random vectors 
i may directly correspond to
the n (n is the number of elements in the training dataset) object indices pointing the
elements of subsequent bootstrap sample.

Boosted classifiers might also fit the definition of random forests, but the assump-
tion of independent and identically distributed 
i is not satisfied. To be precise,
we may state that boosting algorithms do not conform to the idea of random forest
construction, although each particular boosted model might be obtained with the
scheme.

The definition of random forests is constructed in a way suggesting the algorithm
for growing forests. Such algorithm, for subsequent values of i , draws the random
vector 
i and then uses it in the learning process to obtain model M
i .

Randomization of the trees composing forests may come from different sources,
for example, training data sampling or different configurations of the DT inducer.
Breiman (2001) analyzed two methods of random feature selection for each DT split
within the CART algorithm:

• random input selection consisting in drawing a small group of input variables (pre-
specified count F) from the set of all features describing data objects and limiting
the analysis of possible splits to the F selected variables only,
• random linear combinations of randomly selected inputs, where F linear com-

binations are generated and analyzed to find the best split; each combination is
determined by random selection of features to combine (of pre-specified size L)
and drawing L coefficients from uniform distribution on [−1, 1].
The randomization idea of random forests was inspired by the article of Dietterich

(2000), where C4.5 algorithm was modified to randomize split selection at each DT
node. The idea was to introduce diversity by means of split randomization without
counting on inducer instability. For each node, the split was randomly selected from
the 20 best splits determined in the normal way. The candidate splits were not pre-
selected in any way, so in special cases, all 20 best splits could involve the same
(continuous) attribute.
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Random feature selection used by Breiman (2001) has additional advantage
of reducing the cost of computations needed for DT induction. The approach of
Dietterich (2000) required the same calculations as normal C4.5 run plus insignifi-
cant time for random selection of the split at each node. In the case of random input
selection, calculations may be much cheaper, because not all features are analyzed,
but only the selected ones. Therefore random forests can easily handle data with large
number of attributes—in practice, the complexity does not depend on the number of
features composing the object space. The speed up and improved scalability certainly
belong to the most attractive properties of the random forests approach.

2.9 Other Interesting Approaches Related to DT Induction

Many more (than described above) algorithms for DT induction have been proposed
by miscellaneous authors. It is not possible to present all the techniques in a sin-
gle article or even book. Many comparative analyses have been performed and are
certainly worth a focus, when searching for interesting solutions. Some reviews and
comparisons have been published by Safavian and Landgrebe (1991), Murthy (1998),
Provost and Kolluri (1999), Anyanwu and Shiva (2009), Rokach and Maimon (2010),
and Kotsiantis (2011).

Miscellaneous Split Quality Measures

The most commonly used and some other interesting split quality measures have
been presented above. Exhaustive discussion of all other methods published by CI
researchers is not possible in this book, but it would not be right to completely ignore
all of them. Therefore, some measures are shortly listed below. Some comparisons of
selected criteria are available in the literature. For example, Kononenko (1995) com-
pared eleven measures and introduced the MDL measure presented in Sect. 2.4.2.4.
Beside the well known measures of Gini index and information gain ratio, he exam-
ined the methods of J-measure, Mántaras distance, average absolute weight of evi-
dence, relief , relevance, measures based on χ2 statisticχ2 and G statisticG statistics
and the proposed MDL measure.

J-measure
(Goodman and Smyth 1988b) was defined for discrete random variables X and Y ,
in the language of information theory:

J (X |Y = y) = P(y)
∑

x

P(x |y) · log

(
P(x |y)

P(y)

)
. (2.97)

It has been used in the ITRULE system (Goodman and Smyth 1988c; Smyth and
Goodman 1992) for rule induction from data and then applied also to DT induction
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(Goodman and Smyth 1988a). J-measure has also been applied to pre-pruning of
DTs, resulting in a method named J-pruning Bramer (2002).

