Chapter 2
Efficient Refinement Strategy Exploiting
Component Properties in a CEGAR Process

Syed Hussein S. Alwi, Cécile Braunstein, and Emmanuelle Encrenaz

Abstract Embedded systems are usually composed of several components and in
practice, these components generally have been independently verified to ensure
that they respect their specifications before being integrated into a larger system.
Therefore, we would like to exploit the specification (i.e. verified CTL properties)
of the components in the objective of verifying a global property of the system.
A complete concrete system may not be directly verifiable due to the state explosion
problem, thus abstraction and eventually refinement process are required. In this
paper, we propose a technique to select properties in order to generate a good
abstraction and reduce refinement iterations. We have conducted several preliminary
experimentations which show that our approach is promising in comparison to other
abstraction-refinement techniques implemented in VIS [1].

2.1 Introduction

The embedded systems correspond to the integration into the same electronic circuit,
a huge number of complex functionalities performed by several heterogeneous
components. Current SoC (System on Chips) contain multiple processors executing
numerous cooperating tasks, specialized co-processors (for particular data treatment
or communication purposes), Radio-Frequency components, etc. These systems
are usually submitted to safety and robustness requirements. Depending on their
application domains, their failure may induce serious damages and catastrophic
consequences.

Therefore, it is important to ensure, during their design phase, their correctness
with respect to their specifications. Errors found late in the design of these systems

S.H.S. Alwi (2<) « C. Braunstein ¢ E. Encrenaz

Université Pierre et Marie Curie Paris 6, LIP6-SOC (CNRS UMR 7606),

4, place Jussieu, 75005 Paris, France

e-mail: syed-hussein.alwi@lip6.fr; cecile.braunstein @lip6.fr; emmanuelle.encrenaz @lip6.fr

J. Haase (ed.), Models, Methods, and Tools for Complex Chip Design, Lecture Notes 17
in Electrical Engineering 265, DOI 10.1007/978-3-319-01418-0_2,
© Springer International Publishing Switzerland 2014

mailto:syed-hussein.alwi@lip6.fr
mailto:cecile.braunstein@lip6.fr
mailto:emmanuelle.encrenaz@lip6.fr

18 S.H.S. Alwi et al.

is a major problem for electronic circuit designers and programmers as it may delay
getting a new product to the market or cause failure of some critical devices that are
already in use. System verification using formal methods such as model checking
guarantees a high level of quality in terms of safety and reliability while reducing
financial risk.

The main challenge in model checking is dealing with the state space combina-
torial explosion phenomenon. A strategy to overcome the state explosion problem is
by performing abstraction. A method for the construction of an abstract state graph
of an arbitrary system automatically was first proposed by Graf and Saidi [2] using
Pvs theorem prover. Here, the abstract states are generated from the valuations of a
set of predicates on the concrete variables. The construction approach is automatic
and incremental.

In 2000, an interesting abstraction-refinement methodology called counterexam-
ple guided abstraction refinement (CEGAR) was proposed by Clarke and al. [3]. The
abstraction was done by generating an abstract model of the system by considering
only the variables that possibly have a role in verifying a particular property. In this
technique, the counterexample provided by the model-checker in case of failure is
used to refine the system.

Several tools using counterexample-guided abstraction refinement technique,
like those implemented in the VIS model-checker, have been developed such as
SLAM, a software model-checker by Microsoft Research [4], BLAST (Berke-
ley Lazy Abstraction Software Verification Tool), a software model-checker for
C programs [5] and VCEGAR (Verilog Counterexample Guided Abstraction
Refinement), a hardware model-checker which performs verification at the RTL
(Register Transfer Language) level [6]. However, relying on counterexamples
generated by the model checker as the only source for refinement may not be
conclusive.

Recently, a CEGAR based technique that combines precise and approximated
methods within one abstraction-refinement loop was proposed for software ver-
ification [7]. This technique uses predicate abstraction and provides a strategy
that interleaves approximated abstraction which is fast to compute and precise
abstraction which is slow. The result shows a good compromise between the number
of refinement iterations and verification time.

An alternative method to get over the state explosion problem is the compo-
sitional strategy. The strategy is based on the assume-guarantee reasoning where
assumptions are made on other components of the systems when verifying one
component. Several works have manipulated this technique notably in [8] where
Grumberg and Long described the methodology using a subset of CTL in their
framework and later in [9] where Henzinger and al. presented their successful
implementations and case study regarding this approach.

Xie and Browne have proposed a method for software verification based
on composition of several components [10]. Their main objective is developing
components that could be reused with certitude that their behaviors will always
respect their specification when associated in a proper composition. Therefore,

2 Efficient Refinement Strategy Exploiting Component Properties 19

temporal properties of the software are specified, verified and packaged with the
component for possible reuse. The implementation of this approach on software
has been successful and the application of the assume-guarantee reasoning has
considerably reduced the model checking complexity. A comprehensive approach
to model-check component-based systems with abstraction refinement technique
that uses verified properties as abstractions has been presented in [11].

In [12], Peng, Mokhtari and Tahar have presented a possible implementation of
assume-guarantee approach where the specifications are in ACTL. Moreover, they
managed to perform the synthetisation of the ACTL formulas into Verilog HDL
behavior level program. The synthesized program can be used to check properties
that the system’s components must guarantee. Since, there have been other works
on construction of components from interval temporal logic properties which could
be used to speed up verification process [13, 14].

In 2007, a method to build abstractions of components into AKS (Abstract
Kripke Structure), based on the set of the properties (CTL) each component verifies
was presented in [15]. The method is actually a tentative to associate compositional
and abstraction-refinement verification techniques. The generations of AKS from
CTL formula have been successfully automated [16]. This work will be the base of
the techniques in this paper.

