
Pre-main Sequence Evolution and the
Hydrogen-Burning Minimum Mass

Takenori Nakano

Abstract There is a lower limit to the mass of the main-sequence stars (the
hydrogen-burning minimum mass) below which the stars cannot replenish the
energy lost from their surfaces with the energy released by the hydrogen burning in
their cores. This is caused by the electron degeneracy in the stars which suppresses
the increase of the central temperature with contraction. To find out the lower limit
we need the accurate knowledge of the pre-main sequence evolution of very low-
mass stars in which the effect of electron degeneracy is important. We review how
Hayashi and Nakano (1963) carried out the first determination of this limit.

1 Introduction

The stars on the main sequence replenish the energy lost outward from their surfaces
with the energy released by the hydrogen burning in their cores. Because the
nuclear energy is huge, the stars can maintain this steady state for a long time.
There is a lower limit to the mass of such main-sequence stars, which we call the
hydrogen-burning minimum mass hereafter.

The self-consistent determination of the hydrogen-burning minimum mass was
first carried out by Hayashi and Nakano (1963). In this article I will review how they
performed this determination.

The failure of attaining the steady state due to hydrogen burning is caused by the
electron degeneracy in the star. The electron degeneracy is a quantum mechanical
phenomenon. Electrons are fermions and obey the Pauli exclusion principle which
allows only one particle per quantum state. For the gas of free electrons only two
electrons (because of the two spin states) can take the state of the momentum
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p D 0, and the other electrons are forced to have non-zero momentum even at
the temperature of T D 0K. Therefore, the electron gas has non-zero pressure even
at T D 0K. The deviation from the ideal gas induced by the electron degeneracy is
large at very high densities or very low temperatures. Protons (or neutrons) may also
degenerate but only at much higher densities than electrons, e.g., in neutron stars,
because of their large masses.

The pressure of the gas with degenerate electrons is much higher than the
pressure of the gas with the electrons assumed to be in the Boltzmann distribution
when compared at the same temperature and density. Therefore, the star with
degenerate electrons can be in hydrostatic equilibrium even at the temperature of
0K as long as the stellar mass is smaller than the Chandrasekhar limit given by
Eq. (8) below. Therefore, the nuclear burning may not occur in stars with degenerate
electrons.

To determine the stellar mass below which the steady state with the hydrogen
burning cannot be attained, we need the accurate knowledge of the evolution of the
stars in the pre-main sequence stage.

2 Stars with Degenerate Electrons

Stellar structure with degenerate electrons was investigated in the early twentieth
century as the model of the white dwarfs (Chandrasekhar 1939). We give in the
following a brief summary on the stellar structure with degenerate electrons and the
start of electron degeneracy in the stars.

2.1 Stellar Structure

In hydrostatic equilibrium the central pressure Pc and the central density �c of the
star are given by (see e.g., Hayashi et al.1962)

Pc D aGM2=R4; (1)

�c D bM=R3; (2)

where G is the gravitational constant, M and R are the stellar mass and radius,
respectively, and a and b are constants of order 1 whose values are determined by
the structure, e.g. by the polytropic index for the polytropic stars. See Eq. (5) below
for the polytropic index. We are not concerned about the stars with some special
structure such as red giants which have very dense cores and extended envelopes
with nuclear burning shells in between. By eliminating R from Eqs. (1) and (2) we
obtain

Pc / M2=3�4=3c : (3)



Pre-main Sequence Evolution and the Hydrogen-Burning Minimum Mass 7

This relation holds for the stars in hydrostatic equilibrium irrespective of the
equation of state. The equation of state is an equation which gives the relation among
the density �, the temperature T , and the pressure P of the gas, and is indispensable
in solving the stellar structure.

Let pF be the Fermi momentum of the electron, i.e., the momentum correspond-
ing to the maximum energy of the free electron when all the lower energy levels are
occupied. The number of the quantum states per unit volume for the free electrons
with the momentum between p and p C dp is equal to 8�p2dp=h3, where h is the
Planck constant. Therefore, we find that pF is proportional to .�=�e/

1=3, where � is
the density of the gas by mass and �e is the mean molecular weight for electrons,
or the number of nucleons per electron. Let X , Y , and Z be the fractions by
mass of hydrogen, helium, and the heavier elements, respectively. Then we have
��1

e D X C .Y CZ/=2 D .1CX/=2 because the heavier elements are dominated
by C, N, and O whose atomic numbers are half their mass numbers.

