
Chapter 3
Modal Interval Extensions

3.1 Introduction

The problem discussed in this chapter is that of obtaining a class of interval func-
tions F W I �.Rk/ ! I �.R/, consistently referring to the continuous functions f

from R
k to R.

In classical interval analysis, an interval extension of a Rk to R continuous func-
tion z D f .x1; : : : ; xk/ is the interval united extension Rf of f . Given an interval
argument X D .X1; : : : ; Xk/ 2 I.Rk/, it is defined as the range of f -values on X

Rf .X1; : : : ; Xk/ D ff .x1; : : : ; xk/ j x1 2 X1; : : : ; xk 2 Xkg
D Œminff .x1; : : : ; xk/ j x1 2 X1; : : : ; xk 2 Xkg;

maxff .x1; : : : ; xk/ j x1 2 X1; : : : ; xk 2 Xkg�;

which can be considered as a “semantic extension” of f , since it admits the logical
interpretations

.8x1 2 X1/ � � � .8xk 2 Xk/ .9z 2 Rf .X1; : : : ; Xk// z D f .x1; : : : ; xk/

and

.8z 2 Rf .X1; : : : ; Xk// .9x1 2 X1/ � � � .9xk 2 Xk/ z D f .x1; : : : ; xk/:

Since the domain of values of a continuous function is generally not easily
computable, an interval syntactic extension fR.X1; : : : ; Xk/ is defined by replacing
the real operators of the real functions f .x1; : : : ; xk/ on R by the homonymous
operators defined on the system .I.R/; I.D//, that is, replacing
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40 3 Modal Interval Extensions

1. their numerical arguments x1; : : : ; xk by the interval arguments X1; : : : ; Xk, and
2. their real arithmetic operators ! by the corresponding interval operations

! which, in the common case of the truncated computations of any actual
arithmetic, must be the outwards directed !R because of the inclusion

X!Y � X!RY D Out.X!Y /:

The crucial relation between both extensions is

Rf .X1; : : : ; Xk/ � fR.X1; : : : ; Xk/;

under the condition that the function fR.X1; : : : ; Xk/ is well defined, i.e., that it does
not imply division by an unspecified interval containing the value zero. Therefore a
syntactic extension fR.X1; : : : ; Xk/ is computable from the bounds of the intervals
X1; : : : ; Xk, and usually represents an overestimation of Rf .X1; : : : ; Xk/.

Example 3.1.1 The united extension of the continuous real function

f .x/ D x

1 C x

to the interval Œ2; 4� is Rf .Œ2; 4�/ D Œ2=3; 4=5�, the range of f in this interval. The
syntactic extension for the same interval is

fR.Œ2; 4�/ D Œ2; 4�

1 C Œ2; 4�
D Œ2=5; 4=3�;

and, in fact, Rf .Œ2; 4�/ D Œ2=3; 4=5� � Œ2=5; 4=3� D fR.Œ2; 4�/.

Syntactic interval functions have the property, fundamental to the whole field of
Interval Analysis, of being “inclusive”, that is, for A1 � B1; : : : ; Ak � Bk , the
relation

fR.A1; : : : ; Ak/ � fR.B1; : : : ; Bk/

holds.
A basic critical fact is that the interval syntactic extension fR of f satisfies only

one kind of interval predicate compatible with outer rounding:

.8x1 2 X1/ � � � .8xk 2 Xk/ .9z 2 Out.fR.X1; : : : ; Xk/// z D f .x1; : : : ; xk/:

In the context of modal intervals, it may be expected, as a starting point, that as
soon as the R-predicate P.x/ results in the modal interval predicate Q.x; X/P.x/,
the relation z D f .x1; : : : ; xk/ must become some kind of interval relation Z D
F.X1; : : : ; Xk/ guaranteeing some sort of .k C 1/-dimensional interval predicate of
the form
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Q1.x1; X1/ : : : Qk.xk; Xk/ Qz.z; Z/ z D f .x1; : : : ; xk/;

where an ordering problem obviously arises since the quantifying prefixes are not
generally commutable.

3.1.1 Poor Computational Extension

To find a more general approach, we scale down the problem of digital compu-
tation to its bare essentials and start by considering the most elementary sort of
computational functions able to get actual information about the ideal connections
established by the continuous real functions f W Rk ! R. To prevent the restrictions
of any extension by set of values due to the limited character of system .I.R/; C; �/,
illustrated in Chap. 1, we will first introduce the definition of a “poor” computational
extension of a continuous real function.

Definition 3.1.1 (Poor computational extension) The function F W Rk ! I.R/

is a poor computational extension of a continuous real function f W Rk ! R if the
existence of F.a/0 implies that f .a/ 2 F.a/0.

These simplest partial computational functions are defined on a subset of R

and have, wherever defined, the two values Sup.F.a/0/ and Inf.F.a/0/, upper and
lower bounds of the analytically defined value f .a/, the value of which the exact
determination is, as a general matter of fact, out of reach for digital processing.

The usefulness of this definition is to induce a more general one for extensions
of the kind F W I �.Rk/ ! I �.R/, as it results from the lemma that follows.

Lemma 3.1.1 (Semantic formulation of a poor computational extension) Let
F W Rk ! I.R/ be a poor computational extension of f , and let f W Rk ! R be
a continuous function. Supposing that F.a/0 2 I.R/ exists, the condition f .a/ 2
F.a/0 is equivalent to

.8X 0 2 I.Rk// ..x 2 X 0/ 2 Pred�.Œa; a�/ ) .z 2 f .X 0// 2 Pred�.Prop.F.a////;

where f .X 0/ is the united extension or domain of values of f on X 0.

Proof This logical formula is equivalent to

.8X 0 2 I.Rk// .a 2 X 0 ) F.a/0 \ f .X 0/ ¤ ;/;

which is equivalent to f .a/ 2 F.a/0 because:

(1) particularizing X 0 to Œa; a�0, becomes

.a 2 Œa; a�0 ) F.a/0 \ f .Œa; a�0/ ¤ ;/ ) f .a/ 2 F.a/0I
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a
f (X ′)

F (a)

F

f

X ′

Fig. 3.1 Poor extension
diagram

(2) for the reverse implication, if f .a/ 2 F.a/0,

.8X 0 2 I.Rk// .a 2 X 0 ) f .a/ 2 f .X 0/ ) F.a/0 \ f .X 0/ ¤ ;/:

�
Figure 3.1 illustrates this proof.

Example 3.1.2 For the function f W R ! R given by f .x/ D x=3, a poor compu-
tational extension can be F W f1g ! I.R/ given by F.1/0 D Œ0:33; 0:34�0. In this
case, a D 1 and f .1/ D 1=3 satisfy f .1/ 2 F.1/0. This relation is equivalent to

.8X 0 2 I.R//.1 2 X 0 ) Œ0:33; 0:34�0 \ f .X 0/ ¤ ;/;

which can be written in the form

.8X 0 2 I.R//.1 2 X 0 ) .9z 2 Œ0:33; 0:34�0/ z 2 f .X 0//

or

.8X 0 2 I.R//..x 2 X 0/ 2 Pred�.Œ1; 1�/ ) .z 2 f .X 0// 2 Pred�.Œ0:33; 0:34�0//:

Now, the equivalent definition for poor computational extensions, made available
by this lemma, can be extended to define logically the “modal interval extensions”
of continuous functions by formally substituting the element Œa; a� by a general
modal interval A 2 I �.Rk/, overcoming the rigidities of the theory of functions of
the ordinary interval analysis which are induced by the set-theoretical domain-of-
values approach.

3.1.2 Modal Interval Extension

In the logical formulation of the poor computational extension of a continuous
function, let us replace the argument Œa; a� and its modal image Prop.F.a/0/ by
the more general argument and image, A and F.A/.
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Definition 3.1.2 (Modal interval extension) If f W Rk ! R is a real continuous
function, then F W I �.Rk/ ! I �.R/ is its modal interval extension, if, wherever
F.A/ exists,

.8X 0 2 I.Rk// ..x 2 X 0/ 2 Pred�.A/ ) .z 2 f .X 0// 2 Pred�.F.A///:

The logical form of the condition is acceptable. It is thus necessary only to
emphasize the properties that make these functions interesting for a computation
by intervals. The first indication of the nature of this definition is that it does not
give a univocal value for each F.A/ which exists, but it gives only a lower limit for
the modal inclusion. Indeed, by Lemma 2.2.13, the condition that F.A/ is a modal
extension of f can be written in the following equivalent form:

.8X 0 2 I.Rk// .Impr.X 0/ � A ) Impr.f .X 0// � F.A//:

There remains the task of uncovering the properties which characterize analyti-
cally and semantically these formally constructed “modal interval extensions”.

3.2 Semantic Functions

We will define the two “semantic” interval functions which play a grounding role in
the theory because they are in close relation with the modal interval extensions of
continuous functions.

