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A Second-Order Algorithm for Curve

Parallel Projection on Parametric Surfaces

Xiongbing Fang and Hai-Yin Xu

Abstract A second-order algorithm is presented to calculate the parallel projection

of a parametric curve onto a parametric surface in this chapter. The essence of our

approach is to transform the problem of computing parallel projection curve on the

parametric surface into that of computing parametric projection curve in the

two-dimensional parametric domain of the surface. First- and second-order differ-

ential geometric characteristics of the parametric projection curve in the parametric

domain of the surface are firstly analyzed. A marching method based on second-

order Taylor Approximation is formulated to calculate the parametric projection

curve. A first-order correction technique is developed to depress the error caused by

the truncated higher order terms in the marching method. Several examples are

finally implemented to demonstrate the effectiveness of the proposed scheme.

Experimental results indicate that both the computational efficiency and accuracy

of the presented method have dominant performance as compared with the first-

order differential equation method.

2.1 Introduction

Curves on a surface have a wide range of applications in the fields of Computer

Graphics, Computer-Aided Geometric Design, Computer Animation, CNC, etc.

For instance, curves on a surface can be used for surface trimming [1], surface

blending [2], NC tool path generation [3, 4], and so on. According to the designing

manner, curves on a surface can be the intersection curve of two surfaces [4],
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the offset of a given curve on a surface [3], the projection curve of a spatial curve

onto a surface [5–9], the image of a curve in the parametric domain of a parametric

surface [1, 2], or the fitting curve of a sequence of points lying on a surface [10].

In this chapter, we focus on computation of parallel projection of a parametric

curve onto a parametric surface. Presently, there are twoways to do this problem.One

is the first-order differential equation method [6] and the other is discrete method.

For the problem of calculating the parallel projection of parametric curves onto

parametric surfaces, Wang, et al. transformed the condition of parallel projection

into a system of differential equations and then formulated the problem as a first-

order initial value problem. Numerical methods such as Runge–Kutta and Adams-

Bashforth can be utilized to solve the initial value problem to generate a sequence of

points. Under this transformation, difficulties lie in the choice of an accurate initial

value and the stability of the adopted numerical method. For the discrete method,

the parametric curve should first be discretized into a series of points. Parallel

projections of these separated points can be calculated through the technique of

intersection of a line with a surface. Usually, the computational efficiency of the

discrete method depends on that of the intersection algorithm. Though the current

projected point can be taken as the initial value of the next iteration, efficiency of the

discrete method is generally slow as it does not fully utilize the differential geomet-

ric properties of both the parametric curve and the projection curve. The projection

curve can be constructed by fitting the projected points generated by the two

aforementioned types of approaches.

A second-order algorithm is put forward for tracing the parallel projection of a

parametric curve onto a parametric surface. Experimental results show that the

proposed scheme has dominant performance in both efficiency and computational

accuracy as compared with Wang’s approach [6]. The rest of the chapter is

organized as follows. An overview for our approach is presented in the next section.

A second-order technique with error adjustment for tracing the projection curve is

given in Sect. 2.3. Implementation and experimental results of our approach are

carried out in Sect. 2.4 and we conclude the chapter in Sect. 2.5.

2.2 Overview

A 3D parametric curve p(t) and a parametric surface S(u,w) given in Fig. 2.1a are

represented as

p tð Þ ¼ x tð Þ y tð Þ z tð Þ½ � ð2:1Þ

and

S u;wð Þ ¼ x u;wð Þ y u;wð Þ z u;wð Þ½ � ð2:2Þ
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respectively. Suppose p is a point on the curve p(t) and the q is the corresponding

point generated by projecting the point p along with the direction V onto the

surface S. While the point p moving along the curve p(t), its parallel projection

point q also moves along a curve on the surface, which is termed as the parallel

projection curve of p(t) along with the direction V onto the surface S. According to

the definition of parallel projection, one has

q tð Þ � p tð Þð Þ � V ¼ 0 ð2:3Þ

where “�” denotes the cross product of two vectors. As the point lies on the

parametric surface S(u,w), the curve q(t) can be represented as q(t) ¼ [x(u(t),
w(t)) y(u(t), w(t)) z(u(t), w(t))].

From the above analysis, there is a curve g(t) ¼ [u(t), w(t)] in the parametric

domain of the surface (please see Fig. 2.1b), which has a one-to-one corresponding

relationship with the parallel projection curve on the surface. Thus a one-to-one

corresponding relationship exists between the 3D curve p(t) and the 2D curve g(t).
For the convenience of description, we call g(t) as parametric projection curve in

the remainder.

