
Chapter 2
The Helium-3 Spin-Echo Experiment

Helium-3 spin-echo (HeSE) is a novel technique uniquely sensitive to adsorbate
diffusion on atomic length- and pico- to nanosecond timescales [1, 2]. This chapter
introduces the principles underlying the experiment and presents typical data analysis
methods. First, the helium atom scattering (has) technique is presented, with a gen-
eral description of its use for structural studies, as well as dynamics measurements
using quasi-elastic helium atom scattering (qhas). Subsequently, the spin-echo prin-
ciple is described and the Cambridge spectrometer presented. The final section intro-
duces standard data analysis techniques to set the scene for the following chapters.

2.1 Helium Atom Scattering

In a has experiment a thermal beam of helium atoms is scattered from a crystal
surface inside an ultra high vacuum (uhv) chamber and the intensity of the scattered
beam is measured by a detector [3]. The use of helium atoms makes the technique
exceptionally surface sensitive as they interact with the outermost surface electrons
and do not penetrate the bulk. Furthermore, the low beam energies involved (typically
between 5 and 100 meV) and the inertness of helium imply that has is a non-
destructive technique, permitting the investigation of biological samples that would
degrade in a more energetic beam or when using charged probes, for example during
low energy electron diffraction (leed) experiments.

The principle of atom scattering is illustrated in Fig. 2.1. Like other scattering
techniques, has provides experimental results in momentum transfer space [4]. The
left-hand side of Fig. 2.1 defines the conventional nomenclature for the incident
and outgoing wavevectors, ki and k f . Specular reflection occurs when the incident
scattering angle, �i , is equal to the outgoing angle, � f , and the total scattering
angle of an experiment is defined as � = �i +� f . The momentum transfer parallel
to the surface, �K = K f − Ki , can be calculated from the scattering geometry as
�K = ki sin�i −k f sin� f . The right-handpart of Fig. 2.1 illustrates scattering from
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Fig. 2.1 Schematic illustration of a helium atom scattering experiment. The wavevectors are
denoted as ki for the incident and kf for the outgoing beam. By convention, the components parallel
to the surface are given in capital letters, Ki and Kf , and the momentum transfer parallel to the
surface is �K = Kf − Ki. The incident and outgoing scattering angles are written as �i and � f ,
respectively. The total scattering angle is � = �i + � f . The right-hand side diagram illustrates
scattering from an adsorbate, where the shaded region indicates the area around the adsorbate that
the helium atoms scatter from. The scattering cross section of an adsorbate is typically much larger
than its size

an isolated adsorbate particle. Due to their interaction with the outermost electrons of
a surface species, helium atoms are extraordinarily sensitive to individual defects and
small species such as hydrogen atoms. The apparent cross section of an adsorbate in a
helium beam is typically much larger than the actual size of the atom or molecule [5].

2.1.1 Diffraction Measurements

The helium beam has a wavelength comparable with atomic spacings and therefore
a diffraction pattern is generated during scattering which contains information about
the surface structure [3]. Each substrate atom or adsorbate can be considered as a
point scatterer in the helium beam. The kinematic scattering approximation defines
the scattered amplitude as the product of a form factor, F , describing scattering
from each individual scatterer, and an amplitude structure factor, Sa , which contains
information about the distribution of all scatterers on the surface and is coverage-
dependent [2]. The total scattered amplitude at a certain position in momentum
transfer is given as

�total(�K) =
∑

j

Fj (�K) · exp(−i�K · R j ), (2.1)

where Fj is the form factor and R j the position of the j th scatterer. If the form factor
for all scatterers is the same, i.e. all scattering centres are identical, the equation can
be simplified to

�total(�K) = F(�K) ·
∑

j

exp(−i�K · R j ) = F(�K) · Sa(�K). (2.2)
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The scattered intensity is obtained from I = |F(�K)|2 · |Sa(�K)|2. Helium atoms
have a de Broglie wavelength on the order of Ångströms, ensuring resolution of
atomic scale features during a has experiment.

Helium atom scattering instruments can be divided into two main types, “fixed
angle” machines, where the angle between incident and outgoing beam is fixed, and
movable systems, where a rotating detector alters the total scattering angle,� [5]. All
experiments presented in this thesis are from fixed angle instruments, the Cambridge
HeSE spectrometer (cf. Sect. 2.3) and a separate atom scattering apparatus which is
presented inChap. 3. In a fixed angle scattering experiment, the incident and outgoing
scattering angles are determined by the orientation of the crystal which can be rotated
around the vertical centre axis of the scattering chamber. In contrast to diffraction
experiments with rotating detector arms, where the incident scattering angle can be
kept constant, turning the sample in a fixed angle machine always alters the incident
and outgoing scattering angles at the same time.Diffractionmeasurements performed
in a fixed angle scattering apparatus are therefore intrinsically asymmetric, even for
a perfectly aligned crystal. The heights of equivalent diffraction peaks either side
of specular are therefore different, which needs to be considered in data analysis
and when comparing diffraction scans with results from different instruments or
simulations.

2.1.2 Adsorption and Desorption Studies

In addition to diffraction experiments, measurements of the specular helium reflec-
tivity can provide information about the degree of order on the surface [5]. The
intensity of the specular beam is greater for a highly ordered surface as less signal is
lost in other scattering directions. Measuring the proportion of incident helium that is
scattered into the specular beam is a means of determining the quality of a substrate
surface as it is reduced by step edges and defects. Equally, monitoring the specular
helium reflectivity during a dosing or desorption process can provide information
about the change in order on the surface.

