
Chapter 2
Background and Theoretical Framework

2.1 Graphene Basics

A flat one atom thick layer of carbon atoms arranged in a honeycomb lattice is
known as graphene. The study of graphene dates back to 1947 when Wallace [1]
applied band theory to the study of one-atom thick layer of graphite as a building
block for the three dimensional material [1, 2]. In 1984, graphene was predicted to
be an excellent condensed matter analogue of (2 + 1)-dimensional quantum elec-
trodynamics [3], however this remained just as an ‘academic’ prediction. The great
interest in carbon-based materials reached a peak in the 1990s with the discovery of
carbon nanotubes [4]. The properties of these virtually one-dimensional materials
are easily understood through the ones of two-dimensional graphite [5]. The Interna-
tional Union of Pure and Applied Chemistry (IUPAC) gave the following definition
of graphene in 1994 “the term graphene should be used to designate the individual
carbon layers in graphite intercalation compounds” [6]. In spite of the theoretical
importance of graphene, it was regarded as a virtual material since it was believed
to be unstable with respect to the formation of curved structures such as fullerenes
and carbon nanotubes. Few-layer graphite on a substrate was an experimental reality
much before 2004, but it is not until that year when the Manchester group lead by
Novoselov and Geim discovered free-standing graphene [7]. The two-dimensional
nature of graphene was quickly confirmed [8] and, more importantly, the behav-
ior of its carriers as massless Dirac fermions [9]. A new definition was given by
Geim in a recent review: “graphene is a single atomic plane of graphite which—and
this is essential—is sufficiently isolated from its environment to be considered free-
standing” [10]. Since 2005, close to ten thousand articles have been published with
the word ‘graphene’ on their title1 and graphene is known for some record-breaking
material properties. In addition to being the thinnest and strongest known material
in the universe, “its charge carriers exhibit giant intrinsic mobility, have zero effec-
tive mass, and can travel for micrometers without scattering at room temperature.

1 Data taken from ISIWEB up to 2011.
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Graphene can sustain current densities six orders of magnitude higher than that of
copper, shows record thermal conductivity and stiffness, is impermeable to gases,
and reconciles such conflicting qualities as brittleness and ductility” [10]. In recogni-
tion for their pioneering work, Geim and Novoselov won the Nobel Prize in Physics
in 2010 “for groundbreaking experiments regarding the two-dimensional material
graphene”.

Apart from its outstanding mechanical and optical properties, the most relevant
feature of graphene related to transport is its low-energy dispersion relation. The
Fermi surface of graphene at half-filling is reduced to six points where two equivalent
bands touch. Due to the honeycomb lattice symmetry of graphene only, two of these
points are relevant. In the low-energy regime, the two equivalent bands of graphene
reduce to two conical bands (referred to as “valleys”) that touch at the two inequivalent
charge neutrality points known as “Dirac points”. The behavior of charge carriers
in this regime is analogous to that of massless Dirac fermions. As a consequence,
graphene offers the possibility to experimentally probe interesting phenomena that
is usually out of experimental range. This striking property triggered a wave of
research activity in the condensed matter community. A wide range of high-energy
phenomena, such as half-integer quantum Hall effect and Klein tunneling, were
predicted and measured in graphene.

Graphene exhibits another fascinating property. In spite of having relatively weak
electronic correlations, varied phenomena such as ferromagnetism and superconduc-
tivity can be induced in graphene by proximity to a host material. Indeed, depositing
a graphene layer on top of a superconducting electrode, the region of the layer that
covers the superconductor inherits the pairing correlation between electrons and
holes by means of the proximity effect [11–14]. This peculiarity opened a wide
range of possibilities. In particular, it allowed the study of the rich interplay between
superconductivity and relativistic phenomena in graphene-superconductor hybrid
structures.

Due to the “short life” of graphene and the immense interest on it, any attempt to
produce an up-to-date review of its properties quickly became obsolete. The basic
properties of graphene have been known for sixty years and, although it is easy
to find detailed reports on the basic transport properties of graphene, new review
articles appear frequently to account for the most recent experimental and theoretical
updates. A list of the most recent and complete reviews is provided as follows. A
good review of the new interesting transport properties of graphene can be found in
Ref. [15], although the basics about the low-energy dispersion relation of graphene
were clearly exposed in the articles by Wallace [1], Slonczewski and Weiss [2] and
Semenoff [3]. Similarly, Ref. [5] reviews the case of carbon nanotubes, which is
frequently analogous to that of graphene. A more thorough and updated review for
the transport properties of graphene is found in Ref. [16]. The similarities between
the tight-binding approach and the continuous quantum electrodynamics model in
two-dimensions, with special emphasis on the symmetries, are described in Ref. [17].
Reference [18] gives a short introduction to the interplay between relativistic Dirac
particles and superconductivity. Klein tunneling and negative refraction are reviewed
in a very pedagogical way in Ref. [19]. An updated overview of the fabrication and
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electronic properties of graphene nanostructures, with a detailed description of recent
reports on graphene-based quantum dots can be found in Ref. [20]. In the same line,
Ref. [21] provides both experimental and theoretical updates and Ref. [22] argues
for the application of graphene-based quantum dots for spin qubits from a theoretical
point of view. Finally, the effect of disorder on the transport properties of graphene
has been recently reviewed in Ref. [23] and briefly in Ref. [24].

This chapter is organized as follows: We begin by introducing a microscopic
tight-binding model for graphene which accounts for many of its basic character-
istics. Specifically, we explain how the low energy excitations of graphene within
the tight-binding approximation can be effectively described using the Dirac equa-
tion. We proceed to explore the relativistic behavior of charge carriers in graphene,
emphasizing striking properties like Klein tunneling, pseudo-diffusive transport, the
minimum of conductivity and the appearance of charge puddles. Next, we introduce
the superconducting proximity effect in metal-superconductor hybrid structures. We
explain how the Andreev reflection mechanism is the microscopic process that can be
used to describe transport in such systems. We consider the special Andreev reflec-
tion in graphene, highlighting its differences with the case of normal metals. Finally,
we briefly introduce the basics of the nonlocal transport in a three terminal device.

