Chapter 2
A Second-Order Algorithm for Curve
Parallel Projection on Parametric Surfaces

Xiongbing Fang and Hai-Yin Xu

Abstract A second-order algorithm is presented to calculate the parallel projection
of a parametric curve onto a parametric surface in this chapter. The essence of our
approach is to transform the problem of computing parallel projection curve on the
parametric surface into that of computing parametric projection curve in the
two-dimensional parametric domain of the surface. First- and second-order differ-
ential geometric characteristics of the parametric projection curve in the parametric
domain of the surface are firstly analyzed. A marching method based on second-
order Taylor Approximation is formulated to calculate the parametric projection
curve. A first-order correction technique is developed to depress the error caused by
the truncated higher order terms in the marching method. Several examples are
finally implemented to demonstrate the effectiveness of the proposed scheme.
Experimental results indicate that both the computational efficiency and accuracy
of the presented method have dominant performance as compared with the first-
order differential equation method.

2.1 Introduction

Curves on a surface have a wide range of applications in the fields of Computer
Graphics, Computer-Aided Geometric Design, Computer Animation, CNC, etc.
For instance, curves on a surface can be used for surface trimming [1], surface
blending [2], NC tool path generation [3, 4], and so on. According to the designing
manner, curves on a surface can be the intersection curve of two surfaces [4],
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the offset of a given curve on a surface [3], the projection curve of a spatial curve
onto a surface [5-9], the image of a curve in the parametric domain of a parametric
surface [1, 2], or the fitting curve of a sequence of points lying on a surface [10].

In this chapter, we focus on computation of parallel projection of a parametric
curve onto a parametric surface. Presently, there are two ways to do this problem. One
is the first-order differential equation method [6] and the other is discrete method.

For the problem of calculating the parallel projection of parametric curves onto
parametric surfaces, Wang, et al. transformed the condition of parallel projection
into a system of differential equations and then formulated the problem as a first-
order initial value problem. Numerical methods such as Runge—Kutta and Adams-
Bashforth can be utilized to solve the initial value problem to generate a sequence of
points. Under this transformation, difficulties lie in the choice of an accurate initial
value and the stability of the adopted numerical method. For the discrete method,
the parametric curve should first be discretized into a series of points. Parallel
projections of these separated points can be calculated through the technique of
intersection of a line with a surface. Usually, the computational efficiency of the
discrete method depends on that of the intersection algorithm. Though the current
projected point can be taken as the initial value of the next iteration, efficiency of the
discrete method is generally slow as it does not fully utilize the differential geomet-
ric properties of both the parametric curve and the projection curve. The projection
curve can be constructed by fitting the projected points generated by the two
aforementioned types of approaches.

A second-order algorithm is put forward for tracing the parallel projection of a
parametric curve onto a parametric surface. Experimental results show that the
proposed scheme has dominant performance in both efficiency and computational
accuracy as compared with Wang’s approach [6]. The rest of the chapter is
organized as follows. An overview for our approach is presented in the next section.
A second-order technique with error adjustment for tracing the projection curve is
given in Sect. 2.3. Implementation and experimental results of our approach are
carried out in Sect. 2.4 and we conclude the chapter in Sect. 2.5.

2.2 Overview

A 3D parametric curve p(¢) and a parametric surface S(u,w) given in Fig. 2.1a are
represented as

p(t) = [x(2) y(t) 2(1)] (2.1)
and

St w) = [, w) y(at,w) 2(at,w) (22)
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Fig. 2.1 Parallel projection
of 3D curve onto surface

respectively. Suppose p is a point on the curve p(f) and the ¢ is the corresponding
point generated by projecting the point p along with the direction V onto the
surface S. While the point p moving along the curve p(¢), its parallel projection
point ¢ also moves along a curve on the surface, which is termed as the parallel
projection curve of p(f) along with the direction V onto the surface S. According to
the definition of parallel projection, one has

(q(t) —p()) x V=10 (2.3)

where “Xx” denotes the cross product of two vectors. As the point lies on the
parametric surface S(u,w), the curve g(f) can be represented as q(¢) = [x(u(?),
w(D)) y(u(®), w(n) z(u(®), w(r)].

From the above analysis, there is a curve g(f) = [u(?), w()] in the parametric
domain of the surface (please see Fig. 2.1b), which has a one-to-one corresponding
relationship with the parallel projection curve on the surface. Thus a one-to-one
corresponding relationship exists between the 3D curve p(¢) and the 2D curve g(?).
For the convenience of description, we call g(f) as parametric projection curve in
the remainder.

