
Chapter 2
Non-Equilibrium Steady States

Abstract In this chapter a brief collection of the results present in literature and used
in this work is described. We starts with a derivation of the Langevin equation in a
way that makes clear the assumptions on the basis of equilibrium dynamics. Then,
generalized response relations are presented and the role of entropy production is
discussed. Since a large part of this work regards the study of granular gases, the
second part of the chapter is entirely devoted to them, paying attention to the still
open problems in dense regimes. This is not a chapter of a review article, and for
this reason it could appear incomplete. However, it must be seen as an occasion to
present the common ground where there are the basis of our research, and it proposes
some questions which are developed and, at least partially, solved in the rest of the
work.

The fluctuations of a system at equilibrium are characterized by strong symmetries
that connect dissipation and noise. In this way, it is possible to have a prediction of
the response to an external perturbation by only measuring a coniugated correlation
function in the unperturbed system. As soon as non conservative forces are present,
this symmetries are broken. In this case, the complete characterization of fluctuation
and response is still an open problem of statistical mechanics.
In this chapter we start from a derivation of the Langevin equation from first prin-
ciples, as example of equilibrium dynamics. From this example it appears evident
that the fluctuating part and the dissipative part are both linked to the projection
of fast degrees of freedom and are then connected. Using this case as a starting
point, we present a derivation of the generalized response relations and the fluctua-
tion relations for generic stochastic processes. Some specific phenomena typical of
non-equilibrium states are then deduced from this general theory, like the connection
between entropy production and the arrow of time, the ratchet effect of an asymmetric
object in a non-equilibrium environment and finally the concept of effective temper-
ature for aging systems. In the last part of the chapter, granular gases are introduced.
In this class of models the presence of dissipation due to inelastic collisions, when
balanced by an external energy injection mechanism, produces a striking example
of non-equilibrium steady state. In granular gases, the description of non-thermal
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6 2 Non-Equilibrium Steady States

fluctuations, the response mechanism and the entropy production are still unclear
from a theoretical point of view. These open questions are here briefly presented in
a general context, and the search for a proper answer will be the central issue in the
rest of the work.

2.1 Historical Notes: The Central Role of the Fluctuations

The study of fluctuations has a great importance in statistical mechanics. Historically,
it is common and appropriate to start from the work of the botanist Robert Brown
[16]. In 1827, by using a microscope, he observed grains of pollen of the plant Clarkia
pulchella suspended in water moving in a very irregular way. Contrary to the common
thinking, Robert Brown was not the first one to discover the Brownian motion (in a
paper [17] he mentions several precursors) but his main contribution was to unveil the
pure mechanical origin of this phenomena. As written in a review of that period [18]:

This motion certainly bears some resemblance to that observed in infusory animals,
but the latter show more of a voluntary action. The idea of vitality is quite out of the
question. On the contrary, the motions may be viewed as of a mechanical nature,
caused by the unequal temperature of the strongly illuminated water, its evaporation,
currents of air, and heated currents...

Thirty years after the work of Brown, the French physicist Louis Georges Gouy,
supporting kinetic theory, pointed out several peculiarities of this motion, as reported
in Perrin’s book [73]. Among others, the most relevant are:

• the motion is very irregular, it appears that the trajectory has no tangent, and close
particles move in independent way

• by increasing the temperature of the solvent, the motion is “more active”
• the motion never ceases or change qualitatively.

These features could be explained via kinetic arguments, and a direct test of it resides
in the equipartition law. However, before the celebrated Einstein’s work, several
experimentalists failed to estimate the velocity of the tracer particle because of its
irregularity and confirmation of kinetic theory was not possible (see [67] and refer-
ences therein).

The breakthrough in understanding this phenomena arrived independently from
Smoluchowski [81] and Einstein [29]. The conceptual relevant point of the work of
Einstein is the assumption of the statistical equilibrium of the particle with the sur-
rounding medium, together with the Stokes law experienced by a particle immersed
in a fluid.

Based on this intuition, Langevin [58] proposed a stochastic differential equation
for the velocity of a Brownian particle:

dV

dt
= fs + ξ(t) = −γV + ξ(t), (2.1)
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where fs is the Stokes law with γ = 6πηa, a is the radius of a molecule, η is the
viscosity and ξ(t) is a fluctuating force, whose variance is fixed by the equipartition
law. The importance of fluctuations is now clear: a computation with only the Stokes
term would produce an exponential relaxation and no movement would be predicted.
From (2.1) an expression for the diffusion coefficient is obtained

D = lim
t→∞

〈[x(t) − x(0)]2〉
2t

= RT

6NAπηa
, (2.2)

where NA is the Avogadro number and R is the gas constant. The evocative aspect of
Eq. (2.2) is given by the possibility of counting molecules, by observing the macro-
scopic fluctuations of the position x(t) of a tracer particle, whose measure is clearly
easier than velocity estimations, as tried in the past.

This relation was experimentally confirmed by Svendberg and Perrin, dispelling
any doubt on the atomic theory.

On the other side, the dynamical equations introduced by Langevin have a wide
range of applicability and have been generalized and deduced in several contexts.

2.1.1 The Origin of the Langevin Equation: Noise and Friction

Let us consider a system coupled to a thermal bath, for example a massive intruder in
a fluid, and let us suppose we are interested in obtaining its dynamical equations. The
basic idea is to start from a full description of the variables present in the system, and
then to obtain an effective dynamical equation by reducing the number of degrees of
freedom. Generally speaking, the Hamiltonian of the system can be split into three
parts:

Htot = Hsystem + Hbath + Hint , (2.3)

where Hint is the interaction term. A standard projection recipe consists in integrating
over the bath variables and then in obtaining some dynamical equations for the “slow”
variables of the system of interest. In this section, we will describe, as particular
case, a harmonic model introduced for the first time by Zwanzig [88], which has the
advantage of being analytically tractable. In this case one has

Hsystem(X, P) = P2

2M
+ U (X) (2.4)

Hbath + Hint =
∑

j

⎡

⎣ p2
j

2
+ 1

2
ω2

j

(
x j − γ j

ω2
j

X

)2
⎤

⎦ . (2.5)

where the capital letters refer to the tracer particle and the bath is described by the
collection of variables {x, p}. Note that the strength of the interaction term is ruled
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Fig. 2.1 Scheme of the
reduction process

by γi . The equations of motion read

M
d X

dt
= P

d P

dt
= −U ′(X) +

∑

j

γ j (x j − γ j

ω2
j

X) (2.6)

dx j

dt
= p j

dp j

dt
= −ω2

j x j + γ j X. (2.7)

Now, thanks to the harmonic choice of the bath variables, it is evident that the Eq. (2.7)
can be integrated and substituted in (2.6), yielding an equation for the variables (P, X)

depending only on the initial conditions {q(0), p(0)}. The equation for the variable
P can be recast into:

d P

dt
= −U ′(x) −

∫ +∞

0
dsK (s)

P(t − s)

M
+ Fp(t), (2.8)

where

K (t) =
∑

j

γ2
j

ω2
j

cosω j t (2.9)

Fp(t) =
∑

j

γ j p j (0)
sinω j t

ω j
+

∑

j

γ j

(
q j (0) − γ j

ω2
j

x(0)

)
cosω j t. (2.10)

Up to now, no approximation has been done: these equations are indeed a simple
rewriting and the level of the description is still Hamiltonian, with a determinis-
tic evolution depending on the initial conditions. Clearly, for a large numbers of
oscillators, for instance of the order of the Avogadro number, referring to the initial
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condition in order to maintain the deterministic nature of the analysis is ingenuous
and useless, and a probabilistic approach is necessary.