A dosing process can be monitored by recording the specular helium reflectivity
as a function of exposure. The resulting curve is generally termed an “uptake” curve.
Adsorption onto a clean and flat substrate initially reduces the degree of order on
the surface, resulting in lower reflectivity towards the helium beam. When regular
structures are formed, the degree of order and thus the helium reflectivity increase.
Uptake curves are useful for estimating the coverage at a given specular attenuation
level, to study the lateral interactions between adsorbates and to determine where
regular overlayer structures occur [5]. In the low coverage limit, the total scattering
cross section, �, for isolated adsorbates can be calculated as

� = − 1

ns
· 1

I0
· d I

d�

∣∣∣∣
�=0

, (2.3)

http://dx.doi.org/10.1007/978-3-319-01180-6_3
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where � is the coverage given by the number of adsorbates per substrate atom, ns is
the number of substrate atoms per unit area, and I/I0 is the specular helium beam
attenuation at coverage �. If one can assume non-interacting adsorbates occupying
random adsorption sites with large cross sections that overlap, then the formula also
holds at higher coverages,

� = − 1

ns
· 1

I0
· d I

d�
, (2.4)

hence
I

I0
= exp (−��ns) . (2.5)

Equation 2.5 implies that the specular attenuation as a function of coverage is
linear on a logarithmic scale, in the simplest case. The scattering cross sections
of repelling adsorbate particles overlap less, increasing the total cross section seen
by the helium beam compared to that for non-interacting adsorbates and thus the
uptake curve falls below the linear line. When attractive interactions influence the
distribution of adsorbate particles, on the other hand, the curve rises above linear.

In a similar way, a desorption process can be monitored with specular helium
reflectivity. In the case of molecular desorption, reversal of the uptake curve is
observed, while disordering or decomposition of adsorbates typically results in a
drop in the observed reflectivity.

2.1.3 Measuring Surface Dynamics

In addition to structural studies, has can be used to investigate surface dynamics by
measuring the difference in energy distribution in the beambefore and after scattering
from the sample [3, 6]. The technique is termed quasi-elastic helium atom scattering
(qhas).

In a qhas experiment, the energy spectrum of the scattered helium beam is deter-
mined [3, 6]. If the surface remains static during the scattering event, the helium
atoms are scattered elastically, resulting in a peak in the energy domain with a finite
width determined by the velocity spread in the beam and properties of each individ-
ual instrument. In case of non-periodically moving adsorbates, however, the elastic
peak is broadened by a quantummechanical form of Doppler broadening—hence the
name “quasi-elastic”. In addition, the helium beam can excite or de-excite surface
phonons, resulting in an inelastic peak in the energy spectrum, where the energy
difference between elastic and inelastic peak is defined by the energy loss or gain
during the scattering process [7]. Aqhas experiment is the surface sensitive analogue
of quasi-elastic neutron scattering which measures diffusion in bulk materials [8].
Therefore, the existing theoretical framework for the neutron scattering experiments
could be adopted for the qhas technique.

Theoretical foundations are in Van Hove’s scattering theory describing motion
by the Van Hove pair correlation function G(R, t) which defines the probability of
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finding an atom at positionR at the time t given the presence of an atom (the identical
or a different one) at the origin at t = 0 [9]. It is possible to divide G(R, t) into

G(R, t) = GS(R, t) + G D(R, t), (2.6)

where GS(R, t) is the self-correlation function, describing the probability of finding
the same atom at R and t given it was at the origin at t = 0, and G D(R, t) the distinct
correlation function, relating the position of two distinct atoms.Vineyard showed that
G D(R, t) can be written in terms of GS(R, t) for non-interacting particles—which
is typically true in the low coverage limit—and the Van Hove correlation function
can be expressed in terms of the self-correlation function alone [10], facilitating the
interpretation of experiments.

Within the kinematic scattering approximation, the probability of scattering into
a given angle, ∂�, and energy, ∂ω, is related to the pair correlation function through

∂2R
∂�∂ω

(�K,ω) = nd |F(�K,ω)|2
∫ ∫

G(R, t) exp[i(�KR − ωt)]dRdt

= nd |F(�K,ω)|2S(�K,ω), (2.7)

where nd is the density of adsorbates on the surface [9]. The dynamical structure
factor (dsf), S(�K,ω), is an intensity structure factor and is the Fourier transform of
the correlation function in space and time. The Fourier transform of the correlation
function in space is called the intermediate scattering function (isf) I (�K, t), which
is related to the dsf by a temporal Fourier transform:

G(R, t)
FT⇐⇒ I (�K, t)

FT⇐⇒ S(�K,ω). (2.8)

The original qhas experiments were carried out with a time-of-flight (tof) detec-
tion system, where a chopped beam is scattered from the surface and its velocity
after the scattering event is measured [11]. Any changes in velocity can be related to
dynamical processes on the surface during the scattering process. tof experiments
provide a measure of the dsf, giving an inelastic peak for phonon excitations and an
energy broadening, �E , of the elastic peak for scattering from aperiodically diffus-
ing adsorbates. Measurements of the dependence of �E on the momentum transfer
parallel to the surface, �K, provide information about the diffusion process.

The main limitation of the qhas-tof technique is its requirement for high energy
resolution so that the broadening of the elastic peak can be determined. The elastic
energy peak is convoluted with experimental factors such as the energy distribution
in the incident helium beam and the chopper time resolution, limiting the energy
resolution to approximately 0.3 meV [3]. Therefore, the time-of-flight technique can
only be applied to exceptionally fast moving systems, putting it at the lower end of
the timescale in Fig. 1.1. HeSE, on the other hand, provides a direct measure of the
energy broadening, allowing for the investigation of diffusion on pico- to nanosecond
timescales, as explained in the following section.

http://dx.doi.org/10.1007/978-3-319-01180-6_1
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Fig. 2.2 Schematic overview of the helium-3 spin-echo experiment. The different components of
the instrument are outlined in the top row, while the spin state of the wavepackets of the helium-3
beam during the experiment is illustrated below. The first solenoid field splits the helium-3 atom
into two wavepackets which reach the sample separated by a time, t . A second solenoid recombines
the two components. If the two wavepackets do not recombine to give the same final spin state, a
reduction in polarisation is measured in the detector

2.2 Helium-3 Spin-Echo Spectroscopy

While qhas-tof operates in the energy domain, HeSE instead investigates the time
domain, providing ameasure of the isf. Experimental results are therefore the tempo-
ral Fourier transformof tofmeasurements. The key advantage of theHeSE technique
is that it measures the energy change directly, rather than in relation to the energy
of the helium beam, thus increasing the resolution of the experiment by two orders
of magnitude over qhas-tof [3]. Measurements are typically analysed directly in
the time domain to study aperiodic diffusion, or can be Fourier transformed into an
energy spectrum for the investigation of periodic motion such as phonons.