The pressure P of the gas is the momentum flux of the gas particles, and is on
the order of n Nv Np, where n is the number density of the gas particles and Nv and Np are
the mean values of the velocity and the momentum of the particles, respectively.

When electrons are completely degenerate and non-relativistic, Np is some fixed
fraction of pF, and then the pressure P is proportional to p2F.�=�e/, and we obtain
the equation of state omitting the coefficient

P / .�=�e/
5=3: (4)

Thus, the structure of the star in this situation is represented by a polytrope of index
N D 1:5.

The polytropic index N characterizes the relation between the distribution of P
and the distribution of � in the star, and is defined by

1C 1

N
D d logP=dr

d log �=dr
; (5)

where r is the distance from the center. Thus N is in general a function of the
position r in the star. But with the equation of state (4),N takes a constant value 1.5
throughout the star.

By eliminating Pc and �c from Eqs. (2) and (3) using the equation of state (4) and
bringing back the coefficient we find

R D 0:0400��5=3
e .M=1Mˇ/�1=3Rˇ: (6)

For the stars supported by the gas of non-relativistic completely degenerate elec-
trons, the radiusR is a decreasing function of the mass M .

Even when electrons are only partially degenerate and non-relativistic, the stellar
structure is also represented by a polytrope ofN D 1:5 as long as the distribution of
the specific entropy s in the star is uniform, or the star is fully convective (Hayashi
et al. 1962). See Sect. 3.2 below for the relation between the distribution of s and
the convection.
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Eliminating Pc from Eqs. (3) and (4) we find �c / M2 for the stars with non-
relativistic degenerate electrons. As M increases, �c, and then pF, increase, and at
some stellar mass electrons become relativistic.

When electrons are extremely relativistic and completely degenerate, the pres-
sure P is proportional to pF.�=�e/ because most of the electrons have a velocity, or
Nv, close to the light velocity, and we obtain the equation of state

P / .�=�e/
4=3: (7)

Thus, the star in this situation has a polytropic structure with N D 3. However,
because this pressure in the equation of state and the pressure for hydrostatic equi-
librium given by Eq. (3) have the same dependence on the density, the equilibrium
with this equation of state is realized only at a special value of M , which is called
the Chandrasekhar mass and is given numerically by (e.g., Hayashi et al. 1962)

MCh D 5:75��2
e Mˇ: (8)

For the white dwarfs composed of pure helium or pure carbon, we find �e D 2, and
then we obtain the well-known valueMCh D 1:44Mˇ. ForM slightly smaller than
MCh, electrons are not extremely relativistic, and the dependence of the pressure on
the density is slightly steeper than in Eq. (7). Therefore, hydrostatic equilibrium can
be realized.

For the population I chemical composition, e.g., with 72 and 26 % by mass of
hydrogen and helium, respectively, we have �e D 1:16 and then MCh D 4:27Mˇ.
This does not mean that a star of mass close to this value can attain the equilibrium
state with degenerate electrons without burning hydrogen. In order to find out the
mass of the stars which can attain this state, we have to follow the stellar evolution
prior to the hydrogen burning.

2.2 Start of Electron Degeneracy

When the temperature is so high and/or the density is so low that kT � p2F=.2me/

holds, where k is the Boltzmann constant andme is the mass of the electron, only a
very small fraction of the quantum levels with the energy less than kT are occupied
by electrons, hence the electrons are not degenerate, and the gas follows the ideal
gas law.

For the stars with negligible electron degeneracy and negligible radiation pres-
sure the central temperature is given by (see e.g., Hayashi et al. 1962)

Tc D f
�mH

k

GM

R
; (9)
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where � is the mean molecular weight of the gas, mH is the mass of the hydrogen
atom, and f is a constant of order 1 whose value is determined by the structure,
e.g. by the polytropic index N for the polytropic stars. Eliminating R from Eqs. (2)
and (9) we obtain

�c / ��3M�2T 3c : (10)

The Fermi energy of the non-relativistic electron is given by p2F=.2me/. The
Fermi energy at the center is proportional to .�c=�e/