The statistical ingredient in the description is implemented by considering an
equilibrium canonical distribution at a well defined temperature1 T = 1

β for the
initial conditions of the bath oscillators:

ρ(x, p) ∝ e−β(Hbath+Hint ). (2.11)

The statistical averages of the initial conditions are

〈(
x j (0) − γ j

ω2
j

X (0)

)2〉
= T

ω2
j

〈p j (0)2〉 = T, (2.12)

and clearly the first moments and the cross correlation vanishes. With this operation
the scenario changes completely, and from a deterministic approach one passes to a
stochastic one. As a consequence, the variable Fp(t) depends on the initial condition
of the bath, and plays the role of a noise [25]. A central relation in this model is given
by:

〈Fp(t)Fp(t
′)〉 = T K (t − t ′), (2.13)

which is called fluctuation dissipation relation of the second kind [50, 52]. Let us
conclude this example with some remarks. Thanks to the peculiar form of Hint , one
obtains that the correlation of the noise does not depend on x . It is possible to show,
indeed, that if one introduces a non linear coupling term between the variable X
and the bath variables, a multiplicative noise term appears [38]. In some non linear
cases, like in some pure kinetic models, some approximations must be taken into
account, like the large mass of the intruder, inducing some time scales separation.
We will return largely on this point in Chap. 4 with the work, among the others, of
Mori and Zwanzig [66, 89], the theory of the Brownian motion and of the generalized
Langevin equation has been extended to slow observables, via a projection technique,
under very general hypothesis. A central aspect is that, also in these more general
approaches, the proportionality between the correlation of noise and the memory
term is always verified. One must notice that, as evident from this simple example,
both the noise and the memory have the same origin and, as a consequence, a relation
connecting them is expected. We will point out in Chap. 3 that (2.13) is substantially
equivalent to have taken equilibrium conditions.

In this work we will focus on the classical aspect of non-equilibrium statistical
mechanics but it is worth to mention that extensions to the quantum or relativistic
case have been developed [28, 39].

1 In this thesis we always measure the temperature in scales of energy, namely we set the Boltzmann
constant kB equal to one.

http://dx.doi.org/10.1007/978-3-319-01772-3_4
http://dx.doi.org/10.1007/978-3-319-01772-3_3
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2.2 General Aspects of Non-Equilibrium Steady States

2.2.1 The Linear Response Relations

The study of the response properties plays a central role in this work. Historically,
response theory has been developed first in equilibrium, namely for system described
by Hamiltonian dynamics or where the ensemble theory is correct. For this reason,
in quite all the textbooks, response theory is presented as a synonymous of the so-
called fluctuation dissipation theorem.2 A consequence of this important theorem
was anticipated by Lars Onsager. With the regression hypothesis, he argued that a
system cannot “know” if a small fluctuation from equilibrium is caused by an internal
fluctuation or by an external field: as a consequence the regression of microscopic
thermal fluctuations at equilibrium follows the macroscopic law of relaxation of small
non-equilibrium disturbances [70]. Actually there is no apparent reason to apply this
“causality principle” only to equilibrium systems: it is possible, indeed, to define the
response of a system at a more general level [64], and as we will see, it is always
possible to connect it to a suitable correlation. At equilibrium, it assumes well known
and tractable forms.

In order to fix ideas, let us suppose that some noise is present. Therefore we con-
sider cases in which it is possible to associate a probability to the trajectories. Let
us then consider the space {ω} of trajectories of length t and its probabilities P0(ω).
Let us consider the effect of an external perturbation: it changes the dynamics and
the relative probability of the trajectories in Ph(ω) (for simplicity in what follows
we consider that the space of perturbed trajectories {ω} remain the same). The aver-
age value of any observable in presence of the perturbation is easy computed as3

〈O(t)〉h = ∑
ω O(ω)Ph(ω). Within this definition, the following identity trivially

holds:

〈O(t)〉h =
〈
O(t)

Ph(ω)

P0(ω)

〉

0
, (2.14)

where, with 〈. . . 〉0 we denote the average over the unperturbed trajectories. By taking
the functional derivative with respect to h(t ′), the response function is easily obtained:

δO(t)

δh(t ′)

∣∣∣
h=0

=
〈

O(t)
1

P0(ω)

δPh(ω)

δh(t ′)

∣∣∣∣
h=0

〉

0
, (2.15)

where we have introduced (. . . ) ≡ 〈. . . 〉h , in order to lighten notation. Equa-
tion (2.15) is, as anticipated above, a generalization of the Onsager’s sentence,
for a general system: the response of an observable to an external perturbation is
equal to a suitable correlation computed in the unperturbed system. As it appears

2 We will omit the expression “of the first kind” When the kind is not specified we always refer to
this relation.
3 We consider a numerable set of trajectories for simplicity of notation.
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clear, Eq. (2.14) and its linearized version (2.15) are somehow too general: the knowl-
edge of the full phase space probability is required in order to compute the correla-
tion, which is clearly strongly dependent by the details of the model. In equilibrium
statistical mechanics, a great outcome is that it is possible to recast, under general
conditions, the second member of (2.15) in a clear way, as described in Sect. 2.2.1.3.
In other words, this is another example of how, at equilibrium, it is possible to get
rid of the dynamical details of the model, as it happens for ensemble theory.

In order to fix notation, consider x as the collection of the phase space variables,
then the probability distribution of a trajectory can be written as:

P0(ω) = ρ0(x)K0(ω), (2.16)

where ρ0 is the distribution of the initial conditions. In the following we will present
two ways of calculating the response of a generic system: the formal expressions
are different, but they are evidently equal, as we will show explicitly at equilibrium.
Depending on the model under analysis, it can be convenient to use one expression
instead of the other.