2.1.1 From the Tight-Binding Model to the Dirac Equation

In this section, we derive the band structure of graphene within the tight-binding
approximation. From the energy dispersion relation of graphene we obtain the Dirac
equation in the low-energy regime. This derivation was first introduced by Wallace
in 1947 [1] when studying the band theory of graphite. The results presented here
are analogous to that work.

The honeycomb structure of graphene is formed by combining two triangu-
lar lattices, denoted A and B, or equivalently, a triangular lattice with a basis
of two atoms per unit cell. A unit cell contains one atom from each lattice and
thus the vectors a1,2 = (1,±√

3)a/2 are defined as the primitive translations and
a = |a1| = |a2| = √

3a0 ≈ 0.246 nm is the lattice constant. An schematic of the
graphene lattice is shown in Fig. 2.1a. The corresponding reciprocal lattice vectors are
b1,2 = (1,±1/

√
3)2π/a.

Any atom from a determined sublattice, say A, is connected to its three near-
est neighbors from the other sublattice, B, via the vectors δ1 = (a1 − a2)/3 =
(0, 1/

√
3)a, δ2 = a1/3 + 2a2/3 = (1,−1/

√
3)a/2 and δ3 = −2a1/3 − a2/3 =

(1,−1/
√

3)a/2 (see Fig. 2.1a). Consequently, any pair of atoms from a unit cell can
be labeled through the integers n1 and n2 by the vectors RA = n1a1 + n2a2 and
RB = n1a1 + n2a2 + δ1.

The carbon atoms in the graphene plane are connected by strong covalent bonds
due to the sp2 hybridization of the atomic orbitals 2s, 2px and 2py . The 2pz orbitals
are perpendicular to the graphene plane, have zero overlap with the rest and can be
treated independently. They form the π bonds of graphene, while the in-plane overlap
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(a)

(b)

(c) (d)

Fig. 2.1 a Graphene lattice showing the sublattices A and B and the primitive translations. b
Brillouin Zone of graphene showing the reciprocal lattice vectors and the Dirac points K+ and K−.
c Graphene dispersion relation evaluated from Eq. (2.2). Reprinted figure with permission from
Beenakker [18]. Copyright (2008) by the American Physical Society. d Low energy dispersion
relation around any of the Dirac points from Eq. (2.5), showing in blue the valence band and in red
the conduction band

is called a σ bond. We can thus provide a basis of wavefunctions for the lowest energy
states in graphene using two Bloch functions constructed from the atomic orbitals
for the two inequivalent carbon atoms at A and B sites,

�i (r) = 1√
N

∑

Ri

eikRi ϕ(r − Ri ), with i = A, B.

N is the number of unit cells, ϕ(r) is the normalized 2pz orbital of the isolated
carbon atom and the summation is taken over all possible lattice vectors. From the
Schrödinger equation H� = E�, with � = CA�A + CB�B , one can obtain
the transfer integral matrix Hi j = 〈�i |H |� j 〉 and the overlap integral matrix
Si j = 〈�i |� j 〉. The energy dispersion relation for the system is obtained from the
secular equation det [H − ES] = 0. Since the two atoms of the unit cell are identical,
the Hamiltonian matrix element HAA, which represents the interaction of an atom
at site A with itself and the rest of the A atoms in the lattice, is exactly the same as
HB B . It follows that HAB = H∗

B A. One can further neglect the overlap between wave
functions centered at different atoms which makes SAB = SB A = 0. Lastly, assum-
ing a proper normalization of the wave functions leads to SAA = SB B = N . Under
these approximations the secular equation is reduced to E± = HAA ±|HAB |, where
E+ represents the eigenvalue for the symmetric combination of wave functions that
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form the valence band or the bonding π energy band, and E− is the antisymmetric
conduction band or the anti-bonding π∗ band.

Within the nearest neighbors tight-binding approximation, every atom, A, inter-
acts only with itself and the surrounding three B atoms and vice versa. The diagonal
elements thus become constant terms representing the energy of an electron on the
2pz orbital of carbon, including the effect of the periodic potential of the lattice:
HAA = E2p. If the atoms of the unit cell were inequivalent, as it is the case for
boron nitride (BN), the on-site energy E2p would be different for B and N and the
dispersion relation would show a gap between the π and π∗ bands. That is not the
case of graphene (which formed only by carbon atoms) and we can thus state that
E2p = EF = 0.

The off-diagonal terms are

HAB = H∗
B A = 〈�A|H |�B〉

=
∑

RA

∑

RB

eik(RA−RB )〈ϕ(r − RA)|H |ϕ(r − RB)〉

= tg
∑

δi

eikδi = tgeik(a1−a2)/3
[
1 + eika2 + e−ika1

]

= tg

[
exp

(
i
kya√

3

)
+ 2 cos

kx a

2
exp

(
−i

kya

2
√

3

)]
, (2.1)

where we have used the radial symmetry of wave functions ϕi in the graphene plane
and the single value of the nearest neighbor distance to define the tight-binding
integral tg > 0. The substitution into the secular equation is straightforward and
the resulting energy dispersion relation for a graphene plane in the tight-binding
approximation is

E±(kx , ky) = EF ± tg

√

1 + 4 cos2 kx a

2
+ 4 cos

kx a

2
cos

√
3kya

2
. (2.2)

Since graphene’s honeycomb lattice contains two atoms per unit cell (two sublattices)
the excitation spectrum contains two branches (bands) which are symmetrical around
E = 0 (see Fig. 2.1c). These bands touch at six points in momentum space given by
the roots of E(k) = 0

kx = ±4π

3a
, ky = 0

kx = ±2π

3a
, ky = ± 2π√

3a
. (2.3)

At half-filling of the bands, which is the pertinent situation for the study of
graphene and other carbon-based materials, the band structure given by Eq. (2.2)
has six isolated Fermi points instead of a Fermi line. These are the six corners of the
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first Brillouin zone which, due to the symmetry of the hexagonal lattice, correspond
to only two independent states. This result is of capital importance in research since it
allows to study the low-energy excitations of graphene by taking the continuum limit
at any two independent Fermi points. For example, if we choose the two independent
Fermi points

K± = (±4π

3a
, 0), (2.4)

any wave vector in the proximity of K± can be written as k = (± 4π
3a + δkx , δky).

