
Chapter 4
Euclidean Geometry

The next step in our study of geometry, using the methods of linear algebra, is to
introduce the notions of distance and angle. This will be achieved by adding a scalar
product to a real affine space. We obtain what is called a Euclidean space.

We provide various examples and applications, study the metric properties of
triangles, the orthogonal projections and orthogonal symmetries. We pay special
attention to the isometries: the affine transformations which respect angles and dis-
tances, but also to the similarities, those which only respect angles.

4.1 Metric Geometry

Geometry, as the name indicates, is the art of measuring the Earth. The emphasis
here is on the act of measuring—the physical nature of what we are measuring, if it
has a physical nature, is besides the point. The question is thus: can we measure and
compare lengths, angles, surfaces, volumes, in an affine space? For example in an
affine plane, can we speak of a square: a figure with four sides of equal lengths and
four “right” angles? Can we define the perimeter or the surface of such a figure?

In Definition 3.1.1 we have introduced the notion of a segment in a real affine
space. But what about the length of such a segment? Of course in an affine space
(E,V ) over a field K , when for A,B,C,D ∈ E and k ∈ K

−→
AB = k

−→
CD,

we are tempted to say that
−→
AB is k times as long as

−→
CD. This is essentially what we

have done in Definition 2.10.3. In this spirit, a length should be an element k ∈ K ,
an element that we probably want to be positive in the real case.

However, the argument above does not take us very far. What about the case
where the vectors

−→
AB and

−→
CD are not proportional?

In any case, if we want lengths to be positive numbers, we should once more
restrict our attention to “ordered fields”. We have already observed at the end of
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Fig. 4.1

Sect. 3.1 that the field Q of rational numbers does not seem to be adequate to gen-
eralize “classical geometry”. Let us give an additional reason. If a sensible metric
geometry can be developed, a square whose side has length 1 should have a diagonal
with length

√
2, which is no longer a rational number!

Finally, we seem to end up again with the single case: K = R! Once more this
conclusion is too severe, but we shall not insist on the possible generalizations.

If we fix K = R, can we confidently state that we now have sound notions of
length and angle? Take for example the vector space C(R,R) of real continuous
functions, regarded as a real affine space. What is the distance between a parabola
and the “sinx” function (see Fig. 4.1), viewed as points of the affine space? What is
the angle between these two functions as vectors? The answer is not at all clear.

After all, even in the ordinary real plane, if you are French (and work with cen-
timeters) or British (and work with inches), the measures that you will give for the
same segment will be different real numbers.

So a real affine space does not carry an intrinsic notion of “measure” of lengths
and angles. A way of measuring lengths and angles is an extra structure that
you must put on your real affine space, even if in some cases—among other
possibilities—some “canonical choice” may exist. The way to introduce such a
“measure process” has been investigated in detail in Sect. 1.5: this is the notion
of a scalar product.

4.2 Defining Lengths and Angles

With Proposition 1.5.2 in mind, let us recall a standard definition from every linear
algebra course:

Definition 4.2.1 A scalar product on a real vector space V is a mapping

V × V −→R, (x, y) �→ (x|y)

satisfying the following axioms

(αx + βy|z) = α(x|z) + β(y|z)
(x|αy + βz) = α(x|y) + β(x|z)
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(x|y) = (y|x)

(x|x) ≥ 0

(x|x) = 0 ⇒ x = 0,

for all vectors x, y, z in V and all scalars α, β in R.

Of course this definition is redundant: the second axiom follows at once from the
first and the third axioms. A scalar product is thus a bilinear form (first two axioms)
which is symmetric (third axiom; see Definition G.1.1), positive (fourth axiom; see
Definition G.3.3) and definite (fifth axiom; see Definition G.2.3). As a consequence,
the mapping

V −→R, x �→ (x|x)

is a positive definite quadratic form (see Definitions G.1.1, G.3.3 and G.2.3).
We have the following matrix expression of a scalar product:

Proposition 4.2.2 Let V be a real vector space with basis e1, . . . , en. In terms of
coordinates in this basis, the scalar product of two vectors is given by

(
−→
x |−→y ) = −→

x tA
−→
y

where the matrix A is given by

A = (ei |ei)1≤i,j≤n.

Proof Simply expand the scalar product

(x1e1 + · · · + xnen|y1e1 + · · · + ynen)

by bilinearity. �

Definition 4.2.3 A Euclidean space consists of:

1. a real affine space (E,V );
2. a scalar product on V .

With Proposition 1.5.3 in mind we make the following definition:

Definition 4.2.4 Let (E,V ) be a Euclidean space.

1. The norm of a vector v ∈ V is the positive real number

‖v‖ = √
(v|v).

2. The distance between two points A,B ∈ E is the norm of the vector joining them

d(A,B) = ‖−→AB‖.
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Proposition 1.5.3 also suggests how to define an angle θ or at least, the cosine
of such an angle. But a cosine should be a number between −1 and +1. So it is
necessary to first prove:

Proposition 4.2.5 (Schwarz inequality) In a Euclidean space (E,V ), given two
vectors x, y in V ,

−‖x‖ · ‖y‖ ≤ (x|y) ≤ ‖x‖ · ‖y‖.

Proof Let k be a real parameter. By bilinearity and symmetry of the scalar product

‖x + ky‖2 = (x + ky|x + ky) = ‖y‖2k2 + 2(x|y)k + ‖x‖2.

This is a polynomial of degree 2 in k which, as a norm, is always positive. Therefore

(x|y)2 − ‖x‖2 · ‖y‖2 ≤ 0. �

Definition 4.2.6 Let (E,V ) be a Euclidean space.

1. The angle �(x, y) between two non-zero vectors x, y is the unique real number
θ ∈ [0,π] such that

cos θ = (x|y)

‖x‖ · ‖y‖ .

2. Let (A,B,C) be a triangle in E (Definition 2.10.1). The angle �(BAC) is the
angle between the vectors

−→
AB and

−→
AC.

Observe further that

�(x, y) = π

2
⇐⇒ cos�(x, y) = 0 ⇐⇒ (x|y) = 0.

Therefore we define:

Definition 4.2.7 Let (E,V ) be a Euclidean space. Then:

1. two vectors x, y are orthogonal or perpendicular when (x|y) = 0;
2. by a right angle we mean an angle π

2 ;
3. a right triangle is a triangle having a right angle.

We shall use the symbol v ⊥ w to indicate the perpendicularity of two vectors v

and w.

4.3 Metric Properties of Euclidean Spaces

First we make the link with normed vector spaces:
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Proposition 4.3.1 By a norm on a real vector space V we mean a mapping

‖ − ‖: V −→ R

such that, for all v,w ∈ V and r ∈R:

1. ‖v‖ ≥ 0;
2. ‖v‖ = 0 =⇒ v = 0;
3. ‖rv‖ = |r| · ‖v‖;
4. ‖v + w‖ ≤ ‖v‖ + ‖w‖.

When (E,V ) is a Euclidean space, the norm defined in Definition 4.2.4 satisfies
these properties.

Proof The first three statements follow at once from the definitions of a scalar prod-
uct and a norm. For the last one, simply observe that by the Schwarz inequality
(see 4.2.5)

(v + w|v + w) = ‖v‖2 + 2(v|w) + ‖w‖2

≤ ‖v‖2 + 2‖v‖ · ‖w‖ + ‖w‖2

= (‖v‖ + ‖w‖)2
. �

Next, we exhibit the link with metric spaces.

Proposition 4.3.2 By a metric space we mean a set E provided with a mapping

d : E × E −→ R

satisfying the following properties, for all A,B,C ∈ E:

1. d(A,B) ≥ 0;
2. d(A,B) = 0 =⇒ A = B;
3. d(A,B) = d(B,A);
4. d(A,B) + d(B,C) ≥ d(A,C) (Minkowski inequality).

Given a Euclidean space, the notion of distance as defined in Definition 4.2.4 pro-
vides E with the structure of a metric space.

Proof This follows at once from Proposition 4.3.1, keeping in mind that
−→
AB +−→

BC = −→
AC. �

Notice that the Minkowski inequality can be rephrased as (Fig. 4.2):

Given a triangle in a Euclidean space, the length of a side is shorter than the sum of the
lengths of the other two sides.

The case of angles is also worth some attention: the notion of angle is again
“symmetric” while making a zero angle means as expected “being oriented in the
same direction”.
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Fig. 4.2

Proposition 4.3.3 Let (E,V ) be a Euclidean space. Given distinct points
A,B,C ∈ E:

1. �(BAC) = �(CAB);
2. �(BAC) = 0 ⇐⇒ −→

AC = r
−→
AB , r ≥ 0;

3. �(BAC) = π ⇐⇒ −→
AC = r

−→
AB , r ≤ 0.

Proof The first assertion holds by symmetry of the scalar product.
Next if

−→
AC = r

−→
AB , with r ≥ 0, then by Proposition 4.3.1

(
−→
AB|−→AC) = r(

−→
AB|−→AB) = r‖−→AB‖2 = ‖−→AB‖ · ‖−→AC‖.

This immediately implies cos�(BAC) = 1, thus �(BAC) = 0.
Notice further that we have

‖−→AC‖ = r‖−→AB‖ thus r = ‖−→AC‖
‖−→AB‖

.

Conversely, �(BAC) = 0 means that the cosine of this angle equals 1, that is

(
−→
AB|−→AC)

‖−→AB‖ · ‖−→AC‖
= 1.

Keeping in mind the above observation concerning the only possible value of r , we
put

C′ = A + ‖−→AC‖
‖−→AB‖

−→
AB

and the thesis simply becomes C = C′. But

−−→
CC′ = −→

CA + −−→
AC′ = −−→

AC + ‖−→AC‖
‖−→AB‖

−→
AB.