2.2.1.1 Linear Response and Steady State Distribution

At the first step we study the behavior of one component of x, say xi , described
by ρinv(x), which is a non-vanishing and smooth enough invariant measure. When
such a system is subjected to an initial perturbation such that x(0) → x(0) + �x0.
We consider the case in which the system is prepared in its steady state, therefore
ρ0(x) = ρinv(x). This instantaneous kick modifies the initial density of the system
but does not affect the transition rates, therefore one has:

h = �x0

ρh(x) = ρ0(x − �x0)

Kh(ω) = K0(ω). (2.17)

For an infinitesimal perturbation δx(0) = (0, . . . , δx j (0), . . . , 0), by substituting
(2.17) inside (2.15) one arrives straightforward to4

Ri, j (t) ≡ δxi (t)

δx j (0)
= −

〈
xi (t)

∂ ln ρ(x)

∂x j

∣∣∣∣
t=0

〉
, (2.18)

which is the response function of the variable xi with respect to a perturbation of
x j . This is a first example of a generalized fluctuation response relation, derived for
the first time in [32]. The information requested to compute the response in terms
of unperturbed correlations is now reduced to the knowledge of the steady state

4 We put ρ ≡ ρinv for simplicity.
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distribution but can be still non-trivial. However the nature of the perturbation can
be easily implemented in numerical experiments: we will describe an application to
granular materials in Sect. 2.3.2.

With similar passages, it is also possible to derive the relaxation to finite time
perturbation, defining �xi = 〈xi 〉h − 〈xi 〉0, from (2.17) and (2.14) one has

�xi (t) =
〈
xi (t) F(x0,�x0)

〉
, (2.19)

where

F(x0,�x0) =
[
ρ(x0 − �x0) − ρ(x0)

ρ(x0)

]
. (2.20)

In this example, the dependence on the perturbation parameter is highly non
linear; this is important in different situations, such as in geophysical or climate
investigations: in these contexts, understanding the relaxation to a finite perturbation
due to a sudden external change is quite common and represents a challenging issue
in comparison to the infinitesimal perturbation required by the linear response theory
[9, 57], which can never be applied in practical situations.

2.2.1.2 Linear Response from Transition Rates

In some cases the distribution function is not known and the perturbation enters
directly in the equations of motion in form of external field. In these cases a compu-
tation from dynamics can be tempted.

Let us define A(ω) ≡ − ln Ph(ω)
P0(ω)

. This functional can be decomposed in two
contributions

A(ω) = 1

2
(T − S), (2.21)

where

T = A(Iω) + A(ω),

S = A(Iω) − A(ω). (2.22)

The ω dependence in T and S is omitted and the time reversal operator I is intro-
duced. With this formal operation one has:

δ〈O(t)〉h

δh(t ′)
= δ〈O(t)e−T /2+S/2〉

δh(t ′)

= 1

2

〈
O(t)

δS
δh(t ′)

∣∣∣∣
h=0

〉
− 1

2

〈
O(t)

δT
δh(t ′)

∣∣∣∣ h = 0

〉
. (2.23)
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It is clear that (2.23) is exactly the same of (2.15), apart from a different notation.
In order to go beyond on this result one must restrict to the Markovian case with
transition rates W (x → y) and introduce a prescription for the perturbed transition
rates Wh

Wh(x → y) = W (x → y)eβ/2h(t)[y−x]. (2.24)

Equation (2.24) is called “local detailed balance condition”. From this particular
assumption, one can derive this expression (see Appendix A.1 for details)

ROx (t, t ′) = β

2
[〈O(t)ẋ(t ′)〉 − 〈O(t)B(t ′)〉], (2.25)

where
B(t) ≡

∑

y 	=x

W (x → y)[y − x]. (2.26)

Let us stress again that formula (2.25) holds for non-stationary, aging processes, even
in absence of detailed balance [3, 22, 63].

At a first sight the two formulas (2.25) and (2.18) appear very different. Actually
such a difference can be exploited: we will see in this work how can be convenient
one of the two forms with respect to the other, depending on the model under analysis
[80].

2.2.1.3 The Equilibrium Case

As mentioned above, linear response theory historically has been developed in an
equilibrium context, and many results have been obtained. Let us show how the
usual forms of fluctuation dissipation theorems can be deduced from the dynamical
versions of the linear response. The advantage of this derivation is that the main
features of an equilibrium system must be taken into account and it appears clear
how the fluctuation dissipation theorem is a signature of equilibrium.

Let us start from the following identity (see Appendix A.1 for the details of the
calculations):

d

dt
C(t, t ′) ≡ 〈ẋ(t)O(t ′)〉 = 〈B(t)O(t ′)〉 for t > t ′. (2.27)

Moreover, let us consider that:

• if the system is time translational invariant d
dt C(t, t ′) = − d

dt ′ C(t − t ′)
• if the system is also invariant for time reversal symmetry 〈B(t)O(t ′)〉 = 〈O(t)

B(t ′)〉.
Within these assumptions from (2.27) and (2.25)

ROx (t) = β〈O(t)ẋ(0)〉, (2.28)
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which is nothing but the celebrated fluctuation dissipation theorem. The predictive
power of (2.28) is evident especially if compared with the more general relations
(2.18) and (2.25): the response of a generic observable is predicted by a suitable
correlator, which contains only the observable conjugated to the applied force and is
not dependent on the dynamical details of the system under investigation.

It is instructive to recover this result starting also from (2.18). In Hamiltonian
systems, taking the canonical ensemble as the equilibrium distribution, one has

ln ρ = −βH({p}, {q}) + const. (2.29)

Then, from the Hamilton’s equations (dqk/dt = ∂H/∂ pk) and from (2.18) one has
the differential form of the usual fluctuation dissipation relation [50, 51]:

δO(t)

δ pk(0)
= β

〈
O(t)

dqk(0)

dt

〉
= −β d

dt

〈
O(t)qk(0)

〉
. (2.30)

Apart from some differences in the notations, it is evident that (2.28) and (2.30) are
completely equivalent.

Moreover, let us suppose to make a perturbation on the momenta p0. From (2.18),
if the distribution of velocities is Maxwell-Boltzmann, one has

δv(t)

δv(0)
= β〈v(t)v(0)〉, (2.31)

where, for simplicity of notations, we have introduced the velocity v ≡ p0/m where
m is the mass. Equation (2.31) is most known in its integrated version: if a perturbation
like F�(t) acting on the particle is considered,5 the well known Einstein relation is
derived:

μ = βD, (2.32)

where we have introduced the mobility μ ≡ limt→∞ δv(t)
F and the diffusion coeffi-

cient

D ≡
∫ +∞

0
〈v(t)v(0)〉dt. (2.33)

We will return largely on (2.32) in Chap. 5, dealing with system exhibiting anomalous
diffusion.