In this chapter, we transform the problem of computing parallel projection curve
on parametric surface into the one of tracing parametric projection curve in 2D u—w
parametric domain. In Sect. 2.3.1, the first- and second-order differential quantities
of the parametric projection curve are analyzed. A second-order iteration method
for marching a series of points on the parametric projection curve based on Taylor
Approximation is established and two methods for choosing the iterative step size
are developed in Sect. 2.3.2. Considering the error caused by truncated higher order
terms, a simple and efficient way to decrease the error is put forward in Sect. 2.3.3.

2.3 Parallel Projection Marching

2.3.1 The First- and Second-Order Differential Quantities
of the Parametric Projection Curve

In order to calculate the first-order differential quantities, i.e., #, and w,, of the
parameters u# and w with respect to the parameter ¢ of the 3D curve, differentiating
Eq. (2.3) with respect to ¢ produces
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(Su X Vu, + (S x VIw,=p, x V (2.4)
Taking the cross product of the S,, and both sides of the Eq. (2.4), one has
([Su x V]-Sw)u, = [p, x V] - Sy (2.3)

Substituting [S,, x V] - S,, = — (S, x S,) - Vinto Eq. (2.5), we have

—-L-S,
=——— 2.6
IS < S,V (26)
where L = p, x V. Similarly, dot-multiplying Eq. (2.4) by S, gives
L-S,
=" 2-7
YIS xS,V (2.7)

One can continue to differentiate Eq. (2.3) with respect to the parameter ¢

ds, ds,,
( ke V)u, + (Su X Vu, + ( PTake V)w[—i— Sy x V\w, =p, xV (2.8)

Since% = S,uit; + Sy, and’l‘f’”’ = Suwl; + Sywwr, Eq. (2.8) can be rewritten as

[su,,(uff 128w, +sww(w,)2} X V4 (Su % Wity + (S % V)wy
=p,xV (2.9)

Dot-multiplying Eq. (2.9) by S,, and S,,, respectively, gives

IS,
M (S % 8,V
J.S, (2.10)
Wit =7 o o\ 1r
(S x8,) -V

where J = [p,, — S,m(u,)2 — 28, uw; — Sww(w,)z] x V, and u,, w, are computed
by Eqgs. (2.6) and (2.7), respectively.

2.3.2 Parametric Projection Curve Marching

In this section, we will use a second-order Taylor Approximation method to trace
the parametric projection curve g(f) to generate a series of points.
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Let g; = (u;,w;) and g;4; = (u;11, wiy1) be the current and the next parametric
projected point in the u—w domain respectively. Then the position of point g;,; can
be iteratively calculated through the current projected point and the first- and
second-order differential quantities u,, wy, u,, wy, at the point as follows

(i o wiry] = [uiwi] + [, wi] [k + 1/ 2]ty wk* (2.11)

where k is a constant iteration step size.

If k = At is constant, one can utilize the Eq. (2.11) to get a sequence of points
(u;, w;) on the parametric projection curve g(¢), where i = 1, 2, .... However, the
distribution of the projected points may not be well-proportioned. In order to fully
use the differential geometric characteristics of g(¢) and p(¢), we will give two ways
to choose the iteration step size.

One can consider marching along the parametric projection curve based on a
constant step size v, along the 3D parametric curve. Suppose r is the arc-length
parameter of the 3D parametric curve, one has

dr = |y, zil|de = |p[|de (2.12)

Marching along the 3D parametric curve uses

1
tiv1 =t +k with k= T Vp (213)
i

in addition to using Egs. (2.6), (2.7), (2.10) and (2.11).
For marching along the parametric projection curve based on constant step size
v, along the projection curve, one can write

ds = |q,)ldr (2.14)

where s is the arc-length parameter of the parallel projection curve and ¢, = S, u; +
S,.w;. Marching along the parallel projection curve uses

1

tivi=t+k with k=———-——v
H St + Spowi||

(2.15)

in addition to using Egs. (2.6), (2.7), (2.10) and (2.11).

2.3.3 Error Adjustment

Considering the truncated higher order terms, the position of point computed
through Eq. (2.11) may depart from the parametric projection curve g(¢) in u—w
domain. Hence, a first-order adjustment technique is presented to reduce the error.
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Suppose £, = (#ti+1,Wi+1) be the parametric projection point computed by
Eq. (2.11)

[I:iiJrlyVAViJrl] = [Miawi] + [Mt,Wt]k + l/z[uttawft}kz

As the above iteration formula omits higher order terms, the image point of g,
may deviate from the parallel projection curve on the parametric surface S, i.e.,

(@iﬂ _Pi+1> xV=e#0 (2.16)

where q ;. = S(iti11, Wis1), Piv1 = P(ti 1+ 1)-

Let [Au, Aw] be the correction vector, the corrected parametric projection point
and parallel projection point be g, | = (ti1,Wi+1) = (#i41 + Au, w1 + Aw) and
q:+1 = S(u; 4 1,wi41), respectively. According to the definition of parallel projec-
tion, one has