2=3, which is proportional to
R�2 for a fixed M as seen from Eq. (2), while the thermal energy at the center
kTc is proportional to R�1 as Eq. (9) shows. As R decreases by contraction, the
Fermi energy increases faster than the thermal energy. Therefore, the degree of
electron degeneracy increases as the star contracts. Electron degeneracy becomes
nonnegligible when p2F=.2me/ � kT holds because a significant fraction of the
quantum levels with the energy less than kT are occupied by electrons. At the center
this relation can be written as

.�c=�e/
2=3 / Tc: (11)

Eliminating �c from Eqs. (10) and (11) we obtain

Tc / �2=3e �2M4=3: (12)

This means that in a star of smaller mass M the electron degeneracy becomes
efficient at lower central temperature.

As the degree of degeneracy rises with contraction, the rise in the central
temperature Tc slows down. Some time later Tc takes a maximum value at some
radius R, and then decreases. Because the electron degeneracy becomes efficient at
lower Tc for smaller M , the maximum attainable value of Tc is lower for the star of
smaller mass M , suggesting the existence of the hydrogen-burning minimum mass.

3 Discovery of the Hayashi Phase

Determination of the hydrogen-burning minimum mass is crucially related to
the pre-main sequence evolution. First we review how the Hayashi phase was
discovered and what the Hayashi phase is.

3.1 Prior to Hayashi’s Theory

The Hertzsprung-Russell diagram (HR diagram) is a useful tool in the study of the
stars, in which the stellar luminosity is plotted against the effective temperature.
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In the HR diagram of star clusters there is a region in which no stars exist with
the effective temperature Teff less than several thousand Kelvin (e.g., Sandage
1957). The reason for this was not known until 1961. For instance, Sandage
and Schwarzschild (1952) investigated the stellar evolution after the exhaustion
of hydrogen in the core, and were confronted with the unlimited decrease of the
effective temperature. They presumed that the set-in of the shell hydrogen burning
would increase the luminosity and stop the decrease of the effective temperature.
It seems to have been considered in those days that the non-existence of stars in
this low effective temperature region was peculiar to the advanced stage of stellar
evolution and did not apply to the pre-main sequence stage. Stars in the pre-main
sequence stage were considered to be in radiative equilibrium and the evolution
calculation was started at fairly low effective temperature (e.g., Henyey et al. 1955).

3.2 Boundary Conditions at the Stellar Surface

The problem in these previous evolution calculations was in the boundary conditions
at the stellar surface. In the late-type stars the hydrogen ionization zone lies inside
the photosphere and has an effect of making the stellar envelope convectively
unstable and suppresses the decrease of the effective temperature. The previous
papers cited above neglected the convection induced by the H-ionization zone.
Hayashi and Hoshi (1961) solved the structure of the stellar atmosphere taking into
account the effect of the H-ionization zone and used this as the boundary condition
for the internal structure. We describe this in more detail in the following.

In the stars the energy is transported by radiation and convection. Here we do
not consider the thermal conduction by gas particles because it is efficient only in
some restricted situations. Strictly speaking, convection occurs in the regions where
the specific entropy s decreases outward, ds=dr < 0. However, s can effectively
be regarded constant in the convection zone except at a very thin layer near the
stellar surface because the energy transport by convection is so efficient that the
negligibly small outward decrease of s is enough to maintain the necessary energy
flux. In the radiative zone the local luminosityLr , the amount of the energy crossing
a sphere of radius r in a unit time, is proportional to the temperature gradient
defined by rrad � .d logT=d logP/rad, the exact expression of which is given
by Eq. (13) below. In the convection zone the temperature gradient is given by
rs � .d logT=d logP/s , the derivative under the constant s. Convection occurs
only where rs < rrad. Usually rrad takes a value � 1, while rs D 0:4 for the fully
ionized ideal gas with negligible radiation pressure. Therefore, in order to find out
where the convection occurs, we have to solve the stellar structure accurately.

In the H-ionization zone in the stellar atmosphere, rs is much smaller than
1 because the ionization potential of the hydrogen atom is much larger than
the thermal energy kT . Therefore, convection easily occurs. Because rs � 1,
the decrease of logT outward in the H-ionization zone is much smaller than
the decrease of logP and log �. Because logP and log � decrease by orders of
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magnitude in the H-ionization zone, the outer boundary of the H-ionization zone
has very low density, and hence is usually not very far from the photosphere. Thus,
the effective temperature Teff is not very low compared with the temperature at the
outer boundary of the H-ionization zone.

