Chapter 2
Thermal Constriction Resistance

It was seen that the contact interface consists of a number of discrete and small
actual contact spots separated by relatively large gaps. These gaps may be evac-
uated or filled with a conducting medium such as gas. In the first case, all of the
heat is constrained to flow through the actual contact spots. If the gaps are filled
with a conducting medium, however, some of the heat flow lines are allowed to
pass through the gaps, that is, they are less constrained and thus the constriction is
alleviated to some extent.

Constriction resistance is a measure of the additional temperature drop asso-
ciated with a single constriction. Let T, be the temperature difference required for
the passage of heat at the rate Q through a medium when there is no constriction
and T the temperature difference required when a constriction is present, all other
things remaining the same. Then the constriction resistance R, is defined as:

(T —Ty)
0

In this chapter, the theory pertaining to the constriction resistance is derived
first when the constriction is in isolation, that is, when the effect of the adjacent
spots is ignored. Next the constriction resistance of a single spot when it is sur-
rounded by similar spots is determined. The contact conductance is the sum of the
conductances of all of the spots existing on the interface. The average radius of
these contact spots and their number can be determined by means of surface and
deformation analyses so that the conductance may be finally evaluated as a
function of the surface parameters, material properties and the contact pressure.

R. = (2.1)

2.1 Circular Disc in Half Space

The logical starting point for the discussion of constriction resistance is to consider
the resistance associated with a circular area located on the boundary of a semi-
infinite medium. This is equivalent to assuming that:
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Fig. 2.1 Disc constriction in %
half-space
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a. The constriction is small compared to the other dimensions of the medium in
which heat flow occurs.

b. The constriction of heat flow lines is not affected by the presence of other
contact spots.

c. There is no conduction of heat through the gap surrounding the contact spot.

The problem is illustrated in Fig. 2.1. Many solutions to this problem are
available (see, for example, Llewellyn-Jones 1957; Holm 1957). We will describe
here, in some detail, the method used by Carslaw and Jaeger (1959). It is believed
that such detail is necessary in order to appreciate fully the mathematical com-
plexities involved in the analytical solutions of even the simplest configurations. In
what follows, frequent reference is made to the work of Gradshteyn and Ryzhik
(1980). The formulas of this reference will be indicated by G-R followed by the
formula number.

The equation of heat conduction in cylindrical co-ordinates, with no heat
generation is:

O°T 10T T

PR = =l 22)

Using the method of separation of variables, we seek a solution of the form:
T(r,z) =R(r)Z(z) (2.3)
so that Eq. (2.2) may be written as
RZ+ (f) R+ZR=0
Dividing through by RZ and separating the variables. We get

(R +%) _

7

R V4

Z// .
- = _/Lz

Thus Eq. (2.2) is reduced to two ordinary differential equations:

d*R 1dR

- JPR=0 2.4
dr? + rdr + (24a)
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and

az .,
——AZ=0 2.4b
dz? (2.40)

Equation (2.4a) is a form of Bessel’s differential equation of order zero and a
solution of this is Jo( Ar) and a solution of Eq. (2.4b) is e -, Therefore, Eq. (2.2) is
satisfied by e ~** J o(Ar) for any 1. Hence

T— /O e Jo () (A)di (2.5)

will also be a solution if f{A) can be chosen to satisfy the boundary conditions at
z=0.
At z = 0, the solution (2.5) reduces to

T. — /0 " RO (2.6)

In the problem being considered, at z = 0, there is no heat flow over the region
r > a. Also, in the same plane, the region r < a could be at constant temperature
or, alternatively, at uniform heat flux. These two cases are considered below.