By substituting in Eq. (2.1) we obtain

tg

[
exp

(
i
δkya√

3

)
+ 2 cos

(
±2π

3
+ δkx a

2

)
exp

(
−i

δkya

2
√

3

)]

≈ ±
√

3

2
tga

(
δkx ∓ iδky

) + O
(
(aδk)2

)
.

It follows that, consequently,

E±(k) ≈ ±
√

3

2
tga|k| = ±�vF |k|. (2.5)

This result implies that the energy dispersion relation is conical in the proximity
of a Fermi point. A striking consequence is that the Fermi velocity, defined as
�vF = √

3tga/2, is independent of both the electronic energy and momentum. The
best experimental estimates of tg ≈ 2.5 eV and a ≈ 0.14 nm result in a vF ≈ 106m/s
in the absence of any carriers. In the presence of charge carriers this value is slightly
modified without affecting the results presented here [16]. The linearity of the dis-
persion relation continues up to an energy EC < 0.4 tg ∼ 1 eV, which allows to
introduce a cutoff wave vector kc = Ec/�vF ≈ 0.25 nm−1.

In the usual continuum approximation for lattice theories in condensed matter
physics, i.e. the effective mass theory, one has a quadratic dispersion relation. An
effective Schrödinger equation can be implemented in which all many-body effects
are included in the effective mass parameter. In contrast, graphene is a zero band-gap
semiconductor with a linear low-energy dispersion for electrons and holes in the
conduction and valence bands, respectively.

The linearity of the dispersion relation, with an energy independent Fermi velocity,
is not the only outstanding result for the low-energy spectra of graphene. Having two
atoms per unit cell or two equivalent and independent sublattices A and B implies
that the two linear branches of the dispersion relation become independent of each
other. This degree of freedom due to the sublattices defines a pseudospin quantum
number equivalent to the electron spin. The resulting low-energy, long-wavelength,
effective 2D continuum Schrödinger equation for spinless carriers in the proximity
of graphene Fermi point K± becomes
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− �vF

(
0 ±kx − iky

±kx + iky 0

) (
�±

A(k)

�±
B (k)

)
= (E − EF )

(
�±

A(k)

�±
B (k)

)
. (2.6)

�±(k) = (
�±

A(k),�±
B (k)

)T
is a 2D spinor wave function for the pseudospin degree

of freedom. Equation (2.6) is exactly the equation for massless chiral Dirac fermions
in 2D, known as Weyl’s equation for neutrinos, with the only difference that the spinor
acts on the pseudospin space rather than on the real spin. We refer to the Fermi points
of Eqs. (2.3) and (2.4) as Dirac points or valleys. A complete low-energy description
of charge carriers in graphene is realized by combining the Dirac equation for each
valley in a 4×4 structure. When intervalley scattering can be neglected, the results for
each valley are equivalent and one can ignore the valley degree of freedom. Intervalley
scattering requires a large momentum transfer or strong lattice scale scattering. It
is therefore weak and usually ignored in the description of the low energy states in
graphene.

A series of experiments conducted by the Manchester group lead by Geim trig-
gered an intense research activity on graphene. Not only did they isolate graphene
but also demonstrated the relativistic behavior of electrons. In Ref. [7], the method to
obtain one-atom thick graphite was presented. It was further developed in Ref. [8]. It
was demonstrated that few and also mono layer graphite behaved like a two dimen-
sional semimetal. There was a small overlap between the conduction and the valence
bands and a strong ambipolar electric field effect was measured. In Ref. [9] the rela-
tivistic behavior of carriers in graphene was demonstrated. A linear dependence of the
conductivity on the gate voltage was measured. Mobilities up to 15, 000 cm2V−1s−1

were measured for electrons and holes. Lastly, the measurement of half-integer quan-
tum Hall effect corroborated once more the two-dimensional relativistic nature of
carriers in graphene.

2.1.2 Relativistic Behavior of Low-Energy Carriers in Graphene

Wave functions around each Dirac point satisfy Eq. (2.6), with E being the excitation
energy of an electron-like quasiparticle. If we assume that momentum along the
y-axis (�q) is conserved, the wave function can be written as �±(x, y) = eiqyφ±(x).
With the replacement k (q) = (−i∂x , q) in Dirac’s equation, we obtain the following
linear independent solutions for each valley

φ+(x) = c+
1 eikxϕ1 + c+

2 e−ikxϕ2

φ−(x) = c−
2 eikxϕ2 + c−

1 e−ikxϕ1,

with

ϕ1,2 =
(

1
±se±iα

)
, (2.7)
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s = sgn(E + EF ) and e±iα = �vF (k ± iq)/(EF + E). The constants c±
1,2 are

determined by boundary conditions for the wave functions φ± (x). In a one-valley
description of graphene Eq. (2.7) describes an oscillating wave where s is the band
index (s = 1 for the conduction band and s = −1 for the valence band) and α(k) is
the angle between the wave vector k and the x-direction. Let us define the chirality
operator as the projection of the pseudo-spin operator on the momentum direction.2

Ĉ ≡ k · œ̂
|k| .

In the absence of an external potential, this operator commutes with the Hamiltonian
and becomes a conserved quantity. The eigenvalues of the chirality are given by the

band index s = ±1. The velocity operator can be defined as v̂ ≡ −i
[
r, Ĥ

]
= œ̂.