Mántarasdistance
Similarly to information gain and J-measure, Mántaras distance is also defined in
the language of information theory. With the definitions of entropy, joint entropy
and conditional entropy as in formulae (1.8) and (1.9) in the introduction, the
information gain, resulting from the split according to feature A can be written as

I G(A, C) = HC − HC|A = HC + HA − HA,C . (2.98)

Mántaras distance between partitions determined by feature A and class C can be
expressed as

M D(A, C) = 1− I G(A, C)

HA,C
. (2.99)

Absoluteweightof evidence
The measure of absolute weight of evidence has been introduced by Michie (1990)
for two-class problems, but it can be easily extended to multi-class problems by
averaging:

W E(A, C) =
∑

c∈C
pc

∑

a∈A
pa·

∣∣∣∣log
pc|a(1− pc)

(1− pc|a)pc

∣∣∣∣ , (2.100)

where pc|a is the proportion of objects of class c among those with value a of A.

Relief
The relief algorithm was designed to solve feature selection problems (Kira and
Rendell 1992a,b). It adjusts weights assigned to the features (initially zeros for
all features) on the basis of an iterative procedure, which for each data vector
finds its closest positive and negative instances (called nearest-hit and nearest-miss
adequately to the class of the data vector) and increases the weights of features
“responsible” for the distance to nearest-miss and decreases the weights of features
participating in the distance to the nearest-hit (the larger the distance the bigger
the change). An extension of the algorithm has been proposed, that respects k
nearest hits and misses in the analysis (Relief-A). Kononenko (1994) analyzed the
algorithm and proved that if the k is not restricted (all data vectors are taken into
account), then the weight for a discrete feature A (with values in A ) is highly
correlated with Gini index:

Relief(A, C) =
∑

a∈A p2
a·∑

c∈C p2·c(1−
∑

c∈C p2·c)
× Gini’(A, C), (2.101)

where

Gini’(A, C) =
∑

a∈A

⎛

⎝ p2
a·∑

a∈A p2
a·

∑

c∈C
p2

c|a

⎞

⎠−
∑

c∈C
p2·c, (2.102)

http://dx.doi.org/10.1007/978-3-319-00960-5_1
http://dx.doi.org/10.1007/978-3-319-00960-5_1
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which differs from Gini index in that it uses coefficients p2
a·∑

a p2
a·

instead of Gini’s

pa· = pa·∑
a pa· .

Relevance index
Baim (1988) introduced the following relevance measure of a partition A with
respect to classes C :

Relevance(A, C) = 1− 1

|C | − 1

∑

a∈A

∑

c∈C
c �=cm (a)

nac

n·c
, (2.103)

where cm(a) = arg maxc∈C nac
n·c . The purpose of the measure was feature selection,

so it perfectly fits the needs of split quality evaluation.

ORT
ORT criterion, introduced by Fayyad and Irani (1992a) measures the quality of
binary splits on the basis of orthogonality of class probability vectors calculated
for the two data subsets resulting from the split. For a data sample D and a test τ

inducing a binary partition on D into Dτ and D¬τ , having class probability vectors
Vτ and V¬τ , respectively, the orthogonality measure is defined as

O RT (τ, D) = 1− cos φ(Vτ , V¬τ ) = 1− Vτ ◦ V¬τ

||Vτ || · ||V¬τ || , (2.104)

where ◦ is the inner (dot) product of two vectors. A comparative analysis of the
ORT criterion and impurity measures defined as concave-maximum criteria has
been presented by Crémilleux et al. (1998).

Kolmogorov-Smirnovdistance
Kolmogorov-Smirnov distance between two distributions f1 and f2 is defined as
the maximum distance between their cumulative distribution functions F1 and F2:

D( f1, f2) = max
x
|F1(x)− F2(x)|. (2.105)

Although in classification problems, the conditional distributions of the classes
with respect to the features describing the data are usually unknown, they can be
estimated on the basis of the data and used as decision rules for recursive partition-
ing (Friedman 1977; Utgoff and Clouse 1996). Kolmogorov-Smirnov criterion for
interval valued variables has been studied by Mballo and Diday (2006). They have
also compared the criterion to Gini index and entropy-based decisions.