We therefore obtain, since (
−→
AB|−→AC) = ‖−→AB‖ · ‖−→AC‖,

‖−−→CC′‖2 = ‖−→AC‖2 − 2
‖−→AC‖
‖−→AB‖

‖−→AC‖ · ‖−→AB‖ + ‖−→AC‖2

‖−→AB‖2
‖−→AB‖2 = 0

as expected.
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The same proof, up to a change of sign, works for the last assertion. An alterna-
tive proof considers the point

C′ = A + −→
CA

that is,
−−→
AC′ = −−→

AC and observes that

�(BAC) = π ⇐⇒ �
(
BAC′) = 0. �

Coming back to the Minkowski inequality, we then obtain:

Corollary 4.3.4 Let (E,V ) be a Euclidean space. Given three points A,B , C in
E, the following conditions are equivalent:

1. d(A,B) + d(B,C) = d(A,C);
2.

−→
AB = r

−→
AC, 0 ≤ r ≤ 1.

Proof If
−→
AB = r

−→
AC, 0 ≤ r ≤ 1, then by Proposition 4.3.1, d(A,B) = rd(A,C).

On the other hand

−→
BC = −→

AC − −→
AB = (1 − r)

−→
AC, 0 ≤ 1 − r ≤ 1

and thus d(B,C) = (1 − r)d(A,C). This forces at once the conclusion.
Conversely if the “Minkowski equality” holds, we have

d(A,C)2 = d(A,B)2 + 2d(A,B)d(B,C) + d(B,C)2.

On the other hand since
−→
AC = −→

AB + −→
BC, computing (

−→
AC|−→AC) yields

d(A,C)2 = d(A,B)2 + 2(
−→
AB|−→BC) + d(B,C)2.

Comparing these two equalities, we obtain

(
−→
AB|−→BC) = ‖−→AB‖ · ‖−→BC‖.

By Proposition 4.3.3, this implies

−→
AB = k

−→
BC, k ≥ 0.

This yields further

−→
AB = k(

−→
BA + −→

AC) = k
−→
AC − k

−→
AB.

Finally

−→
AB = k

1 + k

−→
AC, 0 ≤ k

1 + k
≤ 1. �

Notice that Corollary 4.3.4 can be rephrased as (see Definition 3.1.1):
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Fig. 4.3

In a Euclidean space (E,V ), a point B belongs to the segment [A,C] if and only if
d(A,B) + d(B,C) = d(A,C).

Thus “being on a same line” can be characterized by a metric equality.
Another important metric property of Euclidean spaces is:

Theorem 4.3.5 (Pythagoras’ theorem) Consider a triangle (A,B,C) in a Eu-
clidean space (E,V ) (see Fig. 4.3). The following conditions are equivalent:

1. �(BAC) is a right angle;
2. d(A,B)2 + d(A,C)2 = d(B,C)2.

Proof Simply observe that

(
−→
BC|−→BC) = (

−→
BA + −→

AC|−→BA + −→
AC) = ‖−→BA‖2 + 2(

−→
BA|−→AC) + ‖−→AC‖2.

Thus the equality in condition 2 holds precisely when (
−→
BA|−→AC) = 0. �

4.4 Rectangles, Diamonds and Squares

A Euclidean space of dimension 2 is a model of Euclidean plane geometry, in the
sense of Hilbert (see Example 8.5.3 in [7], Trilogy I). Thus all properties of plane
Euclidean geometry considered in [7], Trilogy I, are valid. Let us give here a direct
proof of some of these properties which will be useful in subsequent sections.

Proposition 4.4.1 In a right triangle (see Fig. 4.3) of a Euclidean space

cos�(ABC) = d(B,A)

d(B,C)
.

Proof Since
−→
AB is orthogonal to

−→
AC

cos�(ABC) = (
−→
BA|−→BC)

‖−→BA‖ · ‖−→BC‖
= (

−→
BA|−→BA + −→

AC)

‖−→BA‖ · ‖−→BC‖

= (
−→
BA|−→BA)

‖−→BA‖ · ‖−→BC‖
= ‖−→BA‖

‖−→BC‖
.

�
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Fig. 4.4

Fig. 4.5

Definition 4.4.2 In a Euclidean space, a parallelogram is called:

1. a rectangle, when its four angles are right angles;
2. a diamond, when its four sides have the same length;
3. a square, when it is both a rectangle and a diamond.

Let us now observe some useful characterizations of these notions.

Proposition 4.4.3 In a Euclidean space, a parallelogram is a rectangle if and only
if it admits a right angle.

Proof Consider the parallelogram of Fig. 4.4 and assume that the angle DAB is
right. This means that the direction of

−→
AB , which is also that of

−→
DC, is orthogonal

to the direction of
−→
AD, which is also that of

−→
BC (see Definition 2.11.1). �

Proposition 4.4.4 In a Euclidean space, a parallelogram is a diamond if and only
if its diagonals are orthogonal.

Proof Consider the parallelogram ABCD of Fig. 4.5. Write O for the intersec-
tion point of the two diagonals, which is thus such that

−→
CO = −−→

AO (see Proposi-
tion 2.11.5). This immediately implies

(
−→
AO|−→

OB) = −(
−→
CO|−→

OB).
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On the other hand

‖−→AB‖2 = (
−→
AO + −→

OB|−→AO + −→
OB) = ‖−→AO‖2 + 2(

−→
AO|−→

OB) + ‖−→
OB‖2

and analogously

‖−→CB‖2 = (
−→
CO + −→

OB|−→
CO + −→

OB) = ‖−→
CO‖2 + 2(

−→
CO|−→

OB) + ‖−→
OB‖2.

If the diagonals are orthogonal, the scalar products disappear from these last
expressions and since d(A,O) = d(C,O), we obtain d(A,B) = d(C,B). Since
moreover

−→
AB = −→

DC and
−→
CB = −→

DA, all four sides have the same length.
If the parallelogram is a diamond, we have

‖−→AB‖ = ‖−→CB‖
from which the expressions above yield

(
−→
AO|−→

OB) = (
−→
CO|−→

OB).

Since we know already that

(
−→
AO|−→

OB) = −(
−→
CO|−→

OB),

we conclude that these quantities are zero and so the diagonals are orthogonal. �

Proposition 4.4.5 In a Euclidean space, a parallelogram is a square if and only if
it its angles are right and its diagonals are perpendicular.

Proof This follows by Definition 4.4.2 and Proposition 4.4.4. �

4.5 Examples of Euclidean Spaces

Example 4.5.1 Given a basis (O; e1, . . . , en) of a finite dimensional real affine
space (E,V ), the formula

(
−→
x |−→y ) =

n∑

i=1

xiyi

defines a scalar product on V .

Proof This is straightforward. Observe that in particular

(ei |ej ) =
{

1 if i = j ;
0 if i 
= j.
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In the special case of the vector space Rn viewed as an affine space (see Exam-
ple 2.2.1) and its “canonical basis”, we recapture the “canonical scalar product” of
Proposition 1.5.2:

Rn ×Rn −→ R, (
−→
x ,

−→
y ) �→

n∑

i=1

xiyi .

Unless otherwise specified, when we refer to the Euclidean space Rn, we shall
always mean Rn provided with this canonical scalar product. Sometimes, for the
sake of precision, the notation En(R) is used to indicate this particular Euclidean
space Rn.

Notice further that given strictly positive numbers ωi , the formula

(
−→
x |−→y ) =

n∑

i=1

ωixiyi

still defines a scalar product on V . �

Example 4.5.2 Consider a symmetric n × n real matrix whose eigenvalues are all
strictly positive. The mapping

ϕ : Rn ×Rn −→R, (x, y) �→ xtAy

is a scalar product on Rn.

Proof Trivially, ϕ is bilinear. It is also symmetric, by symmetry of A: indeed

xtAy = (
xtAy

)t = ytAtx = ytAx;

the first equality holds because xtAy is a 1 × 1-matrix.
Consider Rn with its canonical scalar product of Example 4.5.1. By Theo-

rem G.4.1, we can choose another orthonormal basis of Rn with respect to which
the matrix of ϕ is diagonal. As observed in the proof of G.4.1, the diagonal elements
will be the eigenvalues of A. With respect to this new basis ϕ takes the form

ϕ(x, y) =
n∑

i=1

λixiyi

with λi > 0 for all indices i. As in Example 4.5.1, we conclude that ϕ is positive
and definite. �

Example 4.5.3 Consider a closed interval [a, b] of the real line and the vector space
C([a, b],R) of continuous functions f : [a, b] −→ R. The formula
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(f |g) =
∫ b

a

f (x)g(x) dx

defines a scalar product on C([a, b],R).

Proof Only the last axiom requires a comment. If f (x0) 
= 0 for some x0 ∈ [a, b]
then by continuity |f (x)| > 1

2 |f (x0)| on a neighborhood of x0 in [a, b]. Writing
ε > 0 for the length of an interval on which this is the case we conclude, since
f 2(x) is positive for all x ∈ [a, b], that

∫ b

a

f 2(x)dx ≥ 1

4
f 2(x0)ε > 0.

One should observe that in this example the distance between two functions is
given by

d(f,g) =
√∫ b

a

(
f (x) − g(x)

)2
dx

which is not the same as “the area separating the two graphs”

∫ b

a

∣∣f (x) − g(x)
∣∣dx.

It should be mentioned here that “the area separating the two graphs” nevertheless
yields a good notion of distance in the sense of metric spaces: but this notion of
distance is not inherited from a scalar product.

Let us also mention that if

ω : [a, b] −→R, ∀x ∈ [a, b] ω(x) > 0

is a strictly positive continuous function, the argument above can at once be adapted
to prove that

(f |g) =
∫ b

a

ω(x)f (x)g(x)dx

is another scalar product on C([a, b],R). At the end of Sect. 4.9, we shall remark on
the benefits of introducing such a weight. �

Example 4.5.4 Consider the vector space R(n)[X] of polynomials with real coeffi-
cients and degree at most n. Consider further n + 1 distinct real numbers

a0 < a1 < · · · < an−1 < an.
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The formula

(p|q) =
n∑

i=0

p(ai)q(ai)

defines a scalar product on R(n)[X].

Proof Again only the last axiom requires a comment. If

(p|p) =
n∑

i=0

p(ai)
2 = 0

then p(ai) = 0 for each index i. This proves that the polynomial p(X) of degree at
most n admits n + 1 distinct roots: it is therefore the zero polynomial.