In both these derivations, it emerges that when equilibrium dynamics is consid-
ered, the response function appears in a compact and general form, involving only
the correlation of the observable of interest and the one coupled to the external field.
On the contrary, when some currents are flowing into the system and it is driven out
of equilibrium, this forms simply fail and no general prescriptions for the response
are available. In order to stress this crucial point let us note that, as well clear even

5 � is the Heavyside step function.

http://dx.doi.org/10.1007/978-3-319-01772-3_5
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in the case of Gaussian variable, the knowledge of a marginal distribution

pi (xi ) =
∫
ρ(x1, x2, ....)

∏

j 	=i

dx j (2.34)

is not enough for the computation of the autoresponse:

Ri,i (t) 	= −
〈
xi (t)

∂ ln pi (xi )

∂xi

∣∣∣∣
t=0

〉
. (2.35)

On the contrary, as shown above, the equality in (2.35) holds for the velocities in the
case of Maxwell-Boltzmann distribution.

2.2.1.4 The Effective Temperature

In this work we will quite always consider driven systems, with the assumption that
they are ergodic and that they reach a steady state in a reasonable time. There is
another class of systems where dissipative forces are absent, but they start form an
initial configuration which is not the equilibrium one and are, then, characterized by a
non-time translational invariant dynamics. In some cases the transient regime has very
interesting properties like in domain growth [26], polymers [83], structural glasses
[20, 61] and spin glasses [19], where a dramatic slowing down of the relaxation
process appears as soon as some parameter is opportunely changed. In these cases
the memory of the initial condition is not completely lost and the system “ages”: the
observables depend non-trivially also by the waiting time, namely the time elapsed
since the system is prepared. This “aging regime” is then non stationary and the
fluctuation dissipation theorem is not expected to hold; both response and correlation,
indeed, decays slower as the system gets older. The analysis of this “fluctuation
dissipation violations” has been largely studied in literature (for a review see [24]). In
order to give an interpretation of these violations, the concept of effective temperature
has been introduced:

T ef f (t, tw) = 1

R(t, tw)

∂C(t, tw)

∂tw
. (2.36)

Note that, up to this moment, (2.36) is just a rewriting and it is obviously true.6 How-
ever, for slow enough dynamics, it is assumed that T ef f (t, tw) ≡ T ef f (C(t, tw)),
namely the correlation is assumed as a clock of the dynamics. This assumption is
verified in mean field glasses. In particular, one can distinguish two well definite
regimes: when (t − tw)/tw 
 1 one has that C(t, s) � Cst (t − s) and the fluctua-
tion dissipation theorem holds, namely T ef f (C) is equivalent to the temperature of

6 A similar definition is often introduced also in the frequency domain conjugated to the variable
t [27].
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Fig. 2.2 Left Integrated response versus correlation in a glass former. For small times (i.e. high
values of the correlation) the slope is equal to T and for a value C∗ which increases with the waiting
time, the slope corresponds to an higher temperature associated to the slow modes. Right behavior
expected for coarsening (top) and spin glasses (bottom). The image is taken from [62]

the dynamics T . On the contrary, when (t − tw)/tw > 1 the fluctuation dissipation
theorem is violated and different scenarios are possible, as shown in Fig. 2.2.

It is well established that structural glasses, when quenched below their Mode-
Coupling temperature, display an out-of-equilibrium dynamics customarily described
within a two-temperature scenario [11, 49, 86]. Fast modes are equilibrated at the
bath temperature while slow modes remember, in a sense, the higher temperature
determined by the initial condition.

An important question is whether this “violation factor” can be considered a tem-
perature in a thermodynamic sense. This question is still on debate [27, 61], and it
has some limits. For instance, it has been shown that, for a generalized version of
the trap model of Bouchaud [12], this definition of temperature is observable depen-
dent [35]. Moreover, in some stationary systems like granular gases, the effective
temperature meets some conceptual problems, for instance it is negative for vibrated
dry granular media [68] and, in case of mixtures, the two components have different
temperatures in the steady state [6].

However, it must be noticed that for the class of structural glasses, the interpre-
tation of the fluctuation dissipation ratio (2.36) as an “effective temperature” seems
to be well posed, considering also some detailed analysis made on a Leonard-Jones
binary mixture showing evidences that the so-defined temperature is observable inde-
pendent and constant on a long time interval [8].

We will return on the “effective temperature” interpretation on a “two tempera-
ture” driven model in Chap. 4.

2.2.2 A Measure of Non-Equilibrium: The Entropy Production

In the previous section we discussed how, when one deals with response theory, it
is quite crucial to distinguish between equilibrium and out of equilibrium dynamics.
Up to now, we just have stated that non equilibrium regimes are always characterized
by some sort of current flowing across the system. Actually, this definition appears

http://dx.doi.org/10.1007/978-3-319-01772-3_4
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quite vague. In this section we go beyond this consideration by introducing a family
of observables which somehow can give a sort of distance from equilibrium.

In general, when one deals with non-equilibrium dynamics, very few results,
independent from the details of the model, are available. Actually in the last decades
a group of relations, known with the name of “fluctuation relations” have captured
the interest of the scientific community, especially for their generality and the vast
range of applicability. Initially, a numerical evidence given by Evans and Searles
[30] showed a particular symmetry in the Cramer function ruling the large deviation
of an observable of a molecular fluid under shear. On the other hand, a theorem
has been proved by Gallavotti and Cohen [36], under quite general hypothesis, for
deterministic systems. This result has been then generalized to stochastic processes
by Kurchan [55] and by Lebowitz and Spohn [59]. In a second moment, Jarzinski
[45] and Hatano and Sasa [42] have derived other equalities, regarding irreversible
transformations: we will return on these last group of identities in Sect. 2.2.3.

Apart from the differences among the various forms of fluctuation relations, it is
possible to present these results under an unitary point of view [56], as evidence that
the physical ground underlying these results is the same.

According to the description here adopted we will focus on systems in which some
noise is present. Thanks to this assumption, it is possible to skip several technical
problems and some forms of fluctuation theorems for stochastic systems can be used.
We will not enter in the description of the huge literature related to these relations
(the interested reader can see, among others [31]) but we will focus on the description
of the Lebowitz-Sphon functional, since it is applied to the models presented in the
following chapters.