Contribution: In this paper we present a strategy to exploit the properties of
verified component in the goal of verifying complex systems with a good initial
abstraction and eventually being conclusive in a small number of refinement
iterations. We propose a technique to classify component properties according to
their pertinency towards the global property, thus, enabling a better selection of
properties for the initial abstraction generation. Furthermore, in the case where the
verification is not conclusive, we propose a technique guided by the counterexample
given by the model-checker to select supplementary properties to improve the
abstraction.

In the next section, we will give an overview of our framework and introduce
the notations that will be used later. The rest of the paper is organized as follows:
Sect. 2.3 details our strategy of refinement. Section 2.4 presents the experimentation
results and finally, Sect.2.5 draws the conclusions and summarize our possible
future works.

2.2 Our Framework

The model-checking technique we propose is based on the Counterexample-guided
Abstraction Refinement (CEGAR) methodology [3]. The overall description of
our methodology is shown in Fig.2.1. We take into account the structure of the
system as a set of synchronous components, each of which has been previously
verified and a set of CTL properties is attached to each component. This set

20 S.H.S. Alwi et al.

REFINEMENT
Ordered Property
Filtering
CONCRETE
MODEL, M Counterexample?
Component 1 i ABSTRACT NO
Specification _§ MODEL, M,
(1) |2
1<
o
Componentn o
r 3
Specification 3
(0w ik
My=® =M |=®
GLOBAL .
PROPERTY, @

Fig. 2.1 Verification process

refers to the specification of the component. We would like to verify whether a
concrete model, M presumably big sized and composed of several components,
satisfies a global ACTL property @. Instead of building the product of the concrete
components, we replace each concrete component by an abstraction of its behavior
derived from a subset of the CTL properties it satisfies. Each abstract component
represents an over-approximation of the set of behaviors of its related concrete
component [15].

As shown in [17] for over-approximation abstraction, if @ holds in the abstract
model then it holds in the concrete model as well. However, if @ does not hold in
the abstract model then one cannot conclude anything regarding the concrete model
until the counterexample has been analyzed. The test of spurious counter-example is
then translated into a SAT problem as in [3]. When a counterexample is proven to be
spurious, the refinement phase occurs, injecting more preciseness into the (abstract)
model to be analyzed.

2.2.1 Concrete System Definition

As mentioned earlier, our concrete model consists of several components and each
component comes with its specification. The concrete system is a synchronous
composition of components, each of which described as a Moore machine.

Definition 2.1. A Moore machine C is defined by a tuple (I,O,R, J,A,Ry),
where,

e [is afinite set of Boolean input signals.
* O is afinite set of Boolean output signals.

2 Efficient Refinement Strategy Exploiting Component Properties 21

* R is a finite set of Boolean sequential elements (registers).
o §:2/ x 2R - 2R is the transition function.

o A :2R — 29 s the output function.

o Ry C 2% is the set of initial states.

States (or configurations) of the circuit correspond to Boolean configurations of
all the sequential elements.

Definition 2.2. A Concrete system M is obtained by synchronous composition of
the component.

M=C; || G ... || Cpwhere each C; is a Moore machine with a specification
associated ¢; = {¢@] ... (pl.k }. Each ¢/ is a CTL\X formula whose propositions AP
belong to {/; UO; UR;}.

2.2.2 Abstraction Definition

Our abstraction reduces the size of the representation model by letting free some
of its variables. The point is to determine the good set of variable to be freed and
when to free them. We take advantage of the CTL specification of each component:
a CTL property may be seen as a partial view of the tree of behaviors of its variables
configuration. All the variables not specified by the property can be freed. We
introduced the Abstract Kripke Structure (AKS for short) which exactly specifies
when the variable of the property can be freed. The abstraction of a component is
represented by an AKS, derived from a subset of the CTL properties the component
satisfies. Roughly speaking, AKS(¢), the AKS derived from a CTL property ¢,
simulates all execution trees whose initial state satisfies ¢. In AKS(¢), states are
tagged with the truth values of ¢’s atomic propositions, among the four truth values
of Belnap’s logic [18]: inconsistent (_L), false (f), true (t) and unknown (T). States
with inconsistent truth values are not represented since they refer to non possible
assignments of the atomic propositions. A set of fairness constraints eliminates non-
progress cycles. The transformation algorithm of a CTL\ X property into an AKS is
described in [15, 19].

Definition 2.3. Given a CTL\X property ¢ whose set of atomic propositions
is AP, an Abstract Kripke Structure, AKS(¢) = (AP,S,So,L,R,F) is a 6-tuple
consisting of:

e AP: The finite set of atomic propositions of property ¢

+ S afinite set of states

. 5’0 - S: a set of initial states

o L:8— PPl with 2 = {1, t,T}: a labeling function which labels each state
with configuration of current value of each atomic proposition.

» R C 8 xS: atransition relation where Vs € §,3s' € § such that (s,s') € R

« F:aset of fairness constraints (generalized Biichi acceptance condition)

22 S.H.S. Alwi et al.

We denote by L(s), the configuration of atomic propositions in state s, and by
L(s)[p], the projection of configuration L(s) according to atomic proposition p.

As the abstract model M is generated from the conjunction of verified properties
of the components in the concrete model M, it can be seen as the composition of the
AKS of each property. The AKS composition has been defined in [19]; it extends
the classical synchronous composition of Moore machine to deal with four-valued
variables.