Of course choosing arbitrary strictly positive real numbers ωi > 0, the formula

(p|q) =
n∑

i=1

ωip(ai)q(ai)

still defines a scalar product on R(n)[X]. �

Example 4.5.5 Every affine subspace of a Euclidean space is itself a Euclidean
space with respect to the induced scalar product.

Proof Trivially, given a scalar product on a real vector space V , its restriction to any
vector subspace W ⊆ V remains a scalar product.

Going back to Example 2.2.2 and considering the canonical scalar product on
Rn (see Example 4.5.1), we conclude that the affine space of solutions of a system
A

−→
x = −→

b of linear equations can be provided with the structure of a Euclidean
space.

Analogously, considering Examples 2.2.4 and 4.5.3, we conclude that the affine
space of solutions, on an interval [a, b], of a differential equation ay′′ + by′ +
cy = d , can be provided with the structure of a Euclidean space. �

4.6 Orthonormal Bases

In a Euclidean space, using an affine basis closely related to the Euclidean structure
allows drastic simplifications. As usual when we work with bases and coordinates,
we reduce our attention to the finite dimensional case, even if various results hold
(often with the same proofs) in arbitrary dimensions.

Definition 4.6.1 By an orthonormal basis of a finite dimensional Euclidean space
(E,V ) is meant an affine basis (O; e1, . . . , en) such that:
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1. ∀i ‖ei‖ = 1;
2. ∀i 
= j ei ⊥ ej .

Let us first list some advantages of working with orthonormal basis.

Proposition 4.6.2 Let (O; e1, . . . , en) be an orthonormal basis of a Euclidean
space (E,V ). The coordinates of a vector x ∈ V with respect to this basis are

(x|ei)1≤i≤n.

Proof If

x = x1e1 + · · · + xnen

computing the scalar product with ei yields precisely xi . �

Proposition 4.6.3 Let (O; e1, . . . , en) be an orthonormal basis of a Euclidean
space (E,V ). Given two vectors x, y ∈ V , their scalar product is

(x|y) =
n∑

i=1

xiyi .

Proof By Proposition 4.2.2, the matrix of the scalar product is the identity matrix
because the basis is orthonormal. �

Proposition 4.6.4 Let (O; e1, . . . , en) and (O ′; e′
1, . . . , e

′
n) be two orthonormal

bases of a Euclidean space (E,V ). In the change of basis formula (see Proposi-
tion 2.20.1)

−→
x′ = M

−→
x + −→

b

the matrix M is orthogonal, that is, M−1 = Mt .

Proof The matrix M is obtained by putting in columns the coordinates of the vectors
ei with respect to the basis (e′

1, . . . , e
′
n). By Proposition 4.6.2,

M = (mij )1≤i,j≤n, mij = (
ej |e′

i

)
.

Considering the inverse change of basis formula

−→
x = M−1−→x′ + −→

b′

we obtain in the same way

M−1 = (
m′

ij

)
1≤i,j≤n

, m′
ij = (

e′
j |ei

)
.

The conclusion follows at once, by symmetry of the scalar product. �
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This last result is certainly the most striking one, since computing an inverse ma-
trix is generally rather hard work, especially when the dimension is high. However,
all of these beautiful properties will only be made available to us if we can prove
the existence of orthonormal basis. For that we observe first:

Proposition 4.6.5 Let (E,V ) be a Euclidean space. Given non-zero pairwise or-
thogonal vectors

e1, . . . , en, i 
= j =⇒ ei ⊥ ej

these vectors are necessarily linearly independent.

Proof Suppose

x1e1 + · · · + xnen = 0.

Computing the scalar product with ei yields

xi(ei |ei) = 0

by perpendicularity of the vectors. But (ei |ei) 
= 0 because ei 
= 0; therefore
xi = 0. �

Theorem 4.6.6 (Gram-Schmidt process) Let (O; e1, . . . , en) be an arbitrary basis
of a Euclidean space (E,V ). There exists an orthonormal basis (O;v1, . . . , vn)

with the additional property that for every index k, the two subspaces

〈e1, . . . , ek〉 and 〈v1, . . . , vk〉
generated by the first k vectors of each basis are equal.

Proof We prove the result by induction on n. When n = 1, it suffices to put

v1 = e1

‖e1‖ .

Assuming the result up to the dimension n − 1, let us apply it to the vector
subspace 〈e1, . . . , en−1〉 and its basis e1, . . . , en−1. We obtain an orthonormal ba-
sis v1, . . . , vn−1 of this subspace, which satisfies the condition of the statement up
to the index n − 1. Consider then

v′
n = en − (en|v1)v1 − · · · − (en|vn−1)vn−1.

We get at once, for 1 ≤ i ≤ n − 1
(
v′
n|vi

) = (en|vi) − (en|vi)(vi |vi) = (en|vi) − (en|vi) = 0.

Putting

vn = v′
n

‖v′
n‖
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thus yields a sequence v1, . . . , vn pairwise orthogonal vectors of length 1. By Propo-
sition 4.6.5, this is a basis of V . �

4.7 Polar Coordinates

In this section, we want to stress the fact that in Euclidean spaces, all the classical
techniques mentioned in Chap. 1 (polar coordinates in the plane, polar or cylindrical
coordinates in the three-dimensional space, and so on) now make perfect sense. We
shall not dwell on these straightforward aspects. Just as an example, we focus on
the case of polar coordinates in a Euclidean space.

Given a triangle (A,B,C) in a Euclidean space, we have defined the angle
�(BAC) (see Definition 4.2.6). Trivially, by symmetry of the scalar product

�(BAC) = �(CBA).

Of course we might be tempted to say instead that

�(BAC) = −�(CBA).

In order to be able to do this, we need to provide each angle with a sign. This is
possible only in the special case of a Euclidean plane.

Definition 4.7.1 When an orientation of a Euclidean plane has been fixed, the
relative angle �(v,w) between two linearly independent vectors v, w is the angle
�(v,w) of Definition 4.2.6 provided with the sign + when the basis (v,w) has
direct orientation and with the sign − when this basis has inverse orientation. When
two non-zero vectors v and w are linearly dependent, their relative angle is their
ordinary angle as in Definition 4.2.6, that is, 0 or π (see Proposition 4.3.3).

Of course choosing the opposite orientation of the plane interchanges the signs of
all relative angles. Moreover, since an angle is defined via its cosine, the following
convention certainly does not hurt:

Convention 4.7.2 Under the conditions of Definition 4.7.1, we shall freely identify
a relative angle θ with any angle θ + 2kπ , for every integer k ∈ Z.

The reader is invited to explain why such definitions do not make sense in a three
dimensional Euclidean space.

The existence of polar coordinates in every Euclidean plane is then attested by
the following result:

Proposition 4.7.3 Let (E,V ) be a Euclidean plane provided with an orthonormal
basis (O; e1, e2) considered as having direct orientation. The coordinates of a point
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0 
= P ∈ E are given by

P = ‖−→
OP ‖

(
cos θ

sin θ

)
, θ = �(e1,

−→
OP)

where θ is the relative angle as in Definition 4.7.1.

Proof Given real numbers a, b such that a2 + b2 = 1, then a2 ≤ 1 thus −1 ≤ a ≤
+1. Therefore a = cos τ for a unique τ ∈ [0,π], while sin τ ≥ 0. But then

b2 = 1 − a2 = 1 − cos2 τ = sin2 τ

and thus b = ± sin τ . If b ≥ 0, we have at once

a = cos τ, b = sin τ.

If b ≤ 0 we have

a = cos τ = cos(−τ), b = − sin τ = sin(−τ).

In both cases, we end up with

(a, b) = (cosσ, sinσ)

for a unique relative angle σ .
Now given 0 
= P ∈ E, we thus have a unique relative angle σ such that

−→
OP = ‖−→

OP ‖
−→
OP

‖−→
OP ‖

= ‖−→
OP ‖

(
cosσ

sinσ

)

since the vector
−→
OP

‖−→
OP ‖ has norm 1. It remains to show that σ is also the relative angle

θ between e1 and
−→
OP . But

cos θ = (e1|−→
OP)

‖e1‖ · ‖−→
OP ‖

= cosσ.

The matrix having as columns the coordinates of e1 and
−→
OP is

(
1 ‖−→

OP ‖ cosσ

0 ‖−→
OP ‖ sinσ

)

;

its determinant is simply sinσ . Thus by Definition 4.7.1, θ is positive or negative
according to the sign of sinσ , that is, it has the same sign as σ . Since σ and θ have
the same cosine and the same sign, they are equal. �
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Analogous arguments can be developed for the other systems of coordinates con-
sidered in Chap. 1. We are not really interested here in these considerations. The
only reason for introducing the straightforward observations above is to emphasize
the fact that we have now gathered all the necessary ingredients to make the link
with “ordinary” geometrical notions: we need to have the affine structure, a notion
of orientation and a notion of “measure” of angles and distances.

4.8 Orthogonal Projections

To avoid any ambiguity, let us make the following definition:

Definition 4.8.1 Let (E,V ) be a Euclidean space and (F1,W1), (F2,W2) two
affine subspaces. These subspaces are called orthogonal when every vector of W1 is
orthogonal to every vector of W2.

Observe that this definition is more restrictive than the notion of perpendicular-
ity “in real life”. For example, you will probably say that a wall of your room is
“perpendicular” to the floor. However this is not the situation described in Defini-
tion 4.8.1! Consider the line of intersection between the wall and the floor: a “vec-
tor” in this intersection is both on the wall and on the floor, but is not orthogonal to
itself! This is a general fact:

Lemma 4.8.2 Let (E,V ) be a Euclidean space and (F1,W1), (F2,W2) two orthog-
onal affine subspaces. Then W1 ∩ W2 = {0} and thus F1 ∩ F2 is either the empty set
or is reduced to a singleton.

Proof Indeed w ∈ W1 ∩ W2 is such that (w|w) = 0, thus w = 0. The result follows
by Propositions 2.3.4 and 2.1.2. �

Let us warn the reader: the following theorem is generally not valid for Euclidean
spaces of infinite dimension.