Hayashi and Hoshi (1961) determined by numerical calculation the critical
effective temperature T .cr/

eff as a function of the stellar mass and radius, which is

several times 103 K and has the following characteristics. For Teff D T
.cr/

eff the stellar
structure is represented by the Emden solution for a polytrope of index N D 1:5

throughout the star, and the star is fully convective. For Teff > T
.cr/

eff the solution of
the Lane-Emden equation for N D 1:5 is of the centrally condensed type singular
at the center r D 0 with � D 1 andMr > 0, whereMr is the mass included inside
a sphere of radius r , indicating that there is a point mass at the center. This solution
can be fitted at a finite radius r > 0 with a regular core solution with the effective
polytropic index, the mean value of N defined by Eq. (5) in the core, NN > 1:5.
Thus, the star with Teff > T

.cr/
eff is composed of a convective envelope and a radiative

core. For Teff < T
.cr/

eff the solution of the Lane-Emden equation forN D 1:5 is of the
collapsed type in which Mr decreases to 0 before reaching the center r D 0. This
solution can be fitted at a position with Mr > 0 only with a regular core solution
with the effective polytropic index NN < 1:5. However, in such a core solution the
entropy s decreases outward and violent convection occurs changing the distribution
of s in a dynamical time scale. Therefore, stars cannot be in hydrostatic equilibrium
with such Teff. Hayashi and Hoshi (1961) found that the red giant branches of the
star clusters in the HR diagram are close to the lines of Teff D T

.cr/
eff for appropriate

values of the stellar mass.

3.3 Hayashi’s Theory

Because there is no equilibrium state at Teff < T
.cr/

eff in any stage of stellar evolution,
Hayashi (1961) considered that at least the final phase of star formation is dynamical
and the star appears on the line of Teff D T

.cr/
eff in the HR diagram. The line of

Teff D T
.cr/

eff is now called the Hayashi line and the region of Teff < T
.cr/

eff is called
Hayashi’s forbidden region.

Hayashi (1961) considered that the star, which appeared on the Hayashi line,
contracts along the Hayashi line decreasing its luminosity, and changes the path to
the higher temperature part of the radiative path (Henyey et al. 1955) near the cross
point of these lines. The path along the Hayashi line is called the Hayashi track and
the radiative path the Henyey track. The phase on the Hayashi track is called the
Hayashi phase. The stellar luminosity on the Hayashi track is higher than that on
the lower temperature part of the radiative path in the old theory when compared at
the same stellar radius, and the contraction time of the star along the Hayashi track is
shorter than along the lower temperature part of the radiative path in the old theory.
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A possibility of the high luminosity phase for the primitive sun greatly stimulated
the research on the origin of the solar system.

The reason why the star changes from the Hayashi track to the Henyey track
may be explained in the following way. The temperature gradient rrad is given
by Hayashi et al. (1962)

rrad D g
P

T 4
�Lr

Mr

; (13)

where � is the Rosseland mean opacity and g is a constant. This gives the
temperature gradient necessary to transport the energy flow Lr by the radiation
alone. In the stars of intermediate and small mass the opacity is mainly contributed
by the bound-free and free-free transitions and can be approximated by the Kramers’
law � / �T �3:5. The star on the Hayashi track is fully convective and its structure
is represented by the Emden solution for N D 1:5. Introducing � � T=Tc, which
is called the Emden function, we have �=�c D �1:5 and P=Pc D �2:5. Substituting
these relations into Eq. (13) and eliminating Pc, �c and Tc by using Eqs. (1), (2)
and (9) we obtain

rrad / ��3:5 R0:5L
M5:5

�
Lr=L

Mr=M

�
; (14)

where L is the stellar luminosity. The energy release rate per unit mass, dLr=dMr ,
is proportional to T ds=dt according to the first law of thermodynamics. Therefore,
we have Lr D RMr

0
.dLr=dMr /dMr / .ds=dt/

RMr

0
T dMr because s is uniform in

the star. Thus, Lr=Mr is proportional to the mean temperature insideMr , which we
write Tc