1. The contact area is maintained at constant temperature T, over 0 <r < a

According to G-R 6.693.1,

sin(fx)

X

o0
Int‘,z/ Jy(ox) dx
0

1
= —sin (v arcsin E) f<a
o

N
_ o'sin
v(ﬂ + V- oc2>

Taking the limit as v — 0, (applying L’Hopital’s Rule), these integrals turn out
to be

B>

Inty = arcsinE f<o

o

v
Inty = — >0
=2 B
Hence, if we take

i P
Inty = arcsin= f <o

o

T
In[OZE ﬁ>0€
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in Eq. (2.6), we get for the temperature at z = 0

2T, [ in(/ 2. . ) 2T,
/ Jo(Ar) sm(ﬂ @) d) = arcsin— = T_ T., r<a
T Jo A T A w2

Since the temperature is independent of z for r > a, this satisfies the other
boundary condition, namely, no heat flow over rest of the plane at z = 0.
Substituting for f(4) in Eq. (2.5)

2T~ sin(2a)

-z
T - ‘é e “Jo(4r) /1 d2 (2.7)
we get, from G-R 6.752.1
2T, . 2
T = —arcsin a (2.8)

m \/(r +a)+2 + \/(r —a)’+22

Note that, for 0 <r < a,

oT 2T. [ 2T. 1
(&) =2« r)sin(a)di = 226 (e 2.
(aZ)zo = ) Jo(4r)sin(Aa)dA - ( = r2> (2.9)

from G-R 6.671.7.
The heat flow over the circle 0 < r < a,

Q:727Ik/ (6—T> rdr
0 0z 7=0

= 72nk2Tc/ {/ —Je " Jy(r) sin{4a) di} rdr
o LJo

n A =0

= 4kTL./ {/ Jo(lr)sin(/la)dﬂv} rdr
o Lo

= 4kT, / sin(1a) {/ Jo(}m)rdr} di
0 0

W, / %sin(la)[a]l ()|
0

from G-R. 6.561.5. Therefore,

Q = 4akT, %sin(ia)[]l (Aa)ldA
0

= 4akT.(1)
from G-R 6.693.1.
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The constriction is finally given by:

. -0 1
Riy=——=— 2.10
a=Tt = 210)
2. The contact area is subjected to uniform heat flux
In this case, the boundary conditions at z = 0 are:

—k

GT{:q, for0<r<a (2.11)

oz =0, forr >a

where ¢ is the heat flux.

Differentiating Eq. (2.5) with respect to z,

or

== /O he () (A)di

Applying the first of the two boundary conditions (at z = 0) in Eq. (2.11),

oT > q
— = = )LJ i )v d)u - -
o= [ i =1
Considering the integral (G-R, 6.512.3)

=0forr>a

* 1
/ JO()“r)]l (ia)d)v = Z forr =a
0

=- forr<a
a
we see that
ga\ J1(La)
J) = (—) 2.12
1) = (%)= 2.12)
so that the solution is
. Ji(A
T = (ﬂ) / g (ar) 224 g (2.13)
k/ Jo A
The average temperature, 7,, over 0 <r < a and z = 0 is
1 a
Toy=—> T(2nr)dr
a 0

. 2q 00.]1(161) 4 R
=), 1 /0 Jo(Ar)dr pd2
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From G-R 6.561.5

or

2q [* [Ji(%a)
Ty =— d
k Jo { 27 :

Using the result from G-R 6.574.2 for the integral in the above expression,

8qa
Ty =— 2.14
3nk ( )
The heat flow rate is
Q = na’q
Hence the constriction resistance for the uniform heat flux condition is
T, 8 0.27
Repp =—= =— (2.15)

QO 3n%ak  ka

This is about 8 % larger than the constriction resistance R.4jobtained for the
uniform temperature condition.

2.2 Resistance of a Constriction Bounded
by a Semi-infinite Cylinder

In a real joint there will be several contact spots. Each contact spot of radius a;
may be imagined to be fed by a cylinder of larger radius b; as shown in Fig. 2.2.
Note that the sum of areas of all of the contact spots is equal to the real contact
area A,, while the sum of the cross sectional areas of all of the cylinders is taken as
equal to the nominal (apparent) contact area A,,.