Definition 3.2.1 (*-semantic extension) If f is an R
k to R continuous function

and if x D .xp; xi / is the component-splitting corresponding to X D .Xp; X i / 2
I �.Rk/,

f �.X/ D _
xp2X 0

p

^
xi 2X 0

i

Œf .xp; xi /; f .xp; xi /�

D Œ min
xp2X 0

p

max
xi 2X 0

i

f .xp; xi /; max
xp2X 0

p

min
xi 2X 0

i

f .xp; xi /�:

and is called the *-semantic extension of f .

Definition 3.2.2 (**-semantic extension) With the same hypotheses as the previ-
ous definition,

f ��.X/ D ^
xi 2X 0

i

_
xp2X 0

p

Œf .xp; xi /; f .xp; xi /� D

D Œ max
xi 2X 0

i

min
xp2X 0

p

f .xp; xi /; min
xi 2X 0

i

max
xp2X 0

p

f .xp; xi /�:

and is called the **-semantic extension of f .
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Remark 3.2.1 If all the X -components are proper intervals, i.e., X i D ; allowing
for the abuse of language, then

f �.X/ D f ��.X/ D Œminff .x1; : : : ; xk/ j x1 2 X 0
1; : : : ; xk 2 X 0

kg;
maxff .x1; : : : ; xk/ j x1 2 X 0

1; : : : ; xk 2 X 0
kg�;

which corresponds to the interval united extension Rf of the classical interval
analysis, and Mod.f �.X// D 9.

If all the X -components are improper intervals, i.e., Xp D ; allowing for the
abuse of language, then, one has instead

f �.X/ D f ��.X/ D Œmaxff .x1; : : : ; xk/ j x1 2 X 0
1; : : : ; xk 2 X 0

kg;
minff .x1; : : : ; xk/ j x1 2 X 0

1; : : : ; xk 2 X 0
kg�;

with Set.f �.X// D Rf and Mod.f �.X// D 8.

Example 3.2.1 For the continuous real continuous f .x1; x2/ D x2
1 C x2

2 , the com-
putation of the *-semantic and the **-semantic functions for X D .Œ�1; 1�; Œ1; �1�/

yields the following results:

f �.Œ�1; 1�; Œ1; �1�/ D _
x12Œ�1;1�0

^
x22Œ�1;1�0

Œx2
1 C x2

2 ; x2
1 C x2

2 �

D _
x12Œ�1;1�0

Œx2
1 C 1; x2

1� D Œ1; 1�I

f ��.Œ�1; 1�; Œ1; �1�/ D ^
x22Œ�1;1�0

_
x12Œ�1;1�0

Œx2
1 C x2

2 ; x2
1 C x2

2 �

D ^
x22Œ�1;1�0

Œx2
2 ; 1 C x2

2� D Œ1; 1�:

For the continuous real continuous function g.x1; x2/ D .x1 C x2/
2, the corre-

sponding *-semantic and **-semantic functions for X D .Œ�1; 1�; Œ1; �1�/ don’t
have coincident values:

g�.Œ�1; 1�; Œ1; �1�/ D _
x12Œ�1;1�0

^
x22Œ�1;1�0

Œ.x1 C x2/2; .x1 C x2/2�

D _
x12Œ�1;1�0

Œif x1 < 0 then .x1 � 1/2 else .x1 C 1/2; 0�

D Œ1; 0�I
g��.Œ�1; 1�; Œ1; �1�/ D ^

x22Œ�1;1�0
_

x12Œ�1;1�0
Œ.x1 C x2/2; .x1 C x2/2�

D ^
x22Œ�1;1�0

Œ0; if x2 < 0 then .x2 � 1/2 else .x2 C 1/2�

D Œ0; 1�:
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In general, both semantic extensions are out of reach of any direct computation
except for some very simple continuous real functions, as the previous example
may suggest, as unary operator .exp; ln; : : :/ and the arithmetic operators of which
semantic computations, properties and implementation are in Chap. 5.

The case of equality between both extensions characterizes the following
important concept.

Definition 3.2.3 (JM-commutativity) A continuous real function f W Rk ! R is
JM-commutable for A 2 I �.Rk/ if f �.A/ D f ��.A/.

3.2.1 Properties of the Semantic Extensions

The semantic extensions are not independent: there exists a relation of duality.

Theorem 3.2.1 (Duality of the semantic functions) If f is an R
k to R continuous

function and X 2 I �.Rk/,

Dual.f �.X// D f ��.Dual.X//:

Proof From the definitions of f � and f �� and Lemma 2.2.10

Dual.f �.X// D Dual. _
xp2X 0

p

^
xi 2X 0

i

Œf .x/; f .x/�/

D ^
xp2X 0

p

_
xi 2X 0

i

Œf .x/; f .x/� D f ��.Dual.X//:

�

The following result yields the basic relation of inclusion between the semantic
extensions.

Theorem 3.2.2 (Min–max) If f is an R
k to R continuous function, and .X 0

1; X 0
2/

is any component splitting of X 0 2 I.Rk/, then

.8.x1; x2/ 2 .X 0
1; X 0

2// max
x12X 0

1

min
x22X 0

2

f .x1; x2/ � min
x22X 0

2

max
x12X 0

1

f .x1; x2/

and

max
x12X 0

1

min
x22X 0

2

f .x1; x2/ � f .x1m; x2M / � min
x22X 0

2

max
x12X 0

1

f .x1; x2/;

where x1m is a point on which the function minx22X 0

2
f .x1; x2/ reaches its

maximum and x2M is a point on which the function maxx12X 0

1
f .x1; x2/ reaches

its minimum.
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Proof The first inequality is true since

.8x1 2 X 0
1/ min

x22X 0

2

f .x1; x2/ � f .x1; x2/

.8x2 2 X 0
2/ max

x12X 0

1

f .x1; x2/ � f .x1; x2/

For the second inequality, defining

fm.x0
1/ D min

x22X 0

2

f .x0
1; x2/;

fM .x0
2/ D max

x12X 0

1

f .x1; x0
2/

it follows that

.8x0
1 2 X 0

1/ .8x0
2 2 X 0

2/ .fm.x0
1/ � f .x0

1; x0
2/ � fM .x0

2//:

�

Remark 3.2.2 Since all the values fm.x0
1/ are less than or equal to all the values of

fM .x0
2/, and the functions fm and fM are continuous, the sets F 0

m D ffm.x0
1/ j x0

1 2
X 0

1g and F 0
M D ffM .x0

2/ j x0
2 2 X 0

2g are intervals such that Sup.F 0
m/ � Inf.F 0

M /,
as is partially stated by this theorem.

Next, firstly, the inclusion relation between f �.X/ and f ��.X/ will be shown:

Theorem 3.2.3 (Inclusion of f � in f ��) If f is an R
k to R continuous real

function and X 2 I �.Rk/, then

f �.X/ � f ��.X/:

Proof

f �.X/ D _
xp2X 0

p

^
xi 2X 0

i

Œf .xp; xi /; f .xp; xi /�

D Œ min
xp2X 0

p

max
xi 2X 0

i

f .xp; xi /; max
xp2X 0

p

min
xi 2X 0

i

f .xp; xi /�

� Œ max
xi 2X 0

i

min
xp2X 0

p

f .xp; xi /; min
xi 2X 0

i

max
xp2X 0

p

f .xp; xi /�

D ^
xi 2X 0

i

_
xp2X 0

p

Œf .xp; xi /; f .xp; xi /�

D f ��.X/:

�

Secondly, there follows the �-monotonicity of f � and f ��.
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Lemma 3.2.1 For X 2 I �.R/ and any R to R continuous functions F1; F2

F1.x/ � F2.x/ )
.̋x;X/

F1.x/ �
.̋x;X/

F2.x/:

Proof In agreement with the Definition 2.2.17 of the meet–join operator,

a) If X is a proper interval,

.̋x;X/
F1.x/ D _

x2X 0

F1.x/

D Œmin
x2X 0

Inf.F1.x//; max
x2X 0

Sup.F1.x//�

� Œmin
x2X 0

Inf.F2.x//; max
x2X 0

Sup.F2.x//�

D _
x2X 0

F2.x/

D
.̋x;X/

F2.x/:

b) A dual proof is valid if X is an improper interval.