N� . Because L is proportional to Tcds=dt, Eq. (14) can be rewritten as

rrad / ��2:5
 N�
�

!
R0:5L

M5:5
: (15)

The Emden function � is a decreasing function of r=R. The mean interior
temperature N� also decreases outward, but more slowly than � . Therefore, rrad takes
a minimum value at the center r D 0. Because L is nearly proportional to R2 on
the Hayashi track, rrad decreases as the star contracts, and finally becomes smaller
than rs D 0:4 at the center. In this way the convection stops at the center and a
radiative core appears. With a radiative core the effective temperature Teff becomes
higher than the critical value T .cr/

eff which corresponds to the Hayashi line. As the
star contracts, the radiative core grows and the star gradually moves away from the
Hayashi line.

Hayashi et al. (1962) investigated numerically the evolution from the Hayashi
phase to the main sequence via the Henyey track for some values of the stellar mass
and showed the evolutionary paths on the HR diagram in their Fig. 10-2.
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4 Pre-main Sequence Evolution of Low-mass Stars

In the case of low-mass stars we have to take into account some effects which are
not important for the stars of M & 1Mˇ. One is the effect of H2 molecules on the
structure of the atmosphere and another is the electron degeneracy.

4.1 The Effect of H2-Dissociation Zone

As shown by Hayashi and Hoshi (1961),T .cr/
eff decreases as the stellar mass decreases

when compared at a fixed stellar radius. Therefore, for stars of sufficiently small
mass the H2-dissociation zone must lie inside the photosphere. The H2-dissociation
zone has the effect of making the stellar envelope convectively unstable and
suppressing the decrease of the effective temperature as the H-ionization zone does.
Hayashi and Nakano (1963) investigated the pre-main sequence evolution of low-
mass stars taking into account the effect of the H2-dissociation zone.

The H2-dissociation zone has been found to have a great effect. If the formation
of H2 molecules is neglected, the effective temperature on the Hayashi line decreases
rapidly as the stellar radius decreases while with H2 formation the decrease of the
effective temperature is very slow as long as the stellar radius is somewhat larger
than the limiting value of the degenerate star given by Eq. (6), as shown in figure 3
of Hayashi and Nakano (1963).

4.2 The Zero-Age Main Sequence and Its Minimum Mass

In the pre-main sequence stage of the stars with mass M & 0:4Mˇ the effect
of electron degeneracy is negligible, and the central temperature Tc increases in
proportion to R�1 as shown in Eq. (9). Finally at Tc � 107 K the hydrogen burning
sets in and soon the stars settle down on the main sequence (the zero-age main
sequence: ZAMS).

ZAMS is the stage at which LH D L holds for the first time in the pre-main
sequence contraction phase, where LH is the energy released by hydrogen burning
in the star per unit time and L is the stellar luminosity or the energy emitted from
the stellar surface per unit time.
LH is determined by the structure of the central part of the star though it is not

completely independent of the structure of the outer part. If the star is in the Hayashi
phase, the structure is represented by the polytrope of N D 1:5, and LH can be
determined easily for given M and R by using the Emden solution. To obtain LH

for a star on the Henyey track we have to begin by solving the stellar structure.
To determine L we have to solve in general the whole structure of the star from

the center to the surface. The structure of the outer part is sometimes very important
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in determining L. However, for the stars in the Hayashi phase, L for a given R can
be determined easily if the Hayashi line is known. The cross point of the Hayashi
line and the line of constant R in the HR diagram gives L.

Thus, to determine ZAMS for a given stellar mass M we need both LH and L
as functions of R. Schematically speaking, the cross point of the two curves LH.R/

and L.R/ on the (logR � logLXŒLH or L�) plane gives ZAMS.
For a star of not very small mass in which the effect of electron degeneracy is very

small, the central temperature Tc increases in proportion to R�1 with contraction.
The increase ofLH therewith is much steeper because the rate of the nuclear burning
is very sensitive to the temperature.

As the star contracts along the Hayashi track,L decreases. If the star moves to the
Henyey track,L turns to increase though very slowly. Because this increase is much
slower than the increase of LH, the two curves LH.R/ and L.R/ on the (logR �
logLX) plane cross each other at some R, and the state of LH D L is attained.
In this way the ZAMS state is realized. When LH has increased to a significant
fraction of L on the Henyey track, the structure is affected by the increase of Lr ,
or by the increase of rrad, in the central region. As a result, L decreases just before
the star settles down on the main sequence as shown in the figures of Henyey et al.
(1955). Thus, to obtain the exact ZAMS state we have to solve the stellar structure
accurately even by taking into account the effect of hydrogen burning.