The principle underlying helium-3 spin-echo is to use the nuclear spin of a helium-
3 atom as an internal timer [2, 4, 12, 13], in analogy to the neutron spin-echo tech-
nique [14], all the while retaining the non-destructive nature and surface sensitivity
of the has experiment. See Fig. 2.2 for an illustration of the setup of a HeSE experi-
ment. A supersonic helium beam source creates a beam of helium-3 atoms which is
then polarised in a direction perpendicular to the beam axis by the combination of a
hexapole magnet focussing one spin polarisation (defocussing the other) and a dipole
magnet that aligns all the spins in the same direction. A variable magnetic field par-
allel to the beam direction is created in a solenoid, splitting the helium wavepacket
into two spin states, parallel and antiparallel to the field. The field separates the com-
ponents in both space and time. The component parallel to the field is accelerated as
it enters the solenoid and the antiparallel one is decelerated, so that they reach the
sample a time period, t , apart, which is called the spin-echo time. t depends on the
mass of helium-3, m, its gyromagnetic ratio, γ, the mean velocity of the beam, v0,
and the magnetic field integral along the path of the beam [2]:
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t = �γ

mv30

∫
Bdl. (2.9)

After scattering from the sample surface the two components are recombined in an
identical but reversed magnetic field. The scattered beam is then spin-analysed by
another combination of dipole and hexapole magnets to provide a polarisation mea-
surement as it enters the detector. If the surface remains static during the scattering
process the helium atoms scatter elastically, the two spin components are recom-
bined and the entire scattered beam passes through the analyser into the detector.
If, however, the atoms or molecules on the surface move during t , the two compo-
nents do not scatter identically and therefore do not recombine to give the same final
spin-state, resulting in a reduction in net polarisation reaching the detector. HeSE
thus measures the coherence of the two spin components after scattering from the
surface, which typically decays with time.

2.3 The Cambridge Helium-3 Spin-Echo Spectrometer

After a prototype was presented by De Kieviet and coworkers [12, 13], the Sur-
face Physics group at Cambridge developed the first HeSE apparatus with sufficient
momentum transfer space resolution to map out adsorbate diffusion, where accessi-
ble timescales range from 0.01 to 680 ps [1, 15]. Figure 2.3 shows a photograph of
the apparatus, with annotations illustrating the location of the main components, in
analogy to the diagram in Fig. 2.2.

The instrument is of the fixed angle type, with a total scattering angle of 44.4◦,
an angular resolution of 0.1◦ and an energy resolution of 3 μeV (or an ultimate
resolution of 20 neV, corresponding to a 1 % decay in polarisation at the maximum
spin-echo time) [15]. The heliumbeam is created in a supersonic heliumbeam source,
which is described in detail in Chap. 4. A recycling system filters and compresses
the helium-3 gas which is then expanded into the source chamber through a cooled
nozzle and recirculated back into the system after expansion [15–17]. The nominal
beam energy for the spectrometer is 8 meV, for which energy the magnets provide
optimal focussing. Two combinations of permanent hexapole/dipole magnets spin-
polarise and spin-analyse the helium-3 beam [15, 18], while a variable magnetic field
in two solenoids splits and recombines the wavepackets. The magnetic field can be
controlled by the current running through the two solenoids and defines the spin-echo
time, t. A pair of coils mounted on the sample manipulator rotates the plane of spin
polarisation when the helium atoms change direction during the scattering process.

The sample is located in the scattering chamber, mounted on a six-axis manipu-
lator. Horizontal x/y-motion and vertical z-motion allows positioning of the sample
in the location where the ingoing and outgoing beam arms meet, while rota-
tion around the vertical centre axis (γ-rotation) changes the scattering angles,
�i and � f . Tilting of the crystal with respect to the plane of the incident and

http://dx.doi.org/10.1007/978-3-319-01180-6_4
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Fig. 2.3 Photograph of the Cambridge HeSE spectrometer. Annotations highlight its main com-
ponents, while a red arrow illustrates the path of the helium beam during an experiment

outgoing beam enables alignment of the sample perpendicular to the scattering plane
(β-rotation). The sixth degree of freedom is rotationwithin the crystal plane to change
the azimuthal direction (α-rotation). A new sample transfer manipulator was recently
developed, enabling the exchange of samples without breaking the vacuum, thereby
maintaining uhv conditions in the chamber [19]. Sample cooling is provided through
a coldfinger which can be filled with liquid nitrogen or liquid helium through a trans-
fer tube. Temperature control is achieved using a Eurotherm controller reading the
measurements from a chromel/alumel type K thermocouple connected to the sample
mount and controlling the temperature by counter-heating the cooled sample radia-
tively using a tungsten filament. The scattering chamber is equipped with a sputter
gun for cleaning the sample by ion bombardment as well as facilities for dosing
gaseous, liquid and solid substances, and a mass spectrometer for the identification
of components in the background gas or dosed species.