Lemma 3.2.2 For X1; X2 2 I �.R/ and F W R ! I �.R/,

X1 � X2 )
.̋x;X1/

F .x/ �
.̋x;X2/

F .x/:

Proof

a) If X1 is a proper interval,

.̋x;X1/
F .x/ D _

x2X 0

1

F .x/ D Œmin
x2X 0

1

Inf.F.x//; max
x2X 0

1

Sup.F.x//�;

a1) if X2 is a proper interval, then X 0
1 � X 0

2 and therefore

Œmin
x2X 0

1

Inf.F.x//; max
x2X 0

1

Sup.F.x//�

� Œmin
x2X 0

2

Inf.F.x//; max
x2X 0

2

Sup.F.x//�

D _
x2X 0

2

F .x/

D
.̋x;X2/

F .x/;
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a2) if X2 is an improper interval, then X 0
1 D X 0

2 D fag and ˝
.x;Œa;a�/

reduces to the

identity operator.

b) The proof is completed by a similar reasoning if X1 is an improper interval, and
by a two step process through a point x0 2 X 0

1 \ X 0
2 for the case of X1 improper

and X2 proper. �

Lemma 3.2.3 For X1; X2 2 I �.R/ and F1; F2 W R ! I �.R/,

.X1 � X2; F1.x/ � F2.x// )
.̋x;X1/

F1.x/ �
.̋x;X2/

F2.x/:

Proof From Lemmata 3.2.1 and 3.2.2,

.̋x;X1/
F1.x/ �

.̋x;X2/
F1.x/ �

.̋x;X2/
F2.x/:

�

Theorem 3.2.4 (Inclusivity of the semantic extensions) If X ; Y 2 I �.Rk/ and
f from R

k to R is continuous,

X � Y ) .f �.X / � f �.Y /; f ��.X/ � f ��.Y //:

Proof From the previous lemma,

f �.X/

f ��.X/

�
D ˝

.x1;X1/
� � � ˝

.xk;Xk/
Œf .x1; � � � ; xk/; f .x1; � � � ; xk/�

� ˝
.x1;Y1/

� � � ˝
.xk;Yk /

Œf .x1; � � � ; xk/; f .x1; � � � ; xk/� D
�

f �.Y /

f ��.Y /

�

3.2.2 Characterization of JM -Commutativity

Next the case f �.X/ D f ��.X/ will be characterized, when X is not uni-modal.
The main role in this characterization is played by the saddle-points of the function
f .

Definition 3.2.4 (Saddle-points set) Let .X 0
1; X 0

2/ D X 0 be a component splitting
of X 0 2 I.Rk/, and f be a continuous function from R

k to R. The set of saddle
points of f in X 0 is

SDP.f; X 0
1; X 0

2/ D f.x1m; x2M / j .8x1 2 X 0
1/.8x2 2 X 0

2/ .f .x1m; x2/

� f .x1m; x2M / � f .x1; x2M //g:
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0
y x

X2́

X1́

Fig. 3.2 Saddle-point

Figure 3.2 illustrates this definition.

Definition 3.2.5 (Saddle value). Let .X 0
1; X 0

2/ D X 0 be a component splitting of
X 0 2 I.Rk/, and f be a continuous function from R

k to R. The set of saddle values
of f in X 0 is

SDV.f; X 0
1; X 0

2/ D .x1m; x2M /

if .SDP.f; X 0
1; X 0

2/ 6D ; and .x1m; x2M / 2 SDP.f; X 0
1; X 0

2//. Otherwise, it is unde-
fined.

A well known property of saddle points is in the next lemma.

Lemma 3.2.4 If .x1m; x2M / and .x0
1m; x0

2M / are two saddle points of f in
.X 0

1; X 0
2/, then .x1m; x0

2M / and .x0
1m; x2M / are also saddle points. Moreover,

f .x1m; x2M / D f .x1m; x0
2M / D f .x0

1m; x2M / D f .x0
1m; x0

2M /

Proof For any x1 2 X 0
1 and x2 2 X 0

2 the inequalities

f .x1m; x2/ � f .x1m; x2M / � f .x1; x2M /

f .x0
1m; x2/ � f .x0

1m; x0
2M / � f .x1; x0

2M /

are true. So, particularizing the first one to x0
1m and x0

2M and the second one to x1m

and x2M ,

f .x0
1m; x2M / � f .x0

1m; x0
2M / � f .x1m; x0

2M / � f .x1m; x2M / � f .x0
1m; x2M /
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which implies the result. Moreover

f .x0
1m; x2M / D f .x1m; x2M / � f .x1; x2M /

and

f .x0
1m; x2/ � f .x0

1m; x0
2M / D f .x0

1m; x2M /

imply

f .x0
1m; x2/ � f .x0

1m; x2M / � f .x1; x2M /:

Therefore .x0
1m; x2M / is a saddle point. Similarly for .x1m; x0

2M /. �

In accordance with this result, the set of saddle values of f in .X 0
1; X 0

2/ is either
empty or contains a unique point.

Lemma 3.2.5 In the context of the previous definition, if there exists a saddle point
.x1m; x2M / of f in X 0,

SDV.f; X 0
1; X 0

2/ D f .x1m; x2M /

D min
x12X 0

1

max
x22X 0

2

f .x1; x2/ D max
x22X 0

2

min
x12X 0

1

f .x1; x2/:

Proof From

min
x12X 0

1

max
x22X 0

2

f .x1; x2/ � max
x22X 0

2

f .x1m; x2/ � f .x1m; x2M /

� min
x12X 0

1

f .x1; x2M / � max
x22X 0

2

min
x12X 0

1

f .x1; x2/

and Theorem 3.2.2 which closes the �-chain. �
Theorem 3.2.5 (JM-commutativity) For a given X 2 I �.Rk/, the joint validity of
SDP.f; X 0

p; X 0
i / ¤ ;, SDP.f; X 0

i ; X 0
p/ ¤ ; is equivalent to f �.X/ D f ��.X/;

in this case,

f �.X / D f ��.X/ D ŒSDV.f; X 0
p; X 0

i /; SDV.f; X 0
i ; X 0

p/�:

Proof As

SDV.f; X 0
p; X 0

i / D min
xp2X 0

p

max
xi 2X 0

i

f .xp; xi / D max
xi 2X 0

i

min
xp2X 0

p

f .xp; xi /;

SDV.f; X 0
i ; X 0

p/ D min
xi 2X 0

i

max
xp2X 0

p

f .xp; xi / D max
xp2X 0

p

min
xi 2X 0

i

f .xp; xi /;
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f .x1; x2/ D x2

1 C x2
2 in

X 0 D .Œ�1; 1�0; Œ0; 2�0/

then

f �.X/ D _
xp2X 0

p

^
xi 2X 0

i

Œf .xp; xi /; f .xp; xi /�

D Œ min
xp2X 0

p

max
xi 2X 0

i

f .xp; xi /; max
xp2X 0

p

min
xi 2X 0

i

f .xp; xi /�

D Œ max
xi 2X 0

i

min
xp2X 0

p

f .xp; xi /; min
xi ;X

0

i

max
xp2X 0

p

f .xp; xi /�

D ^
xi 2X 0

i

_
xp2X 0

p

Œf .xp; xi /; f .xp; xi /� D f ��.X/:

�

Remark 3.2.3 The JM-commutativity of a function f implies the applicability of
one of the two semantic theorems, the direct or its dual. Which one will depend only
on the truncation’s sense, outer or inner, of the computation of f �.

Example 3.2.2 For the continuous real function f .x1; x2/ D x2
1 Cx2

2 the *-semantic
and **-semantic extensions for X D .Œ�1; 1�; Œ2; 0�/ (see Fig. 3.3) are
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f .x1; x2/ D x2

1 C x2
2 in

X 0 D .Œ�1; 1�0; Œ�1; 1�0/

f �.Œ�1; 1�; Œ2; 0�/ D _
x12Œ�1;1�0

^
x22Œ0;2�0

Œx2
1 C x2

2 ; x2
1 C x2

2 �

D _
x12Œ�1;1�0

Œx2
1 C 4; x2

1� D Œ4; 1�;

f ��.Œ�1; 1�; Œ2; 0�/ D ^
x22Œ0;2�0

_
x12Œ�1;1�0

Œx2
1 C x2

2 ; x2
1 C x2

2 �

D ^
x22Œ0;2�0

Œx2
2 ; x2

2 C 1� D Œ4; 1�

and

SDP.f; X 0
p; X 0

i / D SDP.f; Œ�1; 1�0; Œ0; 2�0/ D f.0; 2/g
SDV.f; X 0

p; X 0
i / D SDV.f; Œ�1; 1�0; Œ0; 2�0/ D 4

SDP.f; X 0
i ; X 0

p/ D SDP.f; Œ0; 2�0; Œ�1; 1�0/ D f.1; 0/; .�1; 0/g
SDV.f; X 0

i ; X 0
p/ D SDV.f; Œ0; 2�0; Œ�1; 1�0/ D 1:

For the same function f .x1; x2/ D x2
1 C x2

2 , the *-semantic and **-semantic
extensions for X D .Œ�1; 1�; Œ1; �1�/ (see Fig. 3.4) are
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f �.Œ�1; 1�; Œ1; �1�/ D _
x12Œ�1;1�0

^
x22Œ�1;1�0

Œx2
1 C x2

2; x2
1 C x2

2�

D _
x12Œ�1;1�0

Œx2
1 C 1; x2

1 � D Œ1; 1�;

f ��.Œ�1; 1�; Œ1; �1�/ D ^
x22Œ�1;1�0

_
x12Œ�1;1�0

Œx2
1 C x2

2; x2
1 C x2

2�

D ^
x22Œ�1;1�0

Œx2
2 ; x2

2 C 1� D Œ1; 1�

and

SDP.f; X 0
p; X 0

i / D SDP.f; Œ�1; 1�0; Œ�1; 1�0/ D f.0; 1/; .0; �1/g
SDV.f; X 0

p; X 0
i / D SDV.f; Œ�1; 1�0; Œ�1; 1�0/ D 1

SDP.f; X 0
i ; X 0

p/ D SDP.f; Œ�1; 1�0; Œ�1; 1�0/ D f.�1; 0/; .1; 0/g
SDV.f; X 0

i ; X 0
p/ D SDV.f; Œ�1; 1�0; Œ�1; 1�0/ D 1:

3.3 Semantic Theorems

The values of the extensions f � or f �� may not yield, without further thought,
much clear meaning about the values of the real f on its domain. Two key theorems
reverse this misimpression, uncovering completely the meaning of the interval
results f � and f �� and characterizing them as the key referents for the semantic
interval extensions previously defined in logical terms.