The average velocity of a plane wave is given by v = sk/|k|. As a result, an electron
and a hole propagating in the valence band have the same average velocity and move
in the same direction. Their electric current is opposite since they have opposite
charge.

An important consequence of the conservation of chirality is the absence of
backscattering. Any two electron states propagating in opposite directions have
opposite chirality, resulting in vanishing probability for reflection. This fact was
first exposed by Ando for the one-dimensional case of carbon nanotubes [25, 26].

Another notable property of graphene is the relativistic transmission through a
potential barrier, also known as Klein tunneling [27]. A classical barrier confines
all particles with energy lower than the barrier height. In quantum mechanics, the
wave function of non-relativistic particles with energy lower than the barrier height
can still leak out into the classically forbidden region, giving rise to quantum tunnel-
ing. It is well known that the transmission through such quantum barrier decreases
exponentially with the height and width of the barrier. On the other hand, the trans-
mission probability for Dirac particles depends only weakly on the barrier height,
approaching unity with increasing barrier height [28]. As demonstrated in the pre-
vious sections, the Dirac Hamiltonian allows for both positive and negative energy
states, i.e. electrons and holes. While a potential barrier is repulsive for electrons, it is
attractive for holes. The opposite happens for a potential well. At any potential barrier
one needs to match the electronic states outside the barrier with the hole states inside.
The larger the barrier is, the more complete the matching between electron and hole
states is and thus the transmission is greater. As a consequence, the transmission
becomes perfect for an infinite barrier.

Effectively, Klein tunneling is a relativistic effect in which electrons and holes
are coupled by means of an electrostatic potential. The conservation of chirality
that prevents backscattering in graphene is another consequence of the analogy of
charge carriers in graphene with relativistic massless Dirac fermions. Tunneling

2 This is in fact the helicity operator, which is a function of physical quantities and thus has physical
sense. However, in the relativistic limit with zero effective mass both quantities are the same. We
adopt the standard in the literature and hereon we call this quantity chirality instead of helicity.
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through a potential barrier happens with unit efficiency at normal incidence [28]. An
important conclusion is that graphene pn junctions are essentially transparent. This
fact has been demonstrated experimentally in several works [29–33]. It is also the
reason why graphene-based quantum dots are so experimentally challenging [20–22].
Away from normal incidence, graphene pn junctions behave as negative refraction
index interfaces [34]. An unusual possibility for the confinement of massless Dirac
fermions involving the use of inhomogeneous magnetic fields [35] has triggered an
intense research activity.

A direct consequence of Klein tunneling in graphene is that both the pnp junction
and the n’-n-n’ junctions have finite transmission coefficients. More importantly,
graphene’s conductivity at zero doping, i.e. at the Dirac point, is finite [36, 37]. A
graphene sheet contacted by two heavily electron doped contacts allows the testing
of ballistic conductivity at the Dirac point. By ballistic conductivity we are referring
to the case of noninteracting electrons at zero temperature in the limit of no disorder.
The absence of scattering in a non-Dirac metal means that the semiclassical electrical
conductivity is infinite, since there is nothing to impede electron motion. The same
argument implies that the conductivity would vanish as carrier density is tuned to
zero, giving rise to a metal-insulator transition.

The conductivity of a system governed only by the Dirac equation (2.6) can be
obtained by calculating the transmission probability of modes confined in a strip
of width W and length L that is connected to heavily doped contacts [36, 37]. For
transport along the x̂-direction, the transmission probability for a transverse mode
has the form

Tn = 1

cosh2(qn L)
, (2.8)

where the transverse momentum qn depends on the detailed boundary condition of
the strip [37, 38]. This transmission probability is given strictly by evanescent modes
since both the energy and the doping are zero at the Dirac point. It is important to
stress that this result is obtained in the absence of disorder, interactions and at zero
temperature, i.e. this is a ballistic transmission with a dependence on the length of
the sample L . Such dependence, along with the distribution of eigenvalues of the
transmission matrix, resembles that of a diffusive system. This property is known as
pseudo-diffusivity of graphene at the charge neutrality point [39, 40]. More details on
the distribution of eigenvalues of the transmission matrix are given in Appendix B.

For wide enough strips, the conductivity of the system is independent of the
boundary conditions and is found by summing over the modes,

σ = gsgv

L

W

e2

h

∑

n

Tn(x̂) = e2

h

2L

π

∫ ∞

−∞
dq

cosh2(q L)

= 4

π

e2

h
for W >> L . (2.9)
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The condition for the existence of a well defined (size independent) conductivity
is the dependence of the transmission probability on the product q L (Eq. 2.8) and
the linear dispersion of the carriers. The condition W � L allows the sum of the
transmissions over the modes to be written as an integral over q in Eq. (2.9). The key
features for a minimum of conductivity are the gapless character of the spectrum and
the chirality of the carriers.

In the previous framework, the chemical potential was assumed to be constant
throughout the graphene layer, with a discontinuity at the electrodes. This simplifi-
cation was proven to be insufficient. It is now well known that the spatial distribution
of charge close to the Dirac point is not uniform. In low doped graphene, as in other
2D semiconductors, strong charge inhomogeneities appear. These inhomogeneities
are known as electron-hole puddles3 and are due to a random distribution of charge
in the environment and, in a small part, to the ripples associated with the substrate
roughness or the intrinsic wrinkles of suspended graphene. Contrary to the case of 2D
semiconductors, transport at the charge neutrality point in the presence of puddles is
still possible [41, 42]. The boundaries between these charge puddles are pn junctions
which, for the case of graphene, have finite transparency. Transport close to the Dirac
point has been successfully compared to percolating currents in networks of pn junc-
tions [43], although the theoretical picture of transport at undoped graphene remains
incomplete. Experiments of Refs. [41, 42], in agreement with previous numerical
calculations [44], were able to give some values for the size and strength of the
charge puddles. Consequently, the density fluctuations can be considered to have a
characteristic length of up to 30 nm, with a measured strength of around 25–30 meV.