(@is1 —Pia) x V=0 (2.17)

In order to calculate the error adjustment vector [Au, Aw], we use a first-order

Taylor formula to expand the point g, at g, ie., ¢ = S(lip1, Wit1)
+8,Au + S, Aw. Substituting ¢;,; into Eq. (2.17) produces

(S, Au+ S,Aw) x V= —¢ (2.18)

Dot-multiplying Eq. (2.18) by S,, and S, respectively, gives

e-S,
Au=——"2"
TS xSV
.S (2.19)
Aw=— "4
VTS xS,V

Note that all variables in Eq. (2.19) are evaluated at point g ;, and #;, ;. When the
deviation ||¢|| calculated by Eq. (2.16) is greater than a given threshold «, i.e.,
|le]l > a, one can adopt the error adjustment vector calculated by Eq. (2.19) to
adjust the parametric projection point &, ;. In the following, the quantities ||| and
a are called as projection error and projection error threshold, respectively.

Suppose g; and g,,; are two adjacent points after error correction lying on the
parametric projection curve g(f) = [u(f) w(#)]. One can use a line segment to
connect the two points g; and g;,; as follows:

u=t (uigtgu,-ﬂ)
{w = wi + (t — ;) (2.20)
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where | = Wiy 1 — w)/(uis 1 — u;). A G° continuous parallel projection curve is
acquired by substituting Eq. (2.20) into Eq. (2.2). One can also use the G' approx-
imation method [10] to fit the sequence of points S(u;,w;), i = 1, 2, ..., to get a
parallel projection curve with G' or higher continuity.

2.4 Demonstrations

Our parallel projection algorithm framework is outlined in Sect. 2.4.1 and a number
of examples are given to demonstrate the validity of our proposed method in
Sect. 2.4.2. The examples make use of cubic NURBS curves and bicubic NURBS
surfaces. In this context, these are viewed as parametric curves and surfaces,
respectively.

2.4.1 Outline of Our Parallel Projection Algorithm

Given the control points and knot vectors for a NURBS curve and a NURBS
surface, we need to compute a series of parallel projection points on the surface.

Algorithm 1. Parallel projection of parametric curves onto parametric surfaces

Input: Parametric curve p(f), parametric surface S(u, w), the initial projection point po=p(#,) and its
parallel projection point gy=S(u, wo) on surface .S, projection error threshold a

Output: A series of parallel projection points ¢= S(u;, w;) (i=1,2,..) on surface S.

Algorithm Description:

L. 1= to, (ui+1, Wir1)= (o, Wo), Pi = Po, 4: = qo;
2.do{

3 Compute step size & , t;1: t;1=t/tk and p(t:11);

4. Compute (#+1, wi+1) and point ;=S (U1, Wir1);

5. Compute the projection error &;

6. while( |¢| > a ) do{

7 Compute the adjustment vector [Au, Aw] with equation (19);
8 Compute (1,
9

o W) = (U, W) +(Au, Aw) and g, = S(,,, W) 5
Renew (i1, wis1): (is1, wir1)= (i, W) and i q,,, =4, 5
10. Recalculate the projection error &€ with new parameters (u;:1, wi+1) and g;:1;
11. }end while
12. Renew t;: t=tir1, (ui, wy): (us, w)=(uir1, wir) and g;: q;= q;+1;
13.  Output the parallel projection point ¢;;
14. }while(p(#) is at the end of the 3D parametric curve p(f))
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Fig. 2.2 Parallel projection example 1. (a) A butterfly curve onto an undee surface, and
(b) parametric projection curve in u—w domain
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Fig. 2.3 Parallel projection example 2. (a) A hand-form curve onto a mouse surface, and
(b) parametric projection curve in u—w domain

2.4.2 Examples

In this section we firstly give four examples (please see Figs. 2.2, 2.3, 2.4, and 2.5)
obtained by the Algorithm 1. Further detailed comparisons of our scheme with
Wang’s first-order differential equation method [6] are carried out to testify the
computational efficiency and accuracy of our methods (please see Tables 2.1, 2.2,
2.3, and 2.4). All the examples are implemented with Matlab, and run on a PC with
2.80 GHz CPU and 1 GB memory.

Figure 2.2a shows an example of projecting a closed butterfly curve onto an
undee surface. The corresponding parametric projection curve in the u—w parame-
tric domain is shown in Fig. 2.2b. The second example shows the projection of a
small hand-form curve onto a mouse surface. The hand-form curve and its parallel
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Fig. 2.4 Parallel projection example 3. (a) A closed NURBS curve onto a ridge surface, and
(b) parametric projection curve in u—w domain
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Fig. 2.5 Parallel projection example 4. (a) A closed NURBS curve onto a ridge surface, and
(b) parametric projection curve in u—w domain

projection curve on the NURBS surface is show in Fig. 2.3a. Figure 2.3b denotes
the parametric projection curve in the u—w parametric domain.