2.2.2.1 The Lebowitz-Sphon Functional

It was shown in Sect. 2.2.1.3 that equilibrium response formula can be derived in a
steady state, by assuming time reversal symmetry. This condition is translated on a
symmetry property of the probability distribution

P(ωt ) = P(Iωt ), (2.37)

where I denotes the time reverse operator. Let us consider a transition rate from a
generic state x to the state y, from (2.37) the well-known detailed balance condition
is obtained

ρinv(x)W (x → y) = ρinv(y)W (y → x). (2.38)

where ρinv is the invariant measure. When a current is present, (2.38) is violated and
the time reversal symmetry is broken. From these considerations it appears natural
to introduce the following functional for a trajectory of length t :

�t = ln
P(ωt )

P(Iωt )
. (2.39)
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Within this definition, �t is identically equal to zero for each trajectory separately, if
detailed balance condition (2.38) is satisfied. Moreover it easy to show, by exploiting
the properties of the Kullback-Leibler divergence [53], that 〈�t 〉 is always non-
negative. Quantity (2.39) is very difficult to be measured, for instance, in an experi-
mental setup [87]. However, in some cases, the entropy production is related to the
power injected by external non conservative forces, let us then discuss with a peda-
gogical example how the entropy production is related to non-equilibrium currents.

Consider a Markov process where the perturbation of an external force F induces
non-equilibrium currents. Let us assume that it enters in the transition rates according
to local detailed balance condition (2.24), that we rewrite here for clarity

WF (x → y)

WF (y → x)
= W0(x → y)

W0(y → x)
e2βF j (x→y), (2.40)

where j (x → y) is the current associated to the transition x → y, which obey the
symmetry property j (x → y) = − j (y → x). According to the definition of entropy
production (2.39) one finds, for large times,

�t

t
� 2βF

1

t

t∑

n=1

j (x(n − 1) → x(n)) = 2βF J (t), (2.41)

where J (t) is the time-averaged current over a time window of duration t . The
fluctuation relation for the probability distribution of the variable y = �t/t reads:

P(y)

P(−y)
= ey =⇒ P(2βF J (t))

P(−2βF J (t))
= e2βF J (t). (2.42)

Namely the fluctuation relation describes a symmetry in probability distribution of
the fluctuations of currents. Also, for large times we can assume a large deviation
hypothesis P(y) ∼ e−t S(y), with S(y) a Cramer function. For small fluctuations
around the mean value of y the Cramer function can be approximated to S(y) =
S(2βF J ) � β2 F2(J − J )2/σ2

J , where σJ is the variance. The fluctuation relation
reads as

S(y) − S(−y) = y. (2.43)

In the Gaussian limit (y close to y) the previous constraint can be easily demon-
strated to be equivalent to J/F = βσ2

J , which is nothing but the standard fluctuation
dissipation relation. Therefore the fluctuation relation, which in the simplest case can
be directly related to the fluctuation dissipation relation, is a more general symmetry
to which we expect to obey the fluctuating entropy production. For a more general
discussion of the link between the Lebowitz-Spohn entropy production and currents,
see [1, 59]. The remarkable fact appearing in Eq. (2.42) is that it does not contain
any free parameter, and so, in this sense, is model-independent.
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It is instructive to calculate the entropy production for a simple Langevin equation
of a particle in a force field [2]:

v̇ = −�v + F(x, t) + η(t) (2.44)

with, as usual, the noise is Gaussian with 〈η〉 = 0, 〈η(t)η(t ′)〉 = 2T �δ(t − t ′), and
where F(x, t) = Fc + Fnc is a sum of a conservative force Fc = −U ′(x) and a non-
conservative force Fnc(t). The path probability can be written down by introducing
the Onsager-Machlup functional [71]:

P(ω ≡ {v}t ) ∝ exp(−L), (2.45)

where

L = 1

4�T

∫ t

0
ds (v̇ + �v − F)2 . (2.46)

The entropy production reads:

�t = ln
P(ω)

P(Iω)
= �H

T
+

∫ t
0 Fnc(s)v(s)ds

T
, (2.47)

where �H = v2(t)−v2(0)
2 + U [x(t)] − U [x(0)]. Equation (2.47), for large times,

allows one to identify the work wnc(t) = ∫ t
0 Fnc(t)v(t)dt done by the external non-

conservative force (divided by T ) as the entropy produced during the time t . This
is an example of the result by Kurchan [54] and by Lebowitz and Spohn [59] about
the fluctuation relation for stochastic systems. We will return on this functional in
Chap. 3 and 4.

2.2.3 Entropy Production and the Arrow of Time

The previous class of fluctuation relations are a sort of extensions of the second law of
thermodynamics to small or non-equilibrium systems. In order to see this similarity,
let us consider a system x which moves from the state A to the state B by a variation
of a parameter α. Then Hatano and Sasa, showed that

〈e− ∫
dt ∂φ(x;α)

∂α α̇〉 = 1, (2.48)

where φ(x;α) = ln ρinv(x;α), being ρinv the invariant measure at constant α. By
applying the Jensen inequality to (2.48), one has

〈
−

∫
dt
∂φ(x;α)

∂α
α̇

〉
≥ 0. (2.49)

http://dx.doi.org/10.1007/978-3-319-01772-3_3
http://dx.doi.org/10.1007/978-3-319-01772-3_4
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It is simple to see that the equality is reached only if the transformation is, in a sense,
reversible, namely one must assume that, for each value of the control parameter α,
the system is in the corresponding stationary state: Eq. (2.48) can be interpreted as
a generalization of the second principle of thermodynamic to generic steady states
[72]. A relevant question regarding steady states rises again: the quantity φ(x;α),
present in Eq. (2.48) has not a clear thermodynamic meaning, when some currents are
present. On the contrary if the system is in equilibrium and the canonical probability
density can be assumed, one has

〈e−βW 〉A→B = e−β�F , (2.50)

which is named Jarzinski relation, where �F is the free energy change between A and
B. Also in this case, by means of the Jensen inequality one has that 〈W 〉A→B ≥ �F ,
which is exactly the second law in thermodynamics. The main message that emerges
from this example is that the fluctuation relations of the kind (2.42) are a sort of
extension of the second law when fluctuations are relevant. Different connections
between these formulas and information theory has been proposed. Let us discuss,
for instance, the problem of the arrow of time. In order to fix ideas, let us suppose to
observe a trajectory generated by the dynamics of (2.44) and we do not know apriori
if we are observing it in the right temporal sequence. Clearly if we had an ensemble
of trajectories from the same initial condition we could work with the averaged
trajectory 〈v(t)〉 to find easily the answer. On the contrary, because of fluctuations,
we cannot be sure of the direction of the time and it becomes a problem of estimation
theory. Let be H0 the hypothesis that the trajectory observed does follow the real
time-line and H1 its negation, a straightforward application of the Bayes formula
gives

P(H0|{V }) = P({V }|H0)P(H0)

P({V }|H0)P(H0) + P({V }|H1)P(H1)
. (2.51)

We consider now the case in which there is no reason to prefer as prior an hypothesis
respect to the other: then we have P(H0) = P(H1) = 1