Detection of the helium beam is achieved in a custom-built helium detector
[15, 20]. The helium atoms are ionised by electrons from a hot tungsten filament and
pass through ion extraction optics and a magnetic sector mass filter to select mass-3
ions before they are counted in an electronmultiplier. After completion of the experi-
ments presented in this thesis, a new detector was installed on the HeSE spectrometer
which uses a solenoid magnetic field to confine electrons in the ionisation region [21,
22]. The sensitivity of the new detector is improved by approximately three orders of
magnitude over that of the previous HeSE detector, thus opening a completely new
range of measurements.
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The observable quantity in a HeSE experiment is the intensity, I , of the helium
signal in the detector, which can be related to the polarisation, P , through

P = Imax − Imin

Imax + Imin
. (2.10)

The polarisation, in turn, is directly proportional to the intermediate scattering func-
tion [2]. In order to obtain maximum signal intensity in the detector, the polarisation
selected by the analyser hexapole magnet must be identical to the polarisation of
the beam created in the polarising hexapole. The HeSE technique thus relies on the
precise measurement of the spin polarisation of the helium-3 beam. Loss of polari-
sation can occur through a large velocity spread in the beam, so that beam energies
other than the optimal 8 meV target are present, or stray magnetic fields. To min-
imise stray fields, components close to the path of the helium beam are made from
non-magnetic materials as well as magnetically shielded. Despite all these efforts,
however, the polarisation of the beam changes over time to a certain extent, adding
errors to the measurement.

During a HeSE experiment, both the real and the imaginary components of the
polarisation of the beam are measured, thus allowing Fourier transformation of the
spectra without imposing artificial symmetry [23]. A phase coil creates a magnetic
field which switches between the two components by adding an extra π/2 to the
incoming phase, thus rendering the two solenoid fields unequal. The phase coil can
be used to correct for errors caused by stray fields by regular calibration to determine
the currents required for obtaining either the real or the imaginary polarisation.
Calibration is achieved at a position where the imaginary polarisation is known to
be zero, such as at specular reflection.

Originally, a two-point measurement technique was used for HeSE experiments,
measuring the real and imaginary polarisation for each point in the isf by setting
the phase coil current to the values determined during calibration. The drawback of
this method is that it relies heavily on the calibration of the phase coil current, as
illustrated in Fig. 2.4, since any drifts in the polarisation are not accounted for. When
looking at the two oscillating curves in the Figure, which are slightly offset from
each other, it becomes apparent that the real component is not heavily dependent on
ultra-precise calibration since the curve is fairly flat at this position and small errors
in phase coil current thus do not change the signal intensity measured in the detector
significantly. The imaginary component, however, is located on the steepest slope of
the curve and even a small change in location of the exact measurement point results
in a large change in intensity. To avoid such errors, a new measurement technique
was recently developed [24]. Instead of attempting to measure the precise real and
imaginary components, four points are measured which describe the central oscilla-
tion of the polarisation. The location of the real and imaginary component can then
be determined for each individual measurement, lessening the importance of correct
calibration. Furthermore, the four-point method allows the direct measurement of the
polarisation rather than the intensity of the helium signal in the detector, eliminating
errors due to detector and background drifts.
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Fig. 2.4 Schematic illustration of the real and imaginary polarisation measured in a HeSE exper-
iment. By altering the current in the phase coil and thereby the magnetic field, the polarisation of
the beam is changed periodically, as illustrated by a unit circle on the left, and the signal intensity
measured in the detector varies sinusoidally, as shown on the right, dependent on the proportion of
the beam allowed to pass through the analyser hexapole. The phase coil is calibrated by measuring
the oscillation (solid blue line) at a point where the imaginary polarisation is known to be zero
and recording the phase coil current giving the real (red) and imaginary (green) signal, which is
then used to measure the real and imaginary polarisation during a dynamics measurement. If the
polarisation changes in between the calibration and the dynamics measurement, as illustrated by
the dashed line, the measured polarisation is wrong. The error in the real component is small as the
curve is relatively flat at that point while the imaginary signal exhibits large variation

For all but the very fastest diffusive motion, the real part of the polarisation is
significantly larger than the imaginary one [25, 26]. Figure 2.5 shows a typical
HeSE measurement of the real polarisation as a function of t , plotted as circles, and
the imaginary polarisation, presented as dots. The real signal shows a large change
in intensity across all timescales, while the imaginary component only exhibits an
oscillatory feature at short times and drops to zero at times longer than 2 ps, which
is where the diffusive motion dominates. The imaginary polarisation can thus be
neglected when adsorbate diffusion is studied, as is the case for the experiments
presented in this thesis. In this regime, the two- and four-point techniques show good
agreement and both provide reproducible data. Formeasurements of phonons or other
features on short timescales, however, the imaginary signal is of great importance
and the four-point method is therefore much superior [24, 27].

The data presented in Chaps. 5 and 6 of this thesis were recorded using the two-
point method, while the data in Chap. 7 are from four-point measurements. This is
reflected in the nomenclature used in figures showing HeSE measurements where
“intensity” is used for two-point, and “polarisation” for four-point measurements.
Since the main focus of the thesis is the analysis of inter-cell diffusion, using only
the real polarisation, both methods are equally valid. Care must be taken, however,

http://dx.doi.org/10.1007/978-3-319-01180-6_5
http://dx.doi.org/10.1007/978-3-319-01180-6_6
http://dx.doi.org/10.1007/978-3-319-01180-6_7
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Fig. 2.5 A typical HeSE
measurement, showing the
real (circles) and imaginary
polarisation (dots). While
the real component shows
a large change in signal,
the imaginary contribution
exhibits an oscillatory feature
at very short timescales
(<2 ps) but is essentially
zero at larger times, where
diffusive motion dominates
the signal
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when features on faster timescales—not discussed here—are observed as they might
be influenced by inaccuracies in the calibration.