Theorem 4.8.3 Let (E,V ) be a finite dimensional Euclidean space and W a vector
subspace of V . The set

W⊥ = {v ∈ V |∀w ∈ W v ⊥ w}
is a vector subspace of V , orthogonal to W . The subspaces W and W⊥ are supple-
mentary. Therefore W⊥ is called the orthogonal supplementary of W .

Proof The set W⊥ is a vector subspace by bilinearity of the scalar product; it is
trivially orthogonal to W . By Lemma 4.8.2 we know already that W ∩ W⊥ = {0}; it
remains to prove that W + W⊥ = V .
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To prove this, consider a basis e1, . . . , ek of W and extend it to a basis e1, . . . , en

of V . Apply the Gram–Schmidt construction (Theorem 4.6.6) to get an orthonormal
basis v1, . . . , vn such that in particular, v1, . . . , vk is still a basis of W . The vector
subspace 〈vk+1, . . . , vn〉 is contained in W⊥ and is supplementary to W . Thus

W + W⊥ ⊇ W + 〈vk+1, . . . , vn〉 = V

as expected.
Observe further (even if not needed for the proof) that since 〈vk+1, . . . , vn〉

and W⊥ are two supplementary subspaces of W , they have the same dimension
n − dimW . Since 〈vk+1, . . . , vn〉 is contained in W⊥, these two subspaces are nec-
essarily equal. �

Corollary 4.8.4 Let (E,V ) be a finite dimensional Euclidean space with orthonor-
mal basis (O; e1, . . . , en). Fix a point A = (a1, . . . , an) ∈ E and consider the vector
line W generated by a non-zero vector w = (w1, . . . ,wn) in V . The affine hyper-
plane (F,W⊥) containing A and of direction W⊥ (see Theorem 4.3.5) admits the
equation

n∑

i=1

wi(xi − ai) = 0.

Proof Since A ∈ F , the point P = (x1, . . . , xn) ∈ E lies in F when
−→
AP is perpen-

dicular to w. The result follows by Proposition 4.6.3. �

Definition 4.8.5 Let (E,V ) be a finite dimensional Euclidean space and
(F,W) an affine subspace. The projection on W , parallel to W⊥ (see Defini-
tion 2.15.1) is called the orthogonal projection on (F,W).

Here is a key property of orthogonal projections:

Proposition 4.8.6 Let (E,V ) be a finite dimensional Euclidean space and (F,W)

an affine subspace. Given a point A ∈ E and its orthogonal projection P ∈ F , one
has, for every other point Q ∈ F (see Fig. 4.6)

d(A,P ) < d(A,Q), P 
= Q ∈ F.

Proof We have
−→
AP ∈ W⊥ and

−→
QP ∈ W , thus the triangle APQ is right angled. By

Pythagoras’ Theorem (see 4.3.5)

d(Q,P )2 + d(A,P )2 = d(A,Q)2.

Since Q 
= P , d(P,Q) 
= 0 and it follows that d(A,P ) < d(A,Q). �

Proposition 4.8.6 can thus be rephrased in the following way:



156 4 Euclidean Geometry

Fig. 4.6

The orthogonal projection of a point A on a given subspace is the best approximation of A

by a point of the subspace.

Our next section will take full advantage of this observation.
It remains to establish an efficient formula for computing orthogonal projections.

Proposition 4.8.7 Let (E,V ) be a finite dimensional Euclidean space and (F,W)

an affine subspace. Given an orthonormal basis (O; e1, . . . , ek) of the subspace
(F,W) and a point A ∈ E, the orthogonal projection P of A on (F,W) is given
by

P = O + (
−→
OA|e1)e1 + · · · + (

−→
OA|ek)ek.

Proof Extend (e1, . . . , ek) to an orthonormal basis (e1, . . . , en) of V , as in the proof
of Theorem 4.8.3. As observed at the end of that proof, (ek+1, . . . , en) is an or-
thonormal basis of W⊥. By Proposition 4.6.2,

−→
OA =

k∑

i=1

(
−→
OA|ei) +

n∑

i=k+1

(
−→
OA|ei)

is thus the unique decomposition

−→
OA = w + w′, w ∈ W, w′ ∈ W⊥.

But P = O + w (see the proof of Theorem 2.6.2): this yields the formula of the
statement. �

4.9 Some Approximation Problems

Consider a subspace (F,W) of a finite dimensional Euclidean space (E,V ). Given
a point A ∈ E, what is the best approximation of A by a point of F ? This is the point
B ∈ F such that the distance d(A,B) is as small as possible! Such a point exists and
is unique: by Proposition 4.8.6, it is the orthogonal projection of A on (F,W).
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Example 4.9.1 (Overdetermined systems) How can one find the “best approxima-
tion” of a solution for a system A

−→
x = −→

b of m equations with n unknowns when
m is much bigger than n?

Proof This situation occurs when we want to determine the values of some phys-
ical quantities X1, . . . ,Xn which are impossible to isolate experimentally, but we
are able to measure experimentally the result of some linear combination of these
quantities:

a1X1 + · · · + anXn.

Repeating the experiment with different values of the coefficients ai , we obtain a
system A

−→
x = −→

b of equations. We want to “statistically” correct the experimental
imprecisions by performing a large number m of experiments (i.e. of equations),
a number m which is much bigger than the number n of quantities to measure. Due
to imprecisions in the measurements, there is no hope that the system A

−→
x = −→

b

will still have an “algebraic solution”, but of course the problem has a “physical
solution”: the actual values of the quantities X1, . . . ,Xn.

Without any experimental error,
−→
b would be of the form A

−→
x , that is, would be

a linear combination of the columns of the matrix A. Consider the canonical scalar
product on Rm (see Example 4.5.1) and the vector subspace W ⊆ Rm generated by
the columns of A. It remains to replace

−→
b by its “best approximation by a vector−→

c ∈ W ”, that is, by its orthogonal projection on W . The system A
−→
x = −→

c now has
a solution. �

Example 4.9.2 (Approximation by the law of least squares) How can one find the
polynomial p(X) of degree n whose values p(ai) are “as close as possible” from
prescribed values bi , when the number m of indices i is much bigger that the degree
n of p(X)?

Proof Assume that some physical law is expressed by a formula of degree 2, for
example: the resistance of the air is proportional to the square of the speed. We
want to determine the proportionality coefficient, under some specific conditions of
pressure or shape.

More generally, the theory tells us that some physical quantity Y can be expressed
by a polynomial of degree n in terms of the physical quantity X

Y = p(X) = knX
n + · · · + k1X + k0.

We want to determine experimentally the coefficients of the polynomial p(X). For
this we perform a large number m of experiments, for different values X = ai ∈ R,
measuring the corresponding values Y = bi . We are looking for the polynomial
p(X) of degree n such that each p(ai) is as close as possible to bi . Figure 4.7
presents an example with n = 2 and m = 20.
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Fig. 4.7

First of all, observe that there is a polynomial q(X) of degree m − 1 such that
q(ai) = bi for each index i: this is simply

q(X) =
m∑

i=1

bi

( ∏

1≤j≤m
j 
=i

X − aj

ai − aj

)
.

Consider the Euclidean space R(m−1)[X] of all polynomials of degree at most
m − 1, provided with the scalar product of Example 4.5.4

(
α(X)|β(X)

) =
m∑

i=1

α(ai)β(ai).

The orthogonal projection p(X) of q(X) on the subspace R(n)[X] of polynomials
of degree at most n is the polynomial of degree n such that the quantity

m∑

i=1

(
p(ai) − q(ai)

)2 =
n∑

i=1

(
p(ai) − bi

)2

is the smallest possible (Proposition 4.8.6).
This polynomial p(X) is thus the solution to our problem according to the law

of least squares: the sum of the squares of the “errors” has been made as small as
possible. �

Example 4.9.3 (Fourier approximation) How can one find a “best approximation”
g(X) of a periodic function f (X) by a linear combination of sine and cosine func-
tions?

Proof This time we need to realize a periodic electrical signal y = f (x) with a
prescribed shape. For example the signal in Fig. 4.8, which is the typical signal for
the horizontal scanning of a screen.
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Fig. 4.8

The basic electrical signals that one can produce are continuous (a constant func-
tion) or alternating (a sine or cosine function, with an arbitrary frequency) electrical
signals. We need to determine how to add such signals in order to get a result as
close as possible to the prescribed periodic function.

Of course—up to a possible change of variable—there is no loss of generality in
assuming that the period of f (X) is equal to 2π . Notice that each function sinkx

or coskx, for k ∈ N, itself admits 2π as a period, even if this is not the smallest
possible period. But a linear combination of functions with period 2π remains a
function with period 2π . This proves that it suffices to compute the approximation
on the interval [−π,π]: the approximation will automatically remain valid on the
whole real line. A priori, f (X) is not necessarily continuous, as in the example
above. For simplicity, let us nevertheless assume that f (X) is continuous on its
period ] − π,π[, with continuous extension to [−π,π] (again, as in the example
above).

We can now consider the Euclidean space C([−π,π],R) of Example 4.5.3. To
switch back to a finite dimension, consider the Euclidean subspace V generated by
f (X) and the functions

1, sinX, cosx, sin 2X, cos 2X, . . . , sinnX, cosnX, n ∈N.

Write W for the subspace of V generated by these last functions. The orthogonal
projection g(X) of f (X) on W thus yields the best approximation of f (X) by a
linear combination of sin kX and coskX functions, for k ≤ n.

It is interesting to observe that in this specific case, the orthogonal projection can
be computed very easily. Indeed let us recall that

∫ π

−π

sin kx cos lx dx = 0

∫ π

−π

sin kx sin lx dx =
{

0 if k 
= l

π if k = l

∫ π

−π

coskx cos lx dx =
{

0 if k 
= l

π if k = l
∫ π

−π

sin kx dx = 0
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Fig. 4.9

∫ π

−π

coskx dx = 0

∫ π

−π

dx = 2π.

This can be rephrased by saying that the functions

1√
2π

,
1√
π

sinx,
1√
π

cosx,
1√
π

sin 2x,
1√
π

cos 2x, . . .

constitute an orthonormal sequence of functions in C([−π,π],R). Therefore, by
Proposition 4.8.7, the function g(X) above is simply

g(x) = 1

2π

∫ π

−π

f (x) dx

+ 1

π

n∑

k=1

sin kx

∫ π

−π

f (x) sin kx dx

+ 1

π

n∑

k=1

coskx

∫ π

−π

f (x) coskx dx.