Theorem 3.3.1 (*-semantic theorem) Given a continuous real function f W Rk

! R and a modal vector A 2 I �.Rk/, whenever F.A/ 2 I �.R/ exists, we have
that the following are equivalent propositions:

a) f �.A/ � F.A/,
b) .8X 0 2 I.Rk// ..x 2 X 0/ 2 Pred�.A/ ) .z 2 f .X 0// 2 Pred�.F.A///,
c) .8ap 2 A0

p/ Q.z; F .A// .9ai 2 A0
i / z D f .ap; ai /

Proof If A1; : : : ; Ap are the proper components of A and ApC1; : : : ; Ak the
improper ones, then

Impr.f .ap; A0
i // D Dual.f �.ap; A0

i //

D Dual. _
apC12A0

pC1

: : : _
ak2A0

k

Œf .a1; : : : ; ap; apC1; : : : ; ak/;

f .a1; : : : ; ap; apC1; : : : ; ak/�/
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D ^
apC12A0

pC1

: : : ^
ak2A0

k

Œf .a1; : : : ; ap; apC1; : : : ; ak/;

f .a1; : : : ; ap; apC1; : : : ; ak/�

D f �.ap; Ai /:

Therefore, (a) implies (b):

.8X 0 2 I.Rk/ .x 2 X 0/ 2 Pred�.A/

, Impr.X 0/ � A

, .9ap 2 A0
p/ .ap 2 X 0

1; X 0
2 � A0

i /

==..X1; X 2/ is the components’ splitting corresponding to .Ap; Ai /:

) .9ap 2 A0
p/ f .X 0

1; X 0
2/ � f .ap; A0

i /

==f .X 0
1; X 0

2/ orf .X 0/ designates the united extension of f on X 0:

, .9ap 2 A0
p/ Impr.f .X 0// � f �.ap; Ai /

) Impr.f .X 0// � f �.Ap; Ai /

) Impr.f .X 0// � F.A/

==see the hypothesis a):

, .z 2 f .X 0// 2 Pred�.F.A///:

(b) implies (a): Let ap be any point of A0
p and X 0 the interval .ap; A0

i /,

.8ap 2 A0
p/ .x 2 .ap; A0

i / 2 Pred�.A//

) .8ap 2 A0
p/ .z 2 f .ap; A0

i // 2 Pred�.F.A//

==Particularization of the hypothesis b):

, .8ap 2 A0
p/ Impr.f .ap; A0

i // � F.A/

, .8ap 2 A0
p/ f �.ap; Ai / � F.A/

, f �.Ap; Ai / � F.A/:

(a) is equivalent to (c):

f �.A/ � F.A/

, .8ap 2 A0
p/ f �.ap; Ai / � F.A/

, .8ap 2 A0
p/ .z 2 f .ap; A0

i // 2 Pred�.F.A//
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, .8ap 2 A0
p/ Q.z; F .A// z 2 f .ap; A0

i /

, .8ap 2 A0
p/ Q.z; F .A// .9ai 2 A0

i / z D f .ap; ai /:

�
Remark 3.3.1 The *-semantic theorem allows interpreting universal intervals
as “regulating or feedback ranges”, and existential intervals as “fluctuation or
autonomous ranges” for the system consisting of the interval data and result
.Ap; Ai ; F .A//, and the analytical connection z D f .ap; ai /.

Example 3.3.1 For the continuous real function f .x; y/ D x C y, from the defini-
tion of f �,

f �.Œx1; x2�; Œy1; y2�/ D ˝
.x;Œx1;x2�/

˝
.y;Œy1;y2�/

Œx C y; x C y� D Œx1 C y1; x2 C y2�:

as will be proved in Sect. 5.3.1. For X D Œ1; 2� and Y D Œ2; 3� and since the result
is Z D Œ3; 5�, we may write Œ1; 2� C Œ2; 3� D Œ3; 5�, with the meaning

.8x 2 Œ1; 2�0/ .8y 2 Œ2; 3�0/ .9z 2 Œ3; 5�0/ x C y D z:

Similarly, for X D Œ1; 2� and Y D Œ4; 1� the result is Z D Œ1; 2� C Œ4; 1� D Œ5; 3�

which means, in this case,

.8x 2 Œ1; 2�0/ .8z 2 Œ3; 5�0/ .9y 2 Œ1; 4�0/ x C y D z:

And so on, for X D Œ2; 1� and Y D Œ1; 4� the result is Z D Œ2; 1� C Œ1; 4� D Œ3; 5�,
which means

.8y 2 Œ1; 4�0/ .9x 2 Œ1; 2�0/ .9z 2 Œ3; 5�0/ x C y D zI

for X D Œ2; 1� and Y D Œ3; 2� the result is Z D Œ2; 1� C Œ3; 2� D Œ5; 3� with the
interpretation

.8z 2 Œ3; 5�0/ .9x 2 Œ1; 2�0/ .9y 2 Œ2; 3�0/ x C y D z:

Moreover, these interval statements (or interpretations of the modal functional
relation f �.X; Y / D Z) are robust to “modal outer rounding” of the result, as
is shown for example in the replacement of the Z-value Œ3; 5� by Œ2:9; 5:1� � Œ3; 5�,
or of Œ5; 3� by Œ4:9; 3:1� � Œ5; 3�, the latter being equivalent to a set-theoretical inner
rounding of Œ3; 5�0.

Example 3.3.2 Let us apply the result about the function f .x; y/ D x C y to a
naturalistic context. Suppose we have two cable reels of lengths a D 10 and b D
20 units. When connected, they can cover an overall length c D 30. This most
elementary situation can be expressed for all that computationally matters by the
algebraic expression a C b D c.
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Consider the parallel but more realistic interval-situation where the first reel of
cable has a length a known only to lie in a range bounded by the interval A0 D
Œ10; 20�0, i.e., a 2 Œ10; 20�0; about the second reel we know that b 2 B 0 D Œ10; 25�0.
Let us consider the connection between both reels and let us apply the *-Semantic
Theorem 3.3.1 for f � restricted to the function of addition f .a; b/ D a C b.

Case 1: Œ10; 20� C Œ25; 10� D Œ35; 30� means

.8a 2 Œ10; 20�0/ .8c 2 Œ30; 35�0/ .9b 2 Œ10; 25�0/ c D a C b

that is, a determined length of a wider regulating interval Œ25; 10� can be selected
to get some, in principle, unknown but determinable length c lying within the
improper interval C D Œ35; 30�, in spite of the value a belonging to the proper
operand A D Œ10; 20� being understood as coming out of some general random
selection process.
Case 2: Œ10; 20� C Œ10; 10� D Œ20; 30�,

Œ10; 20� C Œ17; 17� D Œ27; 37�,
Œ10; 20� C Œ25; 25� D Œ35; 45�,

the variable b taking fixed values 10, 17 or 25 in the interval-set B 0 D Œ10; 25�0,
the indeterminacy of A D Œ10; 20� is carried to the interval C by the relation
c D a C b so that the value of c will range randomly and in parallel with a

on one of the intervals Œ20; 30�, Œ27; 37� or Œ35; 45�. The quantified statement (for
example for the first equality) is, if b is bounded to the only value of the point
interval Œ10; 10�,

.8a 2 Œ10; 20�0/ .9c 2 Œ20; 30�0/ c D a C 10:

Case 3: Œ10; 20� C Œ10; 25� D Œ20; 45� means

.8a 2 Œ10; 20�0/ .8b 2 Œ10; 25�0/ .9c 2 Œ20; 45�0/ c D a C b;

so that c will show the joint full indeterminacy coming from a and b.
Case 4: Œ20; 10� C Œ25; 10� D Œ45; 20� will be interpreted by

.8c 2 Œ20; 45�0/ .9a 2 Œ10; 20�0/ .9b 2 Œ10; 25�0/ c D a C b:

Case 5: Œ10; 20� C Œ20; 15� D Œ30; 35� means

.8a 2 Œ10; 20�0/ .9c 2 Œ30; 35�0/ .9b 2 Œ15; 20�0/ c D a C b

that is, with the same autonomous interval A D Œ10; 20� and a narrower
regulating interval B D Œ20; 15�, a determined length of b 2 B 0 D Œ15; 20�0
should be selected (a regulation operation) just to get some length c lying within
the domain of the proper interval C D Œ30; 35�0.
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A dual feedback semantics for proper and improper modal intervals is established
by the following Dual Semantic theorem.