DKMcriterion
Dietterich et al. (1996) and Kearns and Mansour (1999)DKM criterion explored
the properties of concave functions on [0, 1], symmetric about 0.5 with maximum
value 1 for argument 0.5 and minimum value 0 at the borders of the interval. The
functions can play the role of impurity measures in impurity-based split criteria
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(see Eq. (2.4)). The criterion based on one of the functions, f (q) = 2
√

q(1− q),
has been later named a DKM criterion.
Hellingerdistance
Cieslak and Chawla (2008) adapted the Hellinger distance for the purpose of DT
induction (HDDT). The Hellinger distance measures the divergence between two
continuous distributions P and Q with respect to a parameter λ as

dH (P, Q, λ) =
√∫

�

(√
P −√

Q
)2

dλ. (2.106)

MAPDTmodel
A Bayesian approach to DT induction has been proposed by Voisine et al. (2009).
Their criterion is used in an optimization process performing search for maximum a
posteriori (MAP) DT model. They claim that the algorithm offers similar predictive
accuracy as the state-of-the-art DT induction methods, with significantly simpler
trees.

CCP
After an analysis of some weaknesses of C4.5 and CART, Liu et al. (2010) proposed
new measure named Class Confidence Proportion (CCP) and CCPDT algorithm
for learning DTs on the basis of the new criterion. To provide statistically significant
decision rules, they check the significance of tree branches with Fisher’s exact test
to decide whether to prune them.

AID Family

One of the first DT induction algorithms with statistical foundations is Automatic
Interaction Detection (AID) proposed by Morgan and Sonquist (1963a,b). In AID
trees, at each binary split the between-group-sum-of-squares (the F statistic) is max-
imized for each predictor, with respect to the groups determined by the dependent
variable. In the case of input variables with ordered categories (called monotonic),
the splits respect the ordering, while for purely nominal predictors (called free), all
possible binary splits are analyzed. This results in a bias in favor of nominal features
with large numbers of possible values, as they provide more possible splits to be
analyzed.

An attempt to nullify the bias brought the CHAID (Chi-Squared Automatic Inter-
action Detection) algorithm (Kass 1980). Reduction of the bias of AID was achieved
by significance testing and using χ2 statistic.

The original definition of CHAID was applicable to nominal dependent variables.
An extension to ordinal target variables has been proposed by Magidson (1993).
Moreover, the technique of merging predictor categories with the same prediction of
the dependent variable facilitated building smaller and more comprehensible DTs.

ID3 Descendants

Especially in the earliest decades of DT research, various modifications of the ID3
algorithm have been published. An example extension is the system NewID (Niblett
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1989; Boswell 1990), using information gain criterion for feature and split selection
(as in ID3) and facilitating analysis of continuous attributes (with similar technique
as in C4.5). According to the assumptions of Niblett (1989), the NewID system was
to operate with a number of split criteria, with the possibility to select the most
adequate one for the data at hand. In practice, to the best of my knowledge, it has
never been accomplished.

Other interesting examples of ID3 extensions are ID4 (Schlimmer and Fisher
1986) and ID5R (Utgoff 1989, 1994) systems, facilitating incremental induction.

Miscellaneous Software

Many ideas estimated by their authors as valuable have been followed by complete
software solutions. Again, it is not possible to address all of them here, but some
arbitrary selection of systems, capable of DT induction, is shortly commented below.

INDpackage
IND is a popular system written in C and C shell languages (Buntine and Caruana
1992) and distributed as opensource. It reimplements such algorithms as ID3, C4,
CART and various MML (Minimum Message Length) and Bayesian approaches
to DT induction.

1R
An idea of very simple classifiers built from a single decision rule (1R) was pre-
sented and tested by Holte (1993). The simple rules can be seen as decision trees
with just a single split (so called decision stumps). It turns out that for many datasets
tested there, so simple method offers similar accuracy as much more complex mod-
els. Naturally, there are also many datasets for which so simple models as decision
stumps are significantly less attractive than more advanced solutions.

TDDT
Top-Down Decision Trees (TDDT) is the name of DT induction algorithm imple-
mented by Kohavi et al. (1996) as a part of MLC++ (Machine Learning in C++)
library, that became a part of the SGI’s MineSet system as SGI MLC++. TDDT is
very similar to C4.5. The most important difference is a change in the split quality
measure, which is the information gain divided by the logarithm of the number of
subnodes generated by the split. The goal of the change was to remove the bias
in favor of splits into many small subnodes (see Sect. 2.7 for more information on
methods dealing with the bias).