2.4 Interpreting Helium-3 Spin-Echo Data

SinceHeSEmeasures inmomentum transfer space, data interpretation is not straight-
forward. A typical measurement of the intermediate scattering function is shown in
Fig. 2.6. On the linear time axis (left-hand side panel), details on short timescales
are difficult to make out. For this reason HeSE measurements are often presented
on a logarithmic scale, as illustrated in the right-hand side panel of the same figure.
The two main features in this curve are oscillations at short times, t , and a global
decay. Oscillations are caused by periodic motion on the surface, such as substrate
phonons. To analyse such vibrational features, the spectra can be reconstructed to
give the corresponding dynamical structure factor, which shows energy gain and loss
peaks. The global decay, on the other hand, is a signature for aperiodic motion on
the surface, such as diffusive motion of an adsorbate. To study the diffusion in more
detail, the rate at which the signal decays (“dephasing rate”),α, can be determined by
fitting a function of the form f (t) = a · exp(−αt)+ c, where a is the preexponential
factor and c the static component. Fitting is performed using the least-squares algo-
rithm, as implemented in Matlab. This method iteratively changes variables a, c and
α to minimise the least-squares error between the measured data and the exponential
function. All lines are checked by eye, to prevent misfits and to confirm that the line
goes through the centre of the vibrations. α is proportional to the energy broaden-
ing of the elastic peak, �E , measured in qhas-tof experiments. The position to
which the decay levels off to is called “static component” as it is typically due to
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Fig. 2.6 Illustration of a typical HeSE measurement exhibiting oscillatory features and a global
decay. The same data are presented on a linear (left) and on a logarithmic (right) time axis to illustrate
the advantage of a logarithmic presentation, allowing simultaneous investigation of features on a
range of different timescales

Fig. 2.7 Different types of
diffusion give a different
dependence of the dephasing
rate on the momentum trans-
fer. The dotted line shows
continuous Brownian motion,
which exhibits a quadratic
α(�K) dependence. Ideal
gas-like diffusion shows a lin-
ear relationship (dashed line),
while discrete hops between
preferred adsorption sites give
a periodic variation with �K,
as illustrated by the solid line
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scattering from static defects on the surface. The intensity of the static component is
a diffraction pattern and thus varies with momentum transfer.

At coverages below a monolayer, many adsorbates diffuse on the substrate
[28, 29]. To study this two-dimensional diffusion, HeSE measurements are per-
formed for a range of scattering angles and along (usually two) different high sym-
metry crystal directions. The variation of the dephasing rate with momentum transfer
parallel to the surface,α(�K), is dependent on the exact type of diffusion. Figure 2.7
illustrates the α(�K) dependence for three different diffusion models [3].
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Continuous Brownian motion gives exponentially decaying lineshapes in the isf
and a quadratic variation of the dephasing rate with �K, where the proportionality
factor between α and �K2 is the diffusion coefficient, D:

α = D�K2. (2.11)

Ideal gas-like diffusion, on the other hand, results in Gaussian lineshapes and a linear
α(�K) dependence,

α =
√
2 ln(2)kB T

m
�K, (2.12)

where the slope depends on the mass, m, of the diffusing adsorbate and the temper-
ature, T , and kB is the Boltzmann constant.

The most common form of diffusion is in jumps between preferred adsorption
sites, on a corrugated potential energy landscape [3, 29]. In this case, the isfs are
typically of an exponentially decaying form and the α(�K) dependence is a sum
of sinusoids. The precise lineshapes and the variation of α with momentum transfer
depend on the periodicity of the substrate lattice and the arrangement of the sites the
adsorbate hops on, as described in the next section.

2.4.1 Jump Diffusion

The simplest form of jump diffusion occurs between sites forming a Bravais lattice,
implying that the symmetry of the sites which the adsorbate occupies before and after
the hop is the same. The Chudley and Elliot model for hopping motion describes the
isf as

I (�K, t) = exp(−α(�K) · t), (2.13)

with the decay rate, α, given by

α(�K) = 2
∑

k

νk sin
2
(

�K · lk

2

)
, (2.14)

where νk is the jump frequency, which is the inverse of the residence time, τk , in
the adsorption site [30]. The jump vector lk defines the direction and length of each
possible hop, which depends on the substrate lattice constant.

The experiments presented in the present thesis show jump diffusion on a Cu(111)
surface, schematically illustrated in Fig. 2.8. Geometrically, three types of high-
symmetry sites can be distinguished: top (T), threefold hollow (H) and twofold
bridge (B) sites. Copper forms a face-centred cubic (fcc) crystal structure, implying
that there are two different kinds of hollow sites on the (111) surface—an hcp site on
top of an atom in the second layer, and an fcc site with no atom directly underneath—
which can thus be energetically different in the interaction with an adsorbate.
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H

Fig. 2.8 Schematic representation of the Cu(111) surface. The possible jump vectors for single
jump diffusion between equivalent sites are shown in green for top sites, blue for hollow sites and
red for bridge sites. Furthermore, the two main high symmetry azimuthal directions are defined
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Fig. 2.9 α(�K) dependence for hopping on a Bravais lattice of top sites (or equivalently one kind
of hollow sites) on Cu(111). The projection of the jumps along the two crystal directions,

〈
11̄0

〉
and〈

112̄
〉
, is different, as reflected in the periodicity of the blue and red curves

Top sites form a simple Bravais lattice on Cu(111), as well as each type of hollow
site on its own, so that the Chudley and Elliot model can be used to describe the
hopping motion. The α(�K) curves predicted by the analytical model for single
jumps on such a Bravais lattice projected onto the

〈
11̄0

〉
and

〈
112̄

〉
azimuths are

presented in Fig. 2.9, showing a simple sinusoidal form along
〈
112̄

〉
and a sum

of two sinusoids along
〈
11̄0

〉
. Bridge sites, or both types of hollow sites together,

however, form non-Bravais lattices. An adsorbate hopping on such a lattice changes
the possible jump directions after each jump. In order to predict the lineshapes and
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the α(�K) dependence for hopping on such lattices, an extended model is required.
Models for three-dimensional jump diffusion on non-Bravais lattices can be found
in the neutron scattering literature [8, 31, 32]. These models have been adapted for
qhas experiments [33], as summarised below.