Definition 2.4. An Abstract model M is obtained by synchronous composition of
components abstractions. Let n be the number of components in the model and m
be the number of selected verified properties of a component; let C; be a component
of the concrete model M and (p}‘ is a CTL formula describing a satisfied property of

component C;. Let AKS(¢.+) the AKS generated from (p;‘. We have Vj € [1,n] and
% .
Vk € [1,m]:

. ¢ =AKS(oc1) [| AKS(gc2) |l [| AKS(@ci) |l | AKS(@cy)
s M=C |GGG

In an AKS, a state where a variable p is unknown can simulate all states in which
p is either true or false. It is a concise representation of the set of more concrete
states in which p is either true or false. A state s is said to be an abstract state if one
of its variable p is unknown.

Definition 2.5. The concretization of an abstract state s with respect to the variable
p (unknown in that state), assigns either true or false to p.

The abstraction of a state s with respect to the variable p (either true or false in that
state), assigns unknown to p.

Property 2.1 (Concretization). Let A; and A; two abstractions such that A; is
obtained by concretizing one abstract variable of A; (resp. A; is obtained by
abstracting one variable in A ;). Then A; simulates A, denoted by A; C A;.

Proof. As the concretization of state reduces the set of concrete configuration the
abstract state represents but does not affect the transition relation of the AKS. The
unroll execution tree of A; is a sub-tree of the one of A;. Then A; simulates A;. O

Property 2.2 (Composition and Concretization). Let M; be an abstract model of
M and (pk be a property of a component C; of M, M1 = M; || AKS((pj.‘) is more

concrete that M;, M,H C M,

Proof. Lets = (s,,s «) be a state in S;;, such that s; € S; and s(pk es ot The label

of s,y is obtained b); applying the Belnap’s logic operators and to the four-valued
values of variables in s; and s o Forall p € AP,UAP, ok we have the following label :

o Li [p] = T iff p is unknown in both states or does not belong to the set of atomic
proposition.

2 Efficient Refinement Strategy Exploiting Component Properties 23

o Lii1[p] =t (or) iff p is true (or false) in Spk (resp. si) and unknown in s;
J

(resp. sfpf)'

By Property 2.1, M;, is more concrete than M; and by the property of parallel
composition, M; C M; || AKS(¢¥). 0

2.2.3 Initial Abstraction

Given a global property @, the property to be verified by the composition of the
concrete components model, an abstract model is generated by selecting some of
the properties of the components which are relevant to @. In the initial abstraction
generation, all variables that appear in @ have to be represented. Therefore the
properties in the specification of each component where these variables are present
will be used to generate the initial abstraction, M, and we will verify the satisfiability
of the global property @ on this abstract model. If the model-checking failed and
the counterexample given is found to be spurious, we will then proceed with the
refinement process.

2.3 Refinement

2.3.1 Properties of Good Refinement

When a counterexample is found to be spurious, it means that the current abstract
model Mi is too coarse and has to be refined. In this section, we will discuss about
the refinement technique based on the integration of more verified properties of the
concrete model’s components in the abstract model to be generated. Moreover, the
refinement step from M; to M; | respects the properties below:

Definition 2.6. An efficient refinement verifies the following properties:

1. The new refinement is an over-approximation of the concrete model: M C M, ;.
2. The new refinement is more concrete than the previous one: M; C M;.
3. The spurious counterexample in M; is removed from M, 1.

Furthermore, the refinement steps should be easy to compute and ensure a fast
convergence by minimizing the number of iterations of the CEGAR loop.

Refinements based on the concretization of selected abstract variables in Mi
ensure Item 2. Concretization can be performed by modifying the AKS of M; by
changing some abstract value to concrete ones. However, this approach is rude: in
order to ensure Item 1, the concretization needs to be consistent with the sequences
of values in the concrete system. The difficulty resides in defining the proper abstract
variable to concretize, at which precise instant, and with which Boolean value.

24 S.H.S. Alwi et al.

We propose to compose the abstraction with another AKS to build a good refine-
ment according to Definition 2.6. We have several options. The most straightforward
method consists in building an AKS representing all possible executions except the
spurious counterexample; however the AKS representation may be huge and the
process is not guaranteed to converge. A second possibility is to build an AKS with
additional CTL properties of the components; the AKS remains small but Item 3 is
not guaranteed, hence delaying the convergence. The final proposal combines both
previous ones: first local CTL properties eliminating the spurious counterexample
are determined, and then the corresponding AKS is synchronized with the one of M;.

2.3.2 Negation of the Counterexample

The counterexample at a refinement step i, o, is a path in the abstract model
M; which dissatisfies @. In the counterexample given by the model-checker, the
variable configuration in each state is Boolean. We name L; this new labeling. The
spurious counterexample o is defined such that:

Definition 2.7. Let o be a spurious counterexample in M; = (AP,~,S}, 5’0,',[:[,1?“
F}) of length |6 =n: 6 =50 — 51 ... — 5, With (sg,5¢1) € R; Vk € [0..n— 1].

» Allits variables are concrete: Vs; and Vp € AP;, p is either true or false according
to L;. (not unknown), and s is an initial state of the concrete system: so € Rg

* (0 is a counterexample in M;: s .

* o is not a path of the concrete system M: Jk € [l..n — 1] such that Vj <
k,(sj,sj+1) € Rand (sg,Sxv1) € R

The construction of the AKS representing all executions except the one described
by the spurious counterexample is done in two steps.