For the stars which settle down to ZAMS on the Hayashi track, the start of
hydrogen burning does not affect the stellar structure. By the increase of Lr in the
core rrad increases. But rrad was larger than rs even before the hydrogen burning
sets in. The start of the hydrogen burning just makes the star more convectively
unstable, and the star keeps the polytropic structure with N D 1:5. Determination
of ZAMS on the Hayashi track is much easier than that on the Henyey track.

As discussed in Sect. 2.2, the electron degeneracy becomes efficient at lower Tc

for a star of smaller mass. The electron degeneracy has an effect of slowing down
the increase of Tc with contraction, and in course of time Tc takes a maximum
value at some R, and then decreases. Consequently, LH takes a maximum value
at some R, and then decreases. Such effect of electron degeneracy is important in
determining ZAMS for low-mass stars with M . 0:2Mˇ. The maximum value of
LH decreases so fast as the stellar massM decreases that the two curvesLH.R/ and
L.R/ on the (logR � logLX) plane do not cross or touch each other, and the state
of LH D L, or ZAMS, cannot be realized at the stellar mass M smaller than some
critical value. This critical value is the lower-mass limit to the main sequence, or the
hydrogen-burning minimum mass.

There is a paper which claims to have determined the hydrogen-burning
minimum mass by assuming the value of L (Kumar 1963). However, the
hydrogen-burning minimum mass is not known beforehand, nor is the luminosity
of the star of this mass when it settles down on the main sequence as discussed by
Nakano (2012).
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Fig. 1 The evolutionary paths (solid lines) and the positions of ZAMS (filled dots) of low-mass
stars on the HR diagram. The open circles on the evolutionary paths indicate the stage at which
the fully convective phase ends. The evolutionary path of a star of mass M D 0:05Mˇ is also
shown. This star cannot settle down on ZAMS, and contracts to the limiting radius given by Eq. (6)
cooling down indefinitely. The solid lines except below the open circles and the thick dashed lines
are the Hayashi lines. The thin dashed line represents the state of  D 0 where the effect of the
electron degeneracy becomes nonnegligible for the fully convective stars. This is a copy of figure 2
of Hayashi and Nakano (1963)

4.3 Numerical Results

Hayashi and Nakano (1963) investigated the pre-main sequence evolution for the
stars of mass M � 0:6Mˇ. Their results are shown in Fig. 1, which is a copy of
their figure 2.

The open circles on the evolutionary paths in Fig. 1 (solid lines) indicate the stage
at which the fully convective phase ends. Afterwards the radiative core grows and
the star moves to the Henyey track. The length of the Henyey track until the star
arrives at the main sequence is shorter for stars of smaller mass. The stars with
M � 0:26Mˇ do not experience the phase on the Henyey track. When these stars
settle down on the main sequence, they have the fully convective structure. The filled
dots in Fig. 1 show the positions of ZAMS for some values of the stellar mass down
to 0:08Mˇ.

Hayashi and Nakano (1963) also investigated the evolution of a star of mass
M D 0:07Mˇ. The evolutionary sequence of this star is shown in Table 1,
which is a reproduction of their table III. In this table,  in the first column
represents the degree of electron degeneracy, or the chemical potential of the
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Table 1 The evolutionary sequence of a star of M D 0:07Mˇ with the population I chemical
composition. This is a reproduction of table III of Hayashi and Nakano (1963)

 a logL=Lˇ logTeff logR=Rˇ logTc log �c.g cm�3/ LH=L Age (108 year)