2.2 Superconductivity Basics I: Proximity Effect

Superconductivity is the mechanism by which many materials develop zero electrical
resistance and perfect diamagnetism below a critical temperature and magnetic field
value. The vanishing of electrical resistance was discovered by Kamerlingh Onnes
[45] in 1911 while studying the properties of metals at extremely low temperatures.
In 1933, Meissner and Ochsenfeld [46] measured the expulsion of magnetic fields
by a material in the superconducting state. A phenomenological theory for this phe-
nomenon, known as the Meissner effect, was developed by the London brothers in
1935 [47]. In 1954 Landau and Ginzburg published a phenomenological theory of
superconductivity [48] in which they introduced the superconducting order para-
meter. A microscopic theory of superconductivity was formulated 46 years after its
discovery by Bardeen, Cooper and Schrieffer (BCS theory [49]). In this theory, a
phonon-mediated attractive interaction between electrons is the responsible for the
transition into the superconducting state.

3 In the case of 2D semiconductors, the puddles are formed by either electrons or holes depending
on the doping. In graphene at the Dirac point, the puddles are a mixture of electron and hole-doped
inhomogeneities.
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The main feature of superconductivity is the absence of resistance below a finite
temperature TC . Furthermore, the drop in the resistance is very sharp, implying a
phase transition. According to the theory of conductivity [50], electrical resistance
at finite temperature is dominated by the scattering of electrons by the vibrational
excitations of the lattice (phonons). The phonons are continuously suppressed by
lowering the temperature reaching a minimum at T = 0 where only the lattice defects
and impurities contribute to the scattering of electrons. This result is independent
of the temperature and insufficient to explain the appearance of superconductivity.
The BCS microscopic theory of superconductivity demonstrates the formation of a
new many-body ground state. In s-wave superconductors, Cooper pairs are formed
by coupling two electron of opposite spin. The resulting pair has total spin 0 and can
be considered a boson. Cooper pairs occupy the same many-body ground state. This
is the BCS ground state which contains the sum of all Cooper pairs in the material.
Since the Coulomb interaction causes a repulsive force between electrons, there has
to be an attractive force between electron pairs in the conduction band. A weak,
phonon-mediated, attractive interaction between electrons close to the Fermi surface
is responsible for overcoming the Coulomb repulsion. Electrons in a metal create
local distortions in the lattice, which act as an indirect attractive force upon other
electrons. When this attraction overcomes the Coulomb repulsion, a Cooper pair is
formed.

The ground state describes a collective excitation which includes all the individual
Cooper pairs. The typical length scale of this collective mode ξ (the superconducting
coherence length) is much greater than the mean distance between individual elec-
trons in the metal and is a fundamental parameter that characterizes the superconduc-
tor. The collective mode provides a direct interpretation of the vanishing resistance
of a superconductor. Since all individual Cooper pairs overlap at the ground state,
the scattering of one of them requires an equivalent change of momentum in the rest.
The amount of energy required is too large, and therefore the scattering of Cooper
pairs is highly suppressed. The supercurrent given by the collective mode cannot be
infinite since it is limited by the density of Cooper pairs. In the superconducting state,
the attraction between electrons overcomes the Coulomb repulsion which makes the
formation of Cooper pairs energetically favorable. The coupling between electrons
opens a gap in the spectrum since it is impossible to have an individual excitation
with energy below the one required to form a Cooper pair. The gap parameter � is
another of the fundamental parameters in the characterization of a superconductor.
The resulting ‘BCS density of states’ is

NBC S(E)

N (0)
=

{ |E−μ|√
(E−μ)2−�2

, |E − μ| > �

0, |E − μ| < �
(2.10)

where N (0) represents the density of states on the normal state. In the inset of Fig. 2.2,
we show the experimental results of Ref. [51] for the DOS of a bulk superconductor.
It demonstrates that no quasi-particle is allowed below the superconducting gap
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Fig. 2.2 Proximity effect in a normal-superconductor junction. Left Normalized DOS for the bal-
listic case. The bulk normal and superconductor cases are included. The bulk superconductor DOS
is given by Eq. (2.10). Reprinted figure with permission from Pilgram et al. [55]. Copyright (2000)
by the American Physical Society. Right Differential conductance in the tunnel regime for the dif-
fusive case. The inset shows the bulk experimental results for the superconductor. Reprinted figure
with permission from Guéron et al. [51]. Copyright (1996) by the American Physical Society

of width 2�BC S . All the states are pushed to the edges of the gap, forming two
characteristic peaks at E − μ = ±�.

2.2.1 Proximity Effect on a Normal Metal-Superconductor
Junction

A metal in electrical contact with a superconductor can develop superconducting
features such as infinite conductance and perfect diamagnetism. We consider the
superconductor as a reservoir where the electrons are condensed into Cooper pairs
and the normal metal as a gas of free electrons. The proximity effect is the phenom-
enon in which the electrons in the normal metal acquire superconducting correlations
through the diffusion at the contact between the normal metal and the superconduc-
tor. The behavior of the superconducting order parameter in the distances close to
the interface is therefore crucial to study how the correlations leak into the normal
region. Following the Ginzburg-Landau theory [48] a superconducting order para-
meter �(x), which only depends on the distance from the interface, contains all
the information about the propagation of superconductivity into the normal region.
This theory accounts for the macroscopic equilibrium properties close to the critical
temperature, but it is not valid when T → 0.