2.3.2.1 Step 1: Build the Structure of the AKS

Definition 2.8. Let ¢ be a spurious counterexampleof length |o| = n, the AKS of
the counterexample negation AKS(G) = (AP5,S5,805, Lz, Rs, F5) is such that:

* AP5; = AP;: The set of atomic propositions coincides with the one of o

o Ssi{sryU{siVi€ [0.n—2]As; € o} U{5|Vi € [0.n— 1] As; € 0}

 Ls with Lg(s}) = Li(s;),Vi € [0.n— 2] and L(st) = {T,Vp € APs}, L5(5) is
explained in the next construction step.

. Sioa = {s0,%0}

* Rs={(5,s7),Vi€[0.n=1]}U{(s},5i11), Vi€ [0.n=2]}U{(s},s},;, Vi€ [0.n—
3}

° Fg =0
The labeling function of s} represents (concrete) configuration of state s; and

state §; represents all configurations but the one of s;. This last set may not be

2 Efficient Refinement Strategy Exploiting Component Properties 25

gy

Outgoing
transition

oSy

Fig. 2.2 An example of a negation of the counterexample AKS, AKS(0)

representable by the labeling function defined in Definition 2.3. State labeling is
treated in the second step. s is a state where all atomic propositions are unknown.

2.3.2.2 Step 2: Expand State Configurations Representing the Negation
of a Concrete Configuration

The set of configurations associated with a state §; represents the negation of the one
represented by L;(s;). This negation is not representable by the label of a single state
but rather by a union of | AP | labels.

Example: Assume AP = {vg,v,;} and ¢ = so — s1 and L(sg) = {f,f,f} the
configuration associated with sq assigns false to each variable. The negation of this
configuration represents a set of seven concrete configurations which are covered by
three (abstract) configurations: {{t, T, T},{f,t, T},{f.f,t}}.

To build the final AKS representing all sequences but spurious counterexample
o, one replaces in AKS(G) each state 5; by k =| AP5 | states 5! with j € [0..k—1]
and assigns to each of them a label of k variables {vo,...,v,_;} defined such that:
L(5)) = {¥I € [0..j = 1],y = Li(s))vi)sv; = —Li(si) vVl € [j+ 1ok = 1],y = T}.
Each state §/ is connected to the same predecessor and successor states as state 3.
This final AKS presents a number of states in &(| o | X | AP |).

Figure 2.2 shows an example of the negation of a counterexample AKS built from
a counterexample ¢ = s9 — 51 — 5o — s3 — s2. The counterexample consists of
four states with a loop to a previous state. The negation of the counterexample AKS
allows all possible behaviors except the last step in 0. Therefore, the complementary
states of every state in the counterexample are presented and at any step, a state in
o can proceed to these complementary states. The elimination of the last step is
obtained by forcing its predecessor to the complementary states of the last step.
All complementary states then leads to the terminal state, St which represents all
possible behaviors in the future steps.

26 S.H.S. Alwi et al.

2.3.2.3 Reduction of the Negation of the Counterexample AKS

In the AKS generated, the set of configurations associated to the negation of a
counterexample state may be redundant i.e. some configurations are represented
several times in the AKS. Furthermore, all the states in negation part of the AKS
have a unique successor namely the St state. Therefore, in the objective to reduce
the number of states, these counterexample negation states with identical variable
configurations can be merged. The merge definitions to generate the negation of the
counterexample reduced AKS are given below.

Definition 2.9. Merge condition: Let AKS(6) = (AP5,85,805,Ls,R5,F5). s1 and
s, are two counterexample negation states in M: (sy,s7) € S5\ {s7,5 € 6}. s and
s> can be merged iff

Ls(s1) = Ls(s2)
Definition 2.10. Merging action: Let AKS(6) = (AP5,85,805,Ls,R5, F5) and its
reduced AKS, AKS(G)' = (APL,S%,Sh5, L5, R, FL) applying the Definition 2.9.

s’ €8 Y(s1,52) € S\ {s7,5 € 0}, s’ = merge (s1,5) =

hd i%.(sl) = i(—,(sl) = lA‘(;(SAz) A
© V((sp1,51)s (5p2,52)) € R, ((sp1,5"), (52,5")) € R?
® V((Sl,»%l), (S27SS2)) E sz ((Slvssl)a (slassz)) 6 R/Z

Property 2.3. AKS(6)" and AKS(&) are bisimulation-equivalent:
AKS(6) ~ AKS(5)

Proof. Let AKS(6) = (AP5,85,505,L5,R5, F5) and its reduced AKS,

AKS(6) = (APL, S5, 805, L RS FL).

All the initial states in 5’0(, are represented in 5'66 and vice versa. V(s1,s2) €
Rs,3(s),s5) € Ry where Ls(s;) = L5 (s}), and the other way around is also true.
Therefore, AKS(G)" ~ AKS(G). 0

Figure 2.3 demonstrates the gain from the reduction process on the generation
of the negation of the counterexample AKS from the counterexample ¢ in the
previous example. In the Fig.2.3 above, we can see that all the complementary
states have a unique variable configuration and the duplicates no longer present
in the AKS. This simplification technique helps to reduce the size of the system
without having a degradation in terms of property verification as the resulted AKS
is bisimilar to the original one. Even though the gain may seem insignificant at
first sight, the reduction done may be precious when the technique in conducted
on many refinement iterations. Therefore, this reduction technique will be applied
systematically on this method of refinement.