2 . Moreover P({V }|H1) ≡
P(I{V }|H0). Finally, by recalling Eq. (2.47) one has

P(H0|{V }) = 1

1 + e−β(�H+Wd )
, (2.52)

where the dissipative work has been introduced Wd = ∫ t
0 Fnc(s)v(s)ds. Despite of

this simplicity, the result (2.52) is really evocative: if the work of the dissipative
forces, without sign, is sensibly greater than the thermal fluctuations it is possible to
find the correct direction of the time (see Fig. 2.3). Remarkably, if conservative forces
are absent, namely if an equilibrium limit is obtained, the probability collapses to the
value 1

2 , as a consequence of the detailed balance condition (2.37). This example can
by easily generalized to a generic Hamiltonian system showing the same results [10,
46]. Other works have also shown similar connections with the Landauer principle
[48].
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Fig. 2.3 Qualitative behavior
of Eq. (2.52) in function
of the entropy production,
where � = β(�H + Wd ).
If the dissipative work differs
appreciably from zero, it
is possible to distinguish
the arrow of time of the
trajectory. An equilibrium
system corresponds to the
case � = 0
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Fig. 2.4 Schematic repre-
sentation of the Feynman-
Smoluchowski ratchet. If the
two temperatures are equal,
i.e. T1 = T2, a net drift cannot
be observed. The picture is
taken from Wikimedia Foun-
dation

These simple arguments are a reflection of the dualism entropy/information. We
will return on this subject in Sect. 3.3.

2.2.4 The Ratchet Effect: A Pure Non-Equilibrium Phenomena

Let us conclude this part of the chapter by describing a pure non-equilibrium feature,
known with the name of ratchet effect. The first one to focus on this problem was
Smoluchowski with a Gedanken experiment [82], then recovered by Feynman in his
popular lectures [34].

As shown in Fig. 2.4, the machine described by Feynman is composed by two
compartments. In one of these there is a spring connected with a pawl, while a
symmetric rotor is present in the second compartment. Both the compartments are
filled with a gas. At a first glance, the machine seems to rotate, since the particles
of the gases are supposed to strike uniformly all the faces of the pawl, but it is able
to move only in one direction, also if the two temperatures in the compartments are
equal. On the contrary, as pointed out by Feynman, the pawl, in order to be sensible

http://dx.doi.org/10.1007/978-3-319-01772-3_3
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to the fluctuation induced by the particles, must be of a similar order of magnitude.
Therefore, the dynamics of the pawl is sensible to the thermal fluctuations. Taking into
account of this, it is possible to show that there is not a drift. From this example one
can conclude that from equilibrium fluctuations is not possible to observe a directed
motion. Such a result can be understood in terms of the second law of thermodynamics
or, from a kinetic point of view, observing that, from detailed balance condition (2.37),
it is not possible to distinguish between past and future. On the contrary, if the two
containers of the model are kept at different temperatures (T1 	= T2), the system
is out of equilibrium and, as commented in Sect. 2.2.2, time reversal symmetry is
broken. Under these conditions it is possible to extract work, as derived by Van Den
Broeck et al. [15], via kinetic theory, in a simplified version of the model. Note that,
in this case, we are not creating work without putting energy into the system: the two
reservoirs, indeed, are in contact. Therefore, in a energy balance calculation, also the
power injected in order maintain the two temperature different must be taken into
account.

As this simple example shows, the necessary ingredient to have a ratchet effect
are:

• a spatial symmetry breaking, obtained by an asymmetric shape of intruder or by a
non-symmetric external potential acting on the probe particle

• a time symmetry breaking, obtained with non equilibrium conditions.

Even if only one of this two conditions is lacking, a directed motion cannot be
observed. This mechanism is also described as a “rectification of non equilibrium
fluctuations”: let us illustrate this point with a simple overdamped Langevin model
[41]:

γ ẋ = −V ′(x) + ξ(t), (2.53)

where V (x) ≡ V (x + L) is a periodic asymmetric potential with period L and ξ(t)
is the usual Gaussian noise with 〈ξ(t)ξ(t ′)〉 = 2γT (t)δ(t − t ′). Note that the time
dependence in the correlation of noise is necessary in order to break the detailed
balance condition since the fluctuation dissipation theorem of the second kind is not
satisfied. Two typical shapes of the potential and of the temperature are

V (x) = V0〈[sin(2πx) + 1

4
sin(2πx/L)]〉 (2.54)

T (t) = T (1 + Asgn[sin(ωt)]). (2.55)

where the coefficients in the potential are properly fixed in order to avoid a trivial drift.
Within the choice (2.55) the conditions described above are satisfied and a ratchet
effect occurs [40]. Given the simplicity of this model, it is not difficult to understand
how a proper choice of the shape of T (t) is able to rectify the asymmetries induced
by the asymmetric potential, as commented in Fig. 2.5.

In the case above discussed the scales of energy are put by hand and fixed as
external parameters, like the two temperatures in Fig. 2.4. On the contrary, there is
another class of ratchet whose “second temperature” breaking the detailed balance
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Fig. 2.5 Schematic explana-
tion of a ratchet effect of the
kind (2.53). In the hot phase,
particle diffuses and, given
the asymmetry of the poten-
tial, the diffusive motion is
rectified in a neat drift. From
this example it is clear that
the intensity of the drift does
non-trivially depend on the
other parameters

Cold

(1−a)L

Cold

Hot

is, in a sense, generated by non-equilibrium dynamics. The first example in this
direction is obtained by substituting the gas with a granular material, characterized
by inelastic collisions [23, 65]. Another elegant example has recently experimentally
produced by using a thermal bath made of bacteria [60]. In Chap. 4 we will see
another application of this kind, by studying an intruder in a fragile glass former.
Such an application sounds new for two main reasons: first, it happens in the presence
of anomalous transport, and as a consequence, the position of the intruder does not
increase linearly in time, secondly the system under investigation is neither stationary
nor periodic, as in the other cases here presented.

2.3 An Example of Out of Equilibrium Systems: The Granular
Gases

Granular materials are a good candidate to study the non equilibrium effects described
up to this point. The main ingredients necessary to have a granular material are
essentially the inelastic nature of the collisions and the presence of an excluded
volume, due to the macroscopic dimensions of its constituents [47]. Despite of this
simplicity there is a huge variety of phenomena that has interested the physicist
in the last decades, both in applied and theoretical contexts. It is quite usual to
divide granular materials in two main classes: stable or metastable systems and
flowing granular systems. One of the first examples of the peculiar properties of the
granular material, the quite popular Janssen effect [44], belongs to the first class and
describes the deviation from the Stevino’s law in such a material. The study of the
distribution of avalanches led to introduce the concept of self organized criticality
[4]. On the contrary, as the name suggests, in the case of flowing granular systems an
uninterrupted flow is present. Also in this regime, several non-equilibrium effects may

http://dx.doi.org/10.1007/978-3-319-01772-3_4
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arise and have been largely studied, like segregation phenomena, pattern formations
and convection [37, 43].