In the early 1960s, the simplest ballistic NS junction, an impurity-free normal
metal on top of a superconductor, was solved exactly using the Bogoliubov-de Gennes
equations (see a review in Ref. [52]). Subsequently, during the 1970s, the diffusive
case was analyzed by Usadel [53]. That was the starting point for the development
of what is known as the “nonequilibrium superconductivity theory” (a review can



2.2 Superconductivity Basics I: Proximity Effect 19

be found in Ref. [54]). There, the order parameter �(x, E) contains both the spatial
and the energy dependence of the density of states NBC S(x, E). In the absence
of magnetic fields, the natural unit of length for the variation of �(x, E) is the
superconducting coherence length ξ and the energy dependence is given by the
density of states of the bulk superconductor NBC S(E). This theoretical prediction
was confirmed by experiments on normal metal-superconductor nanoconstrictions
carried on during the 1990s (a good example is Ref. [51]). Subsequently, experiments
and theory reached a comparable level of maturity. Therefore, different scenarios have
been understood at the microscopic level.

The ballistic case is characterized for having an electron mean free path l much
greater than the superconducting coherence length ξ. The left panel of Fig. 2.2 shows
the DOS of a junction formed by a finite normal metal on top of a superconductor
calculated from the Bogoliubov-de Gennes equations (extracted from Ref. [55]). It
also shows the constant density of states at the normal metal and a BCS-like density
of states equivalent to Eq. (2.10). The DOS of the junction tends to the case of the
isolated normal metal for an excitation energy greater than the gap value. Inside the
gap, there is a finite DOS for energies greater than zero.

The diffusive regime is obtained when l is small compared with the supercon-
ducting coherence length. For this case we show in the right panel of Fig. 2.2 the
experimental results of Ref. [51], in comparison with the theoretical predictions using
Usadel equation. In this case, a semi-infinite normal metal has been coupled to the
superconductor. The inset shows the experimental DOS for the bulk superconductor.
In spite of having a well-defined BCS density of states, where the sharp edges at
the gap can be observed, the DOS inside the normal region is smooth with a char-
acteristic V -shaped dip at low voltages. For a diffusive NS junction, the number of
states within the gap presents two maxima for energies close to the gap and is highly
reduced at lower energies. The proximity effect is decreased with increasing distance
from the interface.

2.3 Superconductivity Basics II: Andreev Reflection

2.3.1 The Concept of Andreev Reflection

At the interface between a normal metal and a superconductor, the superconducting
pairing potential can convert an electron from the normal region into a hole, creating
a Cooper pair in the superconductor. This process is known as Andreev reflection
[56] and is responsible for transport in N S junctions. In a normal metal, the electron
is a filled state with energy E above the Fermi energy EF . If E is lower than the
superconducting energy gap �, single-particle tunneling into the superconductor
is forbidden since there are no available states. This quasi-particle may only enter
the superconducting region if it forms a Cooper pair. In order to do that, it must
couple with another electron from the normal region with opposite wave vector
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and spin. The empty state below the Fermi energy left behind by this electron is
the reflected hole. A total charge of 2e is transmitted from the normal region to
the superconductor. Time-reversal symmetry yields that an incident hole from the
normal region is Andreev-reflected as an electron at the interface.

This effect was first introduced by Andreev when studying the heat transport at
NS interfaces [56]. Andreev reflection is the microscopic mechanism which explains
how a dissipative current from the normal metal transforms into a supercurrent at the
NS interface.

Most common metals have Fermi energies EF that are much greater than the
superconducting energy gap �.4 By neglecting the terms of the order �/EF ,5 the
incident electron and the reflected hole have the same wave vector which lies at
the edge of the Fermi surface. While the velocity of a conduction band electron is
parallel to its wave vector, the velocity of a conduction band hole is opposite to its
wave vector and the hole is retroreflected. It is common to say that the hole traces
back the path of the incident electron in the Andreev reflection.

2.3.2 Transport at a Normal Metal-Superconductor Interface

The Bogoliubov-de Gennes (BDG) equations describe the quasi-particle excitations
in non-uniform superconductors. They are among the most useful techniques for
describing phase-coherent transport in normal-superconductor (NS) hybrid struc-
tures. The quasi-particle excitations in a superconductor consist of a mixture of
electron-like and hole-like states. The BDG equations are two coupled linear differ-
ential equations describing the amplitudes u(x, E) and v(x, E) of an excitation of
energy E on the electron and hole states. They are expressed as,

(
H − EF �(x)

�∗(x) EF − T HT −1

) (
u(x)

v(x)

)
= E

(
u(x)

v(x)

)
, (2.11)

where H is the single-particle Hamiltonian of the system (i.e. Schrödinger or Dirac-
Weyl, depending on if we are describing traditional metals or graphene respectively),
T is the time-reversal operator and �(x) is the pairing potential between electrons
and holes.

A simple example system is a one-dimensional normal-superconductor junc-
tion with an insulating barrier at the interface (NIS system). By substituting H in
(Eq. 2.11) by the Schrödinger Hamiltonian in one dimension and making �(x) =
�0θ(x), with θ(x) being the Heaviside step function, we can describe an impurity-
free one-dimensional junction with one normal region and one superconducting
region. We can consider an incoming electron from the normal region into the super-

4 For example, Copper and Aluminum have Fermi energies of 7 and 11.7 eV, respectively [57]. On
the other hand, the bulk superconducting gap of Aluminum is 0.18 meV [50].
5 This simplification is known as Andreev approximation.