However, removing, at each refinement step, the spurious counterexample only
induces a low convergence. Moreover, in some cases, this strategy may not con-
verge: suppose that all sequences of the form a.b*.c are spurious counterexamples
(here a, b and c represent concrete state configurations). Assume, at a given

2 Efficient Refinement Strategy Exploiting Component Properties 27

N

Outgoing
transition

toS;

Fig. 2.3 An example of a reduced negation of the counterexample AKS, AKS(c)’

refinement step i, a particular counterexample 0; = so — s — ...s, with L(sg) =
a,Vk € [1,n—1],L(sx) = b,L(s,) = ¢. Removing this counterexample does not
prevent from a new spurious counterexample at step i+ 1: ;41 = so — §s1 —
.. .Spt1 With L(so) = a,Vk € [1,n],L(sg) = b,L(sn+1) = ¢. The strategy consisting of
elimination spurious counterexample one by one diverges in this case. Furthermore,
we cannot eliminate all the sequences of the form a.b*.c in a unique refinement step
since we do not a priori know if at least one of these sequences is executable in the
concrete model.

Therefore, from these considerations, we are interested in removing sets of
behaviors encompassing the spurious counterexample while still guaranteeing an
over-approximation of the set of tree-organized behaviors of the concrete model.
The strengthening of the abstraction M; with the addition of AKS of already
verified local CTL properties eliminates sets of behaviors and guarantees the
over-approximation (Property 2.2) but does not guarantee the elimination of the
counterexample. We present in the following section a strategy to select sets of CTL
properties eliminating the spurious counterexample.

2.3.3 Ordering of Properties

We propose a heuristic to order the properties depending on the structure of each
component. In order to do so, the variable dependency of the variables present in
global property has to be analyzed. After this point, we refer to the variables present
in the global property as primary variables.

We observed that the closer a variable is to the primary variable, the higher
influence it has on it. Moreover, a global property often specifies the behavior at the
interface of components. Typically, a global property ensures that a message sent
is always acknowledged or the good target gets the message. This kind of behavior
relates the input-output behaviors of components. We have decided to allocate an

28 S.H.S. Alwi et al.

extra weight for interface variables whereas variables which do not interfere with a
primary variable are weighted 0. Here is how we proceed:

1. Build the structural dependency graph for all primary variables.

2. Compute the depth of all variables in all dependency graphs. Note that a variable
may belong to more than one dependency graph, in that case we consider the
minimum depth.

. Give a weight to each variable (see Algorithm 1).

4. Compute the weight of properties for each component: sum of the property

variables weight.

W

Algorithm 1: Compute weight

Input: G, the set of all dependency graph variable
V, the set of variables
Output: {(v,w)|v € V,w € N}, The set of variables with their weight

1 begin
2 p = max(depth(G))
3 forveV do
4 d = depth(v) ;
5 w=2""4%p;
6 if d == 0 then v is primary variable
7 | w=5%w;
8 end
9 if v € IU O then v is an interface variable
10 | w=3xw
11 end
12 end
13 end

The Algorithm 1 gives weight according to the variable distance to the primary
variable with extra weight for interface variable and primary variable. It is definitely
not an exact pertinence calculation of properties but provides a good indicator of
their possible impact on the global property. After this pre-processing phase, we
have a list of properties ordered according to their pertinence with regards to the
global property.

2.3.3.1 Example

In this example, we have a global property ¢ = A((p = 1)U (g = 1)); which consists
of two primary variables: p and g. As shown in Fig.2.4, the primary variable p
is dependent of three the other variables: x,y and z whereas the primary variable g
is dependent of four variables: 7,s,u and v. The maximum depth of between the two
primary variables dependency graphs is three (g <— r <— u < v). Furthermore, apart
from p and g being the primary variables, we have y,z,s and v which are interface

2 Efficient Refinement Strategy Exploiting Component Properties 29

Component 1 Global Property , #=A(p=1Uq=1)
Y p Primary variables = {p, q}
z
X
+p=filxy)
x =g(z)
Component 2
g a *q =fyns)
| r=gy(u)
. — | u=hv)
u

Fig. 2.4 Example of variable dependency

variables. Let’s assume that we have a set of properties that includes ¢, — @, with
the weight computation algorithm given previously, the property ¢, which consists
of variables p,y and z will therefore obtain the highest total weight and the rest of
the properties will be ordered as follows:

List of ordered component properties:

®a(P.y,2)
(Pb(7S7V)
(Pt(pay)
(pd(qua V)
@e(p,z)
¢r(x,2)
Qo (r,u,v)

A

Here we can see that the top property ¢, only consists of primary variable p,
therefore the highest property in the list containing g will also be selected in the
initial abstraction generation.

Selected properties for the initial abstraction:

L. @u(p,y2)
2. (pb(quvv)

2.3.4 Filtering Properties

The refinement step consists of adding new AKS of properties selected according to
their pertinence. As we would like to ensure the elimination of the counterexample
previously found, we filter out properties that do not have an impact on the
counterexample ¢ thus will not eliminate it. In order to reach this objective, a
Abstract Kripke structure of the counterexample o, K(o) is generated. K(o) is a

30 S.H.S. Alwi et al.

succession of states corresponding to the counterexample path which dissatisfies
the global property @.

Definition 2.11. Let ¢ be a counterexample of length n in M; such that ¢ =
so — 81 = ... = s,—1. The Kripke structure derived from o is 6-tuple K(o;)
(APGaSO'7SOGaLO'aR67FO') SUCh that:

* AP; = AP;: a finite set of atomic propositions which corresponds to the variables
in the abstract model

. SO-Z{S,‘|S,‘€G}U{ST}

* Soo = {so}

. LO-ZL,'UL(ST)Z{T,VP EAPO-}

* Ro = {(sk,5k+1)|(sx = k1) € O3 U{(Sn—1,57)}

e Fs=0

All the properties available for refinement are then model-checked on K (o). If
the property holds then the property will not eliminate the counterexample. Hence
this property is not a good candidate for refinement. Therefore the highest weighted
property not satisfied in K(0) is chosen to be integrated in the next refinement step.
This process is iterated for each refinement step.