In this work, we do not touch the interesting issue of non-ergodic properties related
to granular materials, but we always refer to a “granular gas regime”, in a steady state
condition. In order to reach a steady state it is necessary to balance the dissipation
due to collisions with an energy injection mechanism. There are several models of
external energy sources that can be applied such that the system rapidly forgets the
initial condition and reaches a steady state [75]. We will focus on a specific model,
that is the one used in Chaps. 4 and 5, but it must be noticed that, apart from some
details, in quite all the models of driven granular gases the scenario described in
Sect. 2.3.1 is qualitatively similar.

2.3.1 A Model of a Granular Gas with Thermostat

Let us consider a d-dimensional model for driven granular gases [69, 76, 77, 85]: N
identical disks (in d = 2) or rods of diameter 1 (in d = 1) in a volume V = L × L or
total length L with inelastic hard core interactions characterized by an instantaneous
velocity change

v′
i = vi − 1 + r

2
[(vi − v j ) · σ̂]σ̂, (2.56)

where i and j are the label of the colliding particles, v and v′ are the velocity before
and after the collision respectively, σ̂ is the unit vector joining the centers of particles
and r ∈ [0, 1] is the restitution coefficient which is equal to 1 in the elastic case.
Each particle i is coupled to a “thermal bath”, such that its dynamics (between two
successive collisions) obeys

m
dvi

dt
= − 1

τb
vi +

√
2Tb

τb
φi (t), (2.57)

where τb and Tb are parameters of the “bath” and φi (t) are independent normalized
white noises. As anticipated before, we restrict ourselves to the dilute or liquid-like
regime, excluding more dense systems where the slowness of relaxation prevents
clear measures and poses doubts about the stationarity of the regime and its ergodicity.

Note that, with the choice of this kind of thermostat, the equilibrium limit is
well defined: if r = 1 particles interact each other with elastic collisions and the
distribution of velocity is Maxwell-Boltzmann.

Two important observables of the system are the mean free time between collisions
τc, and the packing fraction ψ. Moreover, it is common to introduce the granular
temperature

Tg = m
∑

i 〈v2
i 〉

N
, (2.58)

http://dx.doi.org/10.1007/978-3-319-01772-3_4
http://dx.doi.org/10.1007/978-3-319-01772-3_5
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which is a quite involved function of the parameters, as we will see in the next section.
In this model is possible to recover two different regimes:

• When τc � τb grains thermalize, on average, with the bath before experiencing
a collision and the inelastic effects are negligible. This is an “equilibrium-like”
regime, similar to the elastic case r = 1, where the granular gas is spatially
homogeneous, the distribution of velocity is Maxwellian and Tg = Tb.

• When τc 
 τb, non-equilibrium effects can emerge such as deviations from
Maxwell-Boltzmann statistics, spatial inhomogeneities and Tg < Tb [69, 76, 77,
85]. This “granular regime”, easily reached when packing fraction or inelasticity
are increased, is characterized by strong correlations among different particles.

2.3.1.1 Granular Temperature of the Gas

In this section, in order to see an example of a kinetic calculation, we will see how
to obtain, in some limit, an expression for the granular temperature Tg .

Multiplying Eq. (2.57) by v(t) and averaging, one gets7

1

2
m

d

dt
〈v2(t)〉 = −γb〈v(t)2〉 + 〈v(t)f(t)〉 + 〈v(t)η(t)〉. (2.59)

Where, for simplicity, we have introduced γb = 1
τb

and ηi = 2Tb
τb
φi . At stationarity,

the left hand side of the above equation vanishes and 〈v(t)η(t)〉 = 2γbTb/m. The
term 〈v(t)f(t)〉 represents the average power dissipated by collisions:

〈v(t)f(t)〉 = −〈�E〉col , (2.60)

where �E = 1/8m(1 −α2)[(v1 − v2) · œ̂]2 is the energy dissipated per particle and
the collision average is defined by

〈. . .〉col =
∫

dœ̂
∫

dv1

∫
dv2 . . . p(v1, v2)�[−(v1 − v2) · œ̂]|(v1 − v2) · œ̂|.

This integral contains the joint distribution of the collisional particle velocity. It can
be solved with the Enskog correction, a slight modification of the molecular chaos
assumption [21]:

p(v1, v2) = χp(v1)p(v2), (2.61)

where χ = g′
2(2r)

l0
and l0 is the mean free path and g′

2(2r) is the pair correlation
function for two gas particles at contact. Equation (2.61) is expected to hold in a dilute
system, but fails in denser regimes, because of recollisions and memory effects.

Thanks to this approximation, the integral in Eq. (2.60) can be computed by stan-
dard methods [13], and, in two dimensions within the Gaussian approximation, yields

7 The index i has been removed for simplicity.
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〈�E〉col = χg

√
π(1 − r2)√

m
T 3/2

g . (2.62)

Substituting this result into Eq. (2.59) and recalling that Tg = m〈v2〉/2, one finally
obtains the implicit equation

Tg = Tb − χg

√
πm(1 − r2)

2γb
T 3/2

g , (2.63)

which can be solved to obtain Tg . Note that, from (2.63), when γb → ∞, the
equilibrium-like limit is recovered and Tb = Tg .

2.3.2 Response Analysis

For the model presented above, and for other similar steady state granular gases, a
response analysis has been performed [5, 7, 14, 74, 78, 84].

We will focus on the numerical experiments on the model described in Sect. 2.3.1.
The protocol used in numerical experiments cited above is the following:

1. The gas is prepared in a “thermal” state, with random velocity components
extracted from a Gaussian with zero average and given variance, and positions
of the particles chosen uniformly random in the box, avoiding overlapping con-
figurations.

2. The system is let evolve until a statistically stationary state is reached, which is
set as time 0.

3. A copy of the system is obtained, identical to the original but for one particle,
whose x (for instance) velocity component is incremented of a fixed amount
δv(0).

4. Both systems are let evolve with the unperturbed dynamics. For the random
thermostats, the same noise realization is used. The perturbed tracer has velocity
v′(t), while the unperturbed one has velocity v(t), so that δv(t) = v′(t) − v(t).

5. After a time tmax large enough to have lost memory of the configuration at time 0,
a new copy is done with perturbing a new random particle and the new response
is measured. This procedure is repeated until a sufficient collection of data is
obtained.

6. Finally the autocorrelation function Cvv(t) = 〈v(t)v(0)〉 in the original system

and the response Rvv(t) ≡ δv(t)
δv(0)

are measured.