2.3 Superconductivity Basics II: Andreev Reflection 21

conductor and allow it to be either transmitted as a Cooper pair or reflected as a hole.
By matching wave functions at the interface we obtain that the Andreev reflection
probability is6 Reh = |reh |2 = |u0/v0|2. The probability of Andreev reflection is
thus unity inside the superconducting gap and decays exponentially outside. This
one-dimensional result is easily expanded for the 3D case, where electron normal
reflection is included. In a famous article from 1982, Blonder, Tinkham and Klapwijk
(BTK model [58]) used this formalism based on the BDG equations for the first time
to describe superconducting microconstrictions. They solved the problem introduced
here, using both plane waves to consider impurity-free systems and a Dirac delta-like
potential at the point between the normal and the superconductor electrodes to include
all the possible scattering processes at the interface. The intensity of the barrier is
controlled by a parameter Z , which allows for the absence of barrier (Z = 0) as well

Fig. 2.3 Differential conductance as a function of the voltage at the metallic NIS junction for
different values of the barrier intensity Z . Reprinted figure with permission from Blonder et al.
[58]. Copyright (1982) by the American Physical Society

6 In the one-dimensional case, we consider plane wave solutions of Eq. (2.11) of the form (u0, v0)×
eike

S x , where u2
0(v

2
0) = min[1, E/�0](1 ± √

E2 − �2/E)/2 are the BCS coherence factors and

the wave vector has the form ke,h
S (E > 0) =

√
2m(E S

F ±
√

E2 − �2
0)/�2. The wave vector for the

normal region is obtained for �0 → 0, limit in which (1, 0) and (0, 1) represent electron and hole
quasi-particles, respectively. The matching of the wave functions reads

(
1
0

)
eike

N x + reh

(
0
1

)
eikh

N x =
(

u0
v0

)
eike

S x .

The normalization is done over the incident flow and thus reh is the Andreev reflection amplitude.
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as a strong barrier (Z � 1). By studying the probability of each microscopic process
and its contribution to the current they obtained the conductance results shown in
Fig. 2.3. The two limiting cases of zero barrier and strong barrier are very instruc-
tive. In the former, the probabilities of normal reflection and transmission of electrons
into hole-like excitations are both zero. Thus, Andreev reflection for energies below
the gap is perfect (i.e. occurs with unit probability as in the one-dimensional case)
and transmission of electrons into the superconductor as electron-like excitations is
Tee = 1− Reh (contributing to the conductance only for energies over the gap). This
behavior is particular to metallic junctions. The Andreev reflection probability for
strong barrier is strongly suppressed while normal reflection Ree dominates inside
the gap. This behavior is characteristic of classical tunnel junctions. In this way,
the BTK model continuously connects this two limiting cases. The importance of
this simple model was demonstrated by the experiments conducted by Blonder and
Tinkham [59]. There is an excellent agreement between the theoretical predictions
and the experimental I − V curves for Cu-Nb point contacts.

2.3.3 Andreev Reflection in Graphene: Specular and Retro

When the Andreev reflection takes place, the transmitted Cooper pair must carry
zero total momentum, so the electrons forming it belong to opposite corners of
the Brillouin zone. Consequently, the Andreev reflection mixes graphene’s valleys
(±K) [60]. The relativistic dispersion relation of graphene where the valence band
and the conduction band touch at the Dirac points allows us to consider two limiting
situations: EF < � and EF > �, for an incident electron with E > 0. When
E < EF , which is the usual case of traditional N S junctions, the reflected hole
remains in the conduction band (in graphene it still belongs to the other valley).
Energy conservation requires that the reflected hole is located at −E , which is an
empty state of the conduction band. The schematic of this intraband process is
depicted in Fig. 2.4a. For the case with E > EF , energy conservation demands that
the reflected hole is in the valence band. The resulting intraband process is illustrated
in Fig. 2.4b. Intraband processes do not exist in normal metals where the excitation
gap is much greater than the superconducting gap [18].

An analysis of the dispersion relation of a graphene-superconductor junction sup-
plies more information about these processes. Let the interface be at x = 0, with
the graphene normal region at x > 0. The dispersion relation of an impurity-free
graphene-based NS system in the mean-field approximation for superconductivity7 is

7 The mean-field approximation for superconductivity demands that the superconducting coherence
length ξ = �vF/� is much greater than the Fermi wave length on the superconductor λS

F =
�vF/(E S

F +U0). There is no restriction over the relative magnitude of ξ and the Fermi wave length
in the normal region. This approximation allows us to impose rigid boundary conditions on the pair
potential �(x), with �(x) = � in the superconducting region and �(x) = 0 in the normal region.
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(a)

(b)

(c)

Fig. 2.4 Andreev reflection in graphene takes place when E < � with the incoming electron (full
black circle) and the outgoing hole (empty circle) in different valleys. a Andreev retro-reflection
occurs for EF > E and is dominant when EF � E,�. The electron and the hole are both in the con-
duction band. b Specular Andreev reflection occurs for E > EF and is dominant when EF 
 E,�.
Contrary to the previous case, the reflected hole is in the valence band. c Differential conductance
(normalized by the ballistic value g0) of the interface between normal and superconducting graphene
showing the regime in which retroreflection dominates (λF = �vF/EF 
 ξ = �vF/�) and that in
which specular reflection dominates (λF � ξ). Reprinted figure with permission from Beenakker
[60]. Copyright (2006) by the American Physical Society

E =

⎧
⎪⎨

⎪⎩

√
|�|2 +

(
EF ± �vF

√
k2

x + k2
y

)2
, x < 0

∣∣∣EF ± �vF

√
k2

x + k2
y

∣∣∣ , x > 0
(2.12)

The ± sign identifies excitations from the conduction (+) and the valence (−) bands.
The group velocity for a conduction band electron state with energy E is Ve =
ke/|ke|. The group velocity for holes created at the same energy is Vh = ∓kh/|kh |,
where the −(+) sign corresponds to the conduction (valence) band. The different
sign is obtained since the holes have the opposite group velocities of the electrons
for a given momentum and there is a change of sign between the conduction and
the valence bands. Thus, the group velocity and the momentum of a conduction
band hole have opposite sign, while they have the same sign for a valence band
hole. In the intraband reflection, the group velocity of the reflected hole has the
opposite sign than the velocity of the incoming electron. Thus, Andreev reflection
has a retro-reflection character as all components of the velocity change sign and
the hole follows back the path of the incident electron (see right panel of Fig. 2.4a).
On the contrary, in the interband reflection the group velocity of the reflected hole
(in the valence band) is parallel to its momentum. A specular reflection takes place
since the component of the momentum parallel to the interface (ky) is conserved
upon reflection. When EF = 0, the reflected hole is always an empty state below the
Fermi energy so, in undoped graphene, Andreev reflection is a specular (interband)
process at all excitation energies (see Fig. 2.4b).
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2.3.4 The BTK Model Applied to Graphene