In the non-Bravais jump diffusion model, the isf is derived from a matrix, A,
describing all possible jump vectors. A non-Bravais lattice consists of m different
Bravais sub-lattices. Each jump is defined by a vector, li jk , connecting the i th and
j th sub-lattices and has a jump frequency, νi jk , which is the inverse of the residence
time of the adsorbate in each site, τi jk . The total jump rate from an i site to any
adjacent j site is given by a sum over all ni j possible jumps,

νi j =
ni j∑

k=1

νi jk . (2.15)

The elements of matrix A, which is an (m × m) matrix, are given by

Ai j =
∑

k

ν j ik exp
(−i�K · li jk

) − δi j

∑

j ′
νi j ′ , (2.16)

with k iterating over the different possible jump vectors. A can be transformed into
a Hermitian matrix via

B = TAT−1, (2.17)

where T is the similarity transformation,

T i j =
√

1

ci
δi j . (2.18)

As described in [33], the intermediate scattering function can then be calculated as

I (�K, t) =
∑

p

wp(�K) exp(α(�K) · t). (2.19)

The prefactors, wp(�K), are given by

wp(�K) =
∣∣∣∣∣
∑

i

√
ci b

p
i

∣∣∣∣∣

2

, (2.20)

where ci is the concentration of adsorbates on sites of lattice i and bp
i the pth

eigenvector of matrix B. In contrast to the simple model by Chudley and Elliot, the
isf for hopping on a non-Bravais lattice is a sum of m exponential functions, where
m is determined by the number of sub-lattices, with the weights wp describing the
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contribution of each exponential to the isf. Typically, some exponential functions
have zero intensity (wp = 0), so that the number of decays is≤ m. In Chaps. 5 and 6,
hopping on hollow and/or bridge sites on a Cu(111) surface is discussed. Therefore,
the models for these particular non-Bravais lattices are summarised below.

2.4.1.1 Jump Diffusion on Threefold Hollow Sites

In the case of hollow sites, hcp and fcc sites form two separate sub-lattices, thus m
equals 2. The analytical solution for this model, as derived in [33], is as follows:

I (�K, t)<11̄0> = c1
n1

∣∣∣∣∣1 − λ
4 cos

(
�Ka
2

) + 2

3λ − 3 + z

∣∣∣∣∣

2

exp
(
−ν12

6λ
(3λ + 3 + z)t

)

+ c1
n2

∣∣∣∣∣1 − λ
4 cos

(
�Ka
2

) + 2

3λ − 3 − z

∣∣∣∣∣

2

exp
(
−ν12

6λ
(3λ + 3 − z)t

)

n1,2 = 1 + λ

(
4 cos

(
�Ka
2

) + 2

3λ − 3 ± z

)2

z =
√

9λ2 + 16λ cos2
(

�Ka

2

)
+ 16λ cos

(
�Ka

2

)
− 14λ + 9

I (�K, t)<112̄> = c1
m1

∣∣∣∣∣∣
1 − 2λ

exp
(

i �Ka√
3

)
+ 2 exp

(
−i �Ka

2
√
3

)

3(λ − 1 + y)

∣∣∣∣∣∣

2

exp
(
−ν12

2λ
(λ + 1 + y)t

)

+ c1
m2

∣∣∣∣∣∣
1 − 2λ

exp
(

i �Ka√
3

)
+ 2 exp

(
−i �Ka

2
√
3

)

3(λ − 1 − y)

∣∣∣∣∣∣

2

exp
(
−ν12

2λ
(λ + 1 − y)t

)

m1,2 = 1 + 4λ

∣∣∣∣∣∣

exp
(

i �Ka√
3

)
+ 2 exp

(
−i �Ka

2
√
3

)

3(λ − 1 ± y)

∣∣∣∣∣∣

2

y =
√√√√λ2 + 2λ

9

(
8 cos

(√
3�Ka

2

)
+ 1

)
+ 1 (2.21)

The precise form of these equations is of little importance at this point, but it should
be noted that the isfs for both azimuths consist of a sum of two exponential functions.
The lattice constant a—which is 2.55 Å for Cu(111) [34]—defines the periodicity
of the prefactors and exponentials with �K, while the absolute height of the curves
is given by the jump frequency, ν12. The parameter λ, which is the ratio between the
jump rates from fcc to hcp and from hcp to fcc sites, determines the relative ratios of
prefactors and exponentials, and is given by the adsorption energy difference, �E ,
of the sites through

http://dx.doi.org/10.1007/978-3-319-01180-6_5
http://dx.doi.org/10.1007/978-3-319-01180-6_6
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Fig. 2.10 Illustration of the jump diffusion model for hopping on fcc and hcp hollow sites on
Cu(111), projected onto the

〈
11̄0

〉
azimuth. The�K dependence of the two exponentials (left column)

and corresponding normalised prefactors (right column) are presented for degenerate sites (λ = 1)
in the top panels, and for increasingly non-degenerate sites beneath (λ = 2 and λ = 6)

λ = exp

(
�E

kB T

)
, (2.22)

where kB is the Boltzmann constant and T the temperature.�E = 0 implies λ equal
to 1, while λ > 1 for energetically different sites.