In this chapter, we transform the problem of computing parallel projection curve

on parametric surface into the one of tracing parametric projection curve in 2D u–w

parametric domain. In Sect. 2.3.1, the first- and second-order differential quantities

of the parametric projection curve are analyzed. A second-order iteration method

for marching a series of points on the parametric projection curve based on Taylor

Approximation is established and two methods for choosing the iterative step size

are developed in Sect. 2.3.2. Considering the error caused by truncated higher order

terms, a simple and efficient way to decrease the error is put forward in Sect. 2.3.3.

2.3 Parallel Projection Marching

2.3.1 The First- and Second-Order Differential Quantities
of the Parametric Projection Curve

In order to calculate the first-order differential quantities, i.e., ut and wt, of the

parameters u and w with respect to the parameter t of the 3D curve, differentiating

Eq. (2.3) with respect to t produces
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a bFig. 2.1 Parallel projection

of 3D curve onto surface
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Su � Vð Þuu þ Sw � Vð Þwt ¼ pt � V ð2:4Þ

Taking the cross product of the Sw and both sides of the Eq. (2.4), one has

Su � V½ � � Swð Þut ¼ pt � V½ � � Sw ð2:5Þ

Substituting [Su � V] � Sw ¼ � (Su � Sw) � V into Eq. (2.5), we have

ut ¼ �L � Sw

Su � Sw½ � � V ð2:6Þ

where L ¼ pt � V. Similarly, dot-multiplying Eq. (2.4) by Su gives

wt ¼ L � Su

Su � Sw½ � � V ð2:7Þ

One can continue to differentiate Eq. (2.3) with respect to the parameter t

dSu

dt
� V

� �
ut þ Su � Vð Þutt þ dSw

dt
� V

� �
wt þ Sw � Vð Þwtt ¼ ptt � V ð2:8Þ

Since dSu

dt ¼ Suuut þ Suwwt and
dSw

dt ¼ Suwut þ Swwwt, Eq. (2.8) can be rewritten as

Suu utð Þ2 þ 2Suwutwt þ Sww wtð Þ2
h i

� Vþ Su � Vð Þutt þ Sw � Vð Þwtt

¼ ptt � V ð2:9Þ

Dot-multiplying Eq. (2.9) by Sw and Su, respectively, gives

utt ¼ �J � Sw

Su � Swð Þ � V

wtt ¼ J � Su

Su � Swð Þ � V

8>>><
>>>:

ð2:10Þ

where J ¼ [ptt � Suu(ut)
2 � 2Suwutwt � Sww(wt)

2] � V, and ut, wt are computed

by Eqs. (2.6) and (2.7), respectively.

2.3.2 Parametric Projection Curve Marching

In this section, we will use a second-order Taylor Approximation method to trace

the parametric projection curve g(t) to generate a series of points.
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Let gi ¼ (ui,wi) and gi+1 ¼ (ui+1, wi+1) be the current and the next parametric

projected point in the u–w domain respectively. Then the position of point gi+1 can
be iteratively calculated through the current projected point and the first- and

second-order differential quantities ut, wt, utt, wtt at the point as follows

½uiþ1,wiþ1� ¼ ui,wi½ � þ ut,wt½ �½k þ 1=2�utt,wttk
2 ð2:11Þ

where k is a constant iteration step size.

If k ¼ Δt is constant, one can utilize the Eq. (2.11) to get a sequence of points

(ui, wi) on the parametric projection curve g(t), where i ¼ 1, 2, . . .. However, the
distribution of the projected points may not be well-proportioned. In order to fully

use the differential geometric characteristics of g(t) and p(t), we will give two ways
to choose the iteration step size.

One can consider marching along the parametric projection curve based on a

constant step size vp along the 3D parametric curve. Suppose r is the arc-length

parameter of the 3D parametric curve, one has

dr ¼ xt yt ztk kdt ¼ ptk kdt ð2:12Þ

Marching along the 3D parametric curve uses

tiþ1 ¼ ti þ k with k ¼ 1

ptk k vp ð2:13Þ

in addition to using Eqs. (2.6), (2.7), (2.10) and (2.11).

For marching along the parametric projection curve based on constant step size

vq along the projection curve, one can write

ds ¼ qtk kdt ð2:14Þ

where s is the arc-length parameter of the parallel projection curve and qt ¼ Suut +
Swwt. Marching along the parallel projection curve uses

tiþ1 ¼ ti þ k with k ¼ 1

Suut þ Swwtk k vq ð2:15Þ

in addition to using Eqs. (2.6), (2.7), (2.10) and (2.11).