SLIQ
The SLIQ algorithm (Supervised Learning in Quest, Quest was the name of a
Data Mining project developed at IBM Almaden Research Center) was created
with special emphasis on its scalability (Mehta et al. 1996). The improvement in
learning time was achieved with the techniques of pre-sorting and breadth-first
growth of the trees. They proposed to sort the training data items once, at the
beginning of the process, according to each ordered feature, to avoid the necessity
of sorting at each tree node. The algorithm deals efficiently with large disk-resident
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training data, although does not get rid of the limits completely, since some data
structures that must be kept in memory grow with the size of the training data.
SLIQ uses Gini index for split selection and three possible methods of pruning
based on the MDL principle.

SPRINT
Speed and scalability were also the most important objectives of the approach
of Shafer et al. (1996), which resulted in the SPRINT (Scalable PaRallelizable
INduction of decision Trees) algorithm. It was designed to remove all the memory
restrictions (as compared to SLIQ, created in the same research group) and to
facilitate parallelization. Shafer et al. (1996) presented both serial and parallel
versions of SPRINT and the results of performance evaluation. SPRINT can be
run with any impurity based split criteria.

RPart
The RPart package (Therneau and Atkinson 1997) is in fact a reimplementation
of the ideas of CART described by Breiman et al. (1984).

RainForest
Gehrke et al. (1998, 2000) created a general framework, that can be used with
many specific DT induction methods (C4.5, CART, CHAID and others) to make
them fast and scalable. The authors claim that the framework offers performance
improvements of over a factor of five over the SPRINT algorithm.

PUBLIC
Rastogi and Shim (2000) proposed to integrate the two stages of standard DT
induction approaches, construction and pruning, in a single procedure, to fasten
the induction process. The pruning procedure founded on the MDL principle makes
it possible to estimate if a tree node would certainly be pruned and save some time
thanks to resigning from further analysis of such a node.

BOAT
Bootstrapped Optimistic Algorithm for Tree Construction (BOATGehrke et al.
1999) is another general framework, applicable to a wide range of split selection
methods. The main idea of the method is to construct an initial tree using a small
subset of the training data and then refine it appropriately. It is guaranteed that
the refined tree is exactly the same as the tree that would result from traditional
ways of induction. The methodology has an interesting possibility of incremental
update to both insertions and deletions over the training dataset.

WhiBo
WhiBo (Delibasic et al. 2011) is an open source platform for white box (component
based) machine learning algorithm design. It has been created as an extension of the
RapidMiner system (Mierswa et al. 2006). The goal of the framework is to facilitate
algorithm design from reusable components that can be extracted from different
successful algorithms. WhiBo offers a set of reusable components, including many
modules for DT induction.
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Miscellaneous Goals and Techniques

Even so well-defined models like decision trees can be analyzed and optimized in
many various ways. Some researchers are especially interested in some particular
features of the models, so they focus on these aspects and are not interested in
penetration of other contexts. This usually results in general techniques, focused on
particular subgoals and applicable to many kinds of components, responsible for
other subgoals of DT induction.

Probabilityestimation
It is sometimes very important to obtain good estimates of probabilities of belong-
ing to candidate classes, when trying to classify new data items with a DT classi-
fier. Focus on probabilities made some authors refer to their models as Probabil-
ity Estimation Trees (PETs). In most applications, class probabilities are derived
from DTs by calculating appropriate data proportions with possible modifications
like Laplace correction or m-probability-estimation (Cestnik 1990; Cestnik and
Bratko 1991). Section 2.6 presents some detailed information about the most pop-
ular methods. A comparison of several algorithms with respect to probabilistic
classification has been conducted by Fierens et al (2005). An approach to dealing
with uncertainty during both DT induction phase and in classification with ready
trees was published by Jenhani et al. (2008). They introduced a Non-Specificity
based Possibilistic Decision Tree (NS-PDT) algorithm and its extended version,
capable of building option trees. Zhang and Su (2006) analyzed probabilities from
the perspective of classifiers yielding large AUC. They proposed a new AUC-based
algorithm for learning conditional independence trees (CITrees).