Theorem 3.3.2 (**-semantic theorem) Given a continuous real functions f W Rk

! R and a modal vector A 2 I �.Rk/, whenever F.A/ 2 I �.R/ exists, we have
that the following are equivalent propositions:

a) f ��.A/ � F.A/,
b) .8X 0 2 I.Rk// ..x … X 0/ 2 Copred�.A/ ) .z … f .X 0// 2 Copred�.F.A///,
c) .8ai 2 A0

i / Q.z; Dual.F.A/// .9ap 2 A0
p/ z D f .ap; ai /.

Proof From the definitions of f �.X/ and f ��.X/ we obtain

Dual.f �.X// D f ��.Dual.X//:

Applying Theorem 3.3.1 to f �.Dual.A// � Dual.F.A//, Theorem 3.3.2 follows.
�

Example 3.3.3 For the function f .x; y/ D xy and X D Œ�1; 2�, Y D Œ5; 3� the
values of f � and f �� are f �.Œ�1; 2�; Œ5; 3�/ D f ��.Œ�1; 2�; Œ5; 3�/ D Œ�3; 6� (see
Chap. 5). Then, in accordance with both semantic theorems,

.8x 2 Œ�1; 2�0/ .9z 2 Œ�3; 6�0/ .9y 2 Œ3; 5�0/ z D xy;

.8y 2 Œ3; 5�0/ .8z 2 Œ�3; 6�0/ .9x 2 Œ�1; 2�0/ z D xy:

Remark 3.3.2 The Semantic Theorems show that:

• The semantic decision to apply the *-semantic theorem or the **-semantic
theorem is made when one of the modal roundings, outer or inner, is selected.

• The functions f �.X/ and f ��.X/ are semantically optimal for each semantic
theorem.

• The effective computation of a modal extension F.A/ is not indicated by these
two theorems which give only modal bounds, f �.X/ or f ��.X/ according to
the chosen rounding, to any modal extension F.A/.

Example 3.3.4 The solution of the equation Œ3; 7� � X D Œ4; 6� is (see Chap. 5)

X D Œ4; 6�=DualŒ3; 7� D Œ4; 6�=Œ7; 3� D Œ4=3; 6=7�:

As an inner rounding of X is Œ1:334; 0:857�, then

Œ3; 7� � Œ1:334; 0:857� � Œ4; 6�

and the *-semantic theorem gives a meaning to this result

.8a 2 Œ3; 7�0/.9b 2 Œ4; 6�0/.9x 2 Œ1:334; 0:857�0/ ax D b:
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Fig. 3.5 Gas containers

The interpretation of the proper and improper intervals provided by the Semantic
Theorems opens a wide field of technical applications for the theory of modal
intervals, as the following suggestive example illustrates.

Example 3.3.5 Let us consider the volume v of a gas container, of which the
temperature t takes values inside certain intervals. Assuming the validity of the
equation

v D kt=p;

where k is the ideal gas constant, let us suppose the following intervals of variation

k 2 K 0 D Œ0:00366; 0:00367�0 ; t 2 T 0 D Œ263; 283�0 ; p 2 P 0 D Œ0:99; 1:01�0:

The problem is to determine the volume, keeping the pressure p within certain pre-
established bounds, that is

.8k 2 Œ0:00366; 0:00367�0/ .8t 2 Œ263; 283�0/ Q.v; V / .9p 2 Œ0:99; 1:01�0/ v D kt=p:

This semantic is equivalent to the interval inclusion

v�.K; T; P / � V

with K and T proper intervals and P an improper one. Computing v�, the result is

v�.Œ0:00366; 0:00367�; Œ263; 283�; Œ1:01; 0:99�/ D Œ0:97 : : : ; 1:02 : : :� � Œ0:97; 1:03�

which means that for every value of k and t there exists a volume v between 0.97 and
1.03, depending on k and t , which makes the pressure within the desired limits. The
container is to be built with a feedback valve to allow its volume to be regulated
within the computed bounds, to keep the stated conditions, as the left graph of
Fig. 3.5 illustrates.
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Allowing the pressure to vary within the domain P 0 D Œ0:9; 1:1�0, the resulting
interval for the volume is

v�.Œ0:00366; 0:00367�; Œ263; 283�; Œ1:1; 0:9�/ D Œ1:06 : : : ; 0:94 : : :� � Œ1:06; 0:95�:

In accordance with the *-semantic theorem, this result means that for every k and t

and every volume v between 0.95 and 1.06, the pressure falls within the limits. The
container can be built without any feedback valve because, for any volume between
the bounds, the pressure is inside the stated conditions, as the right graph of Fig. 3.5
illustrates.

3.4 Syntactic Functions

The two applications of the meet–join operators to a continuous function f from
R

k to R, define the two semantic extensions f � and f ��. From now on only real
continuous functions with syntactic tree will be considered, so the existence of a
syntactic tree for any function f is assumed and not explicitly repeated.

Looking at a syntactic tree of the continuous real function f , where the nodes
are the operators, the leaves are the variables, and the branches define the domain
of each operator, f can also be operationally extended to a syntactical function fR
from I �.Rk/ to I �.R/, by using the computational program implicitly defined by
the syntactic tree of the expression defining the function.

3.4.1 Syntactic Extensions

Definition 3.4.1 (Modal syntactic *-extension) The function fR� from I �.Rk/ to
I �.R/, called the Modal syntactic *-extension of f , is defined by the computational
program indicated by a syntactic tree of the real function f from R

k to R, when the
real operators are transformed into their *-semantic extensions.

Definition 3.4.2 (Modal syntactic **-extension) The function fR��, called the
Modal syntactic **-extension of f , is defined similarly to fR�, but with the operators
transformed into their **-semantic extensions.

Example 3.4.1 For the continuous real function f .x1; x2/ D x1x2 Cg.x1; x2/, with
the operator g.x1; x2/ D .x1 C x2/2, syntactic trees of f , fR� and fR�� are

x1 x2 x1 x2 X1 X2 X1 X2 X1 X2 X1 X2

n = n = n = n = n = n =

. g .:/� g� .:/�� g��
n = n = n =

C .C/� .C/��
j j j

f fR� fR��
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If X1 D Œ�1; 1�, X2 D Œ1; �1�, fR� and fR�� are computed as follows. For the
x1x2 operator:

�-extension W _
x12Œ�1;1�0

^
x22Œ�1;1�0

Œx1x2; x1x2� D Œ0; 0�;

� � -extension W ^
x22Œ�1;1�0

_
x12Œ�1;1�0

Œx1x2; x1x2� D Œ0; 0�:

For the g.x1; x2/ operator:

�-extension W _
x12Œ�1;1�0

^
x22Œ�1;1�0

Œ.x1 C x2/2; .x1 C x2/
2� D Œ1; 0�;

� � -extension W ^
x22Œ�1;1�0

_
x12Œ�1;1�0

Œ.x1 C x2/2; .x1 C x2/
2� D Œ0; 1�:

Therefore,

fR�.Œ�1; 1�; Œ1; �1�/ D _
y12Œ0;0�0

^
y22Œ0;1�0

Œy1 C y2; y1 C y2� D Œ1; 0�;

fR��.Œ�1; 1�; Œ1; �1�/ D _
y12Œ0;0�0

_
y22Œ0;1�0

Œy1 C y2; y1 C y2� D Œ0; 1�:

Lemma 3.4.1 (Duality relation)

Dual.fR�.X// D fR��.Dual.X//:

Proof If � is the computational program indicated by a syntactic tree of f and wi

are the operators, then

Dual.fR�.X// D Dual.�.w�
i ; X// D �.w��

i ; Dual.X// D fR��.Dual.X//:

�

Definition 3.4.3 (Modal syntactic operator) A modal syntactic operator is any
continuous function f from R

k to R that is JM-commutable.

Definition 3.4.4 (Modal syntactic function) A modal syntactic function fR is a
function defined similarly to fR� or fR��, but with all of its operators being JM-
commutable, that is, modal syntactic operators.

This definition will extend considerably the framework of the four rational
operators of real analysis fC; �; �; =g, since the constructive aspect which supports
the four rational operators loses its interest within the numerical context where,
obviously, all the operators are calculated with controlled deviations up to a certain
degree.