2.3.3 Error Adjustment

Considering the truncated higher order terms, the position of point computed

through Eq. (2.11) may depart from the parametric projection curve g(t) in u–w

domain. Hence, a first-order adjustment technique is presented to reduce the error.
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Suppose ĝ iþ1 ¼ ûiþ1; ŵiþ1ð Þ be the parametric projection point computed by

Eq. (2.11)

ûiþ1; ŵiþ1½ � ¼ ui;wi½ � þ ut;wt½ �k þ 1=2 utt;wtt½ �k2

As the above iteration formula omits higher order terms, the image point of ĝ iþ1

may deviate from the parallel projection curve on the parametric surface S, i.e.,

q̂ iþ1 � piþ1

� �� V ¼ ε 6¼ 0 ð2:16Þ

where q̂ iþ1 ¼ S ûiþ1; ŵiþ1ð Þ, pi+1 ¼ p(ti + 1).

Let [Δu, Δw] be the correction vector, the corrected parametric projection point

and parallel projection point be giþ1 ¼ uiþ1;wiþ1ð Þ ¼ û iþ1 þ Δu, ŵ iþ1 þ Δwð Þ and
qi + 1 ¼ S(ui + 1,wi+1), respectively. According to the definition of parallel projec-

tion, one has

qiþ1 � piþ1

� �� V ¼ 0 ð2:17Þ

In order to calculate the error adjustment vector [Δu, Δw], we use a first-order

Taylor formula to expand the point qi+1 at ĝ iþ1, i.e., qiþ1 ¼ S ûiþ1; ŵiþ1ð Þ
þSuΔuþ SwΔw. Substituting qi+1 into Eq. (2.17) produces

SuΔuþ SwΔwð Þ � V ¼ �ε ð2:18Þ

Dot-multiplying Eq. (2.18) by Sw and Su respectively, gives

Δu ¼ ε � Sw

Su � Swð Þ � V

Δw ¼ �ε � Su

Su � Swð Þ � V

8>>><
>>>:

ð2:19Þ

Note that all variables in Eq. (2.19) are evaluated at point ĝ iþ1 and ti+1. When the

deviation kεk calculated by Eq. (2.16) is greater than a given threshold α, i.e.,
kεk > α, one can adopt the error adjustment vector calculated by Eq. (2.19) to

adjust the parametric projection point ĝ iþ1. In the following, the quantities kεk and
α are called as projection error and projection error threshold, respectively.

Suppose gi and gi+1 are two adjacent points after error correction lying on the

parametric projection curve g(t) ¼ [u(t) w(t)]. One can use a line segment to

connect the two points gi and gi+1 as follows:

u ¼ t ui � t � uiþ1ð Þ
w ¼ wi þ l t� uið Þ

�
ð2:20Þ

14 X. Fang and H.-Y. Xu



where l ¼ (wi+ 1 � wi)/(ui+ 1 � ui). A G0 continuous parallel projection curve is

acquired by substituting Eq. (2.20) into Eq. (2.2). One can also use the G1 approx-

imation method [10] to fit the sequence of points S(ui,wi), i ¼ 1, 2, . . ., to get a

parallel projection curve with G1 or higher continuity.

2.4 Demonstrations

Our parallel projection algorithm framework is outlined in Sect. 2.4.1 and a number

of examples are given to demonstrate the validity of our proposed method in

Sect. 2.4.2. The examples make use of cubic NURBS curves and bicubic NURBS

surfaces. In this context, these are viewed as parametric curves and surfaces,

respectively.

2.4.1 Outline of Our Parallel Projection Algorithm

Given the control points and knot vectors for a NURBS curve and a NURBS

surface, we need to compute a series of parallel projection points on the surface.
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2.4.2 Examples

In this section we firstly give four examples (please see Figs. 2.2, 2.3, 2.4, and 2.5)

obtained by the Algorithm 1. Further detailed comparisons of our scheme with

Wang’s first-order differential equation method [6] are carried out to testify the

computational efficiency and accuracy of our methods (please see Tables 2.1, 2.2,

2.3, and 2.4). All the examples are implemented with Matlab, and run on a PC with

2.80 GHz CPU and 1 GB memory.

Figure 2.2a shows an example of projecting a closed butterfly curve onto an

undee surface. The corresponding parametric projection curve in the u–w parame-

tric domain is shown in Fig. 2.2b. The second example shows the projection of a

small hand-form curve onto a mouse surface. The hand-form curve and its parallel

Fig. 2.2 Parallel projection example 1. (a) A butterfly curve onto an undee surface, and

(b) parametric projection curve in u–w domain

Fig. 2.3 Parallel projection example 2. (a) A hand-form curve onto a mouse surface, and

(b) parametric projection curve in u–w domain
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projection curve on the NURBS surface is show in Fig. 2.3a. Figure 2.3b denotes

the parametric projection curve in the u–w parametric domain.