Multivariate responses
multivariate responses In standard classification problems, there is a single dis-
crete response variable. Some applications concern recognition of several aspects
in parallel, for example in health-related problems, where several separate but cor-
related health problems are to be recognized. Because of correlations, it is often
more appropriate to learn them together than to treat the problems as completely
separate and independent. Zhang (1998) used a generalized entropy criterion and
two other measures, to deal with multiple binary responses. Another set of split
criteria to grow decision trees with multivariate responses has been proposed by
Siciliano and Mola (2000). The new split rules were derived as extensions of cri-
teria used in two-stage binary segmentation. An unbiased method for induction of
multi-label classification trees has been presented by Noh et al (2004). As in most
statistical approaches interested in unbiased feature selection, they separated the
process of variable selection from the search for the best split point. They applied a
test statistic to examine the equality of distributions of multi-label target variable.
Another interesting generalization is the approach of Lee and Shih (2006), who
realized similar ideas as in CRUISE (Kim and Loh 2001), but with the analysis of
3-dimensional contingency tables.
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ConstrainedDTinduction
Garofalakis et al. (2000, 2003) grappled with constructing decision trees satisfying
additional constraints on tree size and accuracy. With such approaches, one can, for
example, define the goal as obtaining properly simple trees of appropriately high
accuracy. More general constraints have been analyzed by Nijssen and Fromont
(2010), who proposed an adaptation of extensively studied methods from the area
of local pattern mining to the field of DT induction.

Three-stageDTinduction
Cappelli et al (2002) came up with an interesting idea to introduce third stage
into standard DT induction processes. After tree construction and validation, they
proposed procedures to guide the search for the parts of tree structure that are
statistically significant, and eventually make the final tree statistically reliable.

Hybridmethods
Seewald et al. (2000) presented a hybrid learning algorithm, defined by simple
modifications of C4.5 algorithm, aimed at local adjustment of inductive bias by
proper selection of leaf-models. In the reduced error post-pruning of C4.5 trees,
they were replacing the original leaf nodes by more sophisticated learning models
like Naive Bayes or instance-based learners. Their experiments confirmed that
such strategies improved performance of created models.
Generalization abilities of a classifier are much larger, when the decision borders
are not restricted to perpendicular to feature space axes, as in classical DT induction
approaches. Linear combinations of features are more robust, but still can not
simply describe nonlinearities. Therefore, Duch and Grąbczewski (2002) proposed
heterogeneous trees, that is, trees with split tests referring to distances from some
points in the feature space. Naturally, the price for more flexibility is increased
computational complexity of the method.
Miningdatastreams
Wozniak (2011) addressed the problem of learning DTs, when new data streams
frequently arrive and dependencies between feature values and classes are con-
tinually changing. These are significantly different learning circumstances than in
the standard approach with static training data.
Recently, Rutkowski et al. (2012) have proposed to use McDiarmid?s bound
instead of the commonly used Hoeffding?s bound, to build DTs for data streams,
that are almost identical with the result of standard DT induction procedures. They
have examined the bounds in application to the information gain criterion and Gini
index.

Upliftmodeling
Rzepakowski and Jaroszewicz (2012) have explored the possibilities of using DT
induction algorithms for uplift modeling, that is, prediction of changes in class
probabilities caused by an action. The main goal of their approach has been to
recognize data objects for which an action causes the most significant change, for
example, to find out the customers that are most likely to respond to a marketing
action. From another point of view, the algorithms can help in deciding which
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action (of several options) to take in order to maximize profit. For this purpose,
Rzepakowski and Jaroszewicz (2012) have proposed some new splitting criteria
and pruning methods.