Figures 2.3a and 2.4a are examples of projecting a same closed NURBS curve
onto a same complex ridge NURBS surface along two different directions. The
corresponding parametric projection curves in the u—w parametric domain are
shown in Figs. 2.3b and 2.4b.

For the parallel projection examples 1 and 2, we compared our method with
Wang’s first-order differential equation method [6] focusing on computational
accuracy and efficiency (please see Tables 2.1, 2.2, 2.3, and 2.4). For the sake of
fairness, the step size is specified by constant parametric increment A¢ and the
tolerance « of the parallel projection error € is set as constant («a is set as 1.0e-009
for all the comparisons). Moreover, the initial values for the two methods are the
same. As the parallel projection error of Wang’s method may overrun the error
threshold a, it is solved with the classical fourth-order Runge—Kutta method and our
error adjustment technique deduced in Sect. 2.3.3.
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Table 2.1 Comparison of accuracy: projection of a butterfly curve onto an undee surface

APE of Wang’s method APE of our method
Step size, At (no error adjustment) (no error adjustment) (error adjustment)
0.05 2.2598e-009 1.3133e-004 1.8662e-012
0.04 4.7598e-010 8.3957e-005 4.8905e-013
0.03 2.0282e-007 4.9389¢-005 8.6769¢-014
0.02 6.7689¢-011 2.0942e-005 7.6519¢-015

Table 2.2 Comparison of accuracy: projection of a hand-form curve onto a mouse surface

APE of Wang’s method APE of our method
Step size, At (no error adjustment) (no error adjustment) (error adjustment)
0.05 2.8146e-004 4.1585e-002 7.7697e-011
0.04 1.2407e-004 2.4439¢-002 2.6262e-011
0.03 4.1559e-005 1.2371e-002 5.4997e-012
0.02 8.4125e-006 4.8313e-003 1.4454e-012
0.01 5.0854e-007 1.0423e-003 4.5111e-013

Table 2.3 Comparison of efficiency: projection of a butterfly curve onto an undee surface

Wang’s method (error adjustment) Our method (error adjustment)
Step size, At APE CPU time (s) APE CPU time (s)
0.05 3.0445e-010 30.1094 1.8662e-012 27.2031
0.04 2.1330e-010 37.2500 4.8905e-013 33.0781
0.02 6.7689¢-011 73.0781 7.6519¢-015 66.1406

For comparison of accuracy of the two methods, the first-order method is
realized just by using the classical four-order Runge—Kutta method, while our
method is implemented in two ways that one is carried out with error adjustment
and the other is without correction. From the results in Tables 2.1 and 2.2 (Note that
the symbol “APE” in Tables 2.1, 2.2, 2.3, and 2.4 denotes average projection error),
we can see that our method is much lower than Wang’s in precision when
implemented without error correction. After the error adjustment, the accuracy of
our method is much finer than Wang’s. From the results of large numbers of
experiments, we found that the CPU time of our method with error adjustment is
less than that of Wang’s as projecting the same number of points onto a surface,
while the precision of ours still has predominant performance.

Tables 2.3 and 2.4 are the comparison results of accuracy of our method with
Wang’s, which are gained under the conditions of same initial values, iteration step
size, and error threshold. Both of the two methods adopted the error correction
technique given in Sect. 2.3.3. From the column of CPU time in Tables 2.3 and 2.4,
we can see that the efficiency of our method is about 1.1 times of Wang’s. On the
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Table 2.4 Comparison of efficiency: projection of a hand-form curve onto a mouse surface

Wang’s method (error adjustment) Our method (error adjustment)
Step size, At APE CPU time (s) APE CPU time (s)
0.05 4.5873e-010 30.5469 7.7697e-011 26.9219
0.03 1.7461e-010 49.7031 5.4997e-012 43.7813
0.01 3.9048e-010 145.3438 4.5111e-013 131.0313

other hand, from the comparisons of Tables 2.1, 2.2 and Tables 2.3, 2.4, one can
also find that our first-order error adjustment approach could efficiently improve the
computational precision of the Wang’s method.

2.5 Conclusion

A second-order algorithm based on Taylor Approximation is proposed to compute
the parallel projection of a parametric curve onto a parametric surface. Several
examples are presented to demonstrate the effectiveness of the presented approach.
Experimental results and comparisons indicate that the computational efficiency of
our method is about 1.1 times of that of the first-order differential equation method
and our method has superior performance in the computational accuracy.
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