Fig. 2.2 Modelling of a 14
single contact spot in a cluster
of spots

Idealized View of Contact Plane  Constriction Bounded by a Semi-
Infinite Cylinder
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2.2.1 Contact Area at Uniform Temperature

It is further assumed that there is no cross flow of heat between the adjacent
cylinders. There is also no heat flow across the gap between adjacent contact spots;
that is, the contact st is surrounded by a vacuum in the contact plane.

There are several solutions available to this problem. The following analysis is
based on the solution described Mikic and Rohsenow (1966) and Cooper et al.
(1969).

The boundary conditions defined by the problem are:

T =constant; z=0, 0<r<a (2.16a)
_kz_::o; 2=0,r>a (2.16b)
_ %:?sz;z;)oo (2.16¢)

—kZ—fzo; r=b (2.16d)
—k%{:o; r=0 (2.16¢)

To satisfy the boundary conditions (2.16c) and (2.16e), the solution to Eq. (2.2)
should be in the form:

Q . —Az
T:mH;Cne Jo(lur) + To (2.17)

From the boundary condition in Eq. (2.16d), we get
Ji(A,b) =0 (2.18)

Here b = 3.83171, 7.01559, 10.17347, etc. (Abramovitz and Stegun 1968a).
Also by integrating Eq. (2.17) over the whole of the interfacial area (0 < r < b) at
z = 0 and using Eq. (2.18), we see that the average temperature for this area is 7Tj.

In Eq. (2.17), the C,’s are to be determined from the boundary conditions
Egs. (2.16a) and (2.16b) at z = 0. However, these boundary conditions are mixed.
To overcome this problem, the Dirichlet boundary condition in Eq. (2.16a) is
replaced by a heat flux distribution for the circular disc in half space [see
Eq. 29)I:

Gr_ o
0z 2nava® —r2

This approximation will lead to a nearly constant temperature distribution over
the area specified by 0 <r <a, especially for small values of &, where ¢ = (a/b).

;2=0,0<r<a (2.19)
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However, from Eq. (2.17), at z =0,

oT 0 >
ke = k= E 2.2
0z nb’k * ) Cnlnfo(inr)] (220)
From (2.19) and (2.20), therefore
0 0
+ E Condo(Qpr)| = ————
b’k ol )1 2nakva? — r?

To utilize the orthogonality property of the Bessel function both sides of the
above equation are multiplied by rJo(4,r) and integrated over the appropriate
ranges to yield

0 /b . /" ) Q [ rdo(Jur)
— Jo(Anr)dr + Cpi JS(Apr)dr = ——2d
7% J, rJo(Anr)dr + Cy 2 | v (Anr)dr Sk )y Va3 r

(see G-R 6.521.1).
However

b b
/ rJo(Anr)dr = —J1(Ab)
0 /o

This is equal to zero by virtue of Eq. (2.18).
From the orthogonality property (Abramovitz and Stegun 1968b)

b b2
| st =2 33
0

and

@ rJo(Anr) dr sm()na)
o V212 a,

(see G-R 6.554.2).
Therefore

( 0 ) sin(4,a)
Cn = | — PN I VRN
nka) (A,b)"J3(Aub)
Substituting for C, in Eq. (2.17)

Y & )Zsm (2n@)Jo (A1)
= nbzk <nka> Z )ZJ () +To (2.21)

n=1

The mean temperature over the interface (z = 0) is then obtained by
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1 (90 Q\ Xe sin(4,a)do(Ar) 1 [
Ty =— — § 2nrd, —_ To2nrd
A ( ) ( ) TTr r+nb2/0 027mrdr

na’ nka n=1 ( )2‘] )’1

0 ( 8 ) = sin(4,a)
=—|— —_— rJ Ant)dr + T,
4ka \na? ;(inb)zjg(inb) , Jolar) 0

This results in

0 (8) (b) 2 sin(Ap,a)di(Ana)
Tn=—"(-){- ————+T 2.22
4m7z¢zg;wm%Wm) ’ 222)
The factor 1/(4 ka) in the above expression represents the disc constriction
resistance of Eq. (2.10). The thermal resistance between z = 0 and z = L (for
large L) is given by
Ty —T.—r T L Ty
= Ty
0 0 =mkb* Q