Figures 2.3a and 2.4a are examples of projecting a same closed NURBS curve

onto a same complex ridge NURBS surface along two different directions. The

corresponding parametric projection curves in the u–w parametric domain are

shown in Figs. 2.3b and 2.4b.

For the parallel projection examples 1 and 2, we compared our method with

Wang’s first-order differential equation method [6] focusing on computational

accuracy and efficiency (please see Tables 2.1, 2.2, 2.3, and 2.4). For the sake of

fairness, the step size is specified by constant parametric increment Δt and the

tolerance α of the parallel projection error ε is set as constant (α is set as 1.0e-009

for all the comparisons). Moreover, the initial values for the two methods are the

same. As the parallel projection error of Wang’s method may overrun the error

threshold α, it is solved with the classical fourth-order Runge–Kutta method and our

error adjustment technique deduced in Sect. 2.3.3.

Fig. 2.4 Parallel projection example 3. (a) A closed NURBS curve onto a ridge surface, and

(b) parametric projection curve in u–w domain

Fig. 2.5 Parallel projection example 4. (a) A closed NURBS curve onto a ridge surface, and

(b) parametric projection curve in u–w domain
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For comparison of accuracy of the two methods, the first-order method is

realized just by using the classical four-order Runge–Kutta method, while our

method is implemented in two ways that one is carried out with error adjustment

and the other is without correction. From the results in Tables 2.1 and 2.2 (Note that

the symbol “APE” in Tables 2.1, 2.2, 2.3, and 2.4 denotes average projection error),

we can see that our method is much lower than Wang’s in precision when

implemented without error correction. After the error adjustment, the accuracy of

our method is much finer than Wang’s. From the results of large numbers of

experiments, we found that the CPU time of our method with error adjustment is

less than that of Wang’s as projecting the same number of points onto a surface,

while the precision of ours still has predominant performance.

Tables 2.3 and 2.4 are the comparison results of accuracy of our method with

Wang’s, which are gained under the conditions of same initial values, iteration step

size, and error threshold. Both of the two methods adopted the error correction

technique given in Sect. 2.3.3. From the column of CPU time in Tables 2.3 and 2.4,

we can see that the efficiency of our method is about 1.1 times of Wang’s. On the

Table 2.1 Comparison of accuracy: projection of a butterfly curve onto an undee surface

Step size, Δt
APE of Wang’s method

(no error adjustment)

APE of our method

(no error adjustment) (error adjustment)

0.05 2.2598e-009 1.3133e-004 1.8662e-012

0.04 4.7598e-010 8.3957e-005 4.8905e-013

0.03 2.0282e-007 4.9389e-005 8.6769e-014

0.02 6.7689e-011 2.0942e-005 7.6519e-015

Table 2.2 Comparison of accuracy: projection of a hand-form curve onto a mouse surface

Step size, Δt
APE of Wang’s method

(no error adjustment)

APE of our method

(no error adjustment) (error adjustment)

0.05 2.8146e-004 4.1585e-002 7.7697e-011

0.04 1.2407e-004 2.4439e-002 2.6262e-011

0.03 4.1559e-005 1.2371e-002 5.4997e-012

0.02 8.4125e-006 4.8313e-003 1.4454e-012

0.01 5.0854e-007 1.0423e-003 4.5111e-013

Table 2.3 Comparison of efficiency: projection of a butterfly curve onto an undee surface

Step size, Δt
Wang’s method (error adjustment) Our method (error adjustment)

APE CPU time (s) APE CPU time (s)

0.05 3.0445e-010 30.1094 1.8662e-012 27.2031

0.04 2.1330e-010 37.2500 4.8905e-013 33.0781

0.02 6.7689e-011 73.0781 7.6519e-015 66.1406
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other hand, from the comparisons of Tables 2.1, 2.2 and Tables 2.3, 2.4, one can

also find that our first-order error adjustment approach could efficiently improve the

computational precision of the Wang’s method.

2.5 Conclusion

A second-order algorithm based on Taylor Approximation is proposed to compute

the parallel projection of a parametric curve onto a parametric surface. Several

examples are presented to demonstrate the effectiveness of the presented approach.

Experimental results and comparisons indicate that the computational efficiency of

our method is about 1.1 times of that of the first-order differential equation method

and our method has superior performance in the computational accuracy.
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