A modal syntactic function will be, consequently, any function with the form of
a continuous real function in which all its operators are modal syntactic operators,
and where the functional correspondence Arguments ! Values is obtained by the
computational program indicated by the syntactic tree of the function.
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Later results will indicate the considerable repertoire of modal syntactic func-
tions: Abs.x/, power.x; n/, loga.x/, root.x; n/ are modal syntactic operators,
continuous and unary, and consequently possible nodes of the syntactic tree of a
modal syntactic function.

At this stage, it is necessary to fix some notations to make easier the discussion
of the problems presented by modal syntactic functions:

1. For a function f the symbols f � and f �� indicate the semantic functions f � W
I �.Rk/ ! I �.R/ and f �� W I �.Rk/ ! I �.R/ defined by the correspondences
X ! f �.X/ and X ! f ��.X/, which do not depend on any syntactic tree
of f .

2. fR.x/ and fR.X/ indicate the functions fR W Rk ! R and fR W I �.Rk/ ! I �.R/

established by the computational program indicated by the syntactic tree with
which these functions are indicated, where fR.X/ exists when the operators of
the syntactic tree of f are modal syntactic and the computation of fR.Prop.X//

does not include any division by intervals containing zero.
3. Contrary to the equality f .x/ D fR.x/ on R, not only do the equalities between

f �.X/, f ��.X/ and fR.X/ not hold in general, but the forms of functions
which are equivalent on R, say f1 and f2, in the sense f1R.x/ D f2R.x/, do
not necessarily maintain this same equality on I �.R/.

Example 3.4.2 The expressions

f1.x/ D 1

1 � x
C 1

1 C x

f2.x/ D 2

1 � x2

define the same continuous real function, for x > 1. Nevertheless, their syntactic
extensions to the interval X D Œ2; 3� are

f1R.Œ2; 3�/ D 1

1 � Œ2; 3�
C 1

1 C Œ2; 3�
D Œ�3=4; �1=6�

f2R.Œ2; 3�/ D 2

1 � Œ2; 3�2
D Œ�2=3; �1=4�;

which are different.

Theorem 3.4.1 (Inclusivity of the modal syntactic functions) The modal syntac-
tic extensions fR� and fR�� (fR if it is the case) of a continuous real function f from
R

k to R, are inclusion-isotonic.

Proof If X � Y , � is a syntactic tree of f and wi are its operators, for any wi the
implication X � Y ) wi .X/ � wi .Y / holds, and therefore

fR�.X/ D �.w�
i ; X/ � �.w�

i ; Y / D fR�.Y /:

The same reasoning holds for fR��. �
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3.4.2 Modal Syntactic Operators

The definition of modal syntactic operator extends the list of the real operators. Now,
let us identify the most important classes of modal syntactic operators which will be
the best interval operators for the syntactic tree of a modal syntactic extension.

Theorem 3.4.2 (One-variable operators) Every one-variable continuous function
is JM-commutable, and therefore a modal syntactic operator.

Proof There is no commutation problem between the meet and join operations. �

Remark 3.4.1 The interesting operators are the monotonic operators or other easily
programable ones like abs.x/, power.x; n/, log.x/ or root.x; n/ described in
Chap. 5.

For the JM-commutativity of operators with two or more variables, the following
definitions play an important role.

Definition 3.4.5 (Uniform monotonicity) A k-variable continuous function
f .x; y/ is x-uniformly monotonic on a domain .X 0; Y 0/ � .R;Rk�1/, if it is
monotonic for x on X 0, and it is unary or keeps the same sense of monotonicity for
all the values y on Y 0.

Definition 3.4.6 (Partial monotonicity) A k-variable continuous function f .x; y/

is x-partially monotonic on .X 0; Y 0/ � .R;Rk�1/ if it may increase with x for some
y-values, and may decrease with x for the rest of the y-values on the domain Y 0.

Example 3.4.3 The functions xy and x=y are partially monotonic. Uniformly
monotonic functions, which are monotonic increasing or monotonic decreasing for
each component, include, for example x C y, x � y, min.x; y/ max.x; y/.

Theorem 3.4.3 (Two-variable operators) Every two-variable continuous func-
tion f .x; y/ which is .x; y/-partially monotonic on a domain .X 0; Y 0/, is JM-
commutable for the corresponding interval arguments .X; Y /.

Proof If X and Y share the same modality, f .x; y/ is bounded by its values in the
vertex of the domain .X 0; Y 0/. Otherwise, the possible cases, depending on the sign
of the X; Y -bounds, are characterized by the behaviour of f .x; y/ on the borders of
the two-dimensional interval domain, where the existence of two saddle-points is,
case-by-case, easily assured by means of the continuity of f . These points are in
the set of vertices of .X 0; Y 0/, or in some point of this domain. �

Figure 3.6 illustrates a case of this reasoning, showing an interval domain,
arrows indicating the sense of monotonicity of some two-variables operator, and
the corresponding saddle point, which coincide with the origin for these senses of
monotonicity.

Remark 3.4.2 This is the case of the operators x Cy, x �y, x �y or x=y, described
in detail in Chap. 5, and the interesting operators max.x; y/ or min.x; y/.
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X´

Y´

Saddle-points

Fig. 3.6 Saddle point for a
two-variables operator
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SDV(+,[1,2]',[–1,2]')

SDV(+,[–1,2]',[1,2]')

Fig. 3.7 Saddle points for
addition

Example 3.4.4 For the addition of a proper interval and an improper one,

Œ1; 2� C Œ2; �1� D ŒSDV.C; Œ1; 2�0; Œ�1; 2; �0/; SDV.C; Œ�1; 2�0; Œ1; 2�0/�

D Œ min
x2Œ1;2�0

max
y2Œ�1;2�0

.x C y/; min
y2Œ�1;2�0

max
x2Œ1;2�0

.x C y/� D Œ3; 1�

In Fig. 3.7 the sense of monotonicity of the sum in this interval and the saddle
points are represented, where the arrows indicate the sense of monotonicity in the
rectangular domain.

If both intervals are proper,

Œ1; 2� C Œ�1; 3� D ŒSDV.C; .Œ1; 2�0; Œ�1; 3; �0/; ;/; SDV.C; ;; .Œ�1; 3�0; Œ1; 2�0//�

D Œ min
x2Œ1;2�0

min
y2Œ�1;3�0

x C y; max
y2Œ1;2�0

max
x2Œ�1;3�0

x C y�

D Œ0; 5�

If both intervals are improper,

Œ1;�1� C Œ1;�2� D ŒSDV.C;;; .Œ�1;1�0; Œ�2;1�0//;SDV.C; .Œ�1;1�0; Œ�2;1�0/;;/�

D Œ max
x2Œ�1;1�0

max
y2Œ�2;1�0

x C y; min
y2Œ�1;1�0

min
x2Œ�2;1�0

x C y�

D Œ2;�3�
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1
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2
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Fig. 3.8 Saddle points for
the product function

For the product, the main problem appears when the domain intersects the axis. For
Œ1; 2� � Œ3; �1�,

Œ1; 2� � Œ3; �1� D ŒSDV.�; Œ1; 2�; Œ3; �1�/; SDV.�; Œ3; �1�; Œ1; 2�/�

D Œ min
x2Œ1;2�0

max
y2Œ�1;3�0

xy; min
y2Œ�1;3�0

max
x2Œ1;2�0

xy�

D Œ3; �1�

Figure 3.8 depicts the sense of monotonicity of the product in this interval and the
saddle points are represented.

Remark 3.4.3 Partial monotonicity does not guarantee the JM-commutativity for
more than two variables, as is seen in the case of the function f .x; y; z/ D x.y Cz/.

Theorem 3.4.4 (Uniform monotonicity) Every uniformly monotonic continuous
function f .x; y/, with .x; y/ 2 R

k , x-monotonic increasing and y-monotonic
decreasing on .X 0; Y 0/, is JM-commutable for .X ; Y / and

fR.X ; Y / D f �.X ; Y / D f ��.X ; Y /

D Œf .Inf.X/; Sup.Y //; f .Sup.X/; Inf.Y //�;

where

Inf.X/ D .Inf.X1/; : : : ; Inf.Xm//

Sup.X/ D .Sup.X1/; : : : ; Sup.Xm//;

and so on for Y .