Largedataanalysisand inductionspeedup
Learning from high-dimensional data or large collections of data objects is also
a very important aspect of DT induction. Some algorithms mentioned above (like
SLIQ, SPRINT and RainForest) address these problems either directly or indi-
rectly. One of the means is parallelization. Srivastava et al. (1999) described
two standard methodologies: Synchronous Tree Construction and Partitioned Tree
Construction, to propose a hybrid method joining the advantages of both.
Amado et al (2001) also derived their new parallel implementation of C4.5 from
an analysis of different approaches to parallelization.
The CLOUDS algorithm (Classification for Large or OUt-of-core DataSets,
Alsabti et al. 1998) samples split points of ordered features to reduce complexity
of the search, which is then run in a reduced area, not exhaustively.
Beside the methods dealing with large data collections, also other techniques have
been proposed to prevent too complex calculations in DT induction processes. For
example, Coppersmith et al. (1999) suggested some techniques to avoid analysis
of all possible partitions of nominal attributes. Because, in general, the problem
of finding optimal partition is very complex, they also proposed a new heuristic
search algorithm based on ordering the attribute values according to corresponding
class probabilities.
Li et al. (2008) developed a clustering-based classification technique Automatic
Decision Cluster Classifier (ADCC) for high-dimensional data. In the method,
a tree clustering model is generated and Anderson-Darling test is used to auto-
matically determine the adequate size of the resulting model. The test procedures
eliminate the necessity of visual cluster validation required in a former approach
of Huang et al. (2000).

2.10 Meta-Learning Germs

So far, meta-knowledge analysis has usually been performed by human experts, as
it is not easy to define standard automated ways that would regularly bring valuable
conclusions.

Each comparison of alternative techniques, analysis of algorithm eligibility for
particular kinds of problems, and drawing conclusions about influence of learning
parameters on the results can be called meta-learning.

Numerous articles discussing the subjects of various split quality measuresplit
quality measures (Mingers 1989b; Buntine and Niblett 1992), different techniques
of pruning methods (Quinlan 1987; Mingers 1989a; Mehta et al. 1995; Malerba et al.
1996; Esposito et al. 1997; Breslow and Aha 1997; Kononenko 1998) or advantages
of using less and more complex search processes for DT induction (Quinlan and
Cameron-Jones 1995; Segal 1996; Janssen and Fürnkranz 2009) are very precious
for the area of meta-learning, although they should be rather treated as a prelude
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to actual science of meta-learning. The early approaches point the need for meta-
learning solutions, as they show that various methods outperform others in various
applications, but there are no simple rules that could easily point the most successful
methods for a dataset at hand.

Bias analysis approaches (Kononenko 1995; Kim and Loh 2001; Shih 2004;
Lee and Shih 2006; Hothorn et al. 2006b) bring some interesting conclusions and
new attractive algorithms, but they do not solve the problem of algorithm selection.
Although the methods are nicely supported by theoretical reasoning, they have two
major disadvantages:

1. They deal with “abstract” definitions, not too compatible with most practical
applications, because the bias is defined and verified for features with no infor-
mation about the target, that is, features that are completely useless for clas-
sification. It does not guarantee proper feature selection when information is
present in the data. Moreover, “proper feature selection” is not even defined in
such circumstances.

2. As discussed in the beginning of Chap. 2, improving feature selection at each
single tree node does not guarantee the best quality of the whole resulting tree.
Optimization of the whole tree is impossible even for very small structures and
not too large sets of features, because the analysis of feature interaction is very
complex.

Techniques used by Option Decision Trees (see Sect. 2.8.1 and Buntine 1993;
Kohavi and Kunz 1997) can be certainly regarded as meta-learning germs, because the
analysis on meta-level, they perform, leads to proper DT ensemble with adequately
combined decisions.

Another example of incorporating meta-learning in the process of DT induction is
the method of Omnivariate Decision Trees (Yildiz and Alpaydin 2001, 2005b; Yildiz
2011), where the kind of decision borders (axis-perpendicular, linear, nonlinear) is
tuned automatically on the basis of meta-analysis.

In the area of rule induction, very close to DT induction, interesting meta-learning
approaches can also be found. An example is the effort of Janssen and Fürnkranz
(2007, 2008, 2010), who investigated the possibility of learning rule induction heuris-
tic from experience. The tools used for this purpose are very similar to those of the
METAL project described in more detail in Sect. 6.1.4.
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Grąbczewski K, Jankowski N (2005) Feature selection with decision tree criterion. In: Nedjah N,
Mourelle L, Vellasco M, Abraham A, Köppen M (eds) Fifth international conference on hybrid
intelligent systems. IEEE, Computer Society, Rio de Janeiro, Brazil, pp 212–217
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