Property 2.4. Counterexample eviction

1. If K(o) F ¢ = AKS(¢) will not eliminate ©.
2. If K(o) ¥ ¢ = AKS(¢) will eliminate ©.

Proof. 1. By construction, AKS(¢) simulates all models that verify ¢. Thus the tree
described by K (o) is simulated by AKS(¢), it implies that & is still a possible
path in AKS(9).

2. K(o), where ¢ does not hold, is not simulated by AKS(¢), thus o is not a
possible path in AKS(¢) otherwise AKS(¢@) F~ ¢ that is not feasible due to AKS
definition and the composition with M; with AKS(¢) will eliminate . O

The proposed approach ensures that the refinement excludes the counterexample
and respects the Definition 2.6. We will show in our experiments that first, the time
needed to build an AKS is negligible and secondly the refinement converges rapidly.

2.4 Experimental Results

We have conducted preliminary experiments to test and compare the
performance of our strategy with existing techniques available in VIS. There are
several abstraction-refinement techniques implemented in VIS accessible
via approximate_model_check, iterative_model_check, check_invariant and
incremental_ctl_verification commands. However, among the available techniques,
incremental_ctl_verification is the only one that supports CTL formulas and fairness
constraints which are necessary in our test platforms. It is an automatic abstraction

2 Efficient Refinement Strategy Exploiting Component Properties 31

NODE1

Id Verifier1 }—» Receiverl

NODE 3 Specification [fe— Specification
o) || || (e

Generator g | Sender

Specification ||—» | Specification
) (0cy NODE2

Id Verifier2 }—>» Receiver2

A 4

Specification |}€—| Specification

{ Gy | | (Gy
Fig. 2.5 CAN protocol platform
Table 2.1 Statistics on the VCI-PI and CAN bus platform
Experiment Number of BDD Number of Analysis
platform BDD variables size reachable states time (s)
1 master-1 slave 304 7,207 4.711e+3 6.36
Concrete 2 masters-1 slave 445 24,406 7.71723e+06 352
model 4 masters-1 slave 721 84,118 3.17332¢e+12 2,818.3
4 masters-2 slaves 895 238,990 5.708e +15 68,882.32
VCI-PI Final 1 master-1 slave 197 76 5.03316e+07 0.01
abstract 2 masters-1 slave 301 99 4.12317e+11 0.02
model 4 masters-1 slave 501 147 3.45876e+18 0.03
for ¢; 4 masters-2 slaves 589 167 7.08355e+21 0.04
Final 1 master-1 slave 194 50 2.62144e+07 O
abstract 2 masters-1 slave 298 73 2.14748e+11 0.01
model 4 masters-1 slave 498 121 1.80144e+18 0.02
for ¢, 4 masters-2 slaves 586 141 3.68935¢+21 0.02
CAN bus Concrete model 822 161,730 3.7354e+07 300.12
Final abstract model for ¢3 425 187 1.66005e+12 0.03
Final abstract model for ¢4 425 187 1.66005e+ 12 0.04

4 Computed on a calculation server: 2x Xeon X5650, 72 Go RAM

refinement algorithm which generates an initial conservative abstraction principally
by reducing the size of the latches by a constant factor. If the initial abstraction is
not conclusive, a goal set will then be computed in order to guide the refinement
process [20,21].

We have executed and compared the execution time and the number of refinement
iterations for two examples: VCI-PI platform consisting of Virtual Component
Interface (VCI), a PI-Bus and VCI-PI protocol converter and a simplified version
of a CAN bus platform consisting of three nodes on a CAN bus as shown in
Fig.2.5. Table 2.1 gives the size and the statistics concerning the VCI-PI platform
and CAN bus platform verified. All the values are obtained using the compute_reach

32 S.H.S. Alwi et al.

Table 2.2 Verification Results

Experiment Global Verification Refinement Verification
platform property technique iteration time (s)
Property selection 1 2.2
VCI-PL: o) Incremental 0 6.3
1 master Standard MC - 6.06
- Property selection 0 1.0
1 slave [0 Incremental 562 200.9
Standard MC - 6.13
Property selection 1 2.0
VCI-PL: o) Incremental 0 20.4
2 masters Standard MC - 37.9
- Property selection 0 1.0
1 slave [0 Incremental 74 786.3
Standard MC - 39.4
Property selection 1 2.1
VCI-PL: 01 Incremental 0 261.6
4 masters Standard MC - >1 day
- Property selection 0 1.0
1 slave [0 Incremental 0 263.5
Standard MC - >1 day
Property selection 1 2.2
VCI-PL: o) Incremental N/A >1 day
4 masters Standard MC - >1 day
- Property selection 0 1.1
2 slaves [0 Incremental N/A >1 day
Standard MC - >1 day
Property selection 0 1.02
[Incremental N/A >1 day
CAN Standard MC - 2,645.4
bus Property selection 0 1.01
04 Incremental N/A >1 day
Standard MC - 1,678.1

command with option -v I in VIS except the number of BDD variables, computed
using the print_bdd_stats command. The experiments have been executed on a PC
with an AMD Athlon dual-core processor 4450e and 1.8 GB of RAM memory.

In Table 2.2, we compare the execution time and the number of refinement
between our technique (Prop. Select.), incremental_ctl_verification (Incremental)
and the standard model checking (Standard MC) computed using the model_check
command in VIS (Note: Dynamic variable ordering has been enabled with sift
method). For the VCI-PI platform, the global property ¢, is the type AF((p =
1)« AF(q = 1)) and ¢, is actually a stronger version of the same formula with
AG(AF((p=1)xAF(q=1))) where all requests to write on the PI-Bus will finally
be granted in the future. We have a total of 26 verified components properties to
be selected in the VCI-PI platform. In comparison to ¢, we can see that, a better

2 Efficient Refinement Strategy Exploiting Component Properties 33

set of properties available will result in a better abstraction and less refinement
iterations.