As is apparent in Fig. 2.8, the jump vectors from fcc and hcp sites give the same
projection along the

〈
11̄0

〉
azimuth, yet different projections in the

〈
112̄

〉
direction.

The isf therefore exhibits a single exponential function in the
〈
11̄0

〉
azimuth when

both hollow sites are equivalent, as illustrated in the top panels of Fig. 2.10 where
the intensity of the fast decay is zero for all momentum transfer values. For ener-
getically different sites, the second decay gains in intensity, as apparent in the lower
panels where results for increasing λ are shown. Along the 〈112̄〉 azimuth, a sum of
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Fig. 2.11 Illustration of the jump diffusion model for hopping on fcc and hcp hollow sites on
Cu(111), projected onto the

〈
112̄

〉
azimuth. The�K dependence of the two exponentials (left column)

and corresponding normalised prefactors (right column) are presented for degenerate sites (λ = 1)
in the top panels, and for increasingly non-degenerate sites beneath (λ = 2 and λ = 6)

two exponentials is observed at certain �K positions for all values of λ, as shown
in Fig. 2.11.

2.4.1.2 Jump Diffusion on Twofold Bridge Sites

Jump diffusion on a lattice of twofold bridge sites on a Cu(111) substrate is concep-
tually simpler since all bridge sites are always energetically equal. The analytical
solution therefore does not include a parameter λ and the relative ratios of the expo-
nentials and prefactors are constant:
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Fig. 2.12 Illustration of the jump diffusion model for hopping on bridge sites on Cu(111), pro-
jected onto the

〈
11̄0

〉
(top row) and

〈
112̄

〉
azimuths (bottom row). The �K dependence of the three

exponentials (left column) and corresponding normalised prefactors (right column) are presented

I (�K, t)〈11̄0〉 = c1

(
2 cos

(
�Ka
4

) − 2
)2

4 cos2
(

�Ka
4

) + 2
exp(−3ν12t)

+ c1

(
2 cos

(
�Ka
4

) + 1
)2

2 cos2
(

�Ka
4

) + 1
exp

(
−ν12

(
1 − cos

(
�Ka

2

))
t

)

I (�K, t)〈112̄〉 = c1
y2 + y

(
2 cos

(
�Ka

√
3

4

)
+ 1 + y

)2

exp

(
− (3 − y)ν12

2
t

)

+ c1
y2 − y

(
2 cos

(
�Ka

√
3

4

)
+ 1 − y

)2

exp

(
− (3 + y)ν12

2
t

)

y =
√√√√8 cos2

(
�Ka

√
3

4

)
+ 1 (2.23)

While there are three symmetrically different bridge sites (cf. Fig. 2.8), i.e. m = 3,
they only give two different projections in both crystal directions and one of the
exponentials along both azimuths has zero intensity. The resulting exponentials and
normalised prefactors are presented in Fig. 2.12.
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2.4.1.3 Jump Diffusion on Hollow and Bridge Sites

In Chap. 6, a third case of hopping on a non-Bravais lattice is discussed, namely
hopping from bridge to hollow site and vice versa. A total of five different sites and
three different energy levels thus needs to be considered, expressed as a (5 × 5) B
matrix. Due to the complexity of the problem, the isf was not calculated analyti-
cally but instead a numerical solution was determined by defining A, performing the
similarity transform to obtain B and subsequently calculating the eigenvalues and
eigenvectors of B.

Two λ parameters define the level of degeneracy between the different sites, λ1
for the relative energy of bridge sites and one type of hollow sites, and λ2 for bridge
sites and the other type of hollow sites. In the case of degeneracy between fcc and
hcp sites (λ1 = λ2), all intensity goes into three exponentials along

〈
11̄0

〉
and four

along
〈
112̄

〉
, as shown in Figs. 2.13 and 2.14, respectively. Keeping the hollow sites

degenerate but varying the energy difference between hollow and bridge sites, the
ratio of the exponentials (left column in the Figures) changes, opening a gap when
approaching either extreme of adsorption on hollow sites (λ → ∞) or bridge sites
alone (λ → 0). When λ1 = λ2 = 1.5, bridge and hollow sites are weighted equally,
as there are three bridge but only two hollow sites in a unit cell, and maximum
symmetry of the exponentials is reached (cf. centre panels in Figs. 2.13 and 2.14).

When neither λ parameters equal 1, all five components contribute to the total
intensity, yielding a sum of five exponentials in the isf. Varying either one or both
λ parameters, changes the ratio of the different exponentials, generating large gaps
when a high level of degeneracy is obtained (cf. Figs. 2.15 and 2.16).

Finally, it should be noted that a single exponential decay is observed at approx-
imately �K < 0.7 Å for all of these jump diffusion models. Experiments where a
simple lineshape is desired to facilitate interpretation of the data, such as, for exam-
ple, in the investigation of the temperature dependence of the dephasing rate at fixed
momentum transfer, should therefore be performed in this regime (cf. Sect. 5.4.3).

2.4.2 Lateral Interactions: De Gennes Narrowing

Repulsive lateral interactions amongst adsorbates lead to a deviation from theα(�K)

curves predicted by analytical models described in the previous section, as first
reported by de Gennes in 1959 [35]. Adsorbates repelling each other prefer a long-
range quasi-hexagonal structure. The result is a preferred average distance between
the adsorbates—dependent on the coverage—and reduced mobility on these length
scales. When adsorbates approach each other, on the other hand, their mobility
increases compared to that of non-repelling species. This effect creates a dip fea-
ture, termed “de Gennes narrowing”, and a peak at lower �K overlayed over the
standard α(�K) curves, as illustrated in Fig. 2.17. The dashed line shows the result
from a molecular dynamics (MD) simulation for a single adsorbate particle, hence

http://dx.doi.org/10.1007/978-3-319-01180-6_6
http://dx.doi.org/10.1007/978-3-319-01180-6_5
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Fig. 2.13 Illustration of the jump diffusionmodel for hopping on bridge and degenerate fcc and hcp
hollow sites on Cu(111), projected onto the