This is a so-called Fourier approximation of f (x).
For the “horizontal scanning” function above

f (x) = x, −π ≤ x ≤ π

Figure 4.9 gives the Fourier approximation obtained when choosing n = 10.
Of course a Fourier approximation is always a continuous function, being a lin-

ear combination of continuous functions. Therefore the possible discontinuity f (x)

at π can imply a lower quality of the Fourier approximation around this point. This
is a typical case where one might want to use a weight function ω(x) as in Exam-
ple 4.5.3: a strictly positive function whose values around −π and +π are slightly
greater than at the middle of the interval. Doing this will improve the quality of the
approximation at the extremities of the interval, but to the detriment of the quality
of the approximation elsewhere! �
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4.10 Isometries

As the name indicates, an isometry is “something” which leaves the “measures”
unchanged.

Definition 4.10.1 An isometry

(f,
−→
f ) : (E,V ) −→ (F,W)

between Euclidean spaces is an affine transformation such that
−→
f respects the scalar

product:
(−→
f (v)

∣∣−→f (
v′)) = (

v
∣∣v′).

Obviously:

Proposition 4.10.2 An isometry between two Euclidean spaces respects distances
and angles and in particular, is injective.

Proof Distances and angles are defined in terms of the scalar product (see Defini-
tions 4.2.4 and 4.2.6). Moreover A = B precisely when d(A,B) = 0 (see Proposi-
tion 4.3.2). �

Proposition 4.10.3 Let (E,V ) and (F,W) be Euclidean spaces of respective finite
dimensions n and m. Consider an affine transformation

(f,
−→
f ) : (E,V ) −→ (F,W)

and its matrix expression

−→
x �→ A

−→
x + −→

b

with respect to orthonormal bases of (E,V ) and (F,W). The following conditions
are equivalent:

1. (f,
−→
f ) is an isometry;

2. the columns of A constitute an orthonormal sequence of vectors in Rm.

Proof Let

(O; e1, . . . , en),
(
O ′; e′

1, . . . , e
′
m

)

be the two orthonormal bases. The columns of A are the coordinates of the vec-
tors

−→
f (ei) in the second base. By Proposition 4.10.1 these vectors constitute an

orthonormal sequence in W and since the second base is orthonormal, their coordi-
nates are orthonormal vectors in Rm (see Proposition 4.6.3).
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Conversely, the assumption on A can be rephrased as AtA = Idm, where Idn is
the n × n-identity matrix. Given two vectors of V with coordinates −→

x , −→
y , we get

once more by Proposition 4.6.3

(−→
f (

−→
x )|−→f (

−→
y )

) = (A
−→
x )t (A

−→
y ) = −→

x tAtA
−→
y = −→

x t−→y = (
−→
x |−→y ). �

Taking full advantage of Corollary 4.3.4, let us now give an interesting charac-
terization of isometries.

Theorem 4.10.4 Let (E,V ) and (F,W) be finite dimensional Euclidean spaces.
There is a bijection between:

1. the isometries (f,
−→
f ) : (E,V ) −→ (F,W);

2. the mappings f : E −→ F preserving distances.

Proof By Proposition 4.10.2, it remains to show that a mapping f : E −→ F pre-
serving distances is the first component of a unique isometry (f,

−→
f ). The unique-

ness is immediate since in an affine transformation (f
−→
f ), the linear mapping

−→
f is

entirely determined by f (see Proposition 2.12.4).
First observe that given points A,B,C ∈ E and a scalar r ∈R:

−→
AB = r

−→
AC =⇒ −−−−−−−→

f (A).f (B) = r
−−−−−−−→
f (A).f (C).

When 0 ≤ r ≤ 1, Corollary 4.3.4 reduces the condition
−→
AB = r

−→
AC to

d(A,B) + d(B,C) = d(A,C).

Such a property is thus preserved by f . When r /∈ [0,1], a permutation of the roles
of A, B , C reduces the problem to the first case. For example if r > 1, then

−→
AC = 1

r

−→
AB, 0 ≤ 1

r
≤ 1

and so on.
Thus we know already that f transforms an affine line into an affine line. But by

Pythagoras’ Theorem 4.3.5, f also transforms a right triangle into a right triangle.
Thus f respects the perpendicularity of two affine lines.

Fix now an orthonormal basis (O; e1, . . . , en) of (E,V ). Write further ei = −−→
OAi .

The vectors
−−−−−−−→
f (O)f (Ai) then constitute an orthonormal sequence in W and we can

complete it to an orthonormal basis

(
f (O);−−−−−−−→

f (O)f (A1), . . . ,
−−−−−−−→
f (O)f (An), e

′
n+1, . . . , e

′
m

)

of (F,W).
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Consider a point P ∈ E and its i-th coordinate xi with respect to the orthonormal
basis (O; e1, . . . , en). The point Xi such that

−−→
OXi = xiei = xi

−−→
OAi

is thus the orthogonal projection of P on the line OAi , that is, the unique point of
the line through OAi such that the triangle OXiP is right angled. But then f (Xi)

is the orthogonal projection of f (P ) on the line f (O)f (Ai) and the i-th coordinate
of f (P ) with respect to the orthonormal basis of (F,W) is the scalar x′

i such that

−−−−−−−→
f (O)f (Xi) = x′

i

−−−−−−−→
f (0)f (Ai).

Since we already know that f preserves the proportionality of vectors with the same
origin, we conclude that x′

i = xi .
We can summarize our results by saying that, with respect to the two bases indi-

cated, f admits the following matrix description:

−→
x �→ M

−→
x

where M is an m × n-matrix whose n first lines are those of the n × n-identity ma-
trix and whose m − n last lines are zero lines. Of course we define

−→
f to be the

linear mapping
−→
f : V −→ W admitting the matrix M with respect to the two or-

thonormal bases of V and W as above. The columns of M are trivially orthonormal
so that by Proposition 4.10.3, (f,

−→
f ) will be an isometry as soon as it is an affine

transformation.
This last fact is obvious. Working in terms of coordinates in the orthonormal

bases indicated, f and
−→
f act simply by adding m − n zero coordinates. Therefore

axioms [AT1] and [AT2] are trivially satisfied. �

4.11 Classification of Isometries

In this section, we focus our attention on the isometries from a Euclidean space to
itself. Proposition 4.10.3 can at once be rephrased as:

Proposition 4.11.1 Let (E,V ) be a finite dimensional vector space and

(f,
−→
f ) : (E,V ) −→ (E,V )

be an affine transformation, with matrix expression

−→
x �→ A

−→
x + −→

b

with respect to an orthonormal basis (O; e1, . . . , en). The following conditions are
equivalent:
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1. (f,
−→
f ) is an isometry;

2. A is an orthogonal matrix, i.e. At = A−1.

In that case, one has detA = ±1 and the isometry is an affine isomorphism.

In order to determine all possible isometries on (E,V ), let us first review two
well-known examples.

Example 4.11.2 Every translation on a Euclidean space is an isometry.

Proof This follows by Proposition 2.14.2: of course the identity mapping preserves
the scalar product. �

Example 4.11.3 Let (E,V ) be a finite dimensional Euclidean space. Every orthog-
onal symmetry is an isometry.

Proof Consider an affine subspace (F,W) ⊆ (E,V ) and the orthogonal supple-
ment W⊥ of W (see Theorem 4.8.3). Choose a point O ∈ F , an orthonormal basis
e1, . . . , ek of W and an orthonormal basis ek+1, . . . , en of W⊥. We thus obtain an
orthonormal basis

(O; e1, . . . , ek, ek+1, . . . , en)

of (E,V ). With respect to this basis the orthogonal symmetry with respect to (F,W)

(s,
−→
s ) : (E,V ) −→ (E,V )

is such that

s(O) = O,
−→
s (ei) =

{
ei if 1 ≤ i ≤ k;
−ei if k + 1 ≤ i ≤ n.

The matrix description of (s,
−→
s ) is thus

−→
x �→ A

−→
x

where A is a diagonal matrix with the first k entries on the diagonal equal to +1 and
the following entries equal to −1. The result follows by Proposition 4.11.1. �

Notice that the identity on (E,V ) is both the translation by the vector 0 and the
orthogonal symmetry with respect to (E,V ). This observation helps us to better
understand the following statement:

Proposition 4.11.4 Let (E,V ) be a finite dimensional Euclidean space. The isome-

tries (f,
−→
f ) on (E,V ) are precisely the composites of

• a translation;
• an orthogonal symmetry;
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• a direct isometry admitting a fixed point (see Definition 2.13.1).

Of course, each composite of such mappings is an isometry.

Proof The last statement holds by Examples 4.11.2 and 4.11.3, since a composite
of isometries is trivially an isometry.

Now let (f,
−→
f ) be an isometry on (E,V ). Fix a point P ∈ E and consider the

translation by the vector
−−−−→
f (P )P . We have

(t−−−−→
f (P )P

◦ f )(P ) = t−−−−→
f (P )P

(
f (P )

) = P.

This proves that

g = t−−−−→
f (P )P

◦ f

is an isometry admitting P as a fixed point.
If g is a direct isometry, we obtain

f = tPf (P ) ◦ idE ◦ g

and f is expressed as the composite of a translation, an orthogonal symmetry and a
direct isometry with fixed point P .

If g is an inverse symmetry and V has dimension n, let (F,W) be an affine sub-
space of dimension n−1 such that P ∈ F . Write s for the orthogonal symmetry with
respect to (F,W). Since P ∈ F , we have s(P ) = P . The proof of Example 4.11.3
tells us that in an ad-hoc orthonormal basis, the matrix of s is diagonal with the first
n − 1 diagonal entries equal to +1 and the last one equal to −1. The determinant is
thus equal to −1 and s is an inverse isometry. But then h = s ◦ g is a direct isometry
still admitting P as a fixed point. Furthermore, since s ◦ s = idE

f = tPf (P ) ◦ s ◦ h

expresses f as the composite of a translation, an orthogonal symmetry and a direct
isometry with fixed point P . �

To describe all isometries of (E,V ), it thus remains to determine the form of the
direct isometries with a fixed point.