Hence the additional resistance due to constriction is

R, =

L T,-To
kb2 Q
Substituting for 7, from Eq. (2.22)

" 4ka ( ) ( ) Zsm )Jfb) JZI(EZ;(%)] = RearF (g) (2.23)

n=1

R=R, —

in which

F(5) = ( )( )Zsm )J?(E}bl;( 2] (2.24)

is called the constriction alleviation factor.
Yovanovich (1975) obtained expressions for the constriction alleviation factor
for heat flux functions of the form

1"
[1 —2] ;7 2=0,0<r<a
a

Hid results for m = —0.5 were identical to that of Mikic, as expected.

Other solutions to the above problem include those of Roess (as presented by
Weills and Ryder (1949)), Hunter and Williams (1969), Gibson (1976), Rosenfeld
and Timsit (1981) and Negus and Yovanovich (1984). The algebraic expressions
derived for the constriction alleviation factor by Roess, Gibson, and Negus and
Yovanovich are somewhat similar
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Table 2.1 Comparison of constriction alleviation factors

a/b Roess (Eq. 2.25) Mikic (Eq. 2.24) Gibson (Eq. 2.26) N-Y (Eq. 2.27)

0.1 0.8594 0.8584 0.8594 0.8594

0.2 0.7205 0.7202 0.7209 0.7208

0.3 0.5853 0.5851 0.5865 0.5865

0.4 0.4558 0.4557 0.4586 0.4586

0.5 0.3340 0.3341 0.3398 0.3395

0.6 0.2230 0.2231 0.2328 0.2318
Froess = 1 — 1.4093(a/b) + 0.2959(a/b)*+0.0524(a/b)’+ - - - (2.25)
Foibson= 1 — 1.4092(a/b)+0.3380(a/b)*+0.0679(a/b)’ + - - - (2.26)

FNegus_Yovanovien = 1 — 1.4098(a/b) + 0.3441(a/b)*+0.0435(a/b)’+ - --
(2.27)

The constriction alleviation factors obtained by Eqgs. (2.24)—(2.27) are com-
pared in Table 2.1. The first 120 terms were used in evaluating the series in
Eq. (2.24).

2.2.2 Contact Area Subjected to Uniform Heat Flux

In this case, the boundary condition, represented by Eq. (2.16a) is replaced by

oT
—ka—Z =constant; z=0, 0<r<a (2.28)
The constriction alleviation factor for this problem was theoretically derived by
Yovanovich (1976):
Note: 1. In the following expression ¢ = a/b
2. The constriction resistance is non-dimensionalized by multiplying it by
ky/A., that is, by ka./n and not 4ak

, 16 K I3 (2ne)

n=1

Negus, Yovanovich and Beck (1989) provided the following correlation to
evaluate F'(e)

F'(¢) = 0.47890 — 0.62498¢ + 0.11789¢" + - - - (2.30)
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Fig. 2.3 Eccentric
constriction

2.3 Eccentric Constrictions

In Sect. 2.2, the contact spot was assumed to be concentric with the feeding flux
tube. The subject of eccentric constrictions has been studied by Cooper et al.
(1969), Sexl and Burkhard (1969) and others. A more recent work is by Bairi and
Laragi (2004) who presented an analytical solution to calculate the thermal
constriction resistance for an eccentric circular spot with uniform flux on a
semi-infinite circular heat flux tube. This solution is developed using the finite
cosine Fourier transform and the finite Hankel transform (Fig. 2.3).