〈
11̄0

〉
azimuth. The �K dependence of the exponentials

(left column) and corresponding normalised prefactors (right column) are presented for varying
levels of degeneracy between bridge and hollow sites. λ1 = λ2 = 1 is the case of degenerate
bridge, fcc and hcp sites
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Fig. 2.14 Illustration of the jump diffusionmodel for hopping on bridge and degenerate fcc and hcp
hollow sites on Cu(111), projected onto the

〈
112̄

〉
azimuth. The �K dependence of the exponentials

(left column) and corresponding normalised prefactors (right column) are presented for varying
levels of degeneracy between bridge and hollow sites. λ1 = λ2 = 1 is the case of degenerate
bridge, fcc and hcp sites
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Fig. 2.15 Illustration of the jump diffusion model for hopping on bridge, fcc and hcp sites on
Cu(111), projected onto the

〈
11̄0

〉
azimuth. The�K dependence of the exponentials (left column) and

corresponding normalised prefactors (right column) are presented for varying levels of degeneracy
between bridge, fcc and hcp sites, where λ1 defines the level of degeneracy between bridge and one
type of hollow sites, while λ2 relates bridge and the other type of hollow site
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Fig. 2.16 Illustration of the jump diffusion model for hopping on bridge, fcc and hcp sites on
Cu(111), projected onto the

〈
112̄

〉
azimuth. The�K dependence of the exponentials (left column) and

corresponding normalised prefactors (right column) are presented for varying levels of degeneracy
between bridge, fcc and hcp sites, where λ1 defines the level of degeneracy between bridge and one
type of hollow sites, while λ2 relates bridge and the other type of hollow site
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Fig. 2.17 Schematic illustration of the effect lateral interactions have on theα(�K) curve in aHeSE
experiment. A single particle MD simulation, presented as a dashed line, produces a sinusoidal
curve, while an identical simulation of 40 interacting adsorbates, shown as a solid line, exhibits a
de Gennes peak and dip feature. The peak can be explained by increased mobility of adsorbates at
certain length scales due to strong repulsion, while the dip (de Gennes narrowing) is evidence for
decreased mobility where a quasi-hexagonal arrangement is found

it includes no repulsive interactions and a smooth sinusoidal curve is observed. The
solid line presents an equivalent simulation for 40 interacting adsorbates. A peak
appears at low �K values, illustrating increased mobility of certain length scales,
while a dip occurs at the length scale of the quasi-hexagonal arrangement.

The position of the dip can be used to estimate the coverage,

� = a2

r2
, (2.24)

from the average nearest-neighbour distance, r , and the substrate lattice constant,
a [23]. By approximating the local order as a hexagonal lattice [23], the nearest-
neighbour distance can be deduced from the momentum transfer position of the de
Gennes dip, �Kdip, as

r = 4π√
3 · �Kdip

. (2.25)

2.4.3 Molecular Dynamics Simulations

In addition to interpreting experimental data using analytical models for diffusion,
MD simulations can be performedwhich give amore complete picture of the motion,
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Fig. 2.18 Jump frequency
as a function of friction,
illustrating the “turnover”
from low to high friction
(adapted from [40])

1/τ

η

providing information about the nature of lateral interactions and the friction as well
as the type of diffusion [36–38]. In a classical simulation, the diffusion of an adsorbate
particle is described using the 2D Langevin equation

mR̈i = −∇V (Ri ) − mηṘi + ξ(t) +
∑

i 
= j

Fi, j , (2.26)

where the trajectories for the i-th adsorbate particle with velocity Ṙi are calculated
for motion on a potential energy surface (pes), V (Ri ). The friction coefficient, η,
describes the energy exchange between adsorbate and substrate and a random impulse
term, ξ, ensures that the total energy of the system remains preserved. For simulations
of multiple adsorbate particles, Fi, j models the pairwise lateral interactions between
particle i and particle j , for example by dipole–dipole interactions. The input para-
meters V (Ri ), η and Fi, j are varied iteratively to obtain a realistic description of the
experimental data.

In addition to interpreting experimental data, MD simulations can be used to
study the effect of individual parameters on the adsorbate system, which is often not
possible in an experiment. Varying the friction coefficient while keeping all other
parameters constant, for example, provides information about the rate of energy
exchange between adsorbate and substrate. Transition state theory (tst) is widely
used to describe diffusion through the population of the transition state, determining
the rate of diffusion. tst assumes that every atom in a transition state originates
from an adjacent adsorption well, which is only true in certain cases. In most real
systems, a deviation from tst is observed, as first discussed by Kramers in 1940
[39]. The jump frequency, ν = 1/τ , as a function of η is shown in Fig. 2.18 [40].
A corresponding curve obtained by MD simulations for Cp/Cu(111) is presented in
Chap. 5. In the case of low friction, the rate of energy exchange between adsorbate
and substrate is small and once the diffusing species has acquired enough energy to
overcome the barrier, it “rollercoasters” over many barriers. This implies that only a
fraction of the species in the transition state comes from the adjacent well and thus the
actual jump frequency is lower than predicted by tst. In the case of high friction, the

http://dx.doi.org/10.1007/978-3-319-01180-6_5
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diffusing particle changes its energy, and hence its velocity, so frequently that it does
not move by a direct route between adsorption sites but rather moves by a random
walk leading to re-crossings of the transition state. Since the same atom can be in the
transition state a number of times, assuming that each atom in the transition state has
just come from the adjacent adsorption site yet again overestimates the jump rate.
tst therefore only gives a realistic description for systems at the “turnover” point
between low and high friction, i.e. on the peak of the curve.
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