3.0 �2.90 3.48 �0.89 6.52 2.43 0.015 0.8
5.0 �3.23 3.45 �0.99 6.54 2.74 0.090 1.5
7.0 �3.45 3.42 �1.05 6.52 2.82 0.17 3.1
9.0 �3.63 3.40 �1.09 6.49 3.05 0.23 4.6
11.0 �3.74 3.38 �1.12 6.45 3.26 0.19 6.2
a  is the degree of electron degeneracy, or the chemical potential of the electron divided by kT

electron divided by kT . The effect of electron degeneracy becomes nonnegligible
around the state of  D 0, which is shown by the dashed line in Fig. 1 for the
fully convective stars. In the stars with uniform s,  is also uniform. Around the
stage  D 5:0 the central temperature takes the maximum value logTc � 6:54, and
thereafter the core gradually cools down. At  � 9:0, LH=L takes the maximum
value � 0:23 and then decreases. This maximum value is far below the value for
the steady state hydrogen burning,LH=L D 1. Therefore, this star cannot attain the
ZAMS state. In this way Hayashi and Nakano (1963) concluded that the hydrogen
burning minimum mass is between 0.08 and 0:07Mˇ.

This is for the population I chemical composition. The abundance of heavy
elements might have some effect on the Hayashi line, and then on the hydrogen-
burning minimum mass, through the opacity. Hayashi and Nakano (1963) confirmed
that the minimum mass is hardly affected by the change of the heavy element
abundance even by a factor of 5, although it is significantly affected by the change of
the helium content through the change of the mean molecular weight of electrons�e.
Because it is known now that the helium content is almost the same for population
I and II, the hydrogen-burning minimum mass for the population II stars is almost
the same as the one for the population I stars.

The stars of mass smaller than this critical value cool down indefinitely, and are
now called brown dwarfs. Hayashi and Nakano (1963) investigated the evolution of
a star of mass M D 0:05Mˇ as an example of such stars although the term “brown
dwarf” was not yet used in those days (see the chapter by J. Tarter in this volume).
The evolutionary path of this star on the HR diagram is shown in Fig. 1. This must
be the first evolutionary path of brown dwarfs drawn on the HR diagram.

The lithium burning becomes efficient around T � 3	106 K, significantly lower
than the temperature of hydrogen burning. Lithium in the stellar envelope is depleted
by the burning near the bottom of the convective envelope in the pre-main sequence
stage. For the star of larger mass the radiative core appears at a lower central
temperature. Therefore, the amount of lithium depletion in the atmosphere depends
on the stellar mass. Hayashi and Nakano (1963) investigated this dependence at
M 
 0:4Mˇ. At the smaller stellar masses where the electron degeneracy can be
efficient, the maximum central temperature attained during the contraction is lower
for the smaller stellar mass. As seen from Table 1, the maximum Tc for the star of
M D 0:07Mˇ is 3:5	106 K. At slightly smallerM , lithium hardly burns. Later on
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it was pointed out that the abundance of lithium in the stellar atmosphere can be
used to test whether the candidate stars for brown dwarfs are really brown dwarfs
or not (e.g., Rebolo et al. (1992), see also the chapters by R. Rebolo and G. Basri in
this volume).

Finally, I would like to point out that the newest results I know give the hydrogen-
burning minimum mass between 0.08 and 0:075Mˇ (Burrows et al. 1997), which
is almost the same as the results of Hayashi and Nakano (1963).

References

Burrows, A., Marley, M., Hubbard, W.B., Lunine, J.I., Guillot, T., Saumon, D., Freedman, R.,
Sudarsky, D., Sharp, C.: A nongray theory of extrasolar giant planets and brown dwarfs. ApJ
491, 856–875 (1997)

Chandrasekhar, S.: An Introduction to the Study of Stellar Structure. Dover, New York (1939)
Hayashi, C.: Stellar evolution in early phases of gravitational contraction. PASJ 13, 450–452 (1961)
Hayashi, C., Hoshi, R.: The outer envelope of giant stars with surface convection zone. PASJ 13,

442–449 (1961)
Hayashi, C., Nakano, T.: Evolution of stars of small masses in the pre-main-sequence stages. Prog.

Theor. Phys. 30, 460–474 (1963)
Hayashi, C., Hoshi, R., Sugimoto, D.: Evolution of the stars. Prog. Theor. Phys. Suppl. 22, 1–183

(1962)
Henyey, L.G., LeLevier, R., Levée, R.D.: The early phases of stellar evolution. PASP 67, 154–160

(1955)
Kumar, S.S.: The structure of stars of very low mass. ApJ 137, 1121–1125 (1963)
Nakano, T.: In: Umemura, M., Omukai, K. (eds.) First Stars IV-From Hayashi to the Future,

pp. 15–21. American Institute of Physics, New York (2012)
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