The authors proposed a dimensionless correlation to calculate the constriction
alleviation factor as a function of ¢ and the eccentricity e:

g _ \PEO 14 {1.5816(“/;7)0'0528—1} (b i a)1476(b i 6)0488 (231)

In this equation the authors took the following correlation for ¥y, the
constriction factor for zero eccentricity (Negus et al. 1989):

W, = 0.47890 — 0.62076(a/b)
+ 0.114412(a/b)*+ 0.01924(a/b)’ + 0.00776(a/b)’ (A)

However, the expression given in (A) is the constriction factor for a circular
cross section at the end of a square tube! The correct factor that the authors should
have used is in Eq. (2.30). Therefore the accuracy of Eq. (2.31) is open to
question.

2.4 Constriction in a Fluid Environment

In this case, the boundary conditions at the contact plane (z = 0) are as shown in
Fig. 2.4 in which k¢ is the thermal conductivity of the fluid (gas) and ¢ is the
effective gap thickness.
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Fig. 2.4 Constriction in a V4
fluid environment ‘

Approximate solutions to the above problem have been obtained by Cetinkale
and Fishenden (1951), Mikic and Rohsenow (1966) and Tsukizoe and Hisakado
(1972). A later work by Das and Sadhal (1998) presents an analytical solution to
the problem of a constriction surrounded by an interstitial fluid. An ‘exact’ solu-
tion was presented by Sanokawa (1968), but the results of this work were not in a
readily usable form. In any case, the model used in these analyses, as illustrated
above in Fig. 2.4, is somewhat artificial—the gap thickness is abruptly changed
from zero thickness to a finite thickness at » = a. The thickness is expected to
increase gradually. Any analytical solution is, therefore, likely to be complicated
and a digital computer would be still required to evaluate the results. For this
reason, a numerical solution is perhaps more suitable for the solution of this type
of problems.

In a large number of situations, the heat flow through the gas gap is small
compared to the heat flow through the solid contact spots. In such cases, the fluid
conductance may be estimated by dividing the fluid conductivity by the effective
gap thickness. This may then be added to the solid spot conductance to obtain the
total conductance. Factors affecting the gas gap conductance are discussed in detail
in Chap. 4.
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2.5 Constrictions of Other Types

Apart from the solutions discussed above, problems pertaining to constrictions of
other shapes and boundary conditions have been analysed by various researchers.
These are listed in Table 2.2.

Table 2.2 Constriction resistance—representative works

No. Reference Configuration Approach
1 Mikic and Rohsenow Strip of contact and rectangles in vacuum Analytical
(1966)
2 Yip and Venart (1968)  Single and multiple constrictions in Analogue
vacuum
3 Veziroglu and Chandra Two dimensional, symmetric and Analytical and
(1969) eccentric constrictions in vacuum analogue
4 Williams (1975) Conical constrictions in vacuum Experimental
5  Yovanovich 1976 Circular annular constriction at the end of Analytical
a semi-infinite cylinder in vacuum
6  Gibson and Bush (1977) Disc constriction in half space in Analytical
conducting medium
7  Major and Williams Conical constrictions in vacuum Analogue
(1977)
8 Schneider (1978) Rectangular and annular contacts in Numerical
vacuum half space
9  Yovanovich et al. (1979) Doubly connected areas bounded by Analytical
circles, squares and triangles in
vacuum
10 Madhusudana (1979a, Conical constrictions at the end of a long Numerical and
b), (1980) cylinder, in vacuum and in conducting experimental
medium
11 Major (1980) Conical constrictions in vacuum Numerical
12 Negus et al. (1988) Circular contact on coated surfaces in Analytical
vacuum

13 Das and Sadhal (1992) Two dimensional gaps at the interface of Analytical
two semi-infinite solids in a
conducting environment
14 Madhusudana and Chen Annular constriction at the end of a semi- Analytical and
(1994) infinite cylinder in vacuum analogue
15 Olsen et al. (2001a, b)  Coated conical constrictions in vacuum, Numerical
(2002) gas and with radiation
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