In a seminal article by Beenakker in 2006 [60], the BTK model was applied to
a graphene-based NS system. Substituting the Dirac-Weyl Hamiltonian of Eq. (2.6)
into (2.11), we reach what are commonly known as the Dirac-Bogoliubov-de Gennes
(DBdG) equations. The Fermi energy of a metal is much greater than other energy
scales like the excitation energy and the superconducting gap. This means that both
electron and hole states belong to the conduction band. Yet, the Fermi energy in
graphene can be comparable or even smaller than the excitation energy and the gap.
The conduction and the valence bands in graphene touch at the Dirac point and
Andreev conversion of electrons into holes can occur in different bands. In Fig. 2.4c
we show the plots of the conductance for a graphene-based NS junction, showing the
two distinctive regimes of low-doping (which enhances interband Andreev reflec-
tion) and high-doping (which is mainly due to intra-band Andreev reflection and is
equivalent to the metallic junction behavior with a small barrier). The study of the
graphene NIS junction published in Ref. [61] highlighted another important differ-
ence with the metallic junctions: the conductance is an oscillatory function of the
effective barrier strength. The amplitude of oscillations is maximum when the Fermi
levels of the normal and the superconducting region are aligned and it can be zero
for a large Fermi vector mismatch.8 In addition to that, a maximum value of the
conductance can be reached at zero bias for a finite barrier, in stark contrast to the
case of metallic junctions.

2.3.5 Nonlocal Transport and Crossed Andreev Reflection

Andreev reflection is intrinsically a nonlocal process. It takes place in a coherence
volume of size ξ, the characteristic length associated with the superconducting gap
�. Consequently, the incident electron and the reflected hole can be separated by
hundreds of nanometers.

In an article published in 2000, Deutscher and Feinberg [63] considered a multi-
terminal system formed by two point contacts coupled to a superconductor and
separated by a distance L smaller than the superconducting coherence length (see
the illustration in Fig. 2.5). When studying transport at subgap voltages and temper-
atures they realized that Cooper pairs made by electrons coming from each contact
can be injected into the superconductor. This process is known as crossed Andreev
reflection (CAR) (see Fig. 2.5a). It was further shown that another process involving
the coherent tunneling of an electron from one normal electrode to the other is possi-
ble [64] (see Fig. 2.5b). This process is called electron elastic cotunneling (EC) and
its contribution to the nonlocal conductance has the opposite sign than the one due to
a CAR process. It can exactly cancel the CAR contribution in the tunnel regime. A
local Andreev reflection can occur at each normal electrode at the same time, giving

8 For a detailed study of both the NS and the NIS cases see Ref. [62].
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(a)

(b)

Fig. 2.5 Schematic of a three terminal device connected to a NSN system. The macroscopic
electrodes L and R act as the source and drain, respectively. The superconductor S is grounded
and a differential conductance can be measured between the electrodes. For performing a nonlocal
transport measurement, the superconducting coherence length ξS must be comparable or bigger
than the separation between the normal regions of the NSN junction. a Crossed Andreev reflection
process: An electron from the source forms a Cooper pair inside the superconductor by coupling
with an electron from the other normal region with opposite spin. The reflected hole is collected at
the drain. b Electron elastic cotunneling process: An electron from the source performs a quantum
coherent tunneling through the superconductor and into the drain

an extra contribution to the conductance of each electrode which is usually hard to
distinguish from that arising from CAR processes.

Study of the nonlocal conductance can confirm the presence of CAR processes.
The time-reversal of a CAR process is that in which each electron from a Cooper pair
arriving from the superconductor coherently tunnels into a different normal electrode.
An independent measurement of these processes is thus equivalent to measuring the
splitting of a Cooper pair. As the total spin of the Cooper pair is zero the two electrons
participating in this process are naturally spin entangled. Such splitting is therefore a
source of entanglement and has many possible applications in quantum information
theory.

The cancellation between the EC and the CAR contributions to the nonlocal
conductance for thick tunnel barriers can be removed by introducing ferromagnetic
leads [64, 65], increasing the barrier transparency [66–68] or taking into account
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Coulomb interactions [69]. The importance of non-equilibrium effects at large bias
voltages has also been analyzed [70].

A number of recent experiments have demonstrated these predictions. In 2004,
Beckmann et al. [71] measured the nonlocal resistance of an Aluminum bar with
two ferromagnetic wires forming point contacts to the Aluminum. When the Alu-
minum was in the superconducting state, they observed a nonlocal spin-dependent
resistance. The spatial decay of this signal was controlled by the superconduct-
ing coherence length rather than the normal state spin-diffusion length. The energy
dependence on the probability of EC and CAR was measured by Russo et al. [72].
They found that CAR dominated over EC at high energies, with the Thouless energy9

of the superconductor being the energy scale for the crossover. This indicates that the
phase coherence of the processes plays a fundamental role in nonlocal transport. Fur-
ther experiments corroborated this fact and confirmed the importance of the contact
resistances and the excitation energy of the particles [73–75].

Another multi-terminal device was proposed by Recher et al. [76] in 2001. In this
case, the superconductor was weakly coupled by tunnel barriers to two quantum dots
(QDs). Each QD was treated as a one-level system and was also weakly coupled to
a normal lead. If the QDs are in the Coulomb blockade regime, the probability for
the state with two electrons on the same dot was suppressed. Electrons coming from
the superconductor tunneled into separate dots and therefore into separate leads with
higher probability. When the energy levels of the dots coincided, the splitting of the
Cooper pairs from the superconductor was enhanced. The study of entanglement
in similar systems was performed in Refs. [77] and [78]. Similar predictions were
reached for other mesoscopic systems like Luttinger liquids [79].
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