Proof As f is uniformly monotonic,

X � increasing :

�
Xj proper ) the minimum of f is in Inf.Xj /

Xj improper ) the maximum of f is in Inf.Xj /
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Y � decreasing :

�
Yj proper ) the minimum of f is in Sup.Yj /

Yj improper ) the maximum of f is in Sup.Yj /:

Therefore

min
.xp;yp/2.Xp;Y p/0

max
.xi ;y i /2.X i ;Y i /0

f .xp; xi ; yp; y i / D f .Inf.X/; Sup.Y //

D max
.xi ;y i /2.X i ;Y i /0

min
.xp;yp/2.Xp;Y p/0

f .xp; xi ; yp; y i /

and, analogously,

min
.xi ;y i /2.X i ;Y i /0

max
.xp;yp/2.Xp;Y p/0

f .xp; xi ; yp; y i / D f .Sup.X/; Inf.Y //

D max
.xp;yp/2.Xp;Y p/0

min
.xi ;y i /2.X i ;Y i /0

f .xp; xi ; yp; y i /:

So, f �.X ; Y / D f ��.X ; Y / and

f �.X ; Y / D Œf .Inf.X/; Sup.Y //; f .Sup.X/; Inf.Y //�:

�
Example 3.4.5 The function f .x; y; z/ D .x�y/=.zCy/ in the domain X D Œ0; 2�,
Y D Œ4; 3�, Z D Œ2; 1� is x-monotonic increasing , y-monotonic decreasing, and
z-monotonic increasing, as can be shown from the constancy of the signs of .x � y/

and of .z C y/ on the particular interval domain involved in this example. Then

fR.X; Y; Z/ D f ��.X; Y; Z/ D f �.X; Y; Z/

D Œf .Inf.X/; Sup.Y /; Inf.Z//; f .Sup.X/; Inf.Y /; Sup.Z//�

D Œ.0 � 3/=.2 C 3/; .2 � 4/=.1 C 4/�

D Œ�3=5; �2=5�;

Example 3.4.6 A specially interesting example of continuous uniformly monotonic
increasing operator is the function “limited identity”, that is,

LID W R
3 �! R

.t; x; y/ �! LID.t; x; y/ D
8<
:

min.x; y/ if t � min.x; y/

t if min.x; y/ � t � max.x; y/

max.x; y/ if max.x; y/ � t
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This operator is JM-commutable on its domain because it is a uniformly monotonic
continuous function. Therefore

LID��.T; X; Y / D LID�.T; X; Y /

D ŒLID.Inf.T /; Inf.X/; Inf.Y //; LID.Sup.T /; Sup.X/; Sup.Y //�

If T is the interval Œ�1; C1�, then

LID��.Œ�1; C1�; X; Y / D LID�.Œ�1; C1�; X; Y /

D Œmin.Inf.X/; Inf.Y //; max.Sup.X/; Sup.Y //�

D X _ Y

If T is the interval ŒC1; �1�, then

LID��.ŒC1; �1�; X; Y / D LID�.ŒC1; �1�; X; Y /

D Œmax.Inf.X/; Inf.Y //; min.Sup.X/; Sup.Y //�

D X ^ Y

After admitting these T -arguments we see that LID incorporates, among the modal
syntactic operators, the �-lattice operators “meet” and “join”.

Actually, the enlargement of the set of modal syntactic operators from the classic
one .C; �; �; =/, is quite important for applications, for example for control and
approximation problems, mainly given the limitations imposed by the easy loss of
information originating in multi-incidence and not-optimal syntactic trees of real
expressions. In the computational context of I �.R/, the classical rational operators
.C; �; �; =/ have obviously no particular privilege over other programmable ones
and holding the essential properties of continuity and JM-commutativity, since all
of them are to be computed through the use of a suitably approximated arithmetic.
Coming back to the “meet” and “join” operators, their use will only require
an additional remark: the application of the semantic theorems will demand the
consideration of the implicit t-variables they introduce.

Example 3.4.7 The operator

CLIP.t; x; y/ D t � LID.t; x; y/

is uniformly t-monotonic increasing and .x; y/-monotonic decreasing and its
program is

CLIP.t; x; y/ D
8<
:

t � min.x; y/ if t � min.x; y/

0 if min.x; y/ � t � max.x; y/

t � max.x; y/ if max.x; y/ � t

following a similar reasoning.
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Theorem 3.4.5 (Partial uniform monotonicity) If f .x; y/ is a x-uniform mono-
tonic continuous function in the domain .X 0; Y 0/ and X D .U ; V /, Y D .Y p; Y i /

is the component-splitting of X and Y into their proper and improper components,
then

f �.X ; Y / D .f �.Inf.U /; Inf.V /; Y / _ f �.Sup.U /; Inf.V /; Y //

^
.f �.Inf.U /; Sup.V /; Y / _ f �.Sup.U /; Sup.V /; Y //: (3.1)

Proof Taking into account Definition 3.2.1 of *-semantic function, the associativity
of the meet and join operators, and the x-monotonicity of f :

1) If V D ;, X D U is uni-modal proper and

f �.X ; Y / D _
u2U 0 .̋y ;Y /

f .u; y/ D _
u2U 0

f �.u; Y /

D f �.Inf.U /; Y / _ f �.Sup.U /; Y /:

2) If U D ;, X D V is uni-modal improper, as

f �.X ; Y / D Œ min
yp2Y 0

p

max
yi 2Y 0

i

max
v2V 0

f .v; yp; y i /; max
yp2Y 0

p

min
yi 2Y 0

i

min
v2V 0

f .v; yp; y i /�;

if f is v-monotonic increasing

f �.X ; Y / D Œ min
yp2Y 0

p

max
y i 2Y 0

i

f .Inf.V /; yp; y i /; max
yp2Y 0

p

min
yi 2Y 0

i

f .Sup.V /; yp; y i /�;

and if f is v-monotonic decreasing

f �.X ; Y / D Œ min
yp2Y 0

p

max
yi 2Y 0

i

f .Sup.V /; yp; y i /; max
yp2Y 0

p

min
y i 2Y 0

i

f .Inf.V /; yp; y i /�:

On the other hand, as

f �.Inf.V /; Y / ^ f �.Sup.V /; Y /

D Œ min
yp2Y 0

p

max
yi 2Y 0

i

f .Inf.V /; yp; y i /; max
yp2Y 0

p

min
yi 2Y 0

i

f .Inf.V /; yp; y i /�

^
Œ min
yp2Y 0

p

max
yi 2Y 0

i

f .Sup.V /; yp; y i /; max
yp2Y 0

p

min
y i 2Y 0

i

f .Sup.V /; yp; y i /�;
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if f is v-monotonic increasing

f �.Inf.V /; Y / ^ f �.Sup.V /; Y /

D Œ min
yp2Y 0

p

max
yi 2Y 0

i

f .Inf.V /; yp; y i /; max
yp2Y 0

p

min
y i 2Y 0

i

f .Sup.V /; yp; y i /�

D f �.X ; Y /;

and if f is v-monotonic decreasing

f �.Inf.V /; Y / ^ f �.Sup.V /; Y /

D Œ min
yp2Y 0

p

max
yi 2Y 0

i

f .Sup.V /; yp; y i /; max
yp2Y 0

p

min
y i 2Y 0

i

f .Inf.V /; yp; y i /�

D f �.X ; Y /:

3) If X D .U ; V / is multi-modal, applying successively (2) and (1), we obtain
(3.1). �

Example 3.4.8 The function f .x; y; z/ D xy C 1=.x C y/ C z � z2 in the domain
X D Œ0; 1�, Y D Œ2; 1�, Z D Œ4; 2� is x-monotonic increasing and z-monotonic
decreasing. Its *-semantic extension

f �.X; Y; Z/ D _
x2Œ0;1�0

^
y2Œ1;2�0

^
z2Œ2;4�0

ŒxyC1=.x Cy/C z� z2; xyC1=.x Cy/C z� z2�

is not easily computable. But following Theorem 3.4.5, as

f �.Inf.X/; Y; Inf.Z// D f �.Œ0; 0�; Œ2; 1�; Œ4; 4�/

D ^
y2Œ1;2�0

Œ1=y � 12; 1=y � 12� D Œ�11; �11:5�

f �.Sup.X/; Y; Inf.Z// D f �.Œ1; 1�; Œ2; 1�; Œ4; 4�/

D ^
y2Œ1;2�0

Œy C 1=.1 C y/ � 12; y C 1=.1 C y/ � 12�

D Œ�9:66 : : : ; �10:5�

f �.Inf.X/; Y; Sup.Z// D f �.Œ0; 0�; Œ2; 1�; Œ2; 2�/

D ^
y2Œ1;2�0

Œ1=y � 2; 1=y � 2� D Œ�1; �1:5�

f �.Sup.X/; Y; Sup.Z// D f �.Œ1; 1�; Œ2; 1�; Œ2; 2�/

D ^
y2Œ1;2�0

Œy C 1=.1 C y/ � 2; y C 1=.1 C y/ � 2�

D Œ0:33 : : : ; �0:5�:
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then

f �.X; Y; Z/ D
8<
:

.Œ�11; �11:5� _ Œ�9:66 : : : ; �10:5�/

^
.Œ�1; �1:5� _ Œ0:33 : : : ; �0:5�/

9=
; D Œ�1; �10:5�:

Theorem 3.4.6 (k-Uniform monotonicity) Every continuous function f .x; y/,
with x 2 R and y D .u; v/ 2 R

k�1, which is uniformly monotonic for the
y-arguments on a domain .X 0; Y 0/, u-monotonic increasing and v-monotonic
decreasing, is JM-commutable for the corresponding interval arguments .X; Y /.