4.12 Rotations

In this section we investigate the form of the direct isometries admitting a fixed
point, in dimensions 0, 1, 2 and 3.

Proposition 4.12.1 On a Euclidean space of dimension 0 or 1, the only direct
isometry with a fixed point is the identity.
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Proof In dimension 0 there is nothing to prove, since the only mapping from the
singleton to itself is the identity.

In dimension 1, the only orthogonal matrix with positive determinant is the iden-
tity matrix (1); the result follows by Proposition 4.11.1. �

The notion of a rotation of angle θ with center O in the usual plane makes perfect
sense in a Euclidean plane: “all vectors

−→
OP turn around the center O by the same

angle θ , in the same orientation”. More precisely:

Definition 4.12.2 Let (E,V ) be a Euclidean plane. Consider a relative angle θ ∈
]−π,0,π] (see Definition 4.7.1) and a point O ∈ E. A mapping f : E −→ E is a
rotation of angle θ with center O when:

1. f (O) = O;
2. for all P 
= O in E:

(a) d(O,P ) = d(O,f (P ));
(b) �(POf (P )) = θ .

Let us clarify the situation concerning the two trivial cases θ = 0 and θ = π .

Proposition 4.12.3 Let (E,V ) be a Euclidean plane and O a point of E. Then:

1. a rotation of angle 0 with center O is the identity mapping on E;
2. a rotation of angle π with center O is the central symmetry with respect to O .

These two rotations are direct isometries.

Proof The first two assertions follow immediately from Proposition 4.3.3. Of course
the identity is a direct isometry. In an orthonormal basis (O; e1, e2) the central sym-
metry admits as matrix

(−1 0
0 −1

)

which is an orthogonal matrix with determinant +1. The result follows by Proposi-
tion 4.11.1. �

Observe that a central symmetry is always an isometry (Example 4.11.3): but it
is a direct isometry in even dimensions and an inverse isometry in odd dimensions,
as the proof of 4.12.3 immediately suggests.

The key result is then:

Theorem 4.12.4 Let (E,V ) be a Euclidean plane and f : E −→ E an arbitrary
mapping. The following conditions are equivalent (see Theorem 4.10.4):

1. f is a direct isometry with a fixed point;
2. f is a rotation.
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Proof Let us work in an orthonormal basis (0; e1, e2) considered as having direct
orientation.

Suppose that f is a rotation with center O and relative angle θ . If P 
= O , work-
ing in polar coordinates (see Proposition 4.7.3) the rotation f is simply described
by

P = ‖−→
OP‖

(
cos τ

sin τ

)
�→ f (P ) = ‖−→

OP‖
(

cos(τ + θ)

sin(τ + θ)

)
.

But trivially

(
cos(τ + θ)

sin(τ + θ)

)
=

(
cos τ cos θ − sin τ sin θ

sin τ cos θ + cos τ sin θ

)
=

(
cos τ − sin τ

sin τ cos τ

)(
cos θ

sin θ

)
.

Therefore f can be described by the matrix formula

f

(
x

y

)
=

(
cos τ − sin τ

sin τ cos τ

)(
x

y

)

which is also trivially valid for the origin O , which is a fixed point. By Proposi-
tion 2.22.1, f is thus an affine transformation. Since its matrix is trivially orthogo-
nal with determinant +1, it is a direct isometry (see Proposition 4.10.3 and Defini-
tion 3.3.1). By assumption, it admits the fixed point O .

Conversely, let (f,
−→
f ) be a direct isometry with fixed point O . The matrix ex-

pression of the isometry is thus

(
x1
x2

)
�→

(
a1 b1
a2 b2

)(
x1
x2

)

where the columns of the matrix are the coordinates of
−→
f (e1) and

−→
f (e2). The

matrix is orthogonal (see Proposition 4.11.1) with determinant +1. Thus

a2
1 + a2

2 = 1, b2
1 + b2

2 = 1, a1b1 + a2b2 = 0, a1b2 − a2b1 = 1.

In particular (see the proof of Proposition 4.7.3)

a1 = cos θ, a2 = sin θ

for a unique relative angle θ . The resolution of the system

b1 cos θ + b2 sin θ = 0

−b1 sin θ + b2 cos θ = 1

yields at once

b1 = − sin θ, b2 = cos θ.
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Thus the matrix expression of (f,
−→
f ) with respect to the orthonormal basis

(O; e1, e2) is
(

x1
x2

)
�→

(
cos θ − sin θ

sin θ cos θ

)(
x1
x2

)
.

This is precisely the form of a rotation of angle θ , as observed in the first part of the
proof. �

Let us now switch to dimension 3. The intuitive notion of a rotation about an
axis can easily be formalized:

Definition 4.12.5 Let (E,V ) be an affine space of dimension 3. Consider an affine
line (�,L) ⊆ (E,V ) and a relative angle θ . A mapping f : E −→ E is a rotation of
axis � and angle θ when:

1. f (O) = O for all points O ∈ �;
2. for every point O ∈ �, f restricts as a rotation of angle θ and center O in the

affine plane orthogonal to (�,L) and containing O .

Again:

Proposition 4.12.6 Let (E,V ) be a Euclidean space of dimension 3 and (�,L) ⊆
(E,V ) an affine line. Then:

• a rotation of axis � and angle 0 is the identity on E;
• a rotation of axis � and angle π is the orthogonal symmetry with respect to (�,L).

These two rotations are direct isometries.

Proof As for Proposition 4.12.3, via Proposition 4.3.3 and Example 4.11.3. The
matrix of a rotation of angle π , with respect to an orthonormal basis (0; e1, e2, e3)

now has the form
⎛

⎝
1 0 0
0 −1 0
0 0 −1

⎞

⎠

and thus has determinant +1. �

In dimension 3, the striking point about rotations is perhaps the “non-existence”
of a rotation about a point. More precisely:

Theorem 4.12.7 Let (E,V ) be a Euclidean space of dimension 3. Consider an
arbitrary mapping f : E −→ E. The following conditions are equivalent:

1. f is a direct isometry with a fixed point;
2. f is a rotation about an axis.
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Before giving the proof, let us recall that an orthogonal matrix A can only have
+1 and −1 as eigenvalues. Indeed

Av = λv =⇒ A−1v = 1

λ
v =⇒ Atv = 1

λ
v.

Choosing v of length 1 we get, since vtAv is a (1 × 1)-matrix,

λ = λvtv = vtAv = (
vtAv

)t = vtAtv = 1

λ
vtv = 1

λ
.

Thus λ2 = 1 and λ = ±1.

Proof Assume first that f is a rotation of axis (�,L) and relative angle θ . Let us
work in an orthonormal basis (O; e1, e2, e3) with O ∈ � and e1 ∈ L. We consider
(e2, e3) as having direct orientation in the subspace that these two vectors generate.
The considerations in the proof of Theorem 4.12.4 indicate at once that f can be
described by the matrix formula

f

⎛

⎝
x

y

z

⎞

⎠ =
⎛

⎝
1 0 0
0 cos θ − sin θ

0 sin θ cos θ

⎞

⎠

⎛

⎝
x

y

z

⎞

⎠ .

By Proposition 2.22.1, f is thus an affine transformation. Since its matrix is trivially
orthogonal with determinant +1, it is a direct isometry (see Proposition 4.10.3 and
Definition 3.3.1).

Conversely, consider a direct isometry (f,
−→
f ) : (E,V ) −→ (E,V ) and a point

O ∈ E such that f (O) = O . Fix an orthonormal basis (O; e′
1, e

′
2, e

′
3). The matrix

expression of f becomes
−→
x �→ A

−→
x

with A an orthogonal matrix with determinant +1 (see Proposition 4.11.1).
The characteristic polynomial of the matrix A has the form

p(λ) = det(A − λId) = −λ3 + αλ2 + βλ + detA, α,β ∈R.

We have thus

p(0) = detA = +1, lim
λ→∞p(λ) = −∞.

By continuity of p(λ), the Intermediate Value Theorem forces the existence of a
positive root λ, that is, a positive eigenvalue of A. As we know, this eigenvalue must
be +1.

Let e1 be an eigenvector with eigenvalue 1; we choose it to be of length 1. Writing
L ⊆ V for the vector subspace generated by e1, the line (�,L) through O (see
Theorem 2.4.2) is then entirely composed of fixed points of f . Indeed,

P ∈ � =⇒ P = O + ke1, k ∈ R.
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Therefore

f (P ) = f (O) + k
−→
f (e1) = O + ke1 = P.

We introduce an orthonormal basis (O; e1, e2, e3) of (E,V ), where (O; e2, e3) is
an orthonormal basis of the affine plane (F,L⊥) passing through O and orthogonal
to (�,L) (see Proposition 4.10.2).

Since (f,
−→
f ) is an isometry,

−→
f respects the orthogonality. Therefore (f,

−→
f )

restricts as an isometry on (F,L⊥). Thus the matrix expression of (f,
−→
f ) with

respect to the orthonormal basis (O; e1, e2, e3) has the form
⎛

⎝
x1
x2
x3

⎞

⎠ �→
⎛

⎝
1 0 0
0 b22 b23
0 b32 b33

⎞

⎠

⎛

⎝
x1
x2
x3

⎞

⎠ .

Write B for this 3 × 3-matrix. Since B is orthogonal with determinant +1, the same
conclusion applies to the sub-matrix

B ′ =
(

b22 b23
b32 b33

)

which is the matrix of the restriction of (f
−→
f ) to (F,L⊥). By Theorem 4.12.4,

the restriction of (f,
−→
f ) to (F,L⊥) is a rotation with center O , for some relative

angle θ . Thus, as observed in the proof of Theorem 4.12.4,

B ′ =
(

cos θ − sin θ

sin θ cos θ

)
.

Finally

B =
⎛

⎝
1 0 0
0 cos θ − sin θ

0 sin θ cos θ

⎞

⎠

and as we have seen in the first part of the proof, this is the matrix of a rotation of
angle θ about the axis (�,L). �

4.13 Similarities

When representing geometrical objects, one often applies a scaling factor, just to
get the picture at a reasonable size on the page. The scaling factor is somehow
irrelevant: two pictures at two different scales “are the same, except for the size”.
We shall say that they are similar.