In the case of the CAN bus platform, the global property ¢3 is the type
AG(((p'=1)x (¢ = 1)xAF(r; = 1)) = AF((s1 = 1) *AF(t; = 1))) and ¢y =
AG(((p' =1)x (¢ = 1)xAG(r, = 0)) = AG((s2 = 0) % (1, = 0))). They describe
the correct transmission of generated messages to the receivers. We have at our
disposal 103 verified component properties and after the selection process for the
initial abstraction, 3 selected component properties were sufficient to verify both
global properties without refinement.

Globally, we can see that our technique, for these examples, systematically
computes faster than the other two methods and interestingly in the case where the
size of the platform increases by adding more connected components, in contrary
to the other two methods, our computation time remains stable. This is mainly
due to the fact that for small number of properties, our abstraction is generated
almost instantly and as only pertinent properties are selected, not many refinement
iterations are required in order to complete the verification process. It is also
important to note that the properties tested are simple and we have in our property
selection list the local properties required to satisfy the global property.

2.5 Negation of the Counterexample as a Complementary
Strategy

A well constituted specification is a prerequisite for an efficient refinement strategy
based on property selection technique. However, in practice, we don’t always have
at our disposal a complete specification. Hence, it may be possible that at a particular
refinement iteration, none of the properties available is capable of eliminating
the counterexample. In this case, we propose the negation of the counterexample
technique as a complementary strategy.

Let’s suppose that there are no properties available to refine our CAN Bus
abstract model for the verification of a global property ¢s = A((a = 1)U((a =
0)*xAX((b1 = 1)*(by = 1)))); where by and b, are outputs of the Receiver 1 and 2
respectively and they are set to 1 in the next step after the signal a = 0 is on the bus
which indicates the start of frame. As our current AKS generator is only capable of
generating CT L\ X properties only, the initial abstractions of each component were
built with the aid of the AF operators which allows more satisfaction configurations
than the AX operator.

Therefore, in this example, the negation of the counterexample strategy could
help to eliminate the different configurations that are present in the abstraction.
The first counterexample o] provided by the model checker gives the undesired
configuration where the output b; still remains at O right after @ = 0. Thus, the
negation of the counterexample is applied on this counterexample configuration to
eliminate it.

34 S.H.S. Alwi et al.

Table 2.3 Statistics at each refinement step with the negation of counterexample technique

Iteration Number of BDD Number of Model checking
BDD variables size reachable states result

0 424 199 4.00015e + 09 Mo ¥ os

1 426 199 3.79804e + 09 My ¥ os

2 428 249 3.6633¢ +09 My E ¢s

In the following iteration, the model-checker provides a rather similar config-
uration of undesired behavior with this time the output b, which remains at 0
after a = 0. As previously done, the negation of counterexample is applied on this
counterexample 0,. Finally, after these two refinement iterations, the abstract model
built managed to satisfy the property ¢s. Table 2.3 shows some statistics at each
refinement iteration.

2.6 Conclusion and Future Works

We have presented a new strategy in the abstraction generation and refinement which
is well adapted for compositional embedded systems. This verification technique is
compatible and suits well in the natural development process of complex systems.
Our preliminary experimental results show an interesting performance in terms
of duration of abstraction generation and the number of refinement iteration.
Moreover, this technique enables us to overcome repetitive counterexamples due
to the presence of cycles in the system’s graph.

Nevertheless, in order to function well, this refinement technique requires a well
constituted specification of every components of the concrete model. Furthermore,
it may be possible that none of the properties available is capable of eliminating
the counterexample which is probably due to an incomplete specification or a
counterexample that should be eliminated by the product of local properties.

We have also demonstrated a possible application of the negation of the
counterexample technique as a complementary strategy albeit limited to certain
form of counterexamples only. Indeed, the negation of counterexample technique is
inefficient when dealing with counterexample with a cycle in the prefix (e.g. a.b*.c).

In this case, other refinement techniques such as the identification of a good
set of local properties to be integrated simultaneously should be considered. We
are currently investigating other complementary techniques to overcome these
particular cases. The work of Kroening [22], for example, could also help us in
improving the specification of the model: at the component level, or for groups of
components.

Furthermore, we are also examining a comprehensive new strategy that ex-
ploits the finite-state machines (FSMs) of the components in the verification
process. A procedure to generate properties which are directly derived from the

2 Efficient Refinement Strategy Exploiting Component Properties 35

component’s FSM structure is considered as a solution to overcome the insufficiency
of component properties to be selected for the abstraction generation. These on-
going researches will enrich the existing verification techniques in property based
abstraction generation.

Acknowledgements We thank Neha Agarwal for the implementation of the negation of the
counterexample (without reduction) AKS generator which is the base of the generator with
reduction used in this paper.

References

—

10.

11.

12.

13.

14.

. The VIS Group: VIS: A system for verification and synthesis, In: Alur, R., Henzinger, T.A.

(eds.) Proceedings of the 8th International Conference, CAV 96, New Brunswick. LNCS, vol.
1102, pp. 428-432. Springer, Berlin/Heidelberg (1996)

. Graf, S., Saidi, H.: Construction of abstract state graphs with PVS. In: Grumberg, O. (ed.)