Proof The continuity of f .x; y0/ on X 0, for any y0 2 Rk�1, implies the existence
on X 0 of the x-minimum and x-maximum of f .x; y0/. This allows showing the
existence of the saddle-points, which means its JM-commutativity.

Let us denote by .x; u; v/ the split of .x; y/, and by .x; um; vM / the coordinates
where f .x; u; v/ reaches a u-minimum and a v-maximum irrespective of the value
for x. If

f .xm; um; vM / D min
x2X 0

f .x; um; vM /;

then .xm; um; vM / 2 SDP.f; .X 0; U 0/; V 0/ because

.8x 2 X 0/.8u 2 U 0/.8v 2 V 0/

.f .xm; um; v/ � f .xm; um; vM / � f .x; um; vM / � f .x; u; vM //

Let .x; uM ; vm/ be the coordinates where f .x; u; v/ reaches a u-maximum and a
v-minimum irrespective of the value for x. If

f .xM ; uM ; vm/ D max
x2X 0

f .x; uM ; vm/;

then .xM ; uM ; vm/ 2 SDP.f; V 0; .X 0; U 0// because

.8x 2 X 0/.8u 2 U 0/.8v 2 V 0/

.f .x; u; vm/ � f .x; uM ; vm/ � f .xM ; uM ; vm/ � f .xM ; uM ; v//:

Therefore, following the proof of the previous theorem,

f ��.X; Y / D f �.X; Y /

D if X proper then

Œmin
x2X 0

f .x; Inf.U /; Sup.V //; max
x2X 0

f .x; Sup.U /; Inf.V //�

if X improper then

Œmax
x2X 0

f .x; Inf.U /; Sup.V //; min
x2X 0

f .x; Sup.U /; Inf.V //�:

�
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Example 3.4.9 The function f .x; y; z/ D .x � y/=.z C y/ in the domains of X D
Œ0; 3�, Y D Œ2; 4�, Z D Œ3; 1� is x-monotonic increasing , y-monotonic decreasing
and it is not monotonic in z. Then

f �.X; Y; Z/ D f ��.X; Y; Z/ D fR.X; Y; Z/

D Œ max
z2Œ1;3�0

f .Inf.X/; Sup.Y /; z/; min
z2Œ1;3�0

f .Sup.X/; Inf.Y /; z/�

D Œ max
z2Œ1;3�0

..0 � 4/=.z C 4//; min
z2Œ1;3�0

..3 � 2/=.z C 2//�

D Œ�4=7; 1=5�:

Remark 3.4.4 The theorem is not essentially modified when x has more than one
component if the condition of uni-modality is imposed on X .

Remark 3.4.5 Actually, those functions of the type f .x; y/, which are uniformly
monotonic for y 2 R

k and JM-commutable for x 2 R
m on any vertex of the

y-prism defined by the y-interval-arguments, can be admitted to the repertoire of
modal syntactic operators. In fact,

f .xm; yM ; um; vM / D min
x2X 0

max
y2Y 0

f .x; y ; um; vM /

is a saddle-value of the .x; y/-function f .x; y ; um; vM / because for every x 2 X 0,
y 2 Y 0, u 2 U 0 and v 2 V 0

f .xm; y; um; v/ � f .xm; yM ; um; vM / � f .x; yM ; um; vM / � f .x; yM ; u; vM /:

Remark 3.4.6 Anyway, the operators of the syntactic trees should be as simple as
possible for actual practice, in spite of constituting a larger family than the classical
ones for real functions.

3.4.3 Modal Syntactic Computations with Rounding

A modal syntactic computation with outer or inner rounding is defined by the syntax
of fR.X/ where the interval value of every component and the exact value of every
operator are replaced by their modal inner or outer rounding.

Definition 3.4.7 (Outer-rounding computation of fR�.X/) The outer-rounding
computation Out.fR�.X// is the function defined by the computational program
of fR�.X/, in which the value of every X -component is replaced by its modal outer
rounding Out.Xi / � Xi , and also the exact value of every operator !�.Xi ; : : :/ is
replaced by its computed actual outer-rounding Out.!�.Xi ; : : :// � !�.Xi ; : : :/.

Definition 3.4.8 (Inner-rounding computation of fR��.X/) The inner-rounding
computation Inn.fR��.X// is the function defined by the program of fR��.X/, in
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which every X -component Xi is replaced by Inn.Xi/ � Xi , and every exact value
!��.Xi ; : : :/ by Inn.!��.Xi ; : : :// � !��.Xi ; : : :/.

Remark 3.4.7 In a hypothetically ideal “real” arithmetic, the Out and Inn operators
would reduce to the identity operator. If the real-arithmetics’ rounding supporting
Out and Inn is supposed to be �-monotonic increasing and the elements of the
corresponding digital scale are applied to themselves, it is usual to speak of an
optimal rounding.

Lemma 3.4.2 (Duality relation)

Dual.Out.fR�.X/// D Inn.fR��.Dual.X///:

Proof

Dual.Out.fR�.X /// D Inn.Dual.fR�.X/// D Inn.fR��.Dual.X///:

�

Theorem 3.4.7 (Inclusivity of the modal syntactic extensions) The rounded
modal syntactic extensions Out.fR�.X// and Inn.fR��.X// (or, Out.fR.X// and
Inn.fR.X//, if such be the case) of a continuous real function f from R

k to
R, are inclusion-monotonic increasing, if the supporting interval rounding of the
arguments and of the operators are also inclusion-monotonic increasing.

Proof This property holds for the modal syntactic extensions fR�.X/ and fR��.X/

(or fR.X/ if such be the case). For computations with rounding the result may be
obtained by considering the different roundings as ordinary inclusion-monotonic
increasing operators interposed into the syntactic tree of fR. �

Theorem 3.4.8 (Dual computing process) If fR.X/ is a modal syntactic function,
then

Inn.fR.X// D Dual.Out.fR.Dual.X///:

Proof From Lemma 3.4.1. �
Remark 3.4.8 Computations with modal intervals do not need a double arithmetic,
with inner and outer rounding. This theorem allows the implementation of only
the outer rounding interval arithmetic. Note the application of the Out operator
to Dual.X/ in the second term: Dual is not a modal syntactic operator and the
information about X implied by this expression will be Inn.X/.

3.5 Concluding Remarks

From the operational point of view, the most outstanding characteristic of the system
of modal intervals I �.R/ is the following: in a similar way that real numbers are
associated in pairs having the same absolute value but opposite signs, the modal
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intervals are associated in pairs too, each member corresponding to the same closed
interval of the real line but having each one of the opposite selection modalities,
existential or universal.

From the regularity point of view, I �.R/ is a decisive improvement over I.R/

since I �.R/ is not only the structural completion of I.R/, but also solves the
referential character of interval computations to the isomorphic ones on the real
line.

The system I �.R/ provides a lot of properties immediately and consistently
related with an informational approach to numeric data, as they arise from the pro-
cedures of measurement and digital computing. These properties are not obtained by
using an additional over-imposed model, as in the models supported by probability,
but are built on the inherent logic of the practical possibilities of the use of numbers.
In fact, I �.R/ is not a “model” for the numeric information, but the indispensable
logical and operational frame for any geometrical model using numeric information.
From the viewpoint of the technical constitution of the system I �.R/, the main
points are the following:

1. Association of each interval A 2 I �.R/ to the set Pred.A/ of the predicates P

on the real line that A accepts, that is, those by which the modally-quantified
statement Q.x; A/P.x/ is made true. This step brings out the particular set-
theoretical character of the inclusion of modal intervals, and supplies the
important theorem about the mutual transfers of information between the “exact”
result of a naturally analytical relation and the outer and inner-rounding of its
interval computation.

2. The logical re-formulation of the “poor interval extensions” of continuous
real functions, allowing of defining the “modal interval extensions” of these
functions, with their all-important * and **-semantic theorems, supports the
application to modal intervals of the appealing intuition tied to the notions of
“regulating” and “autonomous” ranges, and indicates the dependence between
semantics and interval rounding. Starting from “poor interval extensions” selects
also as meaningful only two of the different interval extensions of continuous
functions that could be built if only the lattice completion of I.R/ was consid-
ered, a decision which would lead to an, in principle, different extension for each
ordering of the meet and join operators.

3. The theory of interval modal syntactic functions clarifies the somewhat com-
plicated relationship between the syntactic structure of the functions and their
semantics, defined by their corresponding *- and **-semantic extensions. This is
the key which solves the critical question of the dependence between computa-
tional process and the meaning of the computed results.
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