In dilute cases, it is numerically observed that the phase space distribution can be
factorized, namely:

ρ({vi , xi }) = nN
N∏

i=1

d∏

α=1

pv(v
(α)
i ), (2.64)
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Fig. 2.6 Parametric plots to check the Einstein Relation, for d = 2 models of inelastic hard-core
gases with thermal bath. Different choices of parameters r (restitution coefficient), α = τc/τb and
ψ (packing fraction) are shown: note that one can change α at ψ or r fixed (changing τb), but - in
general - changes in ψ or r determine also changes in α (because of changes in τc). In all plots, the
dashed line marks the Einstein relation Rvv = Cvv(t)/Cvv(0)

with n the spatial density n = N/V and pv(v) the one-particle velocity component
probability density function, v

(α)
i the α-th component of the velocity of the i-th

particle and d the system dimensionality. Exploiting isotropy, we will denote with v

an arbitrary component of the velocity vector: the results do not change if v is the x
or y component.

From (2.18), it is expected that an instantaneous perturbation δv(0), at time t = 0
on a particle of the gas will result in an average response of the form

R(t) = δv(t)

δv(0)
= −

〈
v(t)

∂ ln pv(v)

∂v

∣∣∣∣
0

〉
	= C1(t), (2.65)

having defined C1(t) = 〈v(t)v(0)〉/〈v2〉. On the contrary it is observed that notice-
able deviations form Einstein relation do not occur, therefore non-Gaussianity alone
is not sufficient to produce violations. Indeed it has been shown in simplified models
that all the higher order correlations are proportional [74]

C f (t) = 〈v(t) f [v(0)]〉
〈v(0) f [v(0)]〉 ≈ C1(t), (2.66)

which is shown to be valid also in the model here described, by numerical inspection.
In conclusion, in the dilute limit the two conditions (2.64) and (2.66) are sufficient
to verify the Einstein relation.

On the contrary, when the system is denser, the Molecular chaos approximation
is no more valid and Eq. (2.64) fails; as a consequence, one can observe strong
deviations from linearity between response and autocorrelation.
In addiction, there are same remarkable points: the violation is more and more pro-
nounced as the inelasticity increases (lower values of r ), the importance of the bath
is reduced (lower values of τb/τc) or the packing fraction is increased, as shown in
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Fig. 2.6. In correspondence of such variations of parameters, the correlation between
velocities of adjacent particles is also enhanced, a phenomena which is ruled out in
equilibrium fluids. We will return on this aspect in Chap. 5 by observing a similar
behavior in a one dimensional model.

2.3.3 Entropy Production in Granular Gases: A Challenge

An experiment has been performed by Menon and Feitosa [33] using a granular gas
shaken in a container at high frequency. The setup consisted of a 2D vertical box con-
taining N identical glass beads, vertically vibrated at frequency f and amplitude A.
The authors observed the kinetic energy variations �Eτ , over time windows of dura-
tion τ , in a central sub-region of the system characterized by an almost homogeneous
temperature and density. They subdivided this variation into two contributions:

�Eτ = Wτ − Dτ , (2.67)

where Dτ is the energy dissipated in inelastic collisions and Wτ is the energy flux
through the boundaries, due to the kinetic energy transported by incoming and out-
going particles. The authors of the experiment have conjectured that Wτ , being a
measure of injected power in the sub-system, can be related to the entropy flow or
the entropy produced by the thermostat constituted by the rest of the gas (which is
equal to the internal entropy production in the steady state). They have measured its
probability distribution f (Wτ ) and found that

ln
f (Wτ )

f (−Wτ )
= βWτ , (2.68)

with β 	= 1/Tg . By lack of a reasonable explanation for the value of β, the authors
have concluded to have experimentally verified the fluctuation relation with an “effec-
tive temperature” Tef f = 1/β, suggesting its use as a possible non-equilibrium gen-
eralization of the usual granular temperature. The same results have been found in
molecular dynamics simulations of inelastic hard disks with a similar setup [79].
This “effective temperature” interpretation is not convincing for different reasons.
Among others, in the elastic limit one should expect that this definition of temper-
ature should coincide with the external one, on the contrary it diverges, since the
function f (Wτ ) is symmetric. A different explanation has been proposed in [79],
and it shows no connection with the fluctuation relation. It appears that the injected
power measured in the experiment can be written as

Wτ = 1

2

( n+∑

i=1

v2
i+ −

n−∑

i=1

v2
i−

)
, (2.69)

http://dx.doi.org/10.1007/978-3-319-01772-3_5
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where n− (n+) is the number of particles leaving (entering) the sub-region during
the interval of time τ . In this case the authors assume n− and n+ being Poisson-
distributed, neglecting correlations among particles entering or leaving successively
the central region. The key ingredient due to inelasticity is that, as confirmed by
simulations, the velocities vi+ and vi− are assumed to originate from two distinct
populations with different temperatures T+ and T− respectively. Within this assump-
tions, the left member of (2.68) can be exactly calculated, showing a non linear
behavior in Wτ . The linear expression (2.68) found in the experiments is consistent
with the expansion up to the third order8 and can then be explained with lack of
statistics.

2.3.4 Some Remarks

As underlined in the previous sections, both the response properties and the entropy
production in granular gases are non completely clarified issues.

Regarding response properties, the lack of factorization of the phase space dis-
tribution produces a failure of the Einstein relation. A tentative modelling of the
response was tried in [74] by assuming an effective distribution for the perturbed
particle

pv(v, x, t) ∼ exp

{
− (v − u(x, t))2

2Tg

}
, (2.70)

where u(x, t) is an effective fluctuating local velocity field coupled to the tracer (one
can think to the average velocity of the surrounding particles). Using (2.18) one has

δv(t)

δv(0)
∝ 〈v(t) [v(0) − u(x, t)]〉. (2.71)

This formula has the merit to catch the main non-equilibrium source of the syste; for
this reason, indeed, there is a partial agreement with simulations. On the other hand,
assumption (2.70) has two main problems. First of all, a local velocity field can be
defined only with an associated length, and, at this level, there is not an operative
definition of it. Second, for the elastic limit the Einstein relation must be recovered
and the distribution of velocities must approach to a Maxwell-Boltzmann; such a
limit is not straightforward in Eq. (2.70), since a local velocity field does also exist
in a dense elastic case, but is uncoupled to the tracer. Noticeably, one of the major
criticism that can be moved to the “effective temperature interpretation” (2.68) is
that the elastic limit is not well defined.

Given the considerations above, it appear necessary to work in a more controlled
setup, where the correlations and the corresponding coupling with a velocity field
emerge as soon as dissipation due to inelasticity is turned on, and a proper elastic limit
can be recovered, together with the validity of the fluctuation dissipation theorem

8 The second order term trivially vanishes for functions of the form g(x) = ln[ f (x)/ f (−x)].
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and with a vanishing entropy production. This issue is a central point in this work
and it will be discussed in Chaps. 3 and 4.
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