Definition 4.13.1 Let (E,V ) be a Euclidean space and k > 0 a scalar. A similarity

of ratio k is an affine transformation (f,
−→
f ) : (E,V ) −→ (E,V ) such that:
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1. f respects all angles;
2. f multiplies all distances by k.

We have at once:

Proposition 4.13.2 A similarity on a finite dimensional Euclidean space is an affine
isomorphism.

Proof With the notation of Definition 4.13.1, by Proposition 4.3.2

A 
= B =⇒ d(A,B) > 0

=⇒ d
(
f (A),f (B)

) = kd(A,B) > 0

=⇒ f (A) 
= f (B).

Thus f is injective and the result follows by Proposition 2.13.3. �

Example 4.13.3 Every isometry on a Euclidean space is a similarity.

Proof This follows by Proposition 4.10.2. �

Example 4.13.4 Let (E,V ) be a finite dimensional Euclidean space. A homothety
(see Definition 2.17.1) of ratio k 
= 0 is a similarity of ratio k.

Proof Consider a homothety with center O and ratio k. With respect to an orthonor-
mal basis (O; e1, . . . , en), the homothety admits the matrix expression

−→
x �→ k

−→
x .

Thus all scalar products are multiplied by k2, which forces at once the conclusion. �

A homothety is also called a central similarity. The two examples above are
highly representative since:

Proposition 4.13.5 A similarity on a finite dimensional Euclidean space is the
composite of an isometry and a homothety.

Proof If the similarity (f,
−→
f ) : (E,V ) −→ (E,V ) has ratio k, fix an arbitrary point

O ∈ E and write the similarity as

(f,
−→
f ) = (hk,

−→
hk ) ◦ (h 1

k
,
−→
h 1

k
) ◦ (f,

−→
f )

where hk and h 1
k

indicates respectively the homotheties with center O and ratios

k, 1
k

. By Example 4.13.4, h 1
k

multiplies all distances by 1
k

, thus h 1
k

◦ f respects

distances and therefore is an isometry, by Theorem 4.10.4. �
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Proposition 4.13.6 Let (E,V ) be a finite dimensional Euclidean space. A mapping
f : E −→ E which multiplies all distances by a fixed scalar k > 0 is necessarily a
similarity.

Proof The same argument as for Proposition 4.13.5 applies: one can write f =
hk ◦ h 1

k
◦ f where h 1

k
◦ f respects distances and hence is an isometry by Theo-

rem 4.10.4. By Examples 4.13.4 and 4.13.3, f is a similarity, being a composite of
two similarities. �

We obtain a nice characterization theorem for similarities, which can be regarded
as an extension of Thales’ (see 2.18.1).

Theorem 4.13.7 Consider a finite dimensional Euclidean space (E,V ) and

an affine isomorphism (f,
−→
f ) : (E,V ) −→ (E,V ). The following conditions are

equivalent:

1. (f,
−→
f ) is a similarity;

2. f respects angles;
3. f respects perpendicularity;
4. f multiplies all distances by a fixed scalar k > 0.

Proof (1 ⇒ 2 ⇒ 3) are obvious and (4 ⇒ 1) is Proposition 4.13.6. It thus suffices
to prove (3 ⇒ 4).

Consider an orthonormal basis (O; e1, . . . , en). For each pair i 
= j of indices,
the four points

O, X = O + ei, Y = O + ej , Z = O + ei + ej

are the four vertices of a parallelogram, since

−→
OY = ej = −→

XZ.

This parallelogram is a square since ei is orthogonal to ej and both have length 1
(see Sect. 4.4). But being a square reduces to the perpendicularity of the sides and
the diagonals (see Proposition 4.4.5). Since f preserves the perpendicularity, it pre-
serves squares and therefore, ei and ej are mapped by

−→
f to orthogonal vectors with

the same length: let us say, length k. Of course k 
= 0 since f is an isomorphism.
We thus obtain a new orthonormal basis

(
f (0);

−→
f (e1)

k
, . . . ,

−→
f (en)

k

)
.

The matrix expression of f with respect to the original orthonormal basis and the
new orthonormal basis is thus simply kId, where Id is the identity matrix. All dis-
tances are thus indeed multiplied by k. �
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4.14 Euclidean Quadrics

In the Euclidean case, Theorem 2.24.2 can be improved in the expected way:

Theorem 4.14.1 Let Q ⊆ E be a quadric in a finite dimensional Euclidean space
(E,V ). There exists an orthonormal basis (0; e1, . . . , en) with respect to which the
equation of the quadric takes one of the reduced forms:

Type 1
∑n

i=1 aiX
2
i = 1;

Type 2
∑n

i=1 aiX
2
i = 0;

Type 3
∑n−1

i=1 aiX
2
i = Xn.

Proof The proof is an easy adaptation of that of Theorem 2.24.2. We focus only on
the necessary changes.

Applying Theorem G.4.1 instead of Corollary G.2.8 in the proof of the prelim-
inary Lemma 2.24.1, we begin with an orthonormal basis (P ; ε1, . . . , εn) with re-
spect to which the equation of the quadric has the form

n∑

i=1

αiY
2
i +

n∑

i=1

βiYi + γ = 0.

The arguments in the proof of Theorem 2.24.2 apply as such to prove the
existence of another origin O so that with respect to the orthonormal basis
(O; ε1, . . . , εn), the equation of the quadric now takes one of the three forms:

n∑

i=1

αiZ
2
i = 1

n∑

i=1

αiZ
2
i = 0

m∑

i=1

αiZ
2
i +

n∑

i=m+1

βiZi = 0.

To conclude the proof, it suffices to find another orthonormal basis giving rise to
a change of coordinates with the properties

Xi = Zi for 1 ≤ i ≤ m, Xn = −1

k

(
n∑

i=m+1

βiZi

)

, k 
= 0.

Multiplying the equation by k will yield the expected result. Notice that if the change
of coordinates matrix M is orthogonal, the new basis will automatically be orthonor-
mal. Indeed the vectors of the new basis, expressed in terms of the old orthonormal
basis, will be the columns of the inverse change of coordinate matrix M−1, that is,
the lines of M since M−1 = Mt .
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We must therefore prove the existence of an orthogonal matrix of the form

⎛

⎜⎜⎜⎜⎜⎜⎜
⎝

1 0
. . . 0

0 1

0 · · · 0 − βm+1
k

· · · −βn

k

⎞

⎟⎟⎟⎟⎟⎟⎟
⎠

.

Choosing

k = ∥∥(0, . . . ,0,−βm+1, . . . ,−βn)
∥∥ 
= 0,

the first m lines of this matrix, together with the last line, constitute an orthonormal
sequence of vectors in Rn. It suffices to complete this sequence to an orthonormal
basis of Rn to get an orthogonal matrix. �

Proposition 2.25.1 yields immediately, in the Euclidean context:

Proposition 4.14.2 Let (O; e1, . . . , en) be a given orthonormal basis in some
Euclidean space (E,V ). Consider a quadric Q ⊆ E which, with respect to this
basis, has a reduced equation as in Theorem 4.14.1. Consider a vector subspace
W ⊆ V which:

1. in the case of an equation of type 1 or 2, is generated by some of the vectors
e1, . . . , en;

2. in the case of an equation of type 3, is generated by some of the vectors
e1, . . . , en−1.

Write (F,W⊥) for the affine subspace with direction W⊥ passing through the ori-
gin O . The quadric Q is stable under the orthogonal symmetry with respect to
(F,W⊥).

4.15 Problems

4.15.1 In a Euclidean space, prove that the sum of the angles of an arbitrary triangle
equals π .

4.15.2 Let (0; e1, . . . , en) be a finite dimensional Euclidean space and (F,W) a hy-
perplane with equation

∑n
i=1 aiXi = b. Find a formula giving the distance between

a point P and the subspace F .

4.15.3 In a Euclidean plane, prove that a direct isometry is a rotation or a transla-
tion.
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Fig. 4.10

Fig. 4.11

4.15.4 In a Euclidean plane (E,V ) consider a rotation (r,
−→
r ) by angle 0 < θ < π .

Prove that for every vector v ∈ V , there exists a unique point P ∈ E such that−−−−→
Pr(P ) = v.

4.15.5 Consider a triangle ABC in a Euclidean plane and the median AM of the
side BC (see Fig. 4.10). Prove that

d(A,B)2 + d(A,C)2 = 1

2
d(B,C)2 + 2d(A,M)2.

4.15.6 Consider a quadrilateral ABCD in a Euclidean plane, together with the mid-
dle points M , N of the two diagonals (see Fig. 4.11). Prove that

d(A,B)2 +d(B,C)2 +d(C,D)2 +d(D,A)2 = d(A,C)2 +d(B,D)2 +4d(M,N)2.

4.15.7 Let (O; e1, . . . , en) be an arbitrary basis of a Euclidean space. Prove that the
basis is orthonormal if and only if the coordinates −→

x of a point P are such that
xi = (

−→
OP |ei) for each index i.

4.15.8 Consider two points A 
= B in a finite dimensional Euclidean space (E,V ).
Prove that the locus of points P such that d(P,A) = d(P,B) is a hyperplane. This
hyperplane is called the mediatrix hyperplane of the segment [AB].

4.15.9 In a Euclidean plane (E,V ), prove that two distinct affine lines are parallel
if and only if they are perpendicular to the same third affine line.
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4.15.10 In a finite dimensional Euclidean space, prove that every translation is the
composite of two orthogonal symmetries with respect to parallel hyperplanes.

4.15.11 Let (E,V ) be a finite dimensional Euclidean space. Every similarity on
(E,V ) of ratio k 
= 1 has exactly one fixed point.

4.16 Exercises

4.16.1 Let (E,V, (−|−)) be a Euclidean space.

1. If in Fig. 4.11, ABCD is a parallelogram, prove that

2d(A,B)2 + 2d(B,C)2 = d(A,C)2 + d(B,D)2.