Computer Aided Verification (CAV ’97), Haifa. LNCS, vol. 1254. Springer, London, Springer
Berlin Heidelberg (1997)

. Clarke, E.M., Grumberg, O., Jha, S., Lu, Y., Veith, H.: Counterexample-guided abstraction

refinement. In: CAV’00, Chicago. LNCS (2000)

. Ball, T., Cook, B., Levin, V., Rajamani, S.K.: SLAM and static driver verifier: Technology

transfer of formal methods inside microsoft. In: 4th International Conference on Integrated
Formal Methods, Canterbury, vol. 2999, pp. 1-20. Springer (2004)

. Beyer, D., Henzinger, T.A., Jhala, R., Majumdar, R.: The software model checker blast:

Applications to software engineering. Int. J. Softw. Tools Technol. Trans. 9(5-6), 505-525
(2007)

. Jain, H., Kroening, D., Sharygina, N., Clarke, E.: VCEGAR: Verilog counterexample guided

abstraction refinement. In: TACAS’07, Braga, 2007

. Sharygina, N., Tonetta, S., Tsitovich, A.: An abstraction refinement approach combining

precise and approximated techniques. Int. J. Softw. Tools Technol. Trans. 14, 1-14 (2012)

. Grumberg, O., Long, D.E.: Model checking and modular verification. In: International Confer-

ence on Concurency Theory, Amsterdam, vol. 527, pp. 250-263. Springer, Berlin/Heidelberg
(1991)

. Henzinger, T.A., Qadeer, S., Rajamani, S.K.: You assume, we guarantee: Methodology and

case studies. In: CAV 98, Vancouver, vol. 1427, pp. 440-451. Springer, Berlin/Heidelberg
(1998)

Xie, F., Browne, J.C.: Verified systems by composition from verified components, in ES-
EC/FSE 2003. In: 11th ACM SIGSOFT Symposium on Foundations of Software Engineering
Conference, Helsinki, pp. 227-286. ACM (2003)

Li, J., Sun, X., Xie, F, Song, X.: Component-based abstraction refinement. In: 10th Interna-
tional Conference on Software Reuse (ICSR), Beijing, pp. 39-51. Springer (2008)

Peng, H., Mokhtari, Y., Tahar, S.: Environment synthesis for compositional model checking.
In: ICCD ’02: 20th International Conference on Computer Design, Freiburg, pp. 70-75. IEEE
Computer Society (2002)

Schickel, M., Nimbler, V., Braun, M., Eveking, H.: On consistency and completeness of
property-sets: Exploiting the property-based design process. In: FDL *06: Forum on Speci-
fication and Design Languages, Darmstadt (2006)

Nguyen, M.D., Wedler, M., Stoffel, D., Kunz, W.: Formal hardware/software co-verification
by interval property checking with abstraction. In: Design Automation Conference (DAC’11),
San Diego 2011

36

15.

16.

17.

18.

19.

20.

21.

22.

S.H.S. Alwi et al.

Braunstein, C., Encrenaz, E.: Using CTL formulae as component abstraction in a design
verification flow. In: ACSD, Bratislava, pp. 80-89. IEEE Computer Society (2007)

Bara, A.: Abstraction de Composant pour la Vérification par Model-Checking, Mémoire de
Diplome Universitaire OMP — LIP6-SOC, (2008)

Clarke, E.M., Grumberg, O., Long, D.E.: Model checking and abstraction. ACM Trans.
Program. Lang. Syst. 16(5), 1512—1542 (1994)

Belnap, N.: A useful four-valued logic. In: Modern Uses of Multiple-Valued Logic, pp. 8-37.
Springer, Berlin/Heidelberg (1977)

Braunstein, C.: Conception Incrémentale, Vérification de Composants Matériels et Méthode
d’abstraction pour la Vérification de Systemes Intégrés sur Puce. Ph.D. thesis, Université Pierre
et Marie Curie, LIP6-SOC (2007)

Pardo, S., Hachtel, G.: Incremental CTL model checking using BDD subsetting. In: DAC *98:
35th Design Automation Conference, San Francisco, pp. 457—462. ACM (1998)

Pardo, S., Hachtel, G.: Automatic abstraction technique for propositional mu-Calculus model
checking. In: CAV ’97, Haifa, vol. 1254, pp. 12-23. Springer, (1997)

Purandare, M., Wahl, T., Kroening, D.: Strengthening properties using abstraction refinement.
In: Proceedings of DATE 09, Nice, pp. 1692-1697. ACM (2009)

2 Springer
http://www.springer.com/978-3-319-01417-3

Models, Methods, and Tools for Complex Chip Design
Selected Contributions from FDL 2012

Haase, | (Ed.)

2014, XV, 221 p. 94 illus., 57 illus. in color., Hardcover
ISBN: 978-3-319-01417-3

	2 Efficient Refinement Strategy Exploiting Component Properties in a CEGAR Process
	2.1 Introduction
	2.2 Our Framework
	2.2.1 Concrete System Definition
	2.2.2 Abstraction Definition
	2.2.3 Initial Abstraction

	2.3 Refinement
	2.3.1 Properties of Good Refinement
	2.3.2 Negation of the Counterexample
	2.3.2.1 Step 1: Build the Structure of the AKS
	2.3.2.2 Step 2: Expand State Configurations Representing the Negation of a Concrete Configuration
	2.3.2.3 Reduction of the Negation of the Counterexample AKS

	2.3.3 Ordering of Properties
	2.3.3.1 Example

	2.3.4 Filtering Properties

	2.4 Experimental Results
	2.5 Negation of the Counterexample as a Complementary Strategy
	2.6 Conclusion and Future Works
	References