2. Infer the median theorem from this equality (see Fig. 4.10): In a triangle ABC,
if M is the middle point of the side BC, then

d(A,B)2 + d(A,C)2 = 2d(A,M)2 + 1

2
d(B,C)2.

3. Prove vectorially that a triangle ABC “inscribed in a circle” (i.e. the three ver-
tices of the triangle are points of a given circle) is a right triangle if and only if
two of its vertices are on a diameter of this circle.

4.16.2 Consider the Euclidean space E2(R), that is, R2 with its usual scalar prod-
uct.

1. Consider the two bases

R′ = (
P ′; e′

1, e
′
2

)
, P ′ = (1,−3), e′

1 = (1,2), e′
2 = (2,−3),

R′′ = (
P ′′; e′′

1, e′′
2

)
, P ′′ =

(
17,

3

4

)
, e′′

1 =
(

3

5
,

4

5

)
,

e′′
2 =

(
−4

5
,

3

5

)
.

Give the matrix of the scalar product with respect to these two bases.
2. Let A,B,C ∈ E2(R) admit the coordinates

A =
(

2
3

)
, B =

(
3
3

)
, C =

(
2
4

)

with respect to the basis R′. Calculate the scalar product of
−→
AB and

−→
AC and the

angle between these two vectors.

4.16.3 Consider R2 as an affine space over itself.
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1. Determine a scalar product such that:

(a) ‖(1,1)‖ = 1 and ‖(0, 1
2 )‖ = 1;

(b) the vectors (1,1) and (0, 1
2 ) are orthogonal.

2. In the so-obtained Euclidean space, compute the angle between the two lines
with equations x = 1 and y = 17.

3. In the same Euclidean structure, determine the circle of radius 1 centered at the
origin.

4.16.4 Consider the Euclidean space R(2)[X] of real polynomials of degree at
most 2, where the scalar product is defined by

(
a2X

2 + a1X + a0|b2X
2 + b1X + b0

) = 2a0b0 + 2a1b1 + a2b2 + a0b1 + a1b0.

Consider the canonical basis Rc = (0;1,X,X2) of R(2)[X] and the other basis R′ =
(P ; e′

1, e
′
2, e

′
3) given by

P = 2X2 + 2X + 2, e′
1 = X + 1, e′

2 = X2 + X, e′
3 = X2 + 1.

Consider next the point A, admitting the coordinates
( 1

2
3

)
with respect to the canon-

ical basis Rc, and the point B , admitting the coordinates
( 1

2
3

)
with respect to the

basis R′. Find the vectorial and Cartesian equations, with respect to the canonical
basis Rc, of the plane π containing A and perpendicular to

−→
AB .

4.16.5 Let (E,V ) be a real affine space of dimension 2. Fix O ∈ E and two linearly
independent vectors e1, e2 ∈ V .

1. Give the formulas of change of coordinates between the following two bases:
(0; e1, e2) and (0 + e2,−e1, e2 − e1).

2. Is it possible to provide V with a scalar product with respect to which both bases
are orthonormal?

4.16.6 In E3(R) consider a tetrahedron ABCD. Prove that, when the edges AB

and CD are orthogonal, as well as the edges AC and BD, then the edges AD and
BC are necessarily also orthogonal.

4.16.7 In a real affine space (E,V ) of dimension 2, consider a parallelogram
ABCD and denote by O the intersection point of its diagonals. Consider further
the two bases

R= (A;−→AB,
−→
AD), S = (0;√2

−→
OA,

√
2
−→
OB).

Show that for any scalar product on V , the basis R is orthonormal if and only if the
basis S is orthonormal.
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4.16.8 Consider the vector space R(2)[X] of real polynomials of degree at most 2,
viewed as an affine space over itself. Provide this space with the scalar product

(P |Q) = P(−1) · Q(−1) + P(0) · Q(0) + P(1) · Q(1).

1. Calculate the angle �(PQR) when

P = X + 1, Q = −X + 1, R = X2 − X.

2. Show that

F = {
X2 + aX + b

∣∣a, b ∈R
}

is an affine subspace of R(2)[X] and compute the orthogonal projection of the
zero polynomial on this subspace.

4.16.9 Let (f,
−→
f ) be an affine transformation of E3(R). Suppose that

−→
f preserves

the scalar product. Suppose further that
−→
f admits 1 as eigenvalue and that the corre-

sponding subspace of eigenvectors of eigenvalue 1 is a vectorial plane π0. Suppose
finally that f admits a fixed point P . Explain why f is necessarily the orthogonal
symmetry with respect to the plane π of direction π0 passing through P .

4.16.10 Consider E3(R); we work in the canonical basis. Prove that the affine trans-
formation defined by

f

⎛

⎝
x

y

z

⎞

⎠ =
⎛

⎝
0 −1 0
0 0 −1
1 0 0

⎞

⎠

⎛

⎝
x

y

z

⎞

⎠

is an isometry. Is this a symmetry? If so, determine the plane, the line or the center
of symmetry. Is this a rotation? If so, determine the axis and the angle of rotation.

4.16.11 Consider the affine transformation f on E3(R) described, with respect to
the canonical basis, by the formula

f

⎛

⎝
x

y

z

⎞

⎠ =
⎛

⎜
⎝

1
3 − 2

3
2
3

− 2
3

1
3

2
3

− 2
3 − 2

3 − 1
3

⎞

⎟
⎠

⎛

⎝
x

y

z

⎞

⎠ +
⎛

⎝
3
3
0

⎞

⎠ .

Prove that this is an isometry. Determine the type of isometry and its geometric
elements.
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4.16.12 Consider the affine transformation f on E3(R) described, in the canonical
basis, by the formula

f

⎛

⎝
x

y

z

⎞

⎠ =
⎛

⎜
⎝

1
3 − 2

3
2
3

− 2
3

1
3

2
3

− 2
3 − 2

3 − 1
3

⎞

⎟
⎠

⎛

⎝
x

y

z

⎞

⎠ +
⎛

⎝
1
a

0

⎞

⎠ .

Prove that this is an isometry. Determine the type of this isometry according to the
values of the parameter a. Determine the geometric elements of this isometry for
the values a = 1 and a = 2.

4.16.13 Let (E, (−|−)) be a Euclidean space and O ∈ E. Consider an isometry

(f,
−→
f ) of this space to itself and put v = −−−−→

Of (O). Prove that f admits a fixed point
if and only if v is perpendicular to every vector of Fix(

−→
f ).

4.16.14 In the Euclidean space E3(R) with its canonical scalar product, consider
the basis R′ = (O; e1, e2, e3) with

O = (0,0,0), e1 = (1,0,0), e2 = (1,1,0), e3 = (1,1,1).

Prove that the affine transformation defined in the basis R′ by the formula

f

⎛

⎝
x

y

z

⎞

⎠ =
⎛

⎝
−1 −2 −2
1 1 0
0 0 1

⎞

⎠ +
⎛

⎝
2

−1
0

⎞

⎠

is an isometry. Determine its nature and its geometric elements.

4.16.15 In E2(R), find the matrix representation, in the canonical basis, of an isom-
etry f mapping:

• the point (0,1) to the point ( 1√
3
,0);

• the point ( 1√
3
,0) to the point (− 1√

3
,0);

• the point (− 1√
3
,0) to the point (0,1).

Give the nature and the geometric elements of this isometry.

4.16.16 Consider the vector space R(2)[X] of real polynomials of degree at most 2
viewed as an affine space over itself. Provide it with the scalar product

(
a2X

2 + a1X + a0
∣∣b2X

2 + b1X + b0
) = a2b2 + a1b1 + a0b0.

Determine the matrices A ∈R3×3 and B ∈ R3×1 such that the affine transformation
defined by the formula

f

⎛

⎝
x

y

z

⎞

⎠ = A

⎛

⎝
x

y

z

⎞

⎠ + B
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in the canonical basis is the inverse isometry mapping

0 to X2, 1 to 0, X to X2 +
√

2

2
X +

√
2

2
.

4.16.17 Let (E,V, (−|−)) be a finite dimensional Euclidean space. Consider two
isometries (f,

−→
f ) and (g,

−→
g ) of E to itself. Suppose that both f and g admit fixed

points and commute with each other, that is, f ◦ g = g ◦ f . Prove, via the following
steps, that f and g have at least one common fixed point.

1. Prove first that (Fix(f ),Fix(
−→
f )) is an affine subspace.

2. Prove that this subspace is invariant under (g,
−→
g ), that is (g,

−→
g ) restricts to an

affine isomorphism

(g,
−→
g ) : (

Fix(f ),Fix(
−→
f )

) −→ (
Fix(f ),Fix(

−→
f )

)
.

3. Let Ω be a fixed point of g and w the orthogonal projection of Ω on Fix(f ).
Prove that w is a common fixed point of f and g. (Hint: using the definition of
an orthogonal projection, show that g(w) is also the orthogonal projection of Ω

on Fix(f ).)

4.16.18 In E3(R), consider the orthogonal symmetry with respect to the plane with
equation z + 2 = 0 followed by the rotation by a half turn about the line with equa-
tions x = 1, y = z. Is this composite an isometry? If so, what type of isometry is it?
Find its geometric elements.

4.16.19 Consider the quadric Q of R3 whose equation with respect to the canonical
basis is

3x2 + 3y2 − 2z2 + 2xy + 6x + 2y + 4z + 3 = 0.

Find an orthonormal basis with respect to which this quadric admits a reduced equa-
tion. Infer the nature of this quadric.

4.16.20 In E3(R) consider the quadric Q with equation

2x2 + 4x − y2 − 2yz − z2 − 3z + 5 = 0

with respect to the canonical basis. Let R = (0; e1, e2, e3) be an orthonormal basis
with respect to which the equation of Q is reduced and let π be the plane with
equation −x +y +z = 0 in the canonical basis. What is the equation of the direction
of π with respect to the basis (e1, e2, e3)?

4.16.21 In E3(R) and its canonical basis, consider the point A = (1,0,1) and the
plane π with equation y = x − 1. Let Q be the locus of those points whose distance
to the point A is equal to

√
2 times the distance to the plane π . Prove that Q